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10 APPROXIMATIONS & APPLICATIONS

• Universal Search

• The Fastest Algorithm (FastPrg)

• Time-Bounded AIXI Model (AIXItl)

• Brute-Force Approximation of AIXI (AIξ)

• A Monte-Carlo AIXI Approximation (MC-AIXI-CTW)

• Feature Reinforcement Learning (ΦMDP)
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Approximations & Applications: Abstract
Many fundamental theories have to be approximated for practical use.
Since the core quantities of universal induction and universal intelligence
are incomputable, it is often hard, but not impossible, to approximate
them. In any case, having these “gold standards” to approximate
(top→down) or to aim at (bottom→up) is extremely helpful in building
truly intelligent systems. A couple of universal search algorithms
((adaptive) Levin search, FastPrg, OOPS, Gödel-machine, ...) that find
short programs have been developed and applied to a variety of toy
problem. The AIXI model itself has been approximated in a couple of
ways (AIXItl, Brute Force, Monte Carlo, Feature RL). Some recent
applications will be presented.
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Towards Practical Universal AI

Goal: Develop efficient general-purpose intelligent agent

• Additional Ingredients: Main Reference (year)

• Universal search: Schmidhuber (200X) & al.

• Learning: TD/RL Sutton & Barto (1998) & al.

• Information: MML/MDL Wallace, Rissanen

• Complexity/Similarity: Li & Vitanyi (2008)

• Optimization: Aarts & Lenstra (1997)

• Monte Carlo: Fishman (2003), Liu (2002)
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10.1 Universal Search: Contents

• Blum’s Speed-up Theorem and Levin’s Theorem.

• The Fastest Algorithm Mp∗ .

• Applicability of Levin Search and Mp∗ .

• Time Analysis of Mp∗ .

• Extension of Kolmogorov Complexity to Functions.

• The Fastest and Shortest Algorithm.

• Generalizations.

• Summary & Outlook.
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Introduction

• Searching for fast algorithms to solve certain problems is a central

and difficult task in computer science.

• Positive results usually come from explicit constructions of efficient

algorithms for specific problem classes.

• A wide class of problems can be phrased in the following way:

• Find a fast algorithm computing f :X→Y , where f is a formal

specification of the problem depending on some parameter x.

• The specification can be formal (logical, mathematical),

it need not necessarily be algorithmic.

• Ideally, we would like to have the fastest algorithm, maybe apart

from some small constant factor in computation time.
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Blum’s Speed-up Theorem (Negative Result)

There are problems for which an (incomputable) sequence of

speed-improving algorithms (of increasing size) exists, but no fastest

algorithm.

[Blum, 1967, 1971]

Levin’s Theorem (Positive Result)

Within a (large) constant factor, Levin search is the fastest algorithm to

invert a function g :Y →X, if g can be evaluated quickly.

[Levin 1973]
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Simple is as fast as Search
• simple: run all programs p1p2p3 . . . on x one step at a time

according to the following scheme: p1 is run every second step, p2
every second step in the remaining unused steps, ... if g(pk(x)) = x,

then output pk(x) and halt ⇒ timeSIMPLE(x) ≤ 2ktime+pk
(x) + 2k−1.

• search: run all p of length less than i for ⌊2i2−l(p)⌋ steps in phase

i = 1, 2, 3, . . .. timeSEARCH(x) ≤ 2K(k)+O(1)time+pk
(x), K(k) ≪ k.

• Refined analysis: search itself is an algorithm with some index

kSEARCH =O(1)

=⇒ simple executes search every 2kSEARCH -th step

=⇒ timeSIMPLE(x) ≤ 2kSEARCHtime+SEARCH(x)

=⇒ simple and search have the same asymptotics also in k.

• Practice: search should be favored because the constant 2kSEARCH

is rather large.
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Bound for The Fast Algorithm Mp∗

• Let p∗ :X→Y be a given algorithm or specification.

• Let p be any algorithm, computing provably the same function as p∗

• with computation time provably bounded by the function tp(x).

• timetp(x) is the time needed to compute the time bound tp(x).

• Then the algorithm Mp∗ computes p∗(x) in time

timeMp∗ (x) ≤ 5·tp(x) + dp ·timetp(x) + cp

• with constants cp and dp depending on p but not on x.

• Neither p, tp, nor the proofs need to be known in advance for the

construction of Mp∗(x).
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Applicability
• Prime factorization, graph coloring, truth assignments, ... are Problems

suitable for Levin search, if we want to find a solution, since verification is
quick.

• Levin search cannot decide the corresponding decision problems.

• Levin search cannot speedup matrix multiplication, since there is no
faster method to verify a product than to calculate it.

• Strassen’s algorithm p′ for n×n matrix multiplication has time
complexity timep′(x) ≤ tp′(x) := c·n2.81.

• The time-bound function (cast to an integer) can, as in many cases, be

computed very fast, timetp′ (x) = O(log2 n).

• Hence, also Mp∗ is fast, timeMp∗ (x) ≤ 5c·n2.81 +O(log2 n), even

without known Strassen’s algorithm.

• If there exists an algorithm p′′ with timep′′(x) ≤ d·n2 log n, for instance,

then we would have timeMp∗ (x) ≤ 5d·n2 log n+O(1).

• Problems: Large constants c, cp, dp.



Approximations & Applications - 313 - Marcus Hutter

The Fast Algorithm Mp∗

Mp∗(x)

Initialize the shared variables

L := {}, tfast := ∞, pfast := p∗.

Start algorithms A, B, and C

in parallel with 10%, 10% and 80%

computational resources, respectively.

A

Run through all proofs.

if a proof proves for some (p, t) that

p(·) is equivalent to (computes) p∗(·)
and has time-bound t(·)
then add (p, t) to L.

B

Compute all t(x) in parallel

for all (p, t)∈L with

relative computation time 2−ℓ(p)−ℓ(t).

if for some t, t(x)<tfast,

then tfast := t(x) and pfast := p.

continue

C

for k:=1,2,4,8,16,32,... do

run current pfast for k steps

(without switching).

if pfast halts in less than k steps,

then print result and abort A, B and C.

else continue with next k.
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Fictitious Sample Execution of Mp∗
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Time Analysis

TA ≤ 1

10%
·2ℓ(proof(p

′))+1 ·O(ℓ(proof(p′))2)

TB ≤ TA +
1

10%
·2ℓ(p

′)+ℓ(tp′ ) ·timetp′ (x)

TC ≤

 4TB if C stops not using p′ but on some earlier program

1
80%4tp′ if C computes p′.

timeMp∗ (x) = TC ≤ 5·tp(x) + dp ·timetp(x) + cp

dp = 40·2ℓ(p)+ℓ(tp), cp = 40·2ℓ(proof(p))+1 ·O(ℓ(proof(p)2)
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Kolmogorov Complexity

Kolmogorov Complexity is a universal notion of the information content

of a string. It is defined as the length of the shortest program

computing string x.

K(x) := min
p

{ℓ(p) : U(p) = x}

[Kolmogorov 1965 and others]

Universal Complexity of a Function

The length of the shortest program provably equivalent to p∗

K ′′(p∗) := min
p

{ℓ(p) : a proof of [∀y :u(p, y) = u(p∗, y)] exists}

[Hut02]

K and K ′′ can be approximated from above (are co-enumerable), but

not finitely computable. The provability constraint is important.
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The Fastest and Shortest Algorithm for p∗

Let p∗ be a given algorithm or formal specification of a function.

There exists a program p̃, equivalent to p∗, for which the following holds

i) ℓ(p̃) ≤ K ′′(p∗) +O(1)

ii) timep̃(x) ≤ 5·tp(x) + dp ·timetp(x) + cp

where p is any program provably equivalent to p∗ with computation

time provably less than tp(x). The constants cp and dp depend on p but

not on x. [Hut02]

Proof

Insert the shortest algorithm p′ provably equivalent to p∗ into M , that is

p̃ :=Mp′ ⇒ l(p̃) = ℓ(p′)+O(1) = K ′′(p∗)+O(1).



Approximations & Applications - 318 - Marcus Hutter

Generalizations

• If p∗ has to be evaluated repeatedly, algorithm A can be modified

to remember its current state and continue operation for the next

input (A is independent of x!). The large offset time cp is only

needed on the first call.

• Mp∗ can be modified to handle i/o streams, definable by a Turing

machine with monotone input and output tapes (and bidirectional

working tapes) receiving an input stream and producing an output

stream.

• The construction above also works if time is measured in terms of

the current output rather than the current input x (e.g. for

computing π).
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Summary

• Under certain provability constraints, Mp∗ is the asymptotically

fastest algorithm for computing p∗ apart from a factor 5 in

computation time.

• The fastest program computing a certain function is also among the

shortest programs provably computing this function.

• To quantify this statement we defined a novel natural measure for

the complexity of a function, related to Kolmogorov complexity.

• The large constants cp and dp seem to spoil a direct

implementation of Mp∗ .

• On the other hand, Levin search has been successfully extended and

applied even though it suffers from a large multiplicative factor

[Schmidhuber 1996-2004].
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Outlook

• More elaborate theorem-provers could lead to smaller constants.

• Transparent or holographic proofs allow under certain circumstances

an exponential speed up for checking proofs. [Babai et al. 1991]

• Will the ultimate search for asymptotically fastest programs typically

lead to fast or slow programs for arguments of practical size?
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10.2 Approximations & Applications of

AIXI: Contents

• Time-Bounded AIXI Model (AIXItl)

(theoretical guarantee)

• Brute-Force Approximation of AIXI (AIξ)

(application to 2×2 matrix games)

• A Monte-Carlo AIXI Approximation (MC-AIXI-CTW)

(application to mazes, tic-tac-toe, pacman, poker)
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Computational Issues

• If X , Y, m, M finite, then ξ and pξ (theoretically) computable.

• ξ and hence pξ incomputable for infinite M, as for Solomonoff’s

prior ξU .

• Computable approximations to ξU :

Time bounded Kolmogorov complexity Kt or Kt.

Time bounded universal prior like speed prior S [Schmidhuber:02].

• Even for efficient approximation of ξU , exponential (in m) time is

needed for evaluating the expectimax tree in V ∗
ξ .

• Additionally perform Levin search through policy space,

similarly to OOPS+AIXI [Schmidhuber:02].

• Approximate V ∗
ξ directly: AIXItl [Hutter:00].
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Computability and Monkeys

SPξ and AIξ are not really uncomputable (as often stated) but ...

ẏAIξ
k is only asymptotically computable/approximable with slowest

possible convergence.

Idea of the typing monkeys:

• Let enough monkeys type on typewriters or computers, eventually

one of them will write Shakespeare or an AI program.

• To pick the right monkey by hand is cheating, as then the

intelligence of the selector is added.

• Problem: How to (algorithmically) select the right monkey.



Approximations & Applications - 324 - Marcus Hutter

The Time-bounded AIXI Model

• Let p be any (extended chronological self-evaluating) policy

• with length ℓ(p)≤ l and computation time per cycle t(p)≤ t
• for which there exists a proof of length ≤ lP that p is a valid

approximation of (not overestimating) its true value V p
M ≡ Υ(p).

• AIXItl selects such p with highest self-evaluation.

Optimality of AIXItl

• AIXItl depends on l,t and lP but not on knowing p.

• It is effectively more or equally intelligent

w.r.t. intelligence order relation ≽c than any such p.

• Its size is ℓ(pbest)=O(log(l·t·lP )).
• Its setup-time is tsetup(p

best)=O(l2P ·2lP ).
• Its computation time per cycle is tcycle(p

best)=O(2l ·t).
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Outook

• Adaptive Levin-Search (Schmidhuber 1997)

• The Optimal Ordered Problem Solver (Schmidhuber 2004) (has

been successfully applied to Mazes, towers of hanoi, robotics, ...)

• The Gödel Machine (Schmidhuber 2007)

• Related fields: Inductive Programming
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Brute-Force Approximation of AIXI

• Truncate expectimax tree depth to a small fixed lookahead h.

Optimal action computable in time |Y×X |h× time to evaluate ξ.

• Consider mixture over Markov Decision Processes (MDP) only, i.e.

ξ(x1:m|y1:m) =
∑

ν∈M wν

∏m
t=1 ν(xt|xt−1yt). Note: ξ is not MDP

• Choose uniform prior over wµ.

Then ξ(x1:m|y1:m) can be computed in linear time.

• Consider (approximately) Markov problems

with very small action and perception space.

• Example application: 2×2 Matrix Games like Prisoner’s Dilemma,

Stag Hunt, Chicken, Battle of Sexes, and Matching Pennies. [PH06]
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AIXI Learns to Play 2×2 Matrix Games

• Repeated prisoners dilemma. Loss matrix

• Game unknown to AIXI.

Must be learned as well

• AIXI behaves appropriately.
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A Monte-Carlo AIXI Approximation
Consider class of Variable-Order Markov Decision Processes.

The Context Tree Weighting (CTW) algorithm can efficiently mix

(exactly in essentially linear time) all prediction suffix trees.

Monte-Carlo approximation of expectimax tree:

Upper Confidence Tree (UCT) algorithm:

• Sample observations from CTW distribution.

• Select actions with highest upper confidence bound.

• Expand tree by one leaf node (per trajectory).

a1
a2 a3

o1 o2 o3 o4

future reward estimate

• Simulate from leaf node further down using (fixed) playout policy.

• Propagate back the value estimates for each node.

Repeat until timeout. [VNH+11]

Guaranteed to converge to exact value.

Extension: Predicate CTW not based on raw obs. but features thereof.
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Monte-Carlo AIXI Applications
without providing any domain knowledge, the same agent is

able to self-adapt to a diverse range of interactive environments.
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Extensions of MC-AIXI-CTW [VSH12]
• Smarter than random playout policy, e.g. learnt CTW policy.

• Extend the model class to improve general prediction ability.
However, not so easy to do this in a comput. efficient manner.

• Predicate CTW: Context is vector of (general or problem-specific)
predicate=feature=attribute values.

• Convex Mixing of predictive distributions.
Competitive guarantee with respect to the best fixed set of weights.

• Switching: Enlarge base class by allowing switching between distr.
Can compete with best rarely changing sequence of models.

• Improve underlying KT Est.: Adaptive KT, Window KT, KT0, SAD

• Partition Tree Weighting technique for piecewise stationary sources
with breaks at/from a binary tree hierarchy.

• Mixtures of factored models such as quad-trees for images [GBVB13]

• Avoid expensive MCTS by direct compression-based value
estimation. [VBH+15]



Approximations & Applications - 331 - Marcus Hutter

10.3 Feature Reinforcement Learning:

Contents

• Markov Decision Processes (MDPs)

• The Main Idea: Map Real Problem to MDP

• Criterion to Evaluate/Find/Learn Map the Automatically

• Algorithm & Results
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Feature Reinforcement Learning (FRL)

Goal: Develop efficient general purpose intelligent agent. [Hut09b]

State-of-the-art: (a) AIXI: Incomputable theoretical solution.

(b) MDP: Efficient limited problem class.

(c) POMDP: Notoriously difficult. (d) PSRs: Underdeveloped.

Idea: ΦMDP reduces real problem to MDP automatically by learning.

Accomplishments so far: (i) Criterion for evaluating quality of reduction.

(ii) Integration of the various parts into one learning algorithm. [Hut09c]

(iii) Generalization to structured MDPs (DBNs). [Hut09a]

(iv) Theoretical and experimental investigation. [SH10, DSH12, Ngu13]

ΦMDP is promising path towards the grand goal & alternative to (a)-(d)

Problem: Find reduction Φ efficiently (generic optimization problem?)
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Markov Decision Processes (MDPs)
a computationally tractable class of problems

• MDP Assumption: State st := ot and rt are

probabilistic functions of ot−1 and at−1 only.

Example MDP���
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��	• Further Assumption:

State=observation space S is finite and small.

• Goal: Maximize long-term expected reward.

• Learning: Probability distribution is unknown but can be learned.

• Exploration: Optimal exploration is intractable

but there are polynomial approximations.

• Problem: Real problems are not of this simple form.
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Map Real Problem to MDP
Map history ht := o1a1r1...ot−1 to state st := Φ(ht), for example:

Games: Full-information with static opponent: Φ(ht) = ot.

Classical physics: Position+velocity of objects = position at two

time-slices: st = Φ(ht) = otot−1 is (2nd order) Markov.

I.i.d. processes of unknown probability (e.g. clinical trials ≃ Bandits),

Frequency of obs. Φ(hn) = (
∑n

t=1 δoto)o∈O is sufficient statistic.

Identity: Φ(h) = h is always sufficient, but not learnable.

Find/Learn Map Automatically
Φbest := argminΦ Cost(Φ|ht)

• What is the best map/MDP? (i.e. what is the right Cost criterion?)

• Is the best MDP good enough? (i.e. is reduction always possible?)

• How to find the map Φ (i.e. minimize Cost) efficiently?
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ΦMDP: Computational Flow

Environment
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ΦMDP Results

• Theoretical guarantees: Asymptotic consistency. [SH10]

• Example Φ-class: As Φ choose class of suffix trees as in CTW.

• How to find/approximate Φbest:

- Exhaustive search for toy problems [Ngu13]

- Monte-Carlo (Metropolis-Hastings / Simulated Annealing)

for approximate solution [NSH11]

- Exact “closed-form” by CTM similar to CTW [NSH12]

• Experimental results: Comparable to MC-AIXI-CTW [NSH12]

• Extensions:

- Looping suffix trees for long-term memory [DSH12]

- Structured/Factored MDPs (Dynamic Bayesian Networks) [Hut09a]
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