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9 THEORY OF RATIONAL AGENTS

• The Bayesian Agent AIξ

• Future Value and Discounting

• Knowledge-Seeing and Optimistic Agents

• Discussion
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Theory of Rational Agents: Abstract

... There are strong arguments that the resulting AIXI model is the most

intelligent unbiased agent possible.

Other discussed topics are relations between problem classes, the

horizon problem, and computational issues.
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9.1 The Bayesian Agent AIξ: Contents

• Agents in Probabilistic Environments

• Optimal Policy and Value – AIρ Model

• The Bayes-Mixture Distribution ξ

• Questions of Interest

• Linearity and Convexity of Vρ in ρ

• Pareto Optimality

• Self-optimizing Policies

• Environments w./ (Non)Self-Optimizing Policies
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Agents in Probabilistic Environments

Given history y1:kx<k, the probability that the environment leads to

perception xk in cycle k is (by definition) ρ(xk|y1:kx<k).

Abbreviation (chain rule)

ρ(x1:m|y1:m) = ρ(x1|y1)·ρ(x2|y1:2x1)· ... ·ρ(xm|y1:mx<m)

The average value of policy p with horizon m in environment ρ is

defined as

V p
ρ := 1

m

∑
x1:m

(r1+ ...+rm)ρ(x1:m|y1:m)|y1:m=p(x<m)

The goal of the agent should be to maximize the value.
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Optimal Policy and Value – AIρ Model

The ρ-optimal policy pρ := argmaxp V
p
ρ maximizes V p

ρ ≤ V ∗
ρ := V pρ

ρ .

Explicit expressions for the action yk in cycle k of the ρ-optimal policy

pρ and their value V ∗
ρ are

yk = argmax
yk

∑
xk

max
yk+1

∑
xk+1

... max
ym

∑
xm

(rk+ ...+rm)·ρ(xk:m|y1:mx<k),

V ∗
ρ = 1

m max
y1

∑
x1

max
y2

∑
x2

... max
ym

∑
xm

(r1+ ...+rm)·ρ(x1:m|y1:m).

Keyword: Expectimax tree/algorithm.
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The Bayes-Mixture Distribution ξ

Assumption: The true environment µ is unknown.

Bayesian approach: The true probability distribution µAI is not learned

directly, but is replaced by a Bayes-mixture ξAI .

Assumption: We know that the true environment µ is contained in some

known (finite or countable) set M of environments.

The Bayes-mixture ξ is defined as

ξ(x1:m|y1:m) :=
∑
ν∈M

wνν(x1:m|y1:m) with
∑
ν∈M

wν = 1, wν > 0 ∀ν

The weights wν may be interpreted as the prior degree of belief that the

true environment is ν.

Then ξ(x1:m|y1:m) could be interpreted as the prior subjective belief

probability in observing x1:m, given actions y1:m.
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Questions of Interest

• It is natural to follow the policy pξ which maximizes V p
ξ .

• If µ is the true environment the expected reward when following

policy pξ will be V pξ

µ .

• The optimal (but infeasible) policy pµ yields reward V pµ

µ ≡ V ∗
µ .

• Are there policies with uniformly larger value than V pξ

µ ?

• How close is V pξ

µ to V ∗
µ ?

• What is the most general class M and weights wν?

M = MU and wν = 2−K(ν) =⇒ AIξ =AIXI !
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Linearity and Convexity of Vρ in ρ

Theorem 9.1 (Linearity and convexity of Vρ in ρ)

V p
ρ is a linear function in ρ: V p

ξ =
∑

ν wνV
p
ν

V ∗
ρ is a convex function in ρ: V ∗

ξ ≤
∑

ν wνV
∗
ν

where ξ(x1:m|y1:m) =
∑

ν wν ν(x1:m|y1:m).

These are the crucial properties of the value function Vρ.

Loose interpretation: A mixture can never increase performance.
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Pareto Optimality
Every policy based on an estimate ρ of µ which is closer to µ than ξ is,

outperforms pξ in environment µ, simply because it is more tailored

toward µ. On the other hand, such a system performs worse than pξ in

other environments:

Theorem 9.2 (Pareto optimality of pξ) Policy pξ is Pareto-

optimal in the sense that there is no other policy p with V p
ν ≥ V pξ

ν

for all ν ∈ M and strict inequality for at least one ν.

From a practical point of view a significant increase of V for many

environments ν may be desirable even if this causes a small decrease of

V for a few other ν. This is impossible due to

Balanced Pareto optimality:

∆ν := V pξ

ν − V p̃
ν , ∆ :=

∑
ν wν∆ν ⇒ ∆ ≥ 0.
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Self-optimizing Policies

Under which circumstances does the value of the universal policy pξ

converge to optimum?

V pξ

ν → V ∗
ν for horizon m→ ∞ for all ν ∈ M. (9.3)

The least we must demand from M to have a chance that (9.3) is true

is that there exists some policy p̃ at all with this property, i.e.

∃p̃ : V p̃
ν → V ∗

ν for horizon m→ ∞ for all ν ∈ M. (9.4)

Main result:

Theorem 9.5 (Self-optimizing policy pξ (9.4) ⇒ (9.3))

The necessary condition of the existence of a self-optimizing policy

p̃ is also sufficient for pξ to be self-optimizing.
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Environments w./ (Non)Self-Optimizing Policies
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Discussion of Self-optimizing Property

• The beauty of this theorem is that the necessary condition of

convergence is also sufficient.

• The unattractive point is that this is not an asymptotic convergence

statement of a single policy pξ for time k → ∞ for some fixed m.

• Shift focus from the total value V and horizon m→ ∞ to the

future value (value-to-go) V and current time k → ∞.
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9.2 Future Value and Discounting:

Contents

• Results for Discounted Future Value

• Continuity of Value

• Convergence of Universal to True Value

• Markov Decision Processes (MDP)

• Importance of the Right Discounting

• Properties of Ergodic MDPs

• General Discounting

• Effective Horizon

• Other Attempts to Deal with the Horizon Issue

• Time(In)Consistent Discounting
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Future Value and Discounting

• Eliminate the horizon by discounting the rewards rk ; γkrk with

Γk :=
∑∞

i=k γi <∞ and letting m→ ∞.

• V πρ
kγ :=

1

Γk
lim

m→∞

∑
xk:m

(γkrk+...+γmrm)ρ(xk:m|y1:mx<k)|y1:m=p(x<m)

• Further advantage: Traps (non-ergodic environments) do not

necessarily prevent self-optimizing policies any more.
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Results for Discounted Future Value

Theorem 9.6 (Properties of Discounted Future Value)

• V πρ
kγ is linear in ρ: V πξ

kγ =
∑

ν w
ν
k V

πν
kγ .

• V ∗ρ
kγ is convex in ρ: V ∗ξ

kγ ≤
∑

ν w
ν
k V

∗ν
kγ .

• where wν
k := wν

ν(x<k|y<k)
ξ(x<k|y<k)

is the posterior belief in ν.

• pξ is Pareto-optimal in the sense that there is no other policy

π with V πν
kγ ≥ V pξν

kγ for all ν ∈ M and strict inequality for at

least one ν.

• If there exists a self-optimizing policy for M, then pξ is self-

optimizing in the sense that

If ∃π̃k∀ν : V π̃kν
kγ

k→∞−→ V ∗ν
kγ =⇒ V pξµ

kγ
k→∞−→ V ∗µ

kγ .
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Continuity of Value

Theorem 9.7 (Continuity of discounted value)

The values V πµ
kγ and V ∗µ

kγ are continuous in µ, and V pµ̂µ
kγ is continuous

in µ̂ at µ̂ = µ w.r.t. a conditional 1-norm in the following sense:

If
∑

xk
|µ(xk|x<ky1:k)− µ̂(xk|x<ky1:k)| ≤ ε ∀yx<kyk ∀k ≥ k0, then

|V πµ
kγ − V πµ̂

kγ | ≤ δ(ε), |V ∗µ
kγ − V ∗µ̂

kγ | ≤ δ(ε), |V ∗µ
kγ − V pµ̂µ

kγ | ≤ 2δ(ε)

∀ k ≥ k0 and yx<k, where δ(ε) := rmax ·min
n≥k

{(n−k)ε+ Γn

Γk
} ε→0−→ 0.

Warning: V pξµ
kγ ̸→ V ∗µ

kγ , since ξ → µ does not hold for all yx1:∞, but

only for µ-random ones.

Average Value: By setting γk = 1 for k ≤ m and γk = 0 for k > m we

also get continuity of V ...
km.
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Convergence of Universal to True Value

Theorem 9.8 (Convergence of universal to true value)

For a given policy p and history generated by p and µ, i.e. on-policy,

the future universal value V pξ
··· converges to the true value V pµ

··· :

V pξ
kmk

k→∞−→ V pµ
kmk

i.m.s. if hmax <∞,

V pξ
kγ

k→∞−→ V pµ
kγ i.m. for any γ.

If the history is generated by p = pξ, this implies V ∗ξ
kγ → V pξµ

kγ .

Hence the universal value V ∗ξ
kγ can be used to estimate the true value

V pξµ
kγ , without any assumptions on M and γ.

Nevertheless, maximization of V pξ
kγ may asymptotically differ from max.

of V pµ
kγ , since V pξ

kγ ̸→ V pµ
kγ for p ̸= pξ is possible (and also V ∗ξ

kγ ̸→ V ∗µ
kγ ).
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Markov Decision Processes (MDP)
From all possible environments, Markov (Decision) Processes are

probably the most intensively studied ones.

Definition 9.9 (Ergodic MDP)

We call µ a (stationary) MDP if the probability of observing ok ∈
O and reward rk ∈ R, only depends on the last action yk ∈ Y
and the last observation ok−1 (called state), i.e. if µ(xk|x<ky1:k) =

µ(xk|ok−1yk), where xk ≡ okrk.

An MDP µ is called ergodic if there exists a policy under which

every state is visited infinitely often with probability 1.

If the transition matrix µ(ok|ok−1yk) is independent of the action yk,

the MDP is a Markov process;

If µ(xk|ok−1yk) is independent of ok−1 we have an i.i.d. process.
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Importance of the Right Discounting

Standard geometric discounting: γk = γk with 0 < γ < 1.

Problem: Most environments do not possess self-optimizing policies

under this discounting.

Reason: Effective horizon heffk is finite (∼ 1/ ln 1
γ for γk = γk).

The analogue of m→ ∞ is k → ∞ and heffk → ∞ for k → ∞.

Result: Policy pξ is self-optimizing for the class of (lth order) ergodic

MDPs if γk+1

γk
→ 1.

Example discounting: γk = k−2 or γk = k−1−ε or γk = 2−K(k).

Horizon is of the order of the age of the agent: heffk ∼ k.
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Properties of Ergodic MDPs

• Stationary MDPs µ have stationary optimal policies pµ in case of

geometric discount, mapping the same state/observation ok always

to the same action yk.

• A mixture ξ of MDPs is itself not an MDP, i.e. ξ ̸∈ MMDP ⇒
pξ is, in general, not a stationary policy.

• There are self-optimizing policies for the class of ergodic MDPs for

the average value Vν , and for the future value Vkγ if γk+1

γk
→ 1.

• Hence Theorems 9.5 and 9.6 imply that pξ is self-optimizing for

ergodic MDPs (if γk+1

γk
→ 1).

• γk+1

γk
→ 1 for γk = 1/k2, but not for γk = γk.

• Fazit: Condition γk+1

γk
→ 1 admits self-optimizing Bayesian policies.
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General Discounting

• Future rewards give only small contribution to Vkγ

⇒ effective horizon.

• The only significant arbitrariness in the AIXI model lies in the

choice of the horizon.

• Power damping γk = k−1−ε leads to horizon proportional to age k

of agent.

It does not introduce arbitrary time-scale and has natural/plausible

horizon.

• Universal discount γk = 2−K(k) leads to largest possible horizon.

Allows to “mimic” all other more greedy behaviors based on other

discounts.



Theory of Rational Agents - 288 - Marcus Hutter

Effective Horizon

Table 9.10 (Effective horizon)

heffk := min{h ≥ 0 : Γk+h ≤ 1
2Γk} for various types of discounts γk

Horizons γk Γk =
∑∞

i=k γi heffk

finite 1 for k≤m
0 for k>m m− k + 1 1

2 (m− k + 1)

geometric γk, 0 ≤ γ < 1 γk

1−γ
ln 2

ln γ−1

quadratic 1
k(k+1)

1
k k

power k−1−ε, ε > 0 ∼ 1
εk

−ε ∼ (21/ε − 1)k

harmonic≈
1

k ln2 k
∼ 1

ln k ∼ k2

universal 2−K(k)
decreases slower

than any com-

putable function

increases faster than

any computable func-

tion
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Other Attempts to Deal with Horizon Issue
• Finite horizon:
- good if known,
- bad if unknown and for asymptotic analysis.

• Infinite horizon:
- Limit may not exist.
- can delay exploitation indefinitely,
since no finite exploration decreases value.

- immortal agents can be lazy.

• Average reward and differential gain:
- limit may not exist.

• Moving horizon mk:
- can lead to very bad time-inconsistent behavior.

• Time-inconsistent discounting ...
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Time(In)Consistent Discounting

• Generalize V πρ
kγ ≡ 1

Γk
Eπρ[

∑∞
t=k γtrt] to:

Potentially different discount sequence dk1 , d
k
2 , d

k
3 , ... for different k:

Value V πρ
kγ := Eπρ[

∑∞
t=k d

k
t rt]

• Leads in general to time-inconsistency,

i.e. π∗
k := argmaxπ V

πρ
kγ depends on k.

• Consequence: Agent plans to do one thing,

but then changes its mind.

Can in general lead to very bad behavior.

• Humans seem to behave time-inconsistently.

Solution: Pre-commitment strategies.
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Time(In)Consistent Discounting (ctd)

Time-consistent examples: dkt = γt−k geometric discounting.

Is the only time-invariant consistent discounting

Time-inconsistent example: dkt = (t− k + 1)−1−ε (≈humans)

Theorem 9.11 (Time(In)Consistent Discounting) [LH11]

dkt is time-consistent ⇐⇒ dk() ∝ d1() for all k.

What to do if you know you’re time inconsistent?

Treat your future selves as opponents in an extensive game and follow

sub-game perfect equilibrium policy.
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9.3 Optimistic and Knowledge-Seeking

Variations of AIξ: Contents

• Universal Knowledge-Seeking Agent

• Optimistic Agents in Deterministic Worlds

• Optimistic Agents for General Environments

• Optimism in MDPs



Theory of Rational Agents - 293 - Marcus Hutter

Universal Knowledge-Seeking Agent (KSA)
reward for exploration; goal is to learn the true environment [OLH13]

• wν
k := wν

ν(x<k|y<k)
ξ(x<k|y<k)

is the posterior belief in ν given history yx<k.

• w
()
k summarizes the information contained in history yx<k.

• w
()
k ; w

()
k+1 changes ⇔ xk given yx<k is informative about ν∈M

• Information gain can be quantified by KL-divergence.

• Reward agent for gained information:

rk := KL(w
()
k+1||w

()
k ) ≡

∑
ν∈M wν

k+1 log(w
ν
k+1/w

ν
k)
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Asymptotic Optimality of Universal KSA

Theorem 9.12 (Asymptotic Optimality of Universal KSA)

• Universal π∗
ξ converges to optimal π∗

µ. More formally:

• Pπ
ξ (·|yx<k) converges in (µ, π∗

ξ )-probability to Pπ
µ (·|yx<k)

uniformly for all π.

Def: Pπ
ρ (·|yx<k) is (ρ, π)-probability of future yxk:∞ given past yx<k.

Note: On-policy agent π∗
ξ is able to even predict off-policy!

Remark: No assumption on M needed, i.e. Thm. applicable to MU .
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Optimistic Agents in Deterministic Worlds
act optimally w.r.t. the most optimistic environment

until it is contradicted [SH12]

• π◦ := π∗
k := argmaxπ maxν∈Mk−1

V πν
kγ (yx<k)

• Mk−1 := environments consistent with history yx<k.

• As long as the outcome is consistent with the optimistic prediction,

the return is optimal, even if the wrong environment is chosen.

Theorem 9.13 (Optimism is asymptotically optimal)

For finite M ≡ M0,

• Asymptotic: V π◦µ
kγ = V ∗µ

kγ for all large k.

• Errors: For geometric discount, V π◦µ
kγ ≥ V ∗µ

kγ − ε (i.e. π◦ ε-sub-

optimal) for all but at most |M| log ε(1−γ)
log γ time steps k.
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Optimistic Agents for General Environments
• Generalization to stochastic environments: Likelihood criterion:
Exclude ν from Mk−1 if ν(x<k|y<k) < εk ·max

ν∈M
ν(x<k|y<k). [SH12]

• Generalization to compact classes M:
Replace M by centers of finite ε-cover of M in def. of π◦. [SH12]

• Use decreasing εk → 0 to get self-optimizingness.

• There are non-compact classes for which self-optimizingness is
impossible to achieve. [Ors10]

• Weaker self-optimizingness in Cesaro sense possible
by starting with finite subset M0 ⊂ M
and adding environments ν from M over time to Mk. [SH15]

• Fazit: There exist (weakly) self-optimizing policies for arbitrary
(separable) /compact M.
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Optimism in MDPs

• Let M be the class of all MDPs with |S| <∞ states and |A| <∞
actions and geometric discount γ.

• Then M is continuous but compact

=⇒ π◦ is self-optimizing by previous slide.

• But much better polynomial error bounds in this case possible:

Theorem 9.14 (PACMDP bound) V π◦µ
kγ ≤ V ∗µ

kγ − ε for at most

Õ( |S|2|A|
ε2(1−γ)3 log

1
δ ) time steps k with probability 1− δ. [LH12]
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9.4 Discussion: Contents

• Summary

• Exercises

• Literature
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Summary - Bayesian Agents

• Setup: Agents acting in general probabilistic environments with

reinforcement feedback.

• Assumptions: True environment µ belongs to a known class of

environments M, but is otherwise unknown.

• Results: The Bayes-optimal policy pξ based on the Bayes-mixture

ξ =
∑

ν∈M wνν is Pareto-optimal and self-optimizing if M admits

self-optimizing policies.

• Application: The class of ergodic mdps admits self-optimizing

policies.
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Summary - Discounting

• Discounting: Considering future values and the right discounting γ

leads to more meaningful agents and results.

• Learn: The combined conditions Γk <∞ and γk+1

γk
→ 1 allow a

consistent self-optimizing Bayes-optimal policy based on mixtures.

• In particular: Policy pξ with unbounded effective horizon is the first

purely Bayesian self-optimizing consistent policy for ergodic MDPs.

• Wrong discounting leads to myopic or time-inconsistent policies

(bad).
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Summary - Variations of AIξ

• Use information gain as a universal choice for the rewards.

AIξ becomes purely knowledge seeking.

• Real world has traps

=⇒ no self-optimizing policy

=⇒ need more explorative policies and weaker criteria like ...

• Optimistic agents: Act optimally w.r.t. the most optimistic

environment until it is contradicted.
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Exercises

1. [C15] Prove Pareto-optimality of pξ.

2. [C35] Prove Theorem 9.7 (Continuity of discounted value).

3. [C35] Prove Theorem 9.8 (Convergence of universal to true value).

4. [C15ui] Solve [Hut05, Problem 5.2]

(Absorbing two-state environment)

5. [C25u] Derive the expressions for the effective horizons in Table

9.10.

6. [C30ui] Solve [Hut05, Problem 5.11] (Belief contamination)

7. [C20u] Solve [Hut05, Problem 5.16] (Effect of discounting)
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