
Context Tree Weighting

Peter Sunehag and Marcus Hutter

2013

Motivation

I Context Tree Weighting (CTW) is a Bayesian Mixture of the
huge class of variable-order Markov processes.

I It is principled and computationally efficient.

I It leads to excellent predictions and compression
in practice and in theory.

I It can (and will) be used to approximate Solomonoff’s
universal prior ξU(x).

Prediction of I.I.D Sequences

I Suppose that we have a sequence which we believe to be
I.I.D. but we do not know the probabilities.

I If x has been observed nx times, then we can use the
(generalized Laplace rule, Dirichlet(α) prior) estimate
Pr(xn+1 = x |x1:n) = nx+α

n+Mα , where M is the size of the
alphabet and α > 0 is a smoothing constant.

I We use the special case of binary alphabet and α = 1/2
(Jeffrey’s=Beta(1/2) prior, ≈ minimax optimal).

I The probability of a 0 if we have previously seen a zeros and b
ones hence is a+1/2

a+b+1 and the probability of a 1 is b+1/2
a+b+1

Joint Prob. for I.I.D with Beta(1/2) Prior
I The joint prob. of sequence is product of individual

probabilities independent of order:
Pr(x1, .., xn) = Pr(xπ(1), ..., xπ(n)) ∀ permutations π.

I We denote the probability of a zeros and b ones with Pkt(a, b)

I Pkt(a + 1, b) = Pkt(a, b) a+1/2
a+b+1 , Pkt(0, 0) = 1.

I Pkt(a, b + 1) = Pkt(a, b) b+1/2
a+b+1 , Pr(x1:n) = Pkt(a, b).

a\b 0 1 2 3 4 ...
0 1 1/2 3/8 5/16 35/128 ...
1 1/2 1/8 1/16 5/128 7/256 ...
2 3/8 1/16 3/128 3/256 7/1024 ...
3 5/16 5/128 3/256 5/1024 5/2048 ...

I Example: Prkt(0011) = 1/2
1 ·

1+1/2
2 · 1/23 ·

1+1/2
4 =

Prkt(0101) = Prkt(1001) = ... = Prkt(2, 2) = 3
128

I Direct: Pr(x1:n) =
∏n

t=1 Pr(xt |x<t) = Pkt(a, b) =∫
θ
Prθ(x)Beta1/2(θ)dθ = 1

π

∫
θa−1/2(1−θ)b−1/2dθ = (a−1/2)!(b−1/2)!

(a+b)!π

Using Context

I If you hear a word that you believe is either ”cup” or ”cop”,
then you can use context to decide which one it was.

I If you are sure they said ”Wash the” just before, then it is
probably ”cup”.

I If they said ”Run from the”, it might be ”cop”.

I We will today look at models, which have a short term
memory dependence.

I In other words models that remember the last few
observations.

Markov Models
I Suppose that we have a sequence xt of elements from some

finite alphabet
I Suppose that Pr(xt | x1:t−1) = Pr(xt |xt−1) is always true,

then we have a Markov Model. At most the latest observation
matters

I If Pr(xt | x1:t−1) = Pr(xt |xt−k:t−1), then we have a k:th order
Markov Model. At most the k latest observations matter

I Given that we have chosen k and a (several) sequence(s) of
observations, then for every context (string of length k) we
can estimate probabilities for all possible next observations
using the KT-estimator.

I We define the probability of the event of having a 0 after s
given that we have, in this context, previously seen as zeros
and bs ones to be as+1/2

as+bs+1 and the probability of a one to be
bs+1/2
as+bs+1

I Formally: [x]|s := (xt : xt−k:t−1 = s) ≡ all those xt with
k-context xt−k:t−1 = s. as = #{0in[x]|s}, bs = #{1in[x]|s}.

Markov-KT Examples

I Compute Prk(x) = (12)k
∏

s∈{0,1}k Pkt(as , bs)
for Example x = 0010100111101010.

I k = 0 : a = b = 8.
Pr0(0010100111101010) = Pkt(8, 8) ≈ 402× 2−27

I k = 1 : a0 = 2, b0 = 5, a1 = 5, b1 = 3.
Pr1(0 010100111101010) = 1

2Pkt(2, 5)Pkt(5, 3) =
1
2 · 9

2048 · 45
32768 = 405 · 2−27

I k = 2 :

s 00 01 10 11
as 0 4 1 1
bs 2 1 3 2

[x]|s 11 00100 1011 110

Pr2(00 10100111101010) =
(12)2Pkt(0, 2)Pkt(4, 1)Pkt(1, 3)Pkt(1, 2)
= 1

4 · 38 · 7
256 · 5

16 · 1
16 = 105 · 64 · 2−27

Choosing k

I If we decide to model our sequence with a k :th order Markov
model we then need to pick k.

I How long dependencies exist?

I Which contexts have we seen enough to make good
predictions from? Shorter contexts appear more often.

I Solution 1: Use MDL to select k .

I Solution 2: We can take the Bayesian approach and have a
mixture over all orders.

I We can choose a prior (initial mixture weights) that favors
shorter orders (simpler models), e.g. P(k) = 1

k(k+1) .

Context Trees
I It can be natural to consider contexts of different lengths in a

model, depending on the situation.

I For example if we have heard ”from the” and want to decide
if the next word is ”cup” or ”cop” it is useful to also know if
it is ”drink from the” or ”run from the” while if we have the
context ”wash the” it might be enough.

I Having redundant parameters lead to a need for more data to
find good parameter estimates. With small amount of data
for a context, it is better to be shallow.

�
�
�

@
@
@

vf
vf vf

�
�
�

@
@
@

vf
vf vf

cup or cop

from the

drink run

wash the

Tree Source

Example: Tree T =̂ {00, 10, 1}

P(xt = 1|...xt−1 = 1) = θ1
P(xt = 1|...xt−2 = 0, xt−1 = 0) = θ00
P(xt = 1|...xt−2 = 1, xt−1 = 0) = θ10
.

¤£¡¢¤£¡¢¤£¡¢¤£¡¢
¤£¡¢

¤£¡¢´
´́

Q
QQ

Q
QQ1/2

3/10

5/8

3/8

3/6

3/6

1/4

3/4

0

1

1

1

0

Q
QQ

Q
QQ

Q
QQ´

´́
´
´́

Figure 1: Computation ofPe(01110) andQe(01110).

The estimated block probability of a sequence containing
a zeroes andb ones is

Pe(a, b) =
1/2 · . . . · (a− 1/2) · 1/2 · . . . · (b− 1/2)

1 · 2 · . . . · (a+ b)
.

(10)
Example: Tabulated below isPe(a, b) for several(a,b).

a b 1 2 3 4 5
0 1/2 3/8 5/16 35/128 63/256
1 1/8 1/16 5/128 7/256 21/1024
2 1/16 3/128 3/256 7/1024 9/2048
3 5/128 3/256 5/1024 5/2048 45/32768

What is the redundancy of this KT-estimated distribution?
Consider a sequencexT

1 with a zeroes andb ones, then from
(8) we may conclude that

L(xT
1) < log 1/Pe(a,b)+ 2. (11)

Therefore

ρ(xT
1) < log

1

Pe(a, b)
+ 2− log

1

(1− θ)aθb

= log
(1− θ)aθb

Pe(a,b)
+ 2

≤ 1

2
log(a+ b)+ 3, (12)

where we used lemma 1 of [7] to upper bound the
log Pa/Pe-term. This term, called theparameter redun-
dancy, is never larger than12 log(a + b) + 1. Hence the
individual redundancy is not larger than12 logT + 3 for all
xT

1 and allθ ∈ [0, 1].
Example: Let T = 1024, then the codeword length is not larger

than the ideal codeword length plus1
2 log 1024+ 3= 8 bit.

7 Tree sources

If a source is memoryless, each new source symbol is gen-
erated according to the same parameterθ . In a more com-
plex situation we can assume that the parameter for gener-
ating the next symbol depends on the most recent source
symbols. A tree source is a nice concept to describe such
sources. A tree source consists of a setS of suffixes that
together form a tree (see figure 2). To each suffix (leaf)s in
the tree there corresponds a parameterθs. The probability of
the next source symbol being one depends on the suffix inS
of the semi-infinite sequence of past source symbols.

We clearly want to distinguish between parameters and
model. The model is the mechanism that enables the param-
eters, i.e. the suffix set (or tree).

A context of a source symbolxt is a suffix of the semi-
infinite sequence· · · xt−2xt−1 that precedes it.

¤£¡¢
¤£¡¢

¤£¡¢b
b
b
bb
"

"
"

""

"
"

"
""

b
b
b
bb

¤£¡¢θ1 = 0.1

0

0
1

1

modelparameters

θ00 = 0.5

θ10 = 0.3

Figure 2: Tree source with parameters and model.

Example: Let S 1= {00,10,1} andθ00 = 0.5, θ10 = 0.3, and
θ1 = 0.1 then

Pa(Xt = 1| · · · , Xt−2 = 0, Xt−1 = 0) = 0.5,

Pa(Xt = 1| · · · , Xt−2 = 1, Xt−1 = 0) = 0.3,

Pa(Xt = 1| · · · , Xt−1 = 1) = 0.1. (13)

For each source symbolxt we start in the root of the tree (see figure
2) and follow a path determined by past symbolsxt−1, xt−2, · · ·.
We always end up in a leaf. There we find the parameter for gen-
eratingxt .

8 Known model, unknown parame-
ters

In this section we assume that we know the tree model of
the actual source but not its parameters. Can we find a good
coding distribution for this case?

In principle this problem is quite simple. Since we know
the model we can for each source symbol determine its suf-
fix. All symbols that correspond to the same suffixs ∈ S
form a memoryless subsequence whose statistic is deter-
mined by an unknown parameterθs. For this subsequence
we simply use the KT-estimator. The estimated probabil-
ity of the entire source sequence is the product of the KT-
estimates for the subsequences and hence by (8), we obtain

L(xT
1) < log 1/

∏

s∈S
Pe(as, bs)+ 2. (14)

Example: Let S = {00,10,1}. The estimated probability

· · ·

past
11

10

00

1

10

00

0110010011

Figure 3: A sequence, its subsequences, and the past.

of the sequence 0100110 given the past· · · 110 (see figure 3) is
PS

e (0100110| · · · 110) = 1
2 · 12 · 12 · 34 · 34 · 14 · 36 = 3

8 · 38 · 1
16 = 9

1024,

where 3
8 , 3

8 , and 1
16 are the probabilities of the subsequences 11,

00, and 010, corresponding to the leaves 00, 10, and 1 respectively.
Again, what is the redundancy of this estimated distri-

bution? Consider a sequencexT
1 with subsequence corre-

sponding to leafs havingas zeroes andbs ones. Then, using

3

Contexts T in sequence 01001100 with past ...110:

¤£¡¢¤£¡¢¤£¡¢¤£¡¢
¤£¡¢

¤£¡¢´
´́

Q
QQ

Q
QQ1/2

3/10

5/8

3/8

3/6

3/6

1/4

3/4

0

1

1

1

0

Q
QQ

Q
QQ

Q
QQ´

´́
´

´́

Figure 1: Computation ofPe(01110) andQe(01110).

The estimated block probability of a sequence containing
a zeroes andb ones is

Pe(a, b) =
1/2 · . . . · (a− 1/2) · 1/2 · . . . · (b− 1/2)

1 · 2 · . . . · (a+ b)
.

(10)
Example: Tabulated below isPe(a, b) for several(a,b).

a b 1 2 3 4 5
0 1/2 3/8 5/16 35/128 63/256
1 1/8 1/16 5/128 7/256 21/1024
2 1/16 3/128 3/256 7/1024 9/2048
3 5/128 3/256 5/1024 5/2048 45/32768

What is the redundancy of this KT-estimated distribution?
Consider a sequencexT

1 with a zeroes andb ones, then from
(8) we may conclude that

L(xT
1) < log 1/Pe(a,b)+ 2. (11)

Therefore

ρ(xT
1) < log

1

Pe(a, b)
+ 2− log

1

(1− θ)aθb

= log
(1− θ)aθb

Pe(a,b)
+ 2

≤ 1

2
log(a+ b)+ 3, (12)

where we used lemma 1 of [7] to upper bound the
log Pa/Pe-term. This term, called theparameter redun-
dancy, is never larger than12 log(a + b) + 1. Hence the
individual redundancy is not larger than12 logT + 3 for all
xT

1 and allθ ∈ [0, 1].
Example: Let T = 1024, then the codeword length is not larger

than the ideal codeword length plus1
2 log 1024+ 3= 8 bit.

7 Tree sources

If a source is memoryless, each new source symbol is gen-
erated according to the same parameterθ . In a more com-
plex situation we can assume that the parameter for gener-
ating the next symbol depends on the most recent source
symbols. A tree source is a nice concept to describe such
sources. A tree source consists of a setS of suffixes that
together form a tree (see figure 2). To each suffix (leaf)s in
the tree there corresponds a parameterθs. The probability of
the next source symbol being one depends on the suffix inS
of the semi-infinite sequence of past source symbols.

We clearly want to distinguish between parameters and
model. The model is the mechanism that enables the param-
eters, i.e. the suffix set (or tree).

A context of a source symbolxt is a suffix of the semi-
infinite sequence· · · xt−2xt−1 that precedes it.

¤£¡¢
¤£¡¢

¤£¡¢b
b

b
bb
"

"
"

""

"
"

"
""

b
b

b
bb

¤£¡¢θ1 = 0.1

0

0
1

1

modelparameters

θ00 = 0.5

θ10 = 0.3

Figure 2: Tree source with parameters and model.

Example: Let S 1= {00,10,1} andθ00 = 0.5, θ10 = 0.3, and
θ1 = 0.1 then

Pa(Xt = 1| · · · , Xt−2 = 0, Xt−1 = 0) = 0.5,

Pa(Xt = 1| · · · , Xt−2 = 1, Xt−1 = 0) = 0.3,

Pa(Xt = 1| · · · , Xt−1 = 1) = 0.1. (13)

For each source symbolxt we start in the root of the tree (see figure
2) and follow a path determined by past symbolsxt−1, xt−2, · · ·.
We always end up in a leaf. There we find the parameter for gen-
eratingxt .

8 Known model, unknown parame-
ters

In this section we assume that we know the tree model of
the actual source but not its parameters. Can we find a good
coding distribution for this case?

In principle this problem is quite simple. Since we know
the model we can for each source symbol determine its suf-
fix. All symbols that correspond to the same suffixs ∈ S
form a memoryless subsequence whose statistic is deter-
mined by an unknown parameterθs. For this subsequence
we simply use the KT-estimator. The estimated probabil-
ity of the entire source sequence is the product of the KT-
estimates for the subsequences and hence by (8), we obtain

L(xT
1) < log 1/

∏

s∈S
Pe(as, bs)+ 2. (14)

Example: Let S = {00,10,1}. The estimated probability

· · ·

past
11

10

00

1

10

00

0110010011

Figure 3: A sequence, its subsequences, and the past.

of the sequence 0100110 given the past· · · 110 (see figure 3) is
PS

e (0100110| · · · 110) = 1
2 · 12 · 12 · 34 · 34 · 14 · 36 = 3

8 · 38 · 1
16 = 9

1024,

where 3
8 , 3

8 , and 1
16 are the probabilities of the subsequences 11,

00, and 010, corresponding to the leaves 00, 10, and 1 respectively.
Again, what is the redundancy of this estimated distri-

bution? Consider a sequencexT
1 with subsequence corre-

sponding to leafs havingas zeroes andbs ones. Then, using

3

PT (0100110|...110) = 3
8 · 38 · 1

16 , where 3
8 , 3

8 , 1
16 are the Pkt

probabilities of subsequences 11,00,010 corresponding to
leaves/contexts 00,10,1, respectively.

Context Tree Weighting (CTW)
I Given a tree we have defined contexts such that we are always

exactly in one context. Given data we estimate probabilities
for the next observation given the context.

I We do not know the most appropriate tree. So we have to
estimate it or Bayes-average over all trees.

I The number of trees (and weights) increases double
exponentially with the depth.

I The CTW algorithm resolves this problem.

I It stores two numbers (for the binary case) per node in the full
tree of the given maximal depth and calculates a third
through a recursive formula.

I The stored numbers are just counts and are easy to update.

Context Tree Weighting
I To define a probability of a finite sequence, CTW uses a

recursive formula that starts at the leafs of the tree and moves
towards the root where the probability of the whole sequence
will appear.

I The next few slides will explain it with an example.

I Every node in the full tree corresponds to a context s, e.g.
010.

I We let as be the number of times that a 0 has followed s and
bs is the number of times 1 has followed.

I For every context that corresponds to a node in the full tree
we will define a number Ps . Proot ≡ Pε ≡ PCTW will be the
probability for the whole sequence.

I For a leaf we let Ps = Pkt(as , bs).

I Not leaf: Ps = 1
2(Pkt(as , bs) + P0sP1s)

Context Tree Splits – Example
The context tree splits up the source sequence.

(1, 2, ..., 7) are positions in the sequence.

(14) we obtain

ρ(xT
1) <

∑

s∈S
log

(1− θs)asθ
bs
s

Pe(as, bs)
+ 2,

≤
∑

s∈S|as+bs>0

(
1

2
log(as+ bs)+ 1

)
+ 2

≤ |S|γ (T

|S|)+ 2, (15)

where we again used lemma 1 in [7] for bounding the pa-
rameter redundancies for all the subsequences. Convexity is
used to obtain a bound on the sum of the logarithms in terms
of theγ function which is defined as

γ (z)
1=
{

z for 0≤ z< 1
1
2 logz+ 1 for z≥ 1.

(16)

Note that (15) holds for allxT
1 and allθs ∈ [0, 1] for s ∈ S.

Example: Let S = {00,10,1} and T = 1024, then the
codeword is never longer than the ideal codeword length plus
3
2 log 1024

3 + 3+ 2= 17.623 bit.

9 Weighting alternatives

Suppose thatP1
c (x

T
1) is a good coding distribution for

source 1 andP2
c (x

T
1) for source 2. Then theweighteddistri-

bution

Pwc (x
T
1)

1= P1
c (x

T
1)+ P2

c (x
T
1)

2
(17)

is a good coding distribution for both source 1 and 2.
Proof: Let i ∈ {1,2}, then

L(xT
1) < log

1

Pwc (x
T
1)
+ 2 (18)

≤ log
2

Pi
c(x

T
1)
+ 2= log

1

Pi
c(x

T
1)
+ 3. (19)

2

So the bound on the codeword length increases (see (8)) by
1 bit. In practice the increase is far less, especially ifP1

c (x
T
1)

andP2
c (x

T
1) are approximately equal.

Note that, if after observingxT
1 we selectthe i that mini-

mizesPi
c(x

T
1), we loose exactly 1 bit. This bit is now needed

to specify the source index.
Example: Suppose sources 1 and 2 are memoryless with pa-

rametersθ1 = 0.8 and θ2 = 0.4. Then Pw(X1 = 1) =
1/2(0.8 + 0.4) = 0.6, Pw(X1 = 1, X2 = 1) = 1/2(0.8 ·
0.8 + 0.4 · 0.4) = 0.40, and Pw(X1 = 1, X2 = 1, X3 =
1) = 1/2(0.8 · 0.8 · 0.8 + 0.4 · 0.4 · 0.4) = 0.288. Hence
Pw(X3 = 1|X1 = 1, X2 = 1) = 0.288/0.4 = 0.72 which is
close toθ1. Similarly, Pw(X3 = 1|X1 = 0, X2 = 0) = 0.44 is
close toθ2.

10 Unknown model

10.1 Context tree

If the actual model of our tree source is not known, we can
use acontext treeto compute an appropriate coding distri-
bution. A context tree (see figure 4) consists of nodes that

correspond to contextss up to a certain depthD. The rootλ
of the context tree corresponds to the empty context. Each
nodes in the context tree is associated with the subsequence
of source symbols that occurred after contexts.

Example: Suppose that the source generated the sequence

¤£¡¢
¤£¡¢¤£¡¢

¤£¡¢
¤£¡¢
¤£¡¢

¤£¡¢ ¤£¡¢
¤£¡¢

¤£¡¢
¤£¡¢¤£¡¢
¤£¡¢ ¤£¡¢

¤£¡¢

00 011· · ·

PPPPP³³³³³

PPPPP³³³³³

PPPPP³³³³³

PPPPP³³³³³

HHHHH©©©©©

HHHHH©©©©©

@
@

@
@
@
¡

¡
¡

¡
¡

-

7

-

3,6

1

4

2,5

-

7

3,6

1,4

2,5

1,2,3,4,5,6,7

3,6,7

1,2,4,5

1

0

past source sequence

7654321

111 00

Figure 4: The context tree splits up the source sequence.

0100110 while the past symbols were· · · 110. Then the source
symbols are partitioned by the context tree, see figure 4.

10.2 CTW algorithm

We are now ready to formulate the context-tree weighting
algorithm.

We start by making the practical assumption that in nodes
of the context tree we only storeas andbs, i.e. the number of
zeroes and ones in the subsequence associated with context
s.

First we consider a leafs of the context tree, i.e. a node
(context) at depthD. Since onlyas andbs are available in
this node, we can assume nothing more than that the sub-
sequence associated with nodes is memoryless and that
Pe(as, bs) is a good weighted probability for it, i.e.

Ps
w
1= Pe(as, bs) if depth(s) = D. (20)

These weighted probabilities are needed to start the recur-
sion described in the next paragraph.¤£¡¢

¤£¡¢
¤£¡¢

0s

s

1

0

HHHHHH©©©©©©

1s

Figure 5: Parent nodes and its children 0s and 1s.

For an internal nodes in the context tree the following
argument holds. Suppose that we have good weighted prob-
abilities P0s

w and P1s
w for the subsequences associated with

nodes 0s and 1s, the children (see figure 5) ofs. Then for
the subsequence associated with contexts there are two pos-
sible alternatives. It could be memoryless, in which case

4

Weighted Context Tree – Example
Weighted context tree (Pw = Ps)

for source sequence 0100110
with past ...110.

Pe(as, bs) would be good coding probability for it. Or, it
could not be memoryless, and then splitting up the sequence
in the two subsequences that are associated with 0s and 1s
would be necessary, and the product of the weighted proba-
bilities P0s

w andP1s
w could serve as a good coding probabil-

ity. Following the philosophy in section 9 it is completely
clear that we should just weight these two alternatives:

Ps
w
1= Pe(as,bs)+ P0s

w · P1s
w

2
if depth(s) < D. (21)

In the rootλ of the context tree we will now find weighted
probabilities which can be used as coding probabilities for
arithmetic encoding and decoding.

Example: Again suppose that the source generated the se-

¤£¡¢

¤£¡¢
¤£¡¢ ¤£¡¢

¤£¡¢
¤£¡¢

¤£¡¢
¤£¡¢

¤£¡¢
¤£¡¢

¤£¡¢
¤£¡¢

¤£¡¢
¤£¡¢¤£¡¢

Pw = 1/16

a = 2,b = 1

Pw = 3/8

Pw = 5/16

Pw = 1/8

Pw = 1/2

a = 1

a = b = 1

a = 2

b = 2
Pw = 3/8

Pw = 1/8

Pw = 1/2

Pw = 1/2

b = 2

a = b = 1

a = 1

a = 1

a = 1

@
@

@
@
@
¡

¡
¡

¡
¡

HHHHH©©©©©

HHHHH©©©©©

PPPPP³³³³³

PPPPP³³³³³

PPPPP³³³³³

PPPPP³³³³³

0

1

Pw = 1/2

Pw = 7/2048
a = 4,b = 3

Pw = 9/128

a = b = 2

Figure 6: Weighted context tree for source sequence
0100110 with past· · ·110.

quence 0100110 while the past symbols were· · · 110. This results
in the countsas andbs, and weighted probabilitiesPs

w, for s with
depth≤ D, which are depicted in the context tree in figure 6.

10.3 Analysis

We start this subsection by taking a look at an example.
Example: Suppose thatS = {00,10,1} is the model of the

actual source. The depthD of our context tree is 3. Then for the
leaves of this model we can lower bound the weighted probabilities
Ps
w by thePe(as,bs)-terms, i.e.

P00
w ≥ (1/2)Pe(a00,b00),

P10
w ≥ (1/2)Pe(a10,b10),

P1
w ≥ (1/2)Pe(a1, b1), (22)

while for the internal nodes we use theP01
w · P1s

w -term as lower
bound, hence

P0
w ≥ (1/2)P00

w · P10
w

≥ (1/8)Pe(a00,b00)Pe(a10,b10) and

Pλw ≥ (1/2)P0
w · P1

w

≥ (1/32)Pe(a00,b00)Pe(a10,b10)Pe(a1,b1). (23)

From the example we may conclude that we loose a factor
1/2 in all |S| leaves and|S| − 1 internal nodes of the actual

model, hence

Pλw ≥ 21−2|S| ·
∏

s∈S
Pe(as, bs). (24)

Using (8) we find that

L(xT
1) < 2|S| − 1+ log 1/

∏

s∈S
Pe(as,bs)+ 2, (25)

which is 2|S| − 1 bits more than the bound in (14), where
the model was known. Therefore also the bound on the in-
dividual redundancy is 2|S|−1 bits larger than the bound in
(15), i.e.:

ρ(xT
1) < 2|S| − 1+ |S|γ (T

|S|)+ 2. (26)

The increase of 2|S| − 1 bits can be considered as the cost
of not knowing the model, i.e. themodel redundancy. Note
that (26) holds for allxT

1 and allθs ∈ [0, 1] for s ∈ S for all
modelsS that fit in our context tree.

10.4 Optimality

The expected redundancy behavior of the CTW method
achieves the asymptotic lower bound determined by Rissa-
nen in [6]. This lower bound states that roughly(1/2) logT
bits per parameter is the minimum possible expected redun-
dancy forT →∞.

10.5 MDL behavior

So far we have only compared the CTW codeword length re-
sulting from our source sequencexT

1 to the ideal codeword
length relative to the actual source. We have shown that this
codeword length is upper bounded by the ideal codeword
length plus an upper bound for the individual redundancy in
terms of the sequence lengthT and the number of parame-
ters|S| of the actual source.

If however this xT
1 was generated by some other tree

source the same bound on the codeword length applies but
now with the ideal codelength and redundancy as deter-
mined by the other source. Hence upper bounds like this,
for all tree sources, hold for the CTW codeword length
and the CTW algorithm minimizes, over all tree sources,
the sum of the corresponding ideal codeword length and re-
dundancy. This can be considered as minimum description
length (MDL) behavior, if we realize that the redundancy is
needed to describe the source model and parameters.

10.6 Complexity

In section 5 we have seen that we can use arithmetic cod-
ing if, afterx1x2 · · · xt−1 is processed andPc(x1x2 · · · xt−1)

is known, it is easy to computePc(x1x2 · · · xt−10) and
Pc(x1x2 · · · xt−11). Does this hold for the CTW algorithm?
Fortunately it does! See the example below.

Example: Suppose that the source has already generated the se-
quence 0100110 while the past symbols were· · · 110. This resulted
in the weighted context tree in figure 6. In the root of the con-
text tree we found the coding probabilityPc(0100110| · · · 110) =
Pλw = 7/2048. For processing the next source symbol we must

5

Weighted Context Tree Update–Example

Updated path of weighted context tree
for 0100110 followed by 0

with past ...110.

¤£¡¢
¤£¡¢
¤£¡¢

¤£¡¢
¤£¡¢

¤£¡¢

¤£¡¢
1

0

a = 2
Pw = 3/8 a = 3

Pw = 1/4 a = 3,b = 2

Pw = 27/512

a = 5, b = 3

a = 2,b = 1
Pw = 1/16

b = 2
Pw = 3/8

PPPPPP³³³³³³
HHHHHH©©©©©©

@
@

@
@

@@
¡

¡
¡

¡
¡¡

Pw = 153
65536

a = 1
Pw = 1/2

Figure 7: Updated path of the weighted context tree for
0100110 followed by a 0 with past· · ·110.

compute the coding probabilityPc(01001100| · · · 110). This done
by (i) incrementingas, (ii) updatingPe(as,bs), and (iii) updating
Ps
w, for all contextss ∈ {110, 10,0, λ}, i.e. along the path in the

context tree determined by the symbols preceding the next source
symbol. The results of these computations are shown in figure 7.
Doing so we findPc(01001100| · · · 110) = Pλw in the root of the
context tree. In a similar wayPc(01001101| · · · 110) can be deter-
mined.

We conclude by stating that the number of operations nec-
essary for processing allT source symbols is linear inT .
Moreover, since we only need to store nodes in the context
tree that actually did occur, and since for each symbol we
can visit not more thanD+1 nodes, the amount of memory
needed to compressxT

1 grows not faster than linear inT .

11 Text compression

Application of the binary CTW method for compression of
ASCII sequences is possible afterdecomposingthe ASCII
symbols into 7 binary digits. Moreover we use 7 context
trees. Treej , where j = 1,7, is used for coding all binary
digits occurring at positionj in an ASCII. The (longest)
context of digit j are the digitsj − 1, · · · , 1 of the current
ASCII preceded by the 7 digits in the most recent ASCII,
preceded by the 7 digits in the second most recent ASCII,
up to theM ’th most recent ASCII. Digit 1 in an ASCII is
the most significant one, and is encoded first, etc. By de-
composing we allow different tree models for all 7 digits.
This may reduce the total number of parameters and thus
the redundancy.

The next problem that has to be solved is that the pa-
rameter redundancy depends on the number of parameters,
however, after decomposition many of these parameters are
0 or 1, possibly because of non-occurring ASCII symbols.
Therefore we use, instead of the KT-estimator, the“zero-
redundancy” estimator, which is defined as

Pz
e (a, b)

1= 1

2
Pe(a, b)+

1

4
ϑ(a = 0)+ 1

4
ϑ(b = 0), (27)

where Pe(a, b) is the KT-estimator andϑ(true)
1= 1 and

ϑ(false)
1= 0. This leads to a redundancy of not more than

2 bits for deterministic subsequences, i.e. sequences with
a = 0 or b = 0, and(1/2) logτ + 2 for non-deterministic
ones having lengthτ , whereτ = a+ b.

Our final problem deals with model redundancy. Note
that context treej , for some j = 1, 7, “fits” a model to the
data (digits occurring at positionj) which is a binary tree.
Such a tree can have leaves also at positions inside an ASCII
symbol. This seems not very useful. By allowing leaves
only at ASCII borders we decrease the model redundancy.
This is accomplished byweighting only at ASCII borders,
i.e. taking Ps

w = P0s
w · P1s

w in nodes inside an ASCII and
Ps
w = (Pz

e (as, bs)+P0s
w ·P1s

w)/2 in nodes on ASCII borders.
ASCII CTW for M = 12 achieves 1.825 bit/sym on

the file bib , 2.180 bit/sym onbook1 , 1.875 bit/sym on
book2 , 2.346 bit/sym onnews, 2.290 bit/sym onpaper1 ,
2.232 bit/sym onpaper2 , and 2.336 bit/sym onprogc of
the Calgary corpus.

12 Conclusion

We believe that context-tree weighting simplified the theory
and practice of statistical data compression methods. It is
important to distinguish between model and parameters and
to realize that to both of them there corresponds a redun-
dancy term. Good algorithms take care of both redundan-
cies. The model redundancy of CTW is optimal in the rather
weak sense that we can decrease the redundancy for some
models only by increasing the redundancy of other models.
This is a consequence of weighting. There are other weight-
ings that result in other model redundancy profiles, however
CTW has the nice property that the model redundancy is (al-
most) proportional to the number of parameters.

The CTW method is generally considered to be rather
complex. A state-of-the-art implementation requires 32
MByte of RAM. Today this may seem a lot, however for
sure, in ten years from now this is “peanuts.” A challenging
problem is to find methods that improve the compression
rate of e.g. CTW by making use of the huge amounts of
memory that will be available in the future. Of particular
interest are of course methods that allow parallel implemen-
tation. We hope that the mini-course presented here will be
a starting point for people interested in achieving this goal.

Acknowledgements

Meir Feder, assoc. editor for source coding, nominated [7]
for the IT Best Paper Award. KPN Research financed CTW
implementation research. Paul Volf joined us in our text
compression efforts. Harry Creemers provided us with com-
puting facilities. Yuri’s visits were supported by the Univer-
siteitsfonds Eindhoven and INTAS 94-469. Thanks!

References
[1] T.M. Cover and J.A. Thomas,Elements of Information The-

ory. New York : John Wiley, 1991.

[2] R.E. Krichevsky and V.K. Trofimov, “The Performance of
Universal Encoding,”IEEE Trans. Inform. Theory,vol. IT-
27, pp. 199-207, March 1981.

[3] R. Pasco,Source Coding Algorithms for Fast Data Compres-
sion,Ph.D. thesis, Stanford University, 1976.

[4] J. Rissanen, “Generalized Kraft Inequality and Arithmetic
Coding,” IBM J. Res. Devel., vol. 20, p. 198-203, 1976.

6

Coding Context Trees

I We can rewrite the probability PCTW as a Bayesian mixture
over trees with a prior based on a coding scheme for trees:

I Let T denote a tree and CL(T) the code length for T
I Let tree prior P(T) = 2−CL(T). Then

PCTW =
∑
T

2−CL(T)
∏
s∈T

Pkt(as , bs)

I The coding scheme is based on the following recursion:

1. Code(tree) = Code(root-node)
2. Code(Internal-node) = 1 Code(left-child) Code(right-child)
3. Code(leaf-node) = 0

I 11000 is the code of the tree on the right,
so the code length is 5.

�
�
�

@
@
@

vf
vf vf

�
�
�

@
@
@

vf
vf vf

Coding Redundancy
I Arithmetic Coding w.r.t. PCTW gives code for x of length

CLCTW (x) = log 1/PCTW (x).

I A coding scheme’s redundancy is CL(x1:T)− log 1/Pr(x1:T)
where Pr is the true source.

I We are interested in the expected redundancy

I The expected redundancy, unlike the actual redundancy, is at
least 0. The truth has the lowest (i.e. 0) expected redundancy.

I The Rissanen lower bound says that the expected redundancy
is at least 1

2 logT per parameter.

I If the sequence is generated from a (stationary) tree (Markov)
source T with S leafs, then for large enough T the expected
redundancy of CTW is less than CL(T) + S

2 logT .

I CTW achieves the Rissanen lower. bound

I This is essentially a corollary of the general
(continuous+discrete) “entropy bounds” from UAI book
(Hutter) / previous lectures.

Derivation of Coding Redundancy
The bound can be derived directly or follows from the generic
bounds for Bayesian Sequence Prediction [Hut05]:

I Inst. Rel. Entropy: dt(x<t) =
∑

xt∈X µ(xt |x<t) log µ(xt |x<t)
ξ(xt |x<t)

I Total Relative Entropy: DT =
∑T

t=1 IE [dt] is the expected
coding redundancy from using ξ instead of (the true) µ, i.e.
DT = IEµ[CLξ(x1:T)− CLµ(x1:T)]

I Countable family of models: DT ≤ logw−1µ
I Continuous family of models:

I DT ≤ logw−1µ + S
2 log T

2π + 1
2 log det jT + O(1)

I CTW is a continuous mixture with prior wµ = 2−CL(T)g(θ)
where T is the tree, θ represents the probability parameters
and g(θ) is the Beta(1/2, 1/2) prior density on the
parameters.

I 1
2 log det jT = O(1) for tree sources so

DT ≤ CL(T) + S
2 logT + O(1)

Conclusion / Properties

I CTW is a simple algorithm for mixing contexts of different
length to make predictions.

I The computational complexity for calculating the probability
of a sequence is linear in the sequence length.

I CTW has good practical performance for many purposes, e.g.
text compression.

I Given that the truth is a tree source there are bounds for how
much worse CTW is than using the (unknown) true model.

I When the true model is not known there are limits (a lower
bound) to how close we can be to the performance of the true
model.

I CTW asymptotically achieves this theoretically optimal
performance.

Extensions and Augmentations of CTW

I Context Tree Switching switches between arbitrary
distributions from a finite set. This enlarges the base class by
allowing switching between different distributions. [VNHB12]

I Active/conditional version for MC-AIXI-CTW. [VNH+11]

I Non-binary CTW or one CTW per binarization bit.

Improving the underlying KT Estimator
I Adaptive KT discounts old observations to deal with

non-stationary smoothly changing environments. [OHSS12]

I Window KT uses limited past window to deal with piecewise
i.i.d. environments. [SSH12]

I Replace KT by better iid estimators with e.g. finite
redundancy for unused symbols (e.g. KT0 and SAD). [Hut13]

Literature

(WST95) Willems, Shtarkov, and Tjalkens (1995) The Context-Tree
Weighting Method: Basic Properties, 41. IEEE Transactions
on Information Theory.

(WST97) Willems, F.M.J., Shtarkov, Y.M. and Tjalkens, T.J. (1997).
Reflections on the prize paper ’The context-tree weighting
method: Basic properties’. Newsletters of the IEEE.

(VNH+11) J. Veness, K. S. Ng, M. Hutter, W. Uther, and D. Silver. A
Monte Carlo AIXI approximation, Journal of Artificial
Intelligence Research, 40:95–142, 2011.

(Hut05) M. Hutter. Universal Artificial Intelligence: Sequential
Decisions based on Algorithmic Probability. Springer, Berlin,
2005.

