Approximate Universal Artificial Intelligence
A Monte-Carlo AIXI Approximation

Joel Veness!” Kee Siong Ng* Marcus Hutter” David Silver ¥

t University of New South Wales
’ National ICT Australia
* The Australian National University
{University College London

September 26, 2013

General Reinforcement Learning Problem

Worst case scenario: Environment is unknown. Observations may
be noisy. Effects of actions may be stochastic. No explicit notion
of state. Perceptual aliasing. Rewards may be sparsely distributed.

Notation:

> Agent interacts with an unknown environment g by making actions

aec A

» Environment responds with observations o € O and rewards r € R.
For convenience, we sometimes use x € O x R.

> xi., denotes x1, X2, . .. X,, X<, denotes xi, xp,...X,—1 and
axy., denotes ay, x1, 3z, Xo, . . . dp, Xp.

MC-AIXI-CTW in context

Some approaches to (aspects of) the general reinforcement
learning problem:

» Model-free RL with function approximation (e.g. TD)

» POMDP (assume an observation / transition model, maybe
learn parameters?)

» Learn some (hopefully compact) state representation, then
use MDP solution methods

Our approach:

» Directly approximate AIXI, a universal Bayesian optimality
notion for general reinforcement learning agents.

AIXI: A Bayesian Optimality Notion

t+m
atA’X' = arg ma?xz ... max Z [Z r,-] Z 2_K(p)p(xl:t+m|al:t+m)a
Xt

attm Xt+m Li=t pEM
» Expectimax + (generalised form of) Solomonoff Induction

> Model class M contains all enumerable chronological
semi-measures.

» Kolmogorov Complexity used as an Ockham prior.

> m:=b—t+1is the "remaining search horizon".
b is the maximum age of the agent

Caveat: Incomputable. Not an algorithm!

Describing Environments, AIXI Style

> A history h is an element of (A x X)* U (A x X)* x A.

» An environment p is a sequence of conditional probability
functions {po, p1,p2, ...}, where for all n € N,
pn: A" — Density (X") satisfies

VarnVx<n : pn—1(X<nlacn) = Z pn(X1:nla1:n), po(ele) = 1.
xp€eX

» The p-probability of observing x, in cycle n given history
h = axc<pa, is
p(Xlzn|31:n)

Xnp|aX<nad =
Poalaxenan) = s calacn)

provided p(x<pla<n) > 0.

Learning a Model of the Environment

We will be interested in agents that use a mixture environment
model to learn the true environment p.

E(xunlarn) = Y wip(xunlarn)
peEM
» M :={p1,p2,...} is the model class
» w{ is the prior weight for environment p.
» Satisfies the definition of an environment model. Therefore,
can predict by using:

p WCI)JP(X<n‘3<n)

= P —
5(x,,|ax<,,an) Z Wn—lp(Xn’aX<n3n)7 Wp_1+ Z W(ZJIV(X<I7|‘9<I7)
PEM veEM

Theoretical Properties

Theorem: Let p be the true environment. The p-expected squared
difference of 1 and £ is bounded as follows. For all n € N, for all

al:n

n 2
53 uterlaca) uoslaxcnan) — elolarcran)) <

k=1 X1:k

iy { ~Inwt + Dre(u(arn) | (- |o10)) }

where D (- || -) is the KL divergence of two distributions.

Roughly: The predictions made by & will converge to those of p if
a model close (w.r.t. KL Divergence) to p is in M.

Prediction Suffix Trees

A prediction suffix tree is a simple, tree based variable length Markov
model. For example, using the PST below, having initially been given
data 01:

Pr(010[01) = Pr(0]01) x Pr(1/010) x Pr(0/0101)
= (1—01)0x(1—6y)

0.9%0.3%0.9

= 0.243

Context Tree Weighting

» Context Tree Weighting is an online prediction method.
» CTW uses mixture of prediction suffix trees.

» Smaller suffix trees are given higher initial weight,
which helps to avoid overfitting when data is limited.

» Let Cp denote the class of all prediction suffix trees of
maximum depth D, then CTW computes in time O(D):

Prixie) = Y 2710 Pr(xg.[M)
MeCp
» ['p(M) is description length of context tree M.

» This is truly amazing, as computing the sum naively would
take time double-exponential in D!

Model

Class Approximation

Action-Conditional Context Tree Weighting Algorithm:

Approximate model class of AIXI with a mixture over all
action-conditional Prediction Suffix Tree structures of maximum

depth D.
» PSTs are a form of variable order Markov model.
» Context Tree Weighting algorithm can be adapted to compute
. oD—-1 . . .

a mixture of over 2 environment models in time O(D)!

» Inductive bias: smaller PST structures favoured.

» PST parameters are learnt using KT estimators.
KL-divergence term in previous theorem grows O(log n).

> Intuitively, efficiency of CTW is due to clever exploitation of

shared structure.

Greedy Action Selection

» Action a € A has value V(a) = E[R|a] = expected return.
» Consider Bandit setting: No history or state dependence.
» Optimal action/arm: a* := argmax, V/(a) (unknown).

» V/(a) unknown = frequency estimate
V(a) = ﬁ > t:a—a Rt, Re = actual return at time t.

T(a) :=#{t < T :a; = a} = #times arm a taken so far.
» Greedy action: agTrj_eldy = arg max, V(a)

» Problem: If a* accidentally looks bad (low early V(a)),
it will never be taken again = explore/exploit dilemma.

» Solution: Optimism in the face of uncertainty ...

Upper Confidence Algorithm for Bandits

» UCB action: a¥<8 := argmax, V*(a)
V*t(a):= V(a)+ C ';’-g(ag, C > 0 suitable constant.

» If arm under-explored (i.e. T(a) < log T)
= V*(a) huge = UCB will take arm a
= Every arm taken infinitely often = V/(a) — V/(a)

> If sub-optimal arm over-explored (i.e. T(a) > log T)
= VT(a) = V(a) = V(a) < V(a*) « V(a*) < VT (a¥)
= UCB will not take arm a

» Fazit: T(a) o log T for all suboptimal arms.
T(a*)=T — O(log T), i.e. only O(log T)< T subopt. actions

» UCB is theor. optimal explore/exploit strategy for Bandits.

Application: Use “heuristically” in expectimax tree search...

Expectimax Approximation

Monte Carlo approximation of expectimax Tree Search (MCTS)
Upper Confidence Tree (UCT) algorithm:
» Sample observations from CTW distribution. ﬁ AN
al \2 5l \ot
> Select actions with highest ﬁ O C’)b
Upper Confidence Bound (UCB) V. (?
> Expand tree by one leaf node (per trajectory). e

> Simulate from leaf node further down using (fixed) playout policy.

> Propagate back the value estimates for each node.
Repeat until timeout.

e With sufficient time, converges to the expectimax solution.

e Value of Information correctly incorporated
when instantiated with a mixture environment model.

e Gives Bayesian solution to the exploration/exploitation dilemma.

Agent Architecture (MC-AIXI-CTW = UCT+CTW)

Environment Perform action in real world
Record new sensor
. Past { Observation/Reward(Action

... Past ZObyvauon/Reward

MC-AIXI-CTW \

Refine environment m An approximate AIXI agent

S

2 @

o/ \o2 a/
Update Bayesian Mixture of Models

+ | (? ole
BEn s o — "0

Simple Complex
Large Prior Small Prior

Relationship to AIXI

Given enough thinking time, MC-AIXI-CTW will choose:

ar = arg max E - max E

at+m
Xt+m

t+m

>

i=t

Z 2- Fo(M Pf X1 t+m|M ai: t+m)
MeCp

In contrast, AIXI chooses:

t+m
a; = arg maxz . max Z [Z r;] Z 27K Pr(x.¢1ma1:ems)

at+m -
Xt+m L i=t pEM

Algorithmic Considerations

> Restricted the model class to gain the desirable computational
properties of CTW

> Approximated the finite horizon expectimax operation with a MCTS
procedure

> O(Dmlog(]O||R|)) operations needed to generate m
observation/reward pairs (for a single simulation)

> O(tDlog(|O||R]|)) space overhead for storing the context tree.
» Anytime search algorithm
> Search can be parallelized

> O(Dlog(|O||R|))) to update the context tree online

Experimental Setup

» Agent tested on a number of POMDP domains,
as well as TicTacToe and Kuhn Poker.

» Agent required to both learn and plan.

» The context depth and search horizon were made as large as
possible subject to computational constraints.

> ¢-Greedy training, with a decaying ¢

» Greedy evaluation

Results

=
S
1

Normalised Average Reward per Cycle
o
e < c

— — Optimal
—®— Cheese Maze
Tiger

—4—4x4 Grid
—¥—TicTacToe
—#—Biased RPS
—&—Kuhn Poker

100

1000

Experience Pacman

10000 100000 1000000

Comparison to Other RL Algorithms

Learning Scalability - Kuhn Poker

\ ——MC-AIXI —m- U-Tree Active-lZ — ----- Optimal

0.1

0.05 M

Average Reward per Cycle
S
o
[05]

-0.2 f f f
100 1000 10000 100000 1000000

Experience (cycles)

Resources Required for (Near)Optimal Performance

Domain Experience | Simulations | Search Time
Cheese Maze | 5 x 10* 500 0.9s
Tiger 5 x 10* 10000 10.8s
4 x 4 Grid 2.5 x 104 1000 0.7s
TicTacToe 5 x 10° 5000 8.4s
Biased RPS 1 x 10° 10000 4.8s
Kuhn Poker 5 x 10° 3000 1.5s

» Timing statistics collected on an Intel dual quad-core 2.53Ghz
Xeon.

» Toy problems solvable in reasonable time on a modern
workstation.

» General ability of agent will scale with better hardware.

Limitations

» PSTs inadequate to represent many simple models compactly.
For example, it would be unrealistic to think that the current
MC-AIXI-CTW approximation could cope with real-world
image or audio data.

» Exploration/exploitation needs more attention. Can
something principled and efficient be done for general
Bayesian agents using large model classes?

Future Work

» Uniform random rollout policy used in pUCT.
A learnt policy should perform much better.

» All prediction was done at the bit level. Fine for a first
attempt, but no need to work at such a low level.

» Mixture environment model definition can be extended to
continuous model classes.

» Incorporate more (action-conditional) Bayesian machinery.

» Richer notions of context.

References

» For more information, see:

A Monte-Carlo AIXI Approximation (2011),
J. Veness, K.S. Ng, M. Hutter, W. Uther, D. Silver
http://dx.doi.org/10.1613/jair.3125

Highlights: a direct comparison to U-Tree / Active-LZ, improved
model class approximation (FAC-CTW) and more relaxed
presentation.

> Video of the latest version playing Pacman
http://www.youtube.com /watch?v=yfsMHtmGDKE

