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8 UNIVERSAL RATIONAL AGENTS

• Agents in Known (Probabilistic) Environments

• The Universal Algorithmic Agent AIXI

• Important Environmental Classes

• Discussion
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Universal Rational Agents: Abstract

Sequential decision theory formally solves the problem of rational agents

in uncertain worlds if the true environmental prior probability distribution

is known. Solomonoff’s theory of universal induction formally solves the

problem of sequence prediction for unknown prior distribution.

Here we combine both ideas and develop an elegant parameter-free

theory of an optimal reinforcement learning agent embedded in an

arbitrary unknown environment that possesses essentially all aspects of

rational intelligence. The theory reduces all conceptual AI problems to

pure computational ones. The resulting AIXI model is the most

intelligent unbiased agent possible.

Other discussed topics are optimality notions, asymptotic consistency,

and some particularly interesting environment classes.



Universal Rational Agents - 226 - Marcus Hutter

Overview

• Decision Theory solves the problem of rational agents in uncertain

worlds if the environmental probability distribution is known.

• Solomonoff’s theory of Universal Induction solves the problem of

sequence prediction for unknown prior distribution.

• We combine both ideas and get a parameterless model of

Universal Artificial Intelligence without Parameters

= =

Decision Theory = Probability + Utility Theory
+ +

Universal Induction = Ockham + Epicurus + Bayes
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Preliminary Remarks

• The goal is to mathematically define a unique model superior to any

other model in any environment.

• The AIXI agent is unique in the sense that it has no parameters

which could be adjusted to the actual environment in which it is

used.

• In this first step toward a universal theory of AI

we are not interested in computational aspects.

• Nevertheless, we are interested in maximizing a utility function,

which means to learn in as minimal number of cycles as possible.

The interaction cycle is the basic unit, not the computation time

per unit.
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8.1 Agents in Known (Probabilistic)

Environments: Contents

• The Agent-Environment Model & Interaction Cycle

• Rational Agents in Deterministic Environments

• Utility Theory for Deterministic Environments

• Emphasis in AI/ML/RL ⇔ Control Theory

• Probabilistic Environment / Perceptions

• Functional≡Recursive≡Iterative AIµ Model

• Limits we are Interested in

• Relation to Bellman Equations

• (Un)Known environment µ
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The Agent Model

Most if not all AI problems can be

formulated within the agent

framework

r1 | o1 r2 | o2 r3 | o3 r4 | o4 r5 | o5 r6 | o6 ...

y1 y2 y3 y4 y5 y6 ...

work
Agent

p
tape ... work

Environ-

ment q
tape ...
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The Agent-Environment Interaction Cycle

for k:=1 to m do

- p thinks/computes/modifies internal state = work tape.

- p writes output yk∈Y.

- q reads output yk.

- q computes/modifies internal state.

- q writes reward input rk∈R ⊂ R.
- q writes regular input ok∈O.

- p reads input xk :=rkok∈X .

endfor

- m is lifetime of system (total number of cycles).

- Often R={0, 1}={bad, good}={error, correct}.
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Agents in Deterministic Environments

- p :X ∗→Y∗ is deterministic policy of the agent,

p(x<k) = y1:k with x<k ≡ x1...xk−1.

- q :Y∗→X ∗ is deterministic environment,

q(y1:k) = x1:k with y1:k ≡ y1...yk.

- Input xk≡rkok consists of a regular informative part ok

and reward r(xk) := rk ∈ [0..rmax].
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Utility Theory for Deterministic Environments

The (agent,environment) pair (p,q) produces the unique I/O sequence

ωpq := ypq1 x
pq
1 y

pq
2 x

pq
2 y

pq
3 x

pq
3 ...

Total reward (value) in cycles k to m is defined as

V pq
km := r(xpqk ) + ...+ r(xpqm )

Optimal agent is policy that maximizes total reward

p∗ := argmax
p

V pq
1m

⇓

V p∗q
km ≥ V pq

km ∀p
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Emphasis in AI/ML/RL ⇔ Control Theory

Both fields start from Bellman-equations and aim at agents/controllers

that behave optimally and are adaptive, but differ in terminology and

emphasis:
agent =̂ controller

environment =̂ system
(instantaneous) reward =̂ (immediate) cost

model learning =̂ system identification
reinforcement learning =̂ adaptive control

exploration↔exploitation problem =̂ estimation↔control problem

qualitative solution ⇔ high precision
complex environment ⇔ simple (linear) machine
temporal difference ⇔ Kalman filtering / Ricatti eq.

AIξ is the first non-heuristic formal approach that is general enough to

cover both fields. [Hut05]
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Probabilistic Environment / Functional AIµ
Replace q by a prior probability distribution µ(q) over environments.

The total expected reward in cycles k to m is

V pµ
km(ẏẋ<k) :=

1

N
∑

q:q(ẏ<k)=ẋ<k

µ(q) · V pq
km

The history is no longer uniquely determined.

ẏẋ<k := ẏ1ẋ1...ẏk−1ẋk−1 :=actual history.

AIµ maximizes expected future reward by looking hk≡mk−k+1 cycles
ahead (horizon). For mk=m, AIµ is optimal.

ẏk := argmax
yk

max
p:p(ẋ<k)=ẏ<kyk

V pµ
kmk

(ẏẋ<k)

Environment responds with ẋk with probability determined by µ.

This functional form of AIµ is suitable for theoretical considerations.
The iterative form (next slides) is more suitable for ‘practical’ purpose.
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Probabilistic Perceptions

The probability that the environment produces input xk in cycle k under

the condition that the history h is y1x1...yk−1xk−1yk is abbreviated by

µ(xk|yx<kyk) ≡ µ(xk|y1x1...yk−1xk−1yk)

With the chain rule, the probability of input x1...xk if system outputs

y1...yk is

µ(x1...xk|y1...yk) = µ(x1|y1)·µ(x2|yx1y2)· ... ·µ(xk|yx<kyk)

A µ of this form is called a chronological probability distribution.
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Expectimax Tree – Recursive AIµ Model
V ∗
µ (h) ≡ V ∗µ

km(h) is the value (future expected reward sum) of the

optimal informed agent AIµ in environment µ in cycle k given history h.

r
�

�
�

��
yk=0

@
@
@

@@
yk=1

max︸ ︷︷ ︸
V

∗
µ (yx<k) = max

yk
V

∗
µ (yx<kyk)

action yk with max value.

q
�
�
�
��
ok=0
rk= ...
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rk= ...

E︸︷︷︸
V

∗
µ (yx<kyk) =

∑
xk

[rk + V
∗
µ (yx1:k)]µ(xk|yx<kyk)

µ expected reward rk and observation ok.q
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Iterative AIµ Model

The Expectimax sequence/algorithm: Take reward expectation over the

xi and maximum over the yi in chronological order to incorporate

correct dependency of xi and yi on the history.

V ∗µ
km(ẏẋ<k) = max

yk

∑
xk

...max
ym

∑
xm

(r(xk)+...+r(xm))·µ(xk:m|ẏẋ<kyk:m)

ẏk = argmax
yk

∑
xk

...max
ymk

∑
xmk

(r(xk)+ ...+r(xmk
))·µ(xk:mk

|ẏẋ<kyk:mk
)

This is the essence of Sequential Decision Theory.

Decision Theory = Probability + Utility Theory
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Functional≡Recursive≡Iterative AIµ Model

The functional and recursive/iterative AIµ models behave identically

with the natural identification

µ(x1:k|y1:k) =
∑

q:q(y1:k)=x1:k

µ(q)

Remaining Problems:

• Computational aspects.

• The true prior probability is usually not (even approximately not)

known.
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Limits we are Interested in

1 ≪ ⟨l(ykxk)⟩ ≪ k ≪ m ≪ |Y × X| < ∞

1
a
≪ 216

b
≪ 224

c
≪ 232

d
≪ 265536

e
< ∞

(a) The agents interface is wide.

(b) The interface is sufficiently explored.

(c) The death is far away.

(d) Most input/outputs do not occur.

(e) All spaces are finite.

These limits are never used in proofs but ...

... we are only interested in theorems which do not degenerate under the

above limits.
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Relation to Bellman Equations

• If µAI is a completely observable Markov decision process,

then AIµ reduces to the recursive Bellman equations [BT96].

• Recursive AIµ may in general be regarded as (pseudo-recursive)

Bellman equation with complete history yx<k as environmental

state.

• The AIµ model assumes neither stationarity, nor Markov property,

nor complete observability of the environment.

⇒ every “state” occurs at most once in the lifetime of the agent.

Every moment in the universe is unique!

• There is no obvious universal similarity relation on (X×Y)∗

allowing an effective reduction of the size of the state space.
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Known environment µ

• Assumption: µ is the true environment in which the agent operates

• Then, policy pµ is optimal in the sense that no other policy for an

agent leads to higher µAI -expected reward.

• Special choices of µ: deterministic or adversarial environments,

Markov decision processes (MDPs).

• There is no principle problem in computing the optimal action yk as

long as µAI is known and computable and X , Y and m are finite.

• Things drastically change if µAI is unknown ...
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Unknown environment µ

• Reinforcement learning algorithms [SB98] are commonly used in this

case to learn the unknown µ or directly its value.

• They succeed if the state space is either small or has effectively

been made small by so-called generalization techniques.

• Solutions are either ad hoc, or work in restricted domains only, or

have serious problems with state space exploration versus

exploitation, or are prone to diverge, or have non-optimal learning

rate.

• We introduce a universal and optimal mathematical model now ...
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8.2 The Universal Algorithmic Agent

AIXI: Contents

• Formal Definition of Intelligence

• Is Universal Intelligence Υ any Good?

• Definition of the Universal AIXI Model

• Universality of MAI and ξAI

• Convergence of ξAI to µAI

• Intelligence Order Relation

• On the Optimality of AIXI

• Value Bounds & Asymptotic Learnability

• The OnlyOne CounterExample

• Separability Concepts
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Formal Definition of Intelligence
• Agent follows policy π : (A×O×R)∗ ; A
• Environment reacts with µ : (A×O×R)∗×A ; O×R
• Performance of agent π in environment µ

= expected cumulative reward = V π
µ := Eπ

µ[
∑∞

t=1 r
πµ
t ]

• True environment µ unknown
⇒ average over wide range of environments
(all semi-computable chronological semi-measures MU )

• Ockham+Epicurus: Weigh each environment with its
Kolmogorov complexity K(µ) := minp{length(p) : U(p) = µ}

• Universal intelligence of agent π is Υ(π) :=
∑

µ∈MU
2−K(µ)V π

µ .

• Compare to our informal definition: Intelligence measures an
agent’s ability to perform well in a wide range of environments.

• AIXI = argmaxπ Υ(π) = most intelligent agent.
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Is Universal Intelligence Υ any Good?
• Captures our informal definition of intelligence.

• Incorporates Occam’s razor.

• Very general: No restriction on internal working of agent.

• Correctly orders simple adaptive agents.

• Agents with high Υ like AIXI are extremely powerful.

• Υ spans from very low intelligence up to ultra-high intelligence.

• Practically meaningful: High Υ = practically useful.

• Non-anthropocentric: based on information & computation theory.
(unlike Turing test which measures humanness rather than int.)

• Simple and intuitive formal definition: does not rely on equally hard
notions such as creativity, understanding, wisdom, consciousness.

Υ is valid, informative, wide range, general, dynamic, unbiased,
fundamental, formal, objective, fully defined, universal.
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Definition of the Universal AIXI Model

Universal AI = Universal Induction + Decision Theory

Replace µAI in sequential decision model AIµ by an appropriate

generalization of Solomonoff’s M .

M(x1:k|y1:k) :=
∑

q:q(y1:k)=x1:k

2−l(q)

ẏk = argmax
yk

∑
xk

...max
ymk

∑
xmk

(r(xk)+ ...+r(xmk
))·M(xk:mk

|ẏẋ<kyk:mk
)

Functional form: µ(q) ↪→ ξ(q) :=2−ℓ(q).

Bold Claim: AIXI is the most intelligent environmental

independent agent possible.
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Universality of MAI and ξAI

M(x1:n|y1:n)
×
= ξ(x1:n|y1:n) ≥ 2−K(ρ)ρ(x1:n|y1:n) ∀ chronological ρ

The proof is analog as for sequence prediction. Actions yk are pure

spectators (here and below)

Convergence of ξAI to µAI

Similarly to Bayesian multistep prediction [Hut05] one can show

ξAI(xk:mk
|x<ky1:mk

)
k→∞−→ µAI(xk:mk

|x<ky1:mk
) with µ prob. 1.

with rapid conv. for bounded horizon hk ≡ mk − k + 1 ≤ hmax <∞

Does replacing µAI with ξAI lead to AIξ system with asymptotically

optimal behavior with rapid convergence?

This looks promising from the analogy to the Sequence Prediction (SP)

case, but is much more subtle and tricky!
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Intelligence Order Relation

Definition 8.1 (Intelligence order relation) We call a policy p

more or equally intelligent than p′ and write

p ≽ p′ :⇔ ∀k∀ẏẋ<k : V pξ
kmk

(ẏẋ<k) ≥ V p′ξ
kmk

(ẏẋ<k),

i.e. if p yields in any circumstance higher ξ-expected reward than

p′.

As the algorithm pξ behind the AIXI agent maximizes V pξ
kmk

,

we have pξ ≽ p for all p.

The AIXI model is hence the most intelligent agent w.r.t. ≽.

Relation ≽ is a universal order relation in the sense that it is free of any

parameters (except mk) or specific assumptions about the environment.
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On the Optimality of AIXI

• What is meant by universal optimality? Value bounds for AIXI are

expected to be weaker than the SP loss bounds because problem

class covered by AIXI is larger.

• The problem of defining and proving general value bounds becomes

more feasible by considering, in a first step, restricted environmental

classes.

• Another approach is to generalize AIXI to AIξ, where

ξ() =
∑

ν∈M wνν() is a general Bayes mixture of distributions ν in

some class M.

• A possible further approach toward an optimality “proof” is to

regard AIXI as optimal by construction. (common Bayesian

perspective, e.g. Laplace rule or Gittins indices).
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Value Bounds & Asymptotic Learnability

Naive value bound analogously to error bound for SP

V pbestµ
1m

?
≥ V pµ

1m − o(...) ∀µ, p

HeavenHell Counter-Example: Set of environments {µ0, µ1} with

Y=R= {0, 1} and rk= δiy1 in environment µi violates value bound.

The first output y1 decides whether all future rk=1 or 0.

Asymptotic learnability: µ probability Dnµξ/n of suboptimal outputs of

AIXI different from AIµ in the first n cycles tends to zero

Dnµξ/n→ 0 , Dnµξ := Eµ

[ n∑
k=1

1−δẏµ
k ,ẏ

ξ
k

]
This is a weak asymptotic convergence claim.
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The OnlyOne CounterExample

Let R= {0, 1} and |Y| be large. Consider all (deterministic)

environments in which a single complex output y∗ is correct (r=1) and

all others are wrong (r=0). The problem class is

{µ : µ(rk = 1|x<ky1:k) = δyky∗ , K(y∗)= ⌊ log2 |Y |⌋}

Problem: Dkµξ≤2K(µ) is the best possible error bound we can expect,

which depends on K(µ) only. It is useless for k ≪ |Y | ×
= 2K(µ),

although asymptotic convergence satisfied.

But: A bound like 2K(µ) reduces to 2K(µ|ẋ<k) after k cycles, which is

O(1) if enough information about µ is contained in ẋ<k in any form.
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Separability Concepts

that might be useful for proving reward bounds

• Forgetful µ.

• Relevant µ.

• Asymptotically learnable µ.

• Farsighted µ.

• Uniform µ.

• (Generalized) Markovian µ.

• Factorizable µ.

• (Pseudo) passive µ.

Other concepts

• Deterministic µ.

• Chronological µ.
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8.3 Important Environmental Classes:

Contents

• Sequence Prediction (SP)

• Strategic Games (SG)

• Function Minimization (FM)

• Supervised Learning by Examples (EX)

In this subsection ξ ≡ ξAI :
×
=MAI .
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Particularly Interesting Environments

• Sequence Prediction, e.g. weather or stock-market prediction.

Strong result: V ∗
µ − V pξ

µ = O(
√

K(µ)
m ), m =horizon.

• Strategic Games: Learn to play well (minimax) strategic zero-sum

games (like chess) or even exploit limited capabilities of opponent.

• Optimization: Find (approximate) minimum of function with as few

function calls as possible. Difficult exploration versus exploitation

problem.

• Supervised learning: Learn functions by presenting (z, f(z)) pairs

and ask for function values of z′ by presenting (z′, ?) pairs.

Supervised learning is much faster than reinforcement learning.

AIξ quickly learns to predict, play games, optimize, and learn supervised.
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Sequence Prediction (SP)
SPµ Model: Binary sequence z1z2z3... with true prior µSP (z1z2z3...).

AIµ Model: yk = prediction for zk; ok+1 = ϵ.

rk+1 = δykzk = 1/0 if prediction was correct/wrong.

Correspondence:

µAI(r1...rk|y1...yk) = µSP (δy1r1 ...δykrk) = µSP (z1...zk)

For arbitrary horizon hk: ẏ
AIµ
k = argmax

yk

µ(yk|ż1...żk−1) = ẏ
SPΘµ

k

Generalization: AIµ always reduces exactly to XXµ model if XXµ is

optimal solution in domain XX.

AIξ model differs from SPξ model: Even for hk=1

ẏAIξ
k = argmax

yk

ξ(rk = 1|ẏṙ<kyk) ̸= ẏ
SPΘξ

k

Weak error bound: #ErrorsAI
nξ

×
< 2K(µ) < ∞ for deterministic µ.
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Strategic Games (SG)
• Consider strictly competitive strategic games like chess.

• Minimax is best strategy if both Players are rational with unlimited
capabilities.

• Assume that the environment is a minimax player of some game ⇒
µAI uniquely determined.

• Inserting µAI into definition of ẏAI
k of AIµ model reduces the

expecimax sequence to the minimax strategy (ẏAI
k = ẏSG

k ).

• As ξAI →µAI we expect AIξ to learn the minimax strategy for any
game and minimax opponent.

• If there is only non-trivial reward rk∈{win, loss, draw} at the end
of the game, repeated game playing is necessary to learn from this
very limited feedback.

• AIξ can exploit limited capabilities of the opponent.
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Function Maximization (FM)

Approximately maximize (unknown) functions with as few function calls

as possible. Applications:

• Traveling Salesman Problem (bad example).

• Minimizing production costs.

• Find new materials with certain properties.

• Draw paintings which somebody likes.

µFM (z1...zn|y1...yn) :=
∑

f :f(yi)=zi ∀1≤i≤n

µ(f)

Greedily choosing yk which maximizes f in the next cycle does not work.

General Ansatz for FMµ/ξ:

ẏk = argmax
yk

∑
zk

...max
ym

∑
zm

(α1z1+ ...+αmzm)·µ(zm|ẏż1...ym)

Under certain weak conditions on αi, f can be learned with AIξ.
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Function Maximization – Example
Very hard problem in practice, since (unlike prediction, classification,
regression) it involves the infamous exploration↔explotation problem

Exploration: If horizon is large, func-
tion is probed where uncertainty is
large, since global maximum might be
there.

[Srinivas et al. 2010]

Exploitation: If horizon is small, func-
tion is probed where maximum is be-
lieved to be, since agent needs/wants
good results now.

Efficient and effective heuristics for special function classes available:
Extension of Upper Confidence Bound for Bandits (UCB) algorithm.
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Supervised Learning by Examples (EX)

Learn functions by presenting (z, f(z)) pairs and ask for function values

of z′ by presenting (z′, ?) pairs.

More generally: Learn relations R∋(z, v).

Supervised learning is much faster than reinforcement learning.

The AIµ/ξ model:

ok = (zk, vk) ∈ R∪(Z×{?}) ⊂ Z×(Y ∪{?}) = O

yk+1= guess for true vk if actual vk=?.

rk+1= 1 iff (zk, yk+1)∈R

AIµ is optimal by construction.

EX is closely related to classification which itself can be phrased as

sequence prediction task.
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Supervised Learning – Intuition

The AIξ model:

• Inputs ok contain much more than 1 bit feedback per cycle.

• Short codes dominate ξ.

• The shortest code of examples (zk, vk) is a coding of R

and the indices of the (zk, vk) in R.

• This coding of R evolves independently of the rewards rk.

• The system has to learn to output yk+1 with (zk, yk+1)∈R.

• As R is already coded in q, an additional algorithm of length O(1)

needs only to be learned.

• Rewards rk with information content O(1) are needed for this only.

• AIξ learns to learn supervised.
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8.4 Discussion: Contents

• Uncovered Topics

• Remarks

• Outlook

• Exercises

• Literature
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Uncovered Topics

• General and special reward bounds and convergence results for AIXI

similar to SP case.

• Downscale AIXI in more detail and to more problem classes analog

to the downscaling of SP to Minimum Description Length and

Finite Automata.

• There is no need for implementing extra knowledge,

as this can be learned by presenting it in ok in any form.

• The learning process itself is an important aspect.

• Noise or irrelevant information in the inputs do not disturb the AIXI

system.
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Remarks

• We have developed a parameterless AI model based on sequential

decisions and algorithmic probability.

• We have reduced the AI problem to pure computational questions.

• AIξ seems not to lack any important known methodology of AI,

apart from computational aspects.

• Philosophical questions: relevance of non-computational physics

(Penrose), number of wisdom Ω (Chaitin), consciousness, social

consequences.
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Outlook
mainly technical results for AIXI and variations

• General environment classes MU ; M.

• Results for general/universal M for discussed performance criteria.

• Strong guarantees for specific classes M by exploiting extra

properties of the environments.

• Restricted policy classes.

• Universal choice of the rewards.

• Discounting future rewards and time(in)consistency.

• Approximations and algorithms.

Most of these items will be covered in the next Chapter
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Exercises

1. [C30] Proof equivalence of the functional, recursive, and iterative

AIµ models. Hint: Consider k = 2 and m = 3 first. Use

maxy3(·)
∑

x2
f(x2, y3(x2)) ≡

∑
x2 maxy3 f(x2, y3), where y3(·) is

a function of x2, and maxy3(·) maximizes over all such functions.

2. [C30] Show that the optimal policy p∗k := argmaxp V
pµ
km(yx<k) is

independent of k. More precisely, the actions of p∗1 and p∗k in cycle t

given history yx<t coincide for k ≥ t. The derivation goes hand in

hand with the derivation of Bellman’s equations [BT96].



Universal Rational Agents - 266 - Marcus Hutter

Literature

[SB98] R. S. Sutton and A. G. Barto. Reinforcement Learning: An
Introduction. MIT Press, Cambridge, MA, 1998.

[RN10] S. J. Russell and P. Norvig. Artificial Intelligence. A Modern
Approach. Prentice-Hall, Englewood Cliffs, NJ, 3rd edition, 2010.

[LH07] S. Legg and M. Hutter. Universal intelligence: A definition of
machine intelligence. Minds & Machines, 17(4):391–444, 2007.

[Hut05] M. Hutter. Universal Artificial Intelligence: Sequential Decisions
based on Algorithmic Probability. Springer, Berlin, 2005.
http://www.hutter1.net/ai/uaibook.htm.


