Context Tree Weighting

Peter Sunehag and Marcus Hutter

Motivation

» Context Tree Weighting (CTW) is a Bayesian Mixture of the
huge class of variable-order Markov processes.

» It is principled and computationally efficient.

> It leads to excellent predictions and compression
in practice and in theory.

» It can (and will) be used to approximate Solomonoff's
universal prior £y(x).

Prediction of |.1.D Sequences

» Suppose that we have a sequence which we believe to be
[.I.D. but we do not know the probabilities.

» If x has been observed n, times, then we can use the

(generalized Laplace rule, Dirichlet(«) prior) estimate
Pr(xp+1 = x|x1:n) = n”ﬁ\r/,";, where M is the size of the
alphabet and a > 0 is a smoothing constant.

» We use the special case of binary alphabet and @ = 1/2
(Jeffrey's=Beta(1/2) prior, &~ minimax optimal).

> The probability of a 0 if we have previously seen a zeros and b

ones hence is ;i;fl and the probability of a 1 is fj;ﬁ

Joint Prob. for 1.1.D with Beta(1/2) Prior

>

The joint prob. of sequence is product of individual
probabilities independent of order:
Pr(x1, .., xn) = Pr(Xz(1), -, Xz(n)) ¥ permutations .

We denote the probability of a zeros and b ones with Py (a, b)
Pie(a+1,b) = P(a, b) 22 Pk(0,0) = 1.

a+b+1
Pie(a,b+1) = Pe(a, b) 22 Pr(xi) = Pre(a, b).
a\b| 0 1 2 3 4

0 | 1 1/2 3/8 5/16 35/128
1 | 1/2 1/8 1/16 5/128 7/256
2 | 3/8 1/16 3/128 3/256 7/1024
3 | 5/16 5/128 3/256 5/1024 5/2048

Example: Pri,(0011) = 12 11/2 12 1/2

2 3
Prit(0101) = Pr(1001) = ... = Prt(2,2) = 135
Direct: Pr(xi.n) = [[1_; Pr(xe|x<¢) = Pie(a, b) =

: C na _ a—1/2)!(b—1/2)!
JoPro(x)Betay 5(0)d0 = L[62-1/2(1-0)b1/2dp = (=2 20-2/2)

Using Context

» If you hear a word that you believe is either "cup” or "cop”,
then you can use context to decide which one it was.

» If you are sure they said "Wash the” just before, then it is
probably "cup”.

» If they said "Run from the”, it might be "cop”.

> We will today look at models, which have a short term
memory dependence.

» In other words models that remember the last few
observations.

Markov Models

» Suppose that we have a sequence x; of elements from some
finite alphabet

» Suppose that Pr(x; | xi.t—1) = Pr(x¢|x¢—1) is always true,
then we have a Markov Model. At most the latest observation
matters

> If Pr(x; | x1.4-1) = Pr(x¢|x¢—x:t—1), then we have a k:th order
Markov Model. At most the k latest observations matter

» Given that we have chosen k and a (several) sequence(s) of
observations, then for every context (string of length k) we
can estimate probabilities for all possible next observations
using the KT-estimator.

> We define the probability of the event of having a 0 after s
given that we have, in this context, previously seen a5 zeros

and bs ones to be aifbls/fl and the probability of a one to be
bs+1/2
as+bs+1

» Formally: [x]js := (Xt : Xt—k:t—1 = 5) = all those x; with
k-context x;_k.t—1 = s. as = #{0in[x]|s}, bs = #{lin[x]|s}.

Markov-KT Examples

» Compute Pry(x) = (%)k HS€{071}I< Pyt(as, bs)
for Example x = 0010100111101010.

» k=0:a=b=28.
Pro(0010100111101010) = Py(8,8) ~ 402 x 2=%7

» k=1: 80—2 b0—5 21—5 b1—3

Pri(0 010100111101010) IPkt(2,5)Pie(5,3) =
3 5o o = 405277

2 2048 32768

s |00 o1 10 11

_n. A 0 4 1 1
k=20 32
[x]s | 11 00100 1011 110

Pry(00 10100111101010) =
(%)2/3,“(0 2)Pkt(4 1)Pie(1,3)Pre(1,2)

1 27
=45 2% 15 15 = 105-64-27

Choosing k

» If we decide to model our sequence with a k:th order Markov
model we then need to pick k.

» How long dependencies exist?

» Which contexts have we seen enough to make good
predictions from? Shorter contexts appear more often.

» Solution 1: Use MDL to select k.

» Solution 2: We can take the Bayesian approach and have a
mixture over all orders.

» We can choose a prior (initial mixture weights) that favors

shorter orders (simpler models), e.g. P(k) = k(k1+1).

Context Trees

> |t can be natural to consider contexts of different lengths in a
model, depending on the situation.

» For example if we have heard "from the” and want to decide
if the next word is "cup” or "cop” it is useful to also know if
it is "drink from the” or "run from the” while if we have the
context "wash the” it might be enough.

» Having redundant parameters lead to a need for more data to
find good parameter estimates. With small amount of data
for a context, it is better to be shallow.

cup or cop

from the wash the

drink

Tree Source

Example: Tree 7 = {00,10,1} #0=03

P(xe =1|..x-1=1) =0,
P(Xt =]_‘...Xt_2 = O,Xt—l = 0) = 000
P(xe =1|..x¢—2 = 1,x-1 = 0) = 619

600 = 0.5

parameters model

Contexts T in sequence 01001100 with past ...110:
11 0|0 1 O O 1 1 O

00 00
past 10 10
1 1—1—

P7(0100110]...110) = 2 - 2 - & where 2, 2, L are the Py,

probabilities of subsequences 11,00,010 corresponding to
leaves/contexts 00,10,1, respectively.

Context Tree Weighting (CTW)

>

Given a tree we have defined contexts such that we are always
exactly in one context. Given data we estimate probabilities
for the next observation given the context.

We do not know the most appropriate tree. So we have to
estimate it or Bayes-average over all trees.

The number of trees (and weights) increases double
exponentially with the depth.

The CTW algorithm resolves this problem.
It stores two numbers (for the binary case) per node in the full
tree of the given maximal depth and calculates a third

through a recursive formula.

The stored numbers are just counts and are easy to update.

Context Tree Weighting

>

To define a probability of a finite sequence, CTW uses a
recursive formula that starts at the leafs of the tree and moves
towards the root where the probability of the whole sequence
will appear.

The next few slides will explain it with an example.

Every node in the full tree corresponds to a context s, e.g.
010.

We let a5 be the number of times that a 0 has followed s and
bs is the number of times 1 has followed.

For every context that corresponds to a node in the full tree
we will define a number Ps. Proot = Pc = Pcrw will be the
probability for the whole sequence.

For a leaf we let P = Py:(as, bs).

Not leaf: Ps = 1(Py:(as, bs) + PosPis)

Context Tree Splits — Example

The context tree splits up the source sequence.
(1,2,...,7) are positions in the sequence.

7

7 3,6,7

pa-
lty is
'rms

3,6
1,2,3,4,5,6,7
1

1234567
1100100110

past source sequence

Weighted Context Tree — Example

Weighted context tree (P,, = Ps)
for source sequence 0100110
—2b=1 with past ...110.

Py =1/2
a=b=1
Pw=1/8 a=4,b=3
a=1 Py = 7/2048
Py =1/2
a=1
Py =1/2
b=2
Py =3/8 Py = 9/128

Weighted Context Tree Update—Example

Updated path of weighted context tree
for 0100110 followed by 0

a=2b=1 with past ...110.
Py = 1/16

a=2
w = 3/8

a=1
Py = 1/2

Coding Context Trees

>

We can rewrite the probability Pc1y as a Bayesian mixture
over trees with a prior based on a coding scheme for trees:

Let 7 denote a tree and CL(7) the code length for T
Let tree prior P(7) = 2= (7). Then

Pcrw = 22 CL(T) H Pi:(as, b

seT

The coding scheme is based on the following recursion:

1. Code(tree) = Code(root-node)
2. Code(Internal-node) = 1 Code(left-child) Code(right-child)
3. Code(leaf-node) = 0

11000 is the code of the tree on the right,
so the code length is 5.

Coding Redundancy

>

Arithmetic Coding w.r.t. Pctw gives code for x of length
CLCTw(X) = Iog 1/PCTW(X)-

A coding scheme's redundancy is CL(xy.7) — log 1/Pr(xq.7)
where Pr is the true source.

We are interested in the expected redundancy

The expected redundancy, unlike the actual redundancy, is at
least 0. The truth has the lowest (i.e. 0) expected redundancy.
The Rissanen lower bound says that the expected redundancy
is at least % log T per parameter.

If the sequence is generated from a (stationary) tree (Markov)
source 7 with S leafs, then for large enough T the expected
redundancy of CTW is less than CL(7)+ 3 log T.

CTW achieves the Rissanen lower. bound

This is essentially a corollary of the general
(continuous-+discrete) “entropy bounds” from UAI book
(Hutter) / previous lectures.

Derivation of Coding Redundancy

The bound can be derived directly or follows from the generic
bounds for Bayesian Sequence Prediction [Hut05]:

(xtlx<t)

> Inst. Rel. Entropy: di(x<t) = >, cx i(xe|x<t) log g(Xt‘XQ)

» Total Relative Entropy: D7 = >/ | E[d,] is the expected
coding redundancy from using £ instead of (the true) p, i.e.

Dt = E,[CLe(x1:7) — CLu(xa:7)]

» Countable family of models: D7 < logw,,*

» Continuous family of models:

» Dt <log W/jl + % log % + % log det jT 4+ O(1)

» CTW is a continuous mixture with prior w,, = 2~ H7)g(9)
where T is the tree, # represents the probability parameters
and g(#) is the Beta(1/2,1/2) prior density on the
parameters.

> Llogdet j; = O(1) for tree sources so
Dy < CL(T) + 3 log T + O(1)

Conclusion / Properties

>

CTW is a simple algorithm for mixing contexts of different
length to make predictions.

The computational complexity for calculating the probability
of a sequence is linear in the sequence length.

CTW has good practical performance for many purposes, e.g.
text compression.

Given that the truth is a tree source there are bounds for how
much worse CTW is than using the (unknown) true model.

When the true model is not known there are limits (a lower
bound) to how close we can be to the performance of the true
model.

CTW asymptotically achieves this theoretically optimal
performance.

Extensions and Augmentations of CTW

» Context Tree Switching switches between arbitrary
distributions from a finite set. This enlarges the base class by
allowing switching between different distributions. [VNHB12]

» Active/conditional version for MC-AIXI-CTW. [VNH*11]
» Non-binary CTW or one CTW per binarization bit.

Improving the underlying KT Estimator

» Adaptive KT discounts old observations to deal with
non-stationary smoothly changing environments. [OHSS12]

» Window KT uses limited past window to deal with piecewise
i.i.d. environments. [SSH12]

» Replace KT by better iid estimators with e.g. finite
redundancy for unused symbols (e.g. KT0 and SAD). [Hut13]

Literature

(WST95) Willems, Shtarkov, and Tjalkens (1995) The Context-Tree
Weighting Method: Basic Properties, 41. IEEE Transactions
on Information Theory.

(WST97) Willems, F.M.J., Shtarkov, Y.M. and Tjalkens, T.J. (1997).
Reflections on the prize paper 'The context-tree weighting
method: Basic properties’. Newsletters of the IEEE.

VNH+11) J. Veness, K. S. Ng, M. Hutter, W. Uther, and D. Silver. A
Monte Carlo AIXI approximation, Journal of Artificial
Intelligence Research, 40:95-142, 2011.

(Hut05) M. Hutter. Universal Artificial Intelligence: Sequential
Decisions based on Algorithmic Probability. Springer, Berlin,
2005.

