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Algorithmic Probability &
Universal Induction: Abstract

Solomonoff completed the Bayesian framework by providing a rigorous,

unique, formal, and universal choice for the model class and the prior. I

will discuss in breadth how and in which sense universal (non-i.i.d.)

sequence prediction solves various (philosophical) problems of traditional

Bayesian sequence prediction. I show that Solomonoff’s model possesses

many desirable properties: Strong total and weak instantaneous bounds

, and in contrast to most classical continuous prior densities has no zero

p(oste)rior problem, i.e. can confirm universal hypotheses, is

reparametrization and regrouping invariant, and avoids the old-evidence

and updating problem. It even performs well (actually better) in

non-computable environments.
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Problem Setup

• Since our primary purpose for doing induction is to forecast

(time-series), we will concentrate on sequence prediction tasks.

• Classification is a special case of sequence prediction.

(With some tricks the other direction is also true)

• This Course focusses on maximizing profit (minimizing loss).

We’re not (primarily) interested in finding a (true/predictive/causal)

model.

• Separating noise from data is not necessary in this setting!
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Philosophy & Notation

Occam’s razor: take simplest hy-

pothesis consistent with data.

Epicurus’ principle of multiple ex-

planations: Keep all theories con-

sistent with the data.

⇓ ⇓
We now combine both principles:

Take all consistent explanations into account,

but weight the simpler ones higher.

Formalization with Turing machines and Kolmogorov complexity

Additional notation: We denote binary strings of length ℓ(x) = n by

x = x1:n = x1x2...xn with xt ∈ B and further abbreviate

x<n := x1...xn−1.
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4.1 The Universal a Priori Probability

M : Contents

• The Universal a Priori Probability M

• Relations between Complexities

• (Semi)Measures

• Sample Space / σ-Algebra / Cylinder Sets

• M is a SemiMeasure

• Properties of Enumerable Semimeasures

• Fundamental Universality Property of M
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The Universal a Priori Probability M

Solomonoff defined the universal probability distribution M(x) as the

probability that the output of a universal monotone Turing machine

starts with x when provided with fair coin flips on the input tape.

Definition 4.1 (Solomonoff distribution) Formally,

M(x) :=
∑

p : U(p)=x∗

2−ℓ(p)

The sum is over minimal programs p for which U outputs a string

starting with x (see Definition 2.6).

Since the shortest programs p dominate the sum, M(x) is roughly

2−Km(x). More precisely ...
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Relations between Complexities

Theorem 4.2 (Relations between Complexities)

KM := −logM , Km, and K are ordered in the following way:

0 ≤ K(x|ℓ(x))
+
< KM(x) ≤ Km(x) ≤ K(x)

+
< ℓ(x) + 2logℓ(x)

Proof sketch:

The second inequality follows from the fact that,

given n and Kraft’s inequality
∑

x∈Xn M(x) ≤ 1,

there exists for x ∈ Xn a Shannon-Fano code of length −logM(x),

which is effective since M is enumerable.

Now use Theorem 2.17 conditioned to n.

The other inequalities are obvious from the definitions.
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(Semi)Measures

Before we can discuss the stochastic properties of M we need the

concept of (semi)measures for strings.

Definition 4.3 ((Semi)measures) ρ(x) denotes the probability

that a binary sequence starts with string x. We call ρ ≥ 0 a

semimeasure if ρ(ϵ) ≤ 1 and ρ(x) ≥ ρ(x0) + ρ(x1), and a proba-

bility measure if equality holds.

The reason for calling ρ with the above property a probability measure is

that it satisfies Kolmogorov’s Axioms Definition 3.1 of probability in the

following sense ...
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Sample Space / Events / Cylinder Sets

• The The sample space is Ω = B∞ with elements

ω = ω1ω2ω3... ∈ B∞ being infinite binary sequences.

• The set of events (the σ-algebra) is defined as the set generated

from the cylinder sets Γx1:n := {ω : ω1:n = x1:n} by countable

union and complement.

• A probability measure ρ is uniquely defined by giving its values

ρ(Γx1:n) on the cylinder sets, which we abbreviate by ρ(x1:n).

• We will also call ρ a measure, or even more loosely a probability

distribution.
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M is a SemiMeasure

• The reason for extending the definition to semimeasures is that

M itself is unfortunately not a probability measure.

• We have M(x0) +M(x1) < M(x) because there are programs p,

which output x, neither followed by 0 nor 1.

• They just stop after printing x -or-

continue forever without any further output.

• Since M(ϵ) = 1, M is at least a semimeasure.
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Properties of (Semi)Measure ρ

• Properties of ρ:
∑

x1:n∈Xn

ρ(x1:n)
(<)
= 1,

ρ(xt|x<t) := ρ(x1:t)/ρ(x<t),

ρ(x1...xn) = ρ(x1)·ρ(x2|x1)·...·ρ(xn|x1...xn−1).

• One can show that ρ is an enumerable semimeasure

⇐⇒ ∃ mTM T : ρ(x) =
∑

p : T (p)=x∗

2−ℓ(p) and ℓ(T )
+
= K(ρ)

• Intuition: Fair coin flips are sufficient to create any probability

distribution.

• Definition: K(ρ) := length of shortest self-delimiting code of a

Turing machine computing function ρ in the sense of Def. 2.21.
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Fundamental Universality Property of M

Theorem 4.4 (Universality of M)

M is a universal semimeasure in the sense that

M(x)
×
> 2−K(ρ) · ρ(x) for all enumerable semimeasures ρ.

M is enumerable, but not estimable.

Up to a multiplicative constant, M assigns higher probability to all x

than any other computable probability distribution.

Proof sketch:

M(x) =
∑

p : U(p)=x∗

2−ℓ(p) ≥
∑

q : U(Tq)=x∗

2−ℓ(Tq) = 2−ℓ(T )
∑

q : T (q)=x∗

2−ℓ(q) ×
= 2−K(ρ)ρ(x)
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4.2 Universal Sequence Prediction:

Contents

• Solomonoff, Occam, Epicurus

• Prediction

• Simple Deterministic Bound

• Solomonoff’s Major Result

• Implications of Solomonoff’s Result

• Entropy Inequality

• Proof of the Entropy Bound
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Solomonoff, Occam, Epicurus

• In which sense does M incorporate Occam’s razor and Epicurus’

principle of multiple explanations?

• From M(x) ≈ 2−K(x) we see that M assigns high probability to

simple strings (Occam).

• More useful is to think of x as being the observed history.

• We see from Definition 4.1 that every program p consistent with

history x is allowed to contribute to M (Epicurus).

• On the other hand, shorter programs give significantly larger

contribution (Occam).
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Prediction

How does all this affect prediction?

If M(x) correctly describes our (subjective) prior belief in x, then

M(y|x) :=M(xy)/M(x)

must be our posterior belief in y.

From the symmetry of algorithmic information

K(x, y)
+
= K(y|x,K(x)) +K(x) (Theorem 2.15), and assuming

K(x, y) ≈ K(xy), and approximating K(y|x,K(x)) ≈ K(y|x),
M(x) ≈ 2−K(x), and M(xy) ≈ 2−K(xy) we get:

M(y|x) ≈ 2−K(y|x)

This tells us that M predicts y with high probability iff y has an easy

explanation, given x (Occam & Epicurus).
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Simple Deterministic Bound

Sequence prediction algorithms try to predict the continuation xt ∈ B of

a given sequence x1...xt−1. Simple deterministic bound:
∞∑
t=1

|1−M(xt|x<t)|
a
≤ −

∞∑
t=1

lnM(xt|x<t)
b
= − lnM(x1:∞)

c
≤ Km(x1:∞) ln 2

(a) use |1− a| ≤ − ln a for 0 ≤ a ≤ 1.

(b) exchange sum with logarithm and eliminate product by chain rule.

(c) used Theorem 4.2.

If x1:∞ is a computable sequence, then Km(x1:∞) is finite,

which implies M(xt|x<t) → 1 (
∑∞

t=1 |1− at| <∞ ⇒ at → 1).

⇒ if the environment is a computable sequence (digits of π or e or ...),

after having seen the first few digits, M correctly predicts the next digit

with high probability, i.e. it recognizes the structure of the sequence.
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Solomonoff’s Major Result
Assume sequence x1:∞ is sampled from the unknown distribution µ,
i.e. the true objective probability of x1:n is µ(x1:n).

The probability of xt given x<t hence is µ(xt|x<t) = µ(x1:t)/µ(x<t).

Solomonoff’s central result [Hut05] is that M converges to µ.

More precisely, he showed that

Theorem 4.5 (Predictive Convergence of M)
∞∑
t=1

∑
x<t∈Bt−1

µ(x<t)
(
M(0|x<t)− µ(0|x<t)

)2 +
< 1

2 ln 2·K(µ) < ∞
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Implications of Solomonoff’s Result
• The infinite sum can only be finite if the difference
M(0|x<t)− µ(0|x<t) tends to zero for t→ ∞ with µ-probability 1.

• Convergence is rapid: The expected number of times t in which
|M(0|x<t)− µ(0|x<t)| > ε is finite and bounded by c/ε2 and
the probability that the number of ε-deviations exceeds c

ε2δ is
smaller than δ, where c

+
= ln 2·K(µ).

• No statement is possible for which t these deviations occur.

• This holds for any computable probability distribution µ.

• How does M know to which µ?
The set of µ-random sequences differ for different µ.

• Intuition: Past data x<t are exploited to get a (with t→ ∞)
improving estimate M(xt|x<t) of µ(xt|x<t).

• Fazit: M is universal predictor. The only assumption made is that
data are generated from a computable distribution.
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Entropy Inequality

Proof of Solomonoff’s bound: We need (proof as exercise)

Lemma 4.6 (Entropy Inequality)

2(z − y)2 ≤ y ln y
z + (1− y) ln 1−y

1−z for 0 < z < 1 and 0 ≤ y ≤ 1.

≤ y ln y
z +(1− y) ln 1−y

c−z for 0 < z < c ≤ 1 and 0 ≤ y ≤ 1.

The latter inequality holds, since the r.h.s. is decreasing in c. Inserting

0 ≤ y := µ(0|x<t) = 1− µ(1|x<t) ≤ 1 and

0 < z :=M(0|x<t) < c :=M(0|x<t) +M(1|x<t) < 1 we get

2(M(0|x<t)− µ(0|x<t))
2 ≤

∑
xt∈B

µ(xt|x<t) ln
µ(xt|x<t)

M(xt|x<t)
=: dt(x<t)

The r.h.s. is the relative entropy between µ and M .
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Proof of the Entropy Bound
Dn(µ||M) ≡

n∑
t=1

∑
x<t

µ(x<t)·dt(x<t)
(a)
=

n∑
t=1

∑
x1:t

µ(x1:t) ln
µ(xt|x<t)

M(xt|x<t)
=

(b)
=

∑
x1:n

µ(x1:n) ln
n∏

t=1

µ(xt|x<t)

M(xt|x<t)

(c)
=

∑
x1:n

µ(x1:n) ln
µ(x1:n)

M(x1:n)

(d)
+
< K(µ) ln 2

(a) Insert def. of dt and use product rule µ(x<t)·µ(xt|x<t)=µ(x1:t).

(b)
∑

x1:t
µ(x1:t) =

∑
x1:n

µ(x1:n) and argument of log is independent

of xt+1:n. The t sum can now be exchanged with the x1:n sum and

transforms to a product inside the logarithm.

(c) Use chain rule again for µ and M .

(d) Use dominance M(x)
×
> 2−K(µ)µ(x).

Inserting dt into Dn yields Solomonoff’s Theorem 4.5.
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4.3 Universal Inductive Inference:

Contents

• Bayesian Sequence Prediction and Confirmation

• The Universal Prior

• The Problem of Zero Prior

• Reparametrization and Regrouping Invariance

• Universal Choice of Class M

• The Problem of Old Evidence / New Theories

• Universal is Better than Continuous M

• More Bounds / Critique / Problems
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Bayesian Sequence Prediction and Confirmation
• Assumption: Sequence ω ∈ X∞ is sampled from the “true”
probability measure µ, i.e. µ(x) := P[x|µ] is the µ-probability that
ω starts with x ∈ Xn.

• Model class: We assume that µ is unknown but known to belong to
a countable class of environments=models=measures
M = {ν1, ν2, ...}. [no i.i.d./ergodic/stationary assumption]

• Hypothesis class: {Hν : ν ∈ M} forms a mutually exclusive and
complete class of hypotheses.

• Prior: wν := P[Hν ] is our prior belief in Hν

⇒ Evidence: ξ(x) := P[x] =
∑

ν∈M P[x|Hν ]P[Hν ] =
∑

ν wνν(x)

must be our (prior) belief in x.

⇒ Posterior: wν(x) := P[Hν |x] = P[x|Hν ]P[Hν ]
P[x] is our posterior belief

in ν (Bayes’ rule).
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The Universal Prior
• Quantify the complexity of an environment ν or hypothesis Hν by
its Kolmogorov complexity K(ν).

• Universal prior: wν = wU
ν := 2−K(ν) is a decreasing function in

the model’s complexity, and sums to (less than) one.

⇒ Dn(µ||ξ) ≤ K(µ) ln 2, i.e. the number of ε-deviations of ξ from µ
is proportional to the complexity of the environment.

• No other semi-computable prior leads to better prediction (bounds).

• For continuous M, we can assign a (proper) universal prior (not

density) wU
θ = 2−K(θ) > 0 for computable θ, and 0 for uncomp. θ.

• This effectively reduces M to a discrete class {νθ ∈ M : wU
θ > 0}

which is typically dense in M.

• This prior has many advantages over the classical prior (densities).
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The Problem of Zero Prior
= the problem of confirmation of universal hypotheses

Problem: If the prior is zero, then the posterior is necessarily also zero.

Example: Consider the hypothesis H = H1 that all balls in some urn or

all ravens are black (=1) or that the sun rises every day.

Starting with a prior density as w(θ) = 1 implies that prior P[Hθ] = 0

for all θ, hence posterior P [Hθ|1..1] = 0, hence H never gets confirmed.

3 non-solutions: define H = {ω = 1∞} | use finite population | abandon
strict/logical/all-quantified/universal hypotheses in favor of soft hyp.

Solution: Assign non-zero prior to θ = 1 ⇒ P[H|1n] → 1.

Generalization: Assign non-zero prior to all “special” θ, like 1
2 and 1

6 ,

which may naturally appear in a hypothesis, like “is the coin or die fair”.

Universal solution: Assign non-zero prior to all comp. θ, e.g. wU
θ = 2−K(θ)
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Reparametrization Invariance

• New parametrization e.g. ψ =
√
θ, then the ψ-density

w̃(ψ) = 2
√
θ w(θ) is no longer uniform if w(θ) = 1 is uniform

⇒ indifference principle is not reparametrization invariant (RIP).

• Jeffrey’s and Bernardo’s principle satisfy RIP w.r.t. differentiable

bijective transformations ψ = f−1(θ).

• The universal prior wU
θ = 2−K(θ) also satisfies RIP w.r.t. simple

computable f . (within a multiplicative constant)
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Regrouping Invariance

• Non-bijective transformations:

E.g. grouping ball colors into categories black/non-black.

• No classical principle is regrouping invariant.

• Regrouping invariance is regarded as a very important and desirable

property. [Walley’s (1996) solution: sets of priors]

• The universal prior wU
θ = 2−K(θ) is invariant under regrouping, and

more generally under all simple [computable with complexity O(1)]

even non-bijective transformations. (within a multiplicative constant)

• Note: Reparametrization and regrouping invariance hold for

arbitrary classes and are not limited to the i.i.d. case.
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Universal Choice of Class M
• The larger M the less restrictive is the assumption µ ∈ M.

• The class MU of all (semi)computable (semi)measures, although

only countable, is pretty large, since it includes all valid physics

theories. Further, ξU is itself semi-computable [ZL70].

• Solomonoff’s universal prior M(x) := probability that the output of

a universal TM U with random input starts with x.

• Formally: M(x) :=
∑

p : U(p)=x∗ 2
−ℓ(p) where the sum is over all

(minimal) programs p for which U outputs a string starting with x.

• M may be regarded as a 2−ℓ(p)-weighted mixture over all

deterministic environments νp. (νp(x) = 1 if U(p) = x∗ and 0 else)

• M(x) coincides with ξU (x) within an irrelevant multiplicative constant.
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The Problem of Old Evidence / New Theories

• What if some evidence E=̂x (e.g. Mercury’s perihelion advance) is

known well-before the correct hypothesis/theory/model H=̂µ

(Einstein’s general relativity theory) is found?

• How shall H be added to the Bayesian machinery a posteriori?

• What should the “prior” of H be?

• Should it be the belief in H in a hypothetical counterfactual world

in which E is not known?

• Can old evidence E confirm H?

• After all, H could simply be constructed/biased/fitted towards

“explaining” E.
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Solution of the Old-Evidence Problem

• The universal class MU and universal prior wU
ν formally solves this

problem.

• The universal prior of H is 2−K(H) independent of M and of

whether E is known or not.

• Updating M is unproblematic, and even not necessary when

starting with MU , since it includes all hypothesis (including yet

unknown or unnamed ones) a priori.
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Universal is Better than Continuous M
• Although νθ() and wθ are incomp. for cont. classes M for most θ,

ξ() is typically computable. (exactly as for Laplace or numerically)

⇒ Dn(µ||M)
+
< Dn(µ||ξ)+K(ξ) ln 2 for all µ

• That is, M is superior to all computable mixture predictors ξ based

on any (continuous or discrete) model class M and weight w(θ),

save an additive constant K(ξ) ln 2 = O(1), even if environment µ

is not computable.

• While Dn(µ||ξ) ∼ d
2 lnn for all µ ∈ M,

Dn(µ||M) ≤ K(µ) ln 2 is even finite for computable µ.

Fazit: Solomonoff prediction works also in non-computable environments
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Convergence and Bounds
• Total (loss) bounds:

∑∞
n=1 E[hn]

+
< K(µ) ln 2, where

ht(ω<t) :=
∑

a∈X (
√
ξ(a|ω<t)−

√
µ(a|ω<t))

2.

• Instantaneous i.i.d. bounds: For i.i.d. M with continuous, discrete,
and universal prior, respectively:

E[hn]
×
< 1

n lnw(µ)−1 and E[hn]
×
< 1

n lnw−1
µ = 1

nK(µ) ln 2.

• Bounds for computable environments: Rapidly M(xt|x<t) → 1 on
every computable sequence x1:∞ (whichsoever, e.g. 1∞ or the digits
of π or e), i.e. M quickly recognizes the structure of the sequence.

• Weak instantaneous bounds: valid for all n and x1:n and x̄n ̸= xn:
2−K(n)

×
< M(x̄n|x<n)

×
< 22Km(x1:n)−K(n)

• Magic instance numbers: e.g. M(0|1n) ×
= 2−K(n) → 0, but spikes

up for simple n. M is cautious at magic instance numbers n.

• Future bounds / errors to come: If our past observations ω1:n

contain a lot of information about µ, we make few errors in future:∑∞
t=n+1 E[ht|ω1:n]

+
< [K(µ|ω1:n)+K(n)] ln 2
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More Stuff / Critique / Problems

• Prior knowledge y can be incorporated by using “subjective” prior

wU
ν|y = 2−K(ν|y) or by prefixing observation x by y.

• Additive/multiplicative constant fudges and U -dependence is often

(but not always) harmless.

• Incomputability: K and M can serve as “gold standards” which

practitioners should aim at, but have to be (crudely) approximated

in practice (MDL [Ris89], MML [Wal05], LZW [LZ76], CTW

[WST95], NCD [CV05]).
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4.4 Martin-Löf Randomness: Contents

• When is a Sequence Random? If it is incompressible!

• Motivation: For a fair coin 00000000 is as likely as 01100101,

but we “feel” that 00000000 is less random than 01100101.

• Martin-Löf randomness captures the important concept of

randomness of individual sequences.

• Martin-Löf random sequences pass all effective randomness tests.
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When is a Sequence Random?

a) Is 0110010100101101101001111011 generated by a fair coin flip?

b) Is 1111111111111111111111111111 generated by a fair coin flip?

c) Is 1100100100001111110110101010 generated by a fair coin flip?

d) Is 0101010101010101010101010101 generated by a fair coin flip?

• Intuitively: (a) and (c) look random, but (b) and (d) look unlikely.

• Problem: Formally (a-d) have equal probability ( 12 )
length.

• Classical solution: Consider hypothesis class H := {Bernoulli(p) :
p ∈ Θ ⊆ [0, 1]} and determine p for which sequence has maximum

likelihood =⇒ (a,c,d) are fair Bernoulli( 12 ) coins, (b) not.

• Problem: (d) is non-random, also (c) is binary expansion of π.

• Solution: Choose H larger, but how large? Overfitting? MDL?

• AIT Solution: A sequence is random iff it is incompressible.
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Martin-Löf Random Sequences

Characterization equivalent to Martin-Löf’s original definition:

Theorem 4.7 (Martin-Löf random sequences)

A sequence x1:∞ is µ-random (in the sense of Martin-Löf)

⇐⇒ there is a constant c such that M(x1:n) ≤ c · µ(x1:n) for all n.

Equivalent formulation for computable µ:

x1:∞ is µ.M.L.-random ⇐⇒ Km(x1:n)
+
= −logµ(x1:n) ∀n, (4.8)

Theorem 4.7 follows from (4.8) by exponentiation, “using 2−Km ≈M”

and noting that M
×
> µ follows from universality of M .
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Properties of ML-Random Sequences

• Special case of µ being a fair coin, i.e. µ(x1:n) = 2−n, then

x1:∞ is random ⇐⇒ Km(x1:n)
+
= n, i.e. iff x1:n is incompressible.

• For general µ, −logµ(x1:n) is the length of the Arithmetic code of

x1:n, hence x1:∞ is µ-random ⇐⇒ the Arithmetic code is optimal.

• One can show that a µ-random sequence x1:∞ passes all thinkable

effective randomness tests, e.g. the law of large numbers, the law of

the iterated logarithm, etc.

• In particular, the set of all µ-random sequences has µ-measure 1.
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4.5 Discussion: Contents

• Limitations of Other Approaches

• Summary

• Exercises

• Literature
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Limitations of Other Approaches 1

• Popper’s philosophy of science is seriously flawed:

– falsificationism is too limited,

– corroboration ≡ confirmation or meaningless,

– simple ̸= easy-to-refute.

• No free lunch myth relies on unrealistic uniform sampling.

Universal sampling permits free lunch.

• Frequentism: definition circular,

limited to i.i.d. data, reference class problem.

• Statistical Learning Theory: Predominantly considers i.i.d. data:

Empirical Risk Minimization, PAC bounds, VC-dimension,

Rademacher complexity, Cross-Validation.
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Limitations of Other Approaches 2
• Subjective Bayes: No formal procedure/theory to get prior.

• Objective Bayes: Right in spirit, but limited to small classes
unless community embraces information theory.

• MDL/MML: practical approximations of universal induction.

• Pluralism is globally inconsistent.

• Deductive Logic: Not strong enough to allow for induction.

• Non-monotonic reasoning, inductive logic, default reasoning
do not properly take uncertainty into account.

• Carnap’s confirmation theory: Only for exchangeable data.
Cannot confirm universal hypotheses.

• Data paradigm: Data may be more important than algorithms for
“simple” problems, but a “lookup-table” AGI will not work.

• Eliminative induction ignores uncertainty and information theory.
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Summary
• Solomonoff’s universal a priori probability M(x)

= Occam + Epicurus + Turing + Bayes + Kolmogorov

= output probability of a universal TM with random input

= enum. semimeasure that dominates all enum. semimeasures

≈ 2−Kolmogorov complexity(x)

• M(xt|x<t) → µ(xt|x<t) rapid w.p.1 ∀ computable µ.

• M solves/avoids/meliorates many if not all philosophical and

statistical problems around induction.

• Fazit: M is universal predictor.

• Matin-Löf /Kolmogorov define randomness of individual sequences:

A sequence is random iff it is incompressible.
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Exercises

1. [C10] Show that Definition 4.1 of M and the one given above it are

equivalent.

2. [C30] Prove that ρ is an enumerable semimeasure if and only if

there exists a TM T with ρ(x) =
∑

p:T (p)=x∗ 2
−ℓ(p) ∀x.

3. [C10] Prove the bounds of Theorem 4.2

4. [C15] Prove the entropy inequality Lemma 4.6.

Hint: Differentiate w.r.t. z and consider y < z and y > z separately.

5. [C10] Prove the claim about (rapid) convergence after Theorem 4.5

(Hint: Markov-Inequality).

6. [C20] Prove the instantaneous bound M(1|0n) ×
= 2−K(n).
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