
Approximate Universal Artificial Intelligence
A Monte-Carlo AIXI Approximation

Joel Veness†
′

Kee Siong Ng∗ Marcus Hutter∗
′

David Silver �

† University of New South Wales
′ National ICT Australia

∗ The Australian National University
�University College London

September 26, 2013

General Reinforcement Learning Problem

Worst case scenario: Environment is unknown. Observations may
be noisy. Effects of actions may be stochastic. No explicit notion
of state. Perceptual aliasing. Rewards may be sparsely distributed.

Notation:

I Agent interacts with an unknown environment µ by making actions
a ∈ A.

I Environment responds with observations o ∈ O and rewards r ∈ R.
For convenience, we sometimes use x ∈ O ×R.

I x1:n denotes x1, x2, . . . xn, x<n denotes x1, x2, . . . xn−1 and
ax1:n denotes a1, x1, a2, x2, . . . an, xn.

MC-AIXI-CTW in context

Some approaches to (aspects of) the general reinforcement
learning problem:

I Model-free RL with function approximation (e.g. TD)

I POMDP (assume an observation / transition model, maybe
learn parameters?)

I Learn some (hopefully compact) state representation, then
use MDP solution methods

Our approach:

I Directly approximate AIXI, a universal Bayesian optimality
notion for general reinforcement learning agents.

AIXI: A Bayesian Optimality Notion

aAIXIt = argmax
at

∑
xt

. . .max
at+m

∑
xt+m

[
t+m∑
i=t

ri

] ∑
ρ∈M

2−K(ρ)ρ(x1:t+m|a1:t+m),

I Expectimax + (generalised form of) Solomonoff Induction

I Model classM contains all enumerable chronological
semi-measures.

I Kolmogorov Complexity used as an Ockham prior.

I m := b − t + 1 is the ”remaining search horizon”.
b is the maximum age of the agent

Caveat: Incomputable. Not an algorithm!

Describing Environments, AIXI Style

I A history h is an element of (A×X)∗ ∪ (A×X)∗ ×A.

I An environment ρ is a sequence of conditional probability
functions {ρ0, ρ1, ρ2, . . . }, where for all n ∈ N,
ρn : An → Density (X n) satisfies

∀a1:n∀x<n : ρn−1(x<n|a<n) =
∑
xn∈X

ρn(x1:n|a1:n), ρ0(ϵ|ϵ) = 1.

I The ρ-probability of observing xn in cycle n given history
h = ax<nan is

ρ(xn|ax<nan) :=
ρ(x1:n|a1:n)
ρ(x<n|a<n)

provided ρ(x<n|a<n) > 0.

Learning a Model of the Environment

We will be interested in agents that use a mixture environment
model to learn the true environment µ.

ξ(x1:n|a1:n) :=
∑
ρ∈M

wρ
0 ρ(x1:n|a1:n)

I M := {ρ1, ρ2, . . . } is the model class

I wρ
0 is the prior weight for environment ρ.

I Satisfies the definition of an environment model. Therefore,
can predict by using:

ξ(xn|ax<nan) =
∑
ρ∈M

wρ
n−1ρ(xn|ax<nan), w

ρ
n−1 :=

wρ
0 ρ(x<n|a<n)∑

ν∈M
wν
0 ν(x<n|a<n)

Theoretical Properties

Theorem: Let µ be the true environment. The µ-expected squared
difference of µ and ξ is bounded as follows. For all n ∈ N, for all
a1:n,

n∑
k=1

∑
x1:k

µ(x<k |a<k)

(
µ(xk |ax<kak)− ξ(xk |ax<kak)

)2

≤

min
ρ∈M

{
− lnwρ

0 + DKL(µ(·|a1:n) ∥ ρ(·|a1:n))
}
,

where DKL(· ∥ ·) is the KL divergence of two distributions.

Roughly: The predictions made by ξ will converge to those of µ if
a model close (w.r.t. KL Divergence) to µ is inM.

Prediction Suffix Trees

A prediction suffix tree is a simple, tree based variable length Markov
model. For example, using the PST below, having initially been given
data 01:

Pr(010|01) = Pr(0|01)× Pr(1|010)× Pr(0|0101)
= (1− θ1)θ2(1− θ1)

= 0.9 ∗ 0.3 ∗ 0.9
= 0.243

θ1 = 0.1

◦
1

����
��
�� 0

��?
??

??
?

θ2 = 0.3

◦
1

����
��
�� 0

��?
??

??
?

θ3 = 0.5

Context Tree Weighting

I Context Tree Weighting is an online prediction method.

I CTW uses mixture of prediction suffix trees.

I Smaller suffix trees are given higher initial weight,
which helps to avoid overfitting when data is limited.

I Let CD denote the class of all prediction suffix trees of
maximum depth D, then CTW computes in time O(D):

Pr(x1:t) =
∑
M∈CD

2−ΓD(M) Pr(x1:t |M)

I ΓD(M) is description length of context tree M.

I This is truly amazing, as computing the sum naively would
take time double-exponential in D!

Model Class Approximation

Action-Conditional Context Tree Weighting Algorithm:

Approximate model class of AIXI with a mixture over all
action-conditional Prediction Suffix Tree structures of maximum
depth D.

I PSTs are a form of variable order Markov model.

I Context Tree Weighting algorithm can be adapted to compute
a mixture of over 22

D−1
environment models in time O(D)!

I Inductive bias: smaller PST structures favoured.

I PST parameters are learnt using KT estimators.
KL-divergence term in previous theorem grows O(log n).

I Intuitively, efficiency of CTW is due to clever exploitation of
shared structure.

Greedy Action Selection

I Action a ∈ A has value V (a) = E[R|a] = expected return.

I Consider Bandit setting: No history or state dependence.

I Optimal action/arm: a∗ := argmaxa V (a) (unknown).

I V (a) unknown ⇒ frequency estimate
V̂ (a) := 1

T (a)

∑
t:at=a Rt , Rt = actual return at time t.

T (a) := #{t ≤ T : at = a} = #times arm a taken so far.

I Greedy action: agreedyT+1 = argmaxa V̂ (a)

I Problem: If a∗ accidentally looks bad (low early V̂ (a)),
it will never be taken again = explore/exploit dilemma.

I Solution: Optimism in the face of uncertainty ...

Upper Confidence Algorithm for Bandits

I UCB action: aUCBT+1 := argmaxa V
+(a)

V+(a) := V̂ (a) + C
√

logT
T (a) , C > 0 suitable constant.

I If arm under-explored (i.e. T (a)≪ logT)
⇒ V+(a) huge ⇒ UCB will take arm a
⇒ Every arm taken infinitely often ⇒ V̂ (a)→ V (a)

I If sub-optimal arm over-explored (i.e. T (a)≫ logT)
⇒ V+(a) ≈ V̂ (a)→ V (a) < V (a∗)← V̂ (a∗) < V+(a∗)
⇒ UCB will not take arm a

I Fazit: T (a) ∝ logT for all suboptimal arms.
T (a∗) = T − O(logT), i.e. only O(logT)≪T subopt. actions

I UCB is theor. optimal explore/exploit strategy for Bandits.

Application: Use “heuristically” in expectimax tree search...

Expectimax Approximation

Monte Carlo approximation of expectimax Tree Search (MCTS)
Upper Confidence Tree (UCT) algorithm:

I Sample observations from CTW distribution.

I Select actions with highest
Upper Confidence Bound (UCB) V+.

I Expand tree by one leaf node (per trajectory).

a1
a2 a3

o1 o2 o3 o4

future reward estimate

I Simulate from leaf node further down using (fixed) playout policy.

I Propagate back the value estimates for each node.
Repeat until timeout.

• With sufficient time, converges to the expectimax solution.

• Value of Information correctly incorporated
when instantiated with a mixture environment model.

• Gives Bayesian solution to the exploration/exploitation dilemma.

Agent Architecture (MC-AIXI-CTW = UCT+CTW)

Environment

Update Bayesian Mixture of Models

a1
a2 a3

o1 o2 o3 o4

future reward estimate

Record Action

Simple Complex

Large Prior Small Prior

+

.......

- - +
-

-

Observation/Reward... Past

Decide on best action

Action... Past Observation/Reward

Perform action in real world

Record new sensor information

Refine environment model

MC-AIXI-CTW
An approximate AIXI agent

Relationship to AIXI

Given enough thinking time, MC-AIXI-CTW will choose:

at = argmax
at

∑
xt

· · ·max
at+m

∑
xt+m

[
t+m∑
i=t

ri

] ∑
M∈CD

2−ΓD(M) Pr(x1:t+m|M, a1:t+m)

In contrast, AIXI chooses:

at = argmax
at

∑
xt

. . .max
at+m

∑
xt+m

[
t+m∑
i=t

ri

] ∑
ρ∈M

2−K(ρ) Pr(x1:t+m|a1:t+m, ρ)

Algorithmic Considerations

I Restricted the model class to gain the desirable computational
properties of CTW

I Approximated the finite horizon expectimax operation with a MCTS
procedure

I O(Dm log(|O||R|)) operations needed to generate m
observation/reward pairs (for a single simulation)

I O(tD log(|O||R|)) space overhead for storing the context tree.

I Anytime search algorithm

I Search can be parallelized

I O(D log(|O||R|))) to update the context tree online

Experimental Setup

I Agent tested on a number of POMDP domains,
as well as TicTacToe and Kuhn Poker.

I Agent required to both learn and plan.

I The context depth and search horizon were made as large as
possible subject to computational constraints.

I ϵ-Greedy training, with a decaying ϵ

I Greedy evaluation

Results

Comparison to Other RL Algorithms

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

100 1000 10000 100000 1000000

A
v

e
ra

g
e

 R
e

w
a

rd
 p

e
r

C
y

cl
e

Experience (cycles)

Learning Scalability - Kuhn Poker

MC-AIXI U-Tree Active-LZ Optimal

Resources Required for (Near)Optimal Performance

Domain Experience Simulations Search Time
Cheese Maze 5× 104 500 0.9s
Tiger 5× 104 10000 10.8s
4 × 4 Grid 2.5× 104 1000 0.7s
TicTacToe 5× 105 5000 8.4s
Biased RPS 1× 106 10000 4.8s
Kuhn Poker 5× 106 3000 1.5s

I Timing statistics collected on an Intel dual quad-core 2.53Ghz
Xeon.

I Toy problems solvable in reasonable time on a modern
workstation.

I General ability of agent will scale with better hardware.

Limitations

I PSTs inadequate to represent many simple models compactly.
For example, it would be unrealistic to think that the current
MC-AIXI-CTW approximation could cope with real-world
image or audio data.

I Exploration/exploitation needs more attention. Can
something principled and efficient be done for general
Bayesian agents using large model classes?

Future Work

I Uniform random rollout policy used in ρUCT.
A learnt policy should perform much better.

I All prediction was done at the bit level. Fine for a first
attempt, but no need to work at such a low level.

I Mixture environment model definition can be extended to
continuous model classes.

I Incorporate more (action-conditional) Bayesian machinery.

I Richer notions of context.

References

I For more information, see:

A Monte-Carlo AIXI Approximation (2011),
J. Veness, K.S. Ng, M. Hutter, W. Uther, D. Silver
http://dx.doi.org/10.1613/jair.3125

Highlights: a direct comparison to U-Tree / Active-LZ, improved
model class approximation (FAC-CTW) and more relaxed
presentation.

I Video of the latest version playing Pacman
http://www.youtube.com/watch?v=yfsMHtmGDKE

