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4 ALGORITHMIC PROBABILITY &
UNIVERSAL INDUCTION

e The Universal a Priori Probability M
e Universal Sequence Prediction

e Universal Inductive Inference

e Martin-Lof Randomness

e Discussion



Algorithmic Probability &
Universal Induction: Abstract

Solomonoff completed the Bayesian framework by providing a rigorous,
unique, formal, and universal choice for the model class and the prior. |
will discuss in breadth how and in which sense universal (non-i.i.d.)
sequence prediction solves various (philosophical) problems of traditional
Bayesian sequence prediction. | show that Solomonoff’s model possesses
many desirable properties: Strong total and weak instantaneous bounds
, and in contrast to most classical continuous prior densities has no zero
p(oste)rior problem, i.e. can confirm universal hypotheses, is
reparametrization and regrouping invariant, and avoids the old-evidence
and updating problem. It even performs well (actually better) in
non-computable environments.
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Problem Setup

e Since our primary purpose for doing induction is to forecast
(time-series), we will concentrate on sequence prediction tasks.

e C(lassification is a special case of sequence prediction.
(With some tricks the other direction is also true)

e This Course focusses on maximizing profit (minimizing loss).
We're not (primarily) interested in finding a (true/predictive/causal)
model.

e Separating noise from data is not necessary in this setting!



Philosophy & Notation

: : Epicurus’ principle of multiple ex-
Occam'’s razor: take simplest hy- P princip P

planations: Keep all theories con-
sistent with the data.

4 4

We now combine both principles:

pothesis consistent with data.

Take all consistent explanations into account,
but weight the simpler ones higher.

Formalization with Turing machines and Kolmogorov complexity

Additional notation: We denote binary strings of length /(x) = n by
r=T1., = T1To...T,, With x; € B and further abbreviate

Lcp —T1...Lpn—1-



4.1 THE UNIVERSAL A PRIORI PROBABILITY
M: CONTENTS

e The Universal a Priori Probability M

e Relations between Complexities

e (Semi)Measures

e Sample Space / o-Algebra / Cylinder Sets
e M is a SemiMeasure

e Properties of Enumerable Semimeasures

e Fundamental Universality Property of M



The Universal a Priori Probability M

Solomonoff defined the universal probability distribution M (x) as the
probability that the output of a universal monotone Turing machine
starts with = when provided with fair coin flips on the input tape.

Definition 4.1 (Solomonoff distribution) Formally,
M(z) = ) 2740
p: U(p)=w*

The sum is over minimal programs p for which U outputs a string
starting with = (see Definition 2.6).

Since the shortest programs p dominate the sum, M (x) is roughly

9~ Km(z), More precisely ...



Relations between Complexities

Theorem 4.2 (Relations between Complexities)
KM := —logM, Km, and K are ordered in the following way:

0 < K(zt(z)) < KM(z) < KEm(z) < K(z) < £(z)+ 2logl(x)

Proof sketch:

The second inequality follows from the fact that,

given n and Kraft's inequality » . M(x) <1,

there exists for x € X a Shannon-Fano code of length —logM (x),
which is effective since M is enumerable.

Now use Theorem 2.17 conditioned to n.

The other inequalities are obvious from the definitions. H



(Semi)Measures

Before we can discuss the stochastic properties of M we need the

concept of (semi)measures for strings.

Definition 4.3 ((Semi)measures) p(x) denotes the probability
that a binary sequence starts with string . We call p > 0 a
semimeasure if p(e) < 1 and p(x) > p(x0) + p(x1), and a proba-
bility measure if equality holds.

The reason for calling p with the above property a probability measure is
that it satisfies Kolmogorov's Axioms Definition 3.1 of probability in the

following sense ...




Sample Space / Events / Cylinder Sets

The The sample space is {) = B> with elements

W = wiwows... € B> being infinite binary sequences.

The set of events (the o-algebra) is defined as the set generated
from the cylinder sets I',, = {w : wy., = x1.,,} by countable
union and complement.

A probability measure p is uniquely defined by giving its values
p(I';, ) on the cylinder sets, which we abbreviate by p(x1.,).

We will also call p a measure, or even more loosely a probability
distribution.



M i1s a SemiMeasure

The reason for extending the definition to semimeasures is that
M itself is unfortunately not a probability measure.

We have M (z0) + M (z1) < M (x) because there are programs p,
which output x, neither followed by O nor 1.

They just stop after printing x -or-
continue forever without any further output.

Since M (e¢) =1, M is at least a semimeasure.



Properties of (Semi)Measure p

Properties of p: Z p(x1.5) (2 1,

plrlr<e) = plrie)/p(z<),
p(xy..tn) = plxy)-plae|ry) .cc-p(@n|Tr.. . Tpn_1).

One can show that p is an enumerable semimeasure

= ImTMT : p(z)= > 27@ and ((T)=K(p)
p: T(p)=z*
Intuition: Fair coin flips are sufficient to create any probability

distribution.

Definition: K(p) := length of shortest self-delimiting code of a
Turing machine computing function p in the sense of Def. 2.21.



Fundamental Universality Property of M

Theorem 4.4 (Universality of M)

M is a universal semimeasure in the sense that

M (x) S 9K p(x) for all enumerable semimeasures p.
M is enumerable, but not estimable.

Up to a multiplicative constant, M assigns higher probability to all x
than any other computable probability distribution.

Proof sketch:

M(z) = Z 9~ 4(p) > Z o—Ta) _ o—&T) Z o—t(a) X Q—K(p)p(x)

p:U(p)=xx* q:U(Tq)=xx* q:T(q)=xx*



4.2 UNIVERSAL SEQUENCE PREDICTION:
CONTENTS

e Solomonoff, Occam, Epicurus

e Prediction

e Simple Deterministic Bound

e Solomonoff’'s Major Result

e Implications of Solomonoff’s Result
e Entropy Inequality

e Proof of the Entropy Bound



Solomonoff, Occam, Epicurus

In which sense does M incorporate Occam’s razor and Epicurus’

principle of multiple explanations?

From M (z) ~ 27 5(#) we see that M assigns high probability to
simple strings (Occam).

More useful is to think of x as being the observed history.

We see from Definition 4.1 that every program p consistent with
history x is allowed to contribute to M (Epicurus).

On the other hand, shorter programs give significantly larger
contribution (Occam).



Prediction

How does all this affect prediction?

If M () correctly describes our (subjective) prior belief in x, then
M(ylz) := M(xy)/M(x)

must be our posterior belief in y.

From the symmetry of algorithmic information
K(z,y) = K(y|z, K(2)) + K(z) (Theorem 2.15), and assuming
K(x,y) ~ K(xy), and approximating K (y|z, K(z)) ~ K(y|z),
M(z) ~ 275 and M (zy) ~ 27 5@) we get:

M(yle) ~ 2~ K Gle)

This tells us that M predicts y with high probability iff 4 has an easy
explanation, given z (Occam & Epicurus).



Simple Deterministic Bound

Sequence prediction algorithms try to predict the continuation x; € B of
a given sequence xq...Ty—1. Simple deterministic bound:

C

Z [1—M (¢|z <) % —Zln M (z¢|x<4) 2 In M(21.00) < Km(21.00) In2
t=1 t=1

(a)use |1 —a|] < —Inafor0<a < 1.

(b) exchange sum with logarithm and eliminate product by chain rule.

(c) used Theorem 4.2.

If 21.00 is @ computable sequence, then Km(x1.o0) is finite,
which implies M (z¢|z<;) =1 (00,211 —at| < 00 = ar — 1).

= if the environment is a computable sequence (digits of 7 or e or ...),
after having seen the first few digits, M correctly predicts the next digit

with high probability, i.e. it recognizes the structure of the sequence.



Solomonoff’s Major Result

Assume sequence x1.o, iIs sampled from the unknown distribution g,
i.e. the true objective probability of z1., is p(x1.,).

The probability of x; given xz-; hence is pu(x¢|x—i) = p(x1.4)/ p(x<y).
Solomonoff's central result [Hut05] is that M converges to p.

More precisely, he showed that

Theorem 4.5 (Predictive Convergence of M)

Y > plaa) (MOla) = pl0lza) < $m2-K(n) < o




Implications of Solomonoff’s Result

The infinite sum can only be finite if the difference
M (Olz~¢) — (0]z~4) tends to zero for t — oo with u-probability 1.

Convergence is rapid: The expected number of times ¢ in which
IM(0|x<t) — u(0lz<4)| > € is finite and bounded by c¢/? and
the probability that the number of e-deviations exceeds 5 s

smaller than &, where ¢=In 2 K ().
No statement is possible for which ¢ these deviations occur.
This holds for any computable probability distribution f.

How does M know to which p7?
The set of pu-random sequences differ for different u.

Intuition: Past data x.; are exploited to get a (with t — o0)
improving estimate M (x¢|x<;) of p(xs|x<y).

Fazit: M is universal predictor. The only assumption made is that
data are generated from a computable distribution.



Entropy Inequality

Proof of Solomonoff’s bound: We need (proof as exercise)

Lemma 4.6 (Entropy Inequality)
22 —y)? <ylni+(1-y)lnt=% for 0<z<1 and 0<y<1.

§y1n%—|—(1—y)lnt—g for 0<z<e<1 and 0 <y < 1.

The latter inequality holds, since the r.h.s. is decreasing in c. Inserting
0<y:=p0lzc)=1-p(llz<) <1 and

0<z:=MQOlr<) <c:=MQOlz<y) + M(1l|lzg) <1 we get

(ﬂ?t\$<t)
2(M (0 1(0 )2 < E
(MOl mpOe = 2 eI 4Gy

=: d¢(T <)

The r.h.s. is the relative entropy between p and M.
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Proof of the Entropy Bound
D (|| M) Y Y P <t )de (T <) (a) ZZN r1.¢)In e[z <t) —

t=1 :c<t t=1 1.+ (xt|x<t)

(d)
(b) Z,u T1:n lnH H xt|x<t (C) Z (mlzn) 2 K(,u) In 2

CEt‘aj<t (xlzn)

(a) Insert def. of d; and use product rule p(x<¢) -p(xe|x<s) =p(T14).

(0) 2 ou, (m14) = >, p(T1.n) and argument of log is independent
of £+11.,. The t sum can now be exchanged with the x1.,, sum and
transforms to a product inside the logarithm.

(c) Use chain rule again for u and M.
(d) Use dominance M(z) > 250 y(z).

Inserting d; into D,, yields Solomonoff's Theorem 4.5. H



4.3 UNIVERSAL INDUCTIVE INFERENCE:
CONTENTS

e Bayesian Sequence Prediction and Confirmation
e The Universal Prior

e The Problem of Zero Prior

e Reparametrization and Regrouping Invariance

e Universal Choice of Class M

e The Problem of Old Evidence / New Theories
e Universal is Better than Continuous M

e More Bounds / Critique / Problems



Bayesian Sequence Prediction and Confirmation

e Assumption: Sequence w € X is sampled from the “true”
probability measure 1, i.e. pu(xz) := Plx|u| is the p-probability that
w starts with =z € A",

e Model class: We assume that 1 is unknown but known to belong to
a countable class of environments=models=measures
M ={v,1m,...}. [no i.i.d./ergodic/stationary assumption]

e Hypothesis class: {H, : v € M} forms a mutually exclusive and
complete class of hypotheses.

e Prior: w, := P|H,| is our prior belief in H,

= Evidence: {(z) :=Plz] =) . Plz|H,|PH,) =) wuv(x)
must be our (prior) belief in .

= Posterior: w,(z) := P[H,|z] = P[[E‘PI{,”[LP])[H”] is our posterior belief

in v (Bayes' rule).




The Universal Prior

e Quantify the complexity of an environment v or hypothesis H, by
its Kolmogorov complexity K (v).

e Universal prior: w, =|wY := 275 | is a decreasing function in

the model's complexity, and sums to (less than) one.

= D, (p||¢) < K(u)In2, i.e. the number of e-deviations of ¢ from
Is proportional to the complexity of the environment.

e No other semi-computable prior leads to better prediction (bounds).

e For continuous M, we can assign a (proper) universal prior (not
density) wy = 275 > ( for computable #, and 0 for uncomp. 6.

e This effectively reduces M to a discrete class {vy € M : wj > 0}
which is typically dense in M.

e This prior has many advantages over the classical prior (densities).



The Problem of Zero Prior
— the problem of confirmation of universal hypotheses

Problem: If the prior is zero, then the posterior is necessarily also zero.

Example: Consider the hypothesis H = H; that all balls in some urn or
all ravens are black (=1) or that the sun rises every day.

Starting with a prior density as w(f/) = 1 implies that prior P|Hy| = 0
for all &, hence posterior P[Hy|1..1] = 0, hence H never gets confirmed.

3 non-solutions: define H = {w = 1°°} | use finite population | abandon
strict /logical /all-quantified /universal hypotheses in favor of soft hyp.

Solution: Assign non-zero priorto ¢ =1 = P[H|1"] — 1.

Generalization: Assign non-zero prior to all “special” 0, like % and %,
which may naturally appear in a hypothesis, like “is the coin or die fair”.

Universal solution: Assign non-zero prior to all comp. 6, e.g. ng — 2~ K(0)



Reparametrization Invariance

e New parametrization e.g. 1) = v/, then the v-density
w(1)) = 2v/0w(6) is no longer uniform if w(#) = 1 is uniform
= indifference principle is not reparametrization invariant (RIP).

e Jeffrey's and Bernardo's principle satisfy RIP w.r.t. differentiable
bijective transformations 1) = f~1(0).

e The universal prior w5 = 2759 also satisfies RIP w.r.t. simple

computable f. (within a multiplicative constant)



Regrouping Invariance

Non-bijective transformations:
E.g. grouping ball colors into categories black/non-black.

No classical principle is regrouping invariant.

Regrouping invariance is regarded as a very important and desirable

property. [Walley's (1996) solution: sets of priors]

The universal prior w¥ = 27K() s invariant under regrouping, and
p 0 grouping

more generally under all simple [computable with complexity O(1)]

even non-bijective transformations. (within a multiplicative constant)

Note: Reparametrization and regrouping invariance hold for
arbitrary classes and are not limited to the i.i.d. case.



Universal Choice of Class M

The larger M the less restrictive is the assumption 1 € M.

The class My of all (semi)computable (semi)measures, although
only countable, is pretty large, since it includes all valid physics
theories. Further, & is itself semi-computable [ZL70].

Solomonoff's universal prior M (x) := probability that the output of
a universal TM U with random input starts with x.

Formally: | M(z) := >, . tr(p)=ax 274) | where the sum is over all

(minimal) programs p for which U outputs a string starting with .

M may be regarded as a 274(P)-weighted mixture over all

deterministic environments v,,. (v,(z) = 1 if U(p) = 2+ and 0 else)

M (x) coincides with &y (x) within an irrelevant multiplicative constant.
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The Problem of Old Evidence / New Theories

e What if some evidence E=x (e.g. Mercury’s perihelion advance) is
known well-before the correct hypothesis/theory/model H=pu
(Einstein’s general relativity theory) is found?

e How shall H be added to the Bayesian machinery a posteriori?
e What should the “prior” of H be?

e Should it be the belief in H in a hypothetical counterfactual world
in which E is not known?

e Can old evidence E confirm H?

e After all, H could simply be constructed/biased/fitted towards
“explaining” L.



Solution of the Old-Evidence Problem

e The universal class M;; and universal prior w" formally solves this
problem.

e The universal prior of H is 27 %) independent of M and of
whether £ is known or not.

e Updating M is unproblematic, and even not necessary when
starting with M, since it includes all hypothesis (including yet
unknown or unnamed ones) a priori.



Universal is Better than Continuous M

e Although vy() and wy are incomp. for cont. classes M for most 0,

£() is typically computable. (exactly as for Laplace or numerically)

= | Do (ul|M) < Dy(u]|€)+ K (€) In2 for all g

e Thatis, M is superior to all computable mixture predictors & based
on any (continuous or discrete) model class M and weight w(#),
save an additive constant K (£)In2 = O(1), even if environment p

Is not computable.

e While D,,(u]|) ~ 4 1nn for all u € M,
D, (|| M) < K(u)In2 is even finite for computable 1.

Fazit: | Solomonoff prediction works also in non-computable environments




Convergence and Bounds
Total (loss) bounds: >~ . Elh,,] b K () 1In2, where

n=1

hi(wet) = Zaex(\/f(@|w<t - \/M alwet))?.

Instantaneous i.i.d. bounds: For i.i.d. M with continuous, discrete,
and universal prior, respectively:

Elh,] z LInw(p)~" and Elh,] z LInw, ' = LK () In2.

Bounds for computable environments: Rapidly M (z:|z-;) — 1 on
every computable sequence 1., (whichsoever, e.g. 1°° or the digits
of m or e), i.e. M quickly recognizes the structure of the sequence.

Weak mstantaneous bounds valid for all n and x7.,, and z,, # x,:
29— K(n) < M(xn\az<n) < 22Km(x1 n)—K(n)

Magic instance numbers: e.g. M (0[1") = 2=5) — 0, but spikes
up for simple n. M is cautious at magic instance numbers n.

Future bounds / errors to come: If our past observations wy.,
contain a lot of information about u, we make few errors in future:

S Elhlwii] < [K(lwim)+ K (n)] In 2



More Stuff / Critique / Problems

Prior knowledge y can be incorporated by using “subjective” prior

Uu _ 2—K(1/

oy 1Y) or by prefixing observation x by 1.

w

Additive/multiplicative constant fudges and U-dependence is often
(but not always) harmless.

Incomputability: K and M can serve as “gold standards” which
practitioners should aim at, but have to be (crudely) approximated
in practice (MDL [Ris89], MML [Wal05], LZW [LZ76], CTW
(WST95], NCD [CV05]).



4.4 MARTIN-LOF RANDOMNESS: CONTENTS

e When is a Sequence Random? If it is incompressible!

e Motivation: For a fair coin 00000000 is as likely as 01100101,
but we “feel” that 00000000 is less random than 01100101.

e Martin-Lof randomness captures the important concept of

randomness of individual sequences.

e Martin-Lof random sequences pass all effective randomness tests.



When is a Sequence Random?

a) 1s 0110010100101101101001111011 generated by a fair coin flip?
b) Is 1111111111111111111111111111 generated by a fair coin flip?
c) Is 1100100100001111110110101010 generated by a fair coin flip?
d) Is 0101010101010101010101010101 generated by a fair coin flip?

e Intuitively: (a) and (c) look random, but (b) and (d) look unlikely.
e Problem: Formally (a-d) have equal probability (3)"™9t".

e Classical solution: Consider hypothesis class H := {Bernoulli(p) :
p € © C[0,1]} and determine p for which sequence has maximum
likelihood = (a,c,d) are fair Bernoulli(3) coins, (b) not.

e Problem: (d) is non-random, also (c) is binary expansion of 7.
e Solution: Choose H larger, but how large? Overfitting? MDL?

e AIT Solution: A sequence is random :ff it is incompressible.



Martin-Lof Random Sequences

Characterization equivalent to Martin-Lof's original definition:

Theorem 4.7 (Martin-Lof random sequences)
A sequence T1.., is p-random (in the sense of Martin-Lof)
<> there is a constant ¢ such that M (z1.,,) < ¢- u(x1.,) for all n.

Equivalent formulation for computable u:
T1.00 IS p.M.L.-random <= Km(x1.,) — —logu(x1.n) Vn, (4.8)
Theorem 4.7 follows from (4.8) by exponentiation, “using 27 5™ ~ M"

and noting that M 3 1 follows from universality of M.



Properties of ML-Random Sequences

Special case of u being a fair coin, i.e. u(x1.,) = 27", then

. i . . oo .
T1.00 IS random <= Km(x1.,) = n, i.e. iff x1.,, is incompressible.

For general u, —logu(x1.,) is the length of the Arithmetic code of

X1.n, hence 1., Is p-random <= the Arithmetic code is optimal.

One can show that a p-random sequence 1.5, passes all thinkable
effective randomness tests, e.g. the law of large numbers, the law of
the iterated logarithm, etc.

In particular, the set of all u-random sequences has p-measure 1.



4.5 DI1SCUSSION: CONTENTS

e Limitations of Other Approaches
e Summary
e Exercises

e Literature



Limitations of Other Approaches 1

Popper's philosophy of science is seriously flawed:
— falsificationism is too limited,

— corroboration = confirmation or meaningless,

— simple # easy-to-refute.

No free lunch myth relies on unrealistic uniform sampling.
Universal sampling permits free lunch.

Frequentism: definition circular,

limited to i.i.d. data, reference class problem.

Statistical Learning Theory: Predominantly considers i.i.d. data:
Empirical Risk Minimization, PAC bounds, VC-dimension,
Rademacher complexity, Cross-Validation.



Limitations of Other Approaches 2

Subjective Bayes: No formal procedure/theory to get prior.

Objective Bayes: Right in spirit, but limited to small classes
unless community embraces information theory.

MDL/MML: practical approximations of universal induction.
Pluralism is globally inconsistent.
Deductive Logic: Not strong enough to allow for induction.

Non-monotonic reasoning, inductive logic, default reasoning
do not properly take uncertainty into account.

Carnap’s confirmation theory: Only for exchangeable data.
Cannot confirm universal hypotheses.

Data paradigm: Data may be more important than algorithms for
“simple” problems, but a “lookup-table” AGI will not work.

Eliminative induction ignores uncertainty and information theory.
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Summary

e Solomonoff’s universal a priori probability M (x)
= Occam + Epicurus + Turing + Bayes + Kolmogorov
= output probability of a universal TM with random input

= enum. semimeasure that dominates all enum. semimeasures

2~ Kolmogorov complexity(x)

Q

o M(x¢|lxret) — p(we|xr<y) rapid w.p.1 V computable p.

e M solves/avoids/meliorates many if not all philosophical and

statistical problems around induction.
e Fazit: M is universal predictor.

e Matin-Lof /Kolmogorov define randomness of individual sequences:

A sequence is random iff it is incompressible.



Exercises

. [C10] Show that Definition 4.1 of M and the one given above it are

equivalent.

. [C30] Prove that p is an enumerable semimeasure if and only if

there exists a TM T" with p(2) = >, 7(p)=z= 274P) vy

. [C10] Prove the bounds of Theorem 4.2

C15] Prove the entropy inequality Lemma 4.6.
Hint: Differentiate w.r.t. z and consider y < z and y > z separately.

. [C10] Prove the claim about (rapid) convergence after Theorem 4.5
(Hint: Markov-Inequality).

. [C20] Prove the instantaneous bound M (1]0") = 2~ K (),



[Sol64]

[LVOS]

[Hut05]

[Hut07]

[RH11]
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