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Bayesian Sequence Prediction: Abstract

We define the Bayes mixture distribution and show that the posterior

converges rapidly to the true posterior by exploiting some bounds on the

relative entropy. Finally we show that the mixture predictor is also

optimal in a decision-theoretic sense w.r.t. any bounded loss function.
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Notation: Strings & Probabilities

Strings: x= x1:n :=x1x2...xn with xt∈X and x<n := x1...xn−1.

Probabilities: ρ(x1...xn) is the probability that an (infinite) sequence

starts with x1...xn.

Conditional probability:

ρn := ρ(xn|x<n) = ρ(x1:n)/ρ(x<n),

ρ(x1...xn) = ρ(x1)·ρ(x2|x1)·...·ρ(xn|x1...xn−1).

True data generating distribution: µ
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The Bayes-Mixture Distribution ξ
• Assumption: The true (objective) environment µ is unknown.

• Bayesian approach: Replace true probability distribution µ by a
Bayes-mixture ξ.

• Assumption: We know that the true environment µ is contained in
some known countable (in)finite set M of environments.

Definition 7.1 (Bayes-mixture ξ)

ξ(x1:m) :=
∑
ν∈M

wνν(x1:m) with
∑
ν∈M

wν = 1, wν > 0 ∀ν

• The weights wν may be interpreted as the prior degree of belief that
the true environment is ν, or kν = lnw−1

ν as a complexity penalty
(prefix code length) of environment ν.

• Then ξ(x1:m) could be interpreted as the prior subjective belief
probability in observing x1:m.
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A Universal Choice of ξ and M
• We have to assume the existence of some structure on the

environment to avoid the No-Free-Lunch Theorems [Wolpert 96].

• We can only unravel effective structures which are describable by

(semi)computable probability distributions.

• So we may include all (semi)computable (semi)distributions in M.

• Occam’s razor and Epicurus’ principle of multiple explanations tell

us to assign high prior belief to simple environments.

• Using Kolmogorov’s universal complexity measure K(ν) for

environments ν one should set wν = 2−K(ν), where K(ν) is the

length of the shortest program on a universal TM computing ν.

• The resulting mixture ξ is Solomonoff’s (1964) universal prior.

• In the following we consider generic M and wν .
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Relative Entropy

Relative entropy: D(p||q) :=
∑

i pi ln
pi

qi

Properties: D(p||q) ≥ 0 and D(p||q) = 0 ⇔ p = q

Instantaneous relative entropy: dt(x<t) :=
∑
xt∈X

µ(xt|x<t) ln
µ(xt|x<t)

ξ(xt|x<t)

Theorem 7.2 (Total relative entropy) Dn :=
∑n

t=1E[dt] ≤ lnw−1
µ

E[f ] =Expectation of f w.r.t. the true distribution µ, e.g.

If f : Xn → R, then E[f ] :=
∑

x1:n
µ(x1:n)f(x1:n).

Proof based on dominance or universality: ξ(x) ≥ wµµ(x).
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Proof of the Entropy Bound

Dn ≡
n∑

t=1

∑
x<t

µ(x<t)·dt(x<t)
(a)
=

n∑
t=1

∑
x1:t

µ(x1:t) ln
µ(xt|x<t)

ξ(xt|x<t)
=

(b)
=

∑
x1:n

µ(x1:n) ln
n∏

t=1

µ(xt|x<t)

ξ(xt|x<t)

(c)
=

∑
x1:n

µ(x1:n) ln
µ(x1:n)

ξ(x1:n)

(d)

≤ lnw−1
µ

(a) Insert def. of dt and used chain rule µ(x<t)·µ(xt|x<t)=µ(x1:t).

(b)
∑

x1:t
µ(x1:t) =

∑
x1:n

µ(x1:n) and argument of log is independent

of xt+1:n. The t sum can now be exchanged with the x1:n sum and

transforms to a product inside the logarithm.

(c) Use chain rule again for µ and ξ.

(d) Use dominance ξ(x) ≥ wµµ(x).
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Predictive Convergence

Theorem 7.3 (Predictive convergence)

ξ(xt|x<t) → µ(xt|x<t) rapid w.p.1 for t→ ∞

Proof: D∞ ≡
∑∞

t=1 E[dt] ≤ lnw−1
µ and dt ≥ 0

=⇒ dt
t→∞−→ 0 ⇐⇒ ξt → µt.

Fazit: ξ is excellent universal predictor if unknown µ belongs to M.

How to choose M and wµ? Both as large as possible?! More later.
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Sequential Decisions
A prediction is very often the basis for some decision. The decision

results in an action, which itself leads to some reward or loss.

Let Loss(xt, yt) ∈ [0, 1] be the received loss when taking action yt∈Y
and xt∈X is the tth symbol of the sequence.

For instance, decision Y={umbrella, sunglasses} based on weather

forecasts X ={sunny, rainy}. Loss sunny rainy

umbrella 0.1 0.3

sunglasses 0.0 1.0

The goal is to minimize the µ-expected loss. More generally we define

the Λρ prediction scheme, which minimizes the ρ-expected loss:

y
Λρ

t := arg min
yt∈Y

∑
xt

ρ(xt|x<t)Loss(xt, yt)
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Loss Bounds
• Definition: µ-expected loss when Λρ predicts the tth symbol:

Losst(Λρ)(x<t) :=
∑

xt
µ(xt|x<t)Loss(xt, y

Λρ

t )

• Losst(Λµ/ξ) made by the informed/universal scheme Λµ/ξ.

Losst(Λµ) ≤ Losst(Λ) ∀t,Λ.

• Theorem: 0≤ Losst(Λξ)−Losst(Λµ) ≤
∑

xt
|ξt−µt|≤

√
2dt

w.p.1−→ 0

• Total Loss1:n(Λρ) :=
∑n

t=1 E[Losst(Λρ)].

• Theorem:
√
Loss1:n(Λξ)−

√
Loss1:n(Λµ) ≤

√
2Dn ≤

√
2lnw−1

µ

• Corollary: If Loss1:∞(Λµ) is finite, then Loss1:∞(Λξ) is finite, and
Loss1:n(Λξ)/Loss1:∞(Λµ) → 1 if Loss1:∞(Λµ) → ∞.

• Remark: Holds for any loss function ∈ [0, 1] with no assumptions
(like i.i.d., Markovian, stationary, ergodic, ...) on µ ∈ M.
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Proof of Instantaneous Loss Bounds

Abbreviations: X = {1, ..., N}, N = |X |, i = xt, yi = µ(xt|x<t),

zi = ξ(xt|x<t), m = y
Λµ

t , s = y
Λξ

t , ℓxy = Loss(x, y).

This and definition of y
Λµ

t and y
Λξ

t and
∑

i ziℓis ≤
∑

i ziℓij ∀j implies

Losst(Λξ)− Losst(Λµ) ≡
∑
i

yiℓis−
∑
i

yiℓim
(a)

≤
∑
i

(yi − zi)(ℓis − ℓim)

≤
∑
i

|yi−zi|·|ℓis−ℓim|
(b)

≤
∑
i

|yi − zi|
(c)

≤
√∑

i

yi ln
yi
zi

≡
√
2dt(x<t)

(a) We added
∑

i zi(ℓim − ℓis) ≥ 0.

(b) |ℓis − ℓim| ≤ 1 since ℓ ∈ [0, 1].

(c) Pinsker’s inequality (elementary, but not trivial)
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Optimality of the Universal Predictor

• There are M and µ ∈ M and weights wµ for which the loss bounds

are tight.

• The universal prior ξ is pareto-optimal, in the sense that there is no

ρ with F(ν, ρ) ≤ F(ν, ξ) for all ν ∈ M and strict inequality for at

least one ν, where F is the instantaneous or total squared distance

st, Sn, or entropy distance dt, Dn, or general Losst, Loss1:n.

• ξ is balanced pareto-optimal in the sense that by accepting a slight

performance decrease in some environments one can only achieve a

slight performance increase in other environments.

• Within the set of enumerable weight functions with short program,

the universal weights wν = 2−K(ν) lead to the smallest performance

bounds within an additive (to lnw−1
µ ) constant in all enumerable

environments.
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Continuous Probability Classes M
In statistical parameter estimation one often has a continuous

hypothesis class (e.g. a Bernoulli(θ) process with unknown θ∈ [0, 1]).

M := {µθ : θ ∈ IRd}, ξ(x1:n) :=

∫
IRd

dθ w(θ)µθ(x1:n),

∫
IRd

dθ w(θ) = 1

We only used ξ(x1:n)≥wµ ·µ(x1:n)
which was obtained by dropping the sum over µ.

Here, restrict integral over IRd to a small vicinity Nδ of θ.

For sufficiently smooth µθ and w(θ) we expect

ξ(x1:n) & |Nδn |·w(θ)·µθ(x1:n) =⇒ Dn . lnw−1
µ + ln |Nδn |−1
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Continuous Probability Classes M
Average Fisher information ȷ̄n measures curvature

(parametric complexity) of lnµθ.

j̄n :=
1

n

∑
x1:n

µ(x1:n)∇θ lnµθ(x1:n)∇T
θ lnµθ(x1:n)|θ=θ0

Under weak regularity conditions on ȷ̄n on can prove:

Theorem 7.4 (Continuous entropy bound)

Dn ≤ lnw−1
µ + d

2 ln
n
2π + 1

2 ln det ȷ̄n + o(1)

i.e. Dn grows only logarithmically with n.

E.g. ȷ̄n = O(1) for the practically very important class of stationary

(kth-order) finite-state Markov processes (k = 0 is i.i.d.).
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Bayesian Sequence Prediction: Summary

• General sequence prediction: Use known (subj.) Bayes mixture

ξ =
∑

ν∈M wνν in place of unknown (obj.) true distribution µ.

• Bound on the relative entropy between ξ and µ.

⇒ posterior of ξ converges rapidly to the true posterior µ.

• ξ is also optimal in a decision-theoretic sense w.r.t. any bounded

loss function.

• No structural assumptions on M and ν ∈ M.
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