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Abstract

An interesting scheme for estimating and adapting
distributions in real-time for non-stationary data has
recently been the focus of study for several different
tasks relating to time series and data mining, namely
change point detection, outlier detection and online
compression/ sequence prediction. An appealing fea-
ture is that unlike more sophisticated procedures, it
is as fast as the related stationary procedures which
are simply modified through discounting or window-
ing. The discount scheme makes older observations
lose their influence on new predictions. The authors
of this article recently used a discount scheme for in-
troducing an adaptive version of the Context Tree
Weighting compression algorithm. The mentioned
change point and outlier detection methods rely on
the changing compression ratio of an online compres-
sion algorithm. Here we are beginning to provide the-
oretical foundations for the use of these adaptive esti-
mation procedures that have already shown practical
promise.

Keywords: Non-stationary sources, time-series, com-
pression, detection, change point, outlier

1 Introduction

Data mining in time series data is an active and vast
area of research with many applications Fu (2011)
relating to various tasks like change detection Gural-
nik and Srivastava (1999), Kawahara and Sugiyama
(2012) and outlier detection Fawcett and Provost
(1999), Zhang et al. (2009). A unifying framework
for these two tasks were developed in Yamanishi
and Takeuchi (2002), Takeuchi and Yamanishi (2006)
based on online learning in non-stationary environ-
ments using probabilistic modeling which discounts
experiences over time so as to focus on recent obser-
vations. Recently in Kawahara and Sugiyama (2012),
this was further developed into a real-time change de-
tection method based on sequential discounting nor-
malized maximum likelihood coding that was applied
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to security applications, in particular malware detec-
tion. In the framework of Yamanishi and Takeuchi
(2002), Takeuchi and Yamanishi (2006), Kawahara
and Sugiyama (2012), a scoring function based on
log loss, or in other words on arithmetic code length,
was used to decide if recent observations were anoma-
lous. If the average score over a number of consecu-
tive time steps is sufficiently much higher than before,
then a change has been detected. In compression ter-
minology, the compressed size of those observations
is higher than those before. This basic idea is also
underlying the classical works E.S. (1955), Lorden
(1971) on detecting change in a distribution.

Encoding a data source into a more compact rep-
resentation is a long standing problem. In this pa-
per, we are only concerned with the task of lossless
data compression, which requires reproducing the ex-
act original data from the compressed encoding. A
number of different techniques for lossless data com-
pression have been developed, for example Ziv and
Lempel (1977, 1978), Cleary and Witten (1984), Cor-
mack and Horspool (1987), Burrows and Wheeler
(1994) to name a few. Many data compressors make
use of a concept called arithmetic coding Rissanen
(1976), Rissanen and Langdon (1979), which when
provided with a probability distribution for the next
symbol can be used for lossless compression of the
data. In general, however, the true distribution for
the next symbol is unknown and must be estimated.
For stationary distributions, this estimation task is
in many situations a solved problem and arithmetic
coding based on the estimated distribution is optimal.
For non-stationary distributions, estimating the true
distribution is a much harder task. The Bayesian ap-
proaches Zacks (1983), Barry and Hartigan (1993) are
attractive in that they are principled and automati-
cally optimal but they are usually much more compu-
tationally expensive in their full form and, therefore,
require approximation, in particular if they are go-
ing to run online R.P and D.J. (2007), Turner et al.
(2009). If one is only interested in sequence pre-
diction in the presence of change points and not in
the change points themselves, the Bayesian approach
Willems (1996) offers the possibility of using a mix-
ture over all possible segmentations into piece-wise
stationary intervals. Instead of using segmentation
for sequence prediction, the framework by Yamanishi
and Takeuchi (2002), Takeuchi and Yamanishi (2006),
Kawahara and Sugiyama (2012) uses sequence predic-
tion for segmentation.

Our interest here lies in methods that are as fast as
their counterpart for the stationary case. Kawahara
and Sugiyama (2012) achieves this using a simple dis-
counting scheme and a similar technique is used by
the authors of this article in O’Neill et al. (2012) to
create a sequence prediction and compression algo-



rithm for non-stationary environments based on the
Context Tree Weighting (CTW) algorithm Willems
et al. (1995), which relies upon the Krichevsky-
Trofimov (KT) estimator. In O’Neill et al. (2012),
we introduce an adaptive version of the KT estimator
and use this to define the adaptive CTW algorithm.
In the case of non-stationary binary sequences, the
algorithm of Kawahara and Sugiyama (2012) would
also naturally be based on this estimator. By proving
redundancy bounds for the adaptive KT estimator for
interesting classes of environments, we automatically
get a bound for adaptive CTW as well as a theoreti-
cal foundation for the empirically successful change
detection algorithm from Kawahara and Sugiyama
(2012). An alternative approach to discounting for
dealing with non-stationarity is to use a moving win-
dow. The discounting version can be viewed as an ap-
proximation of this approach. The windowed KT and
the resulting windowed CTW was studied in Kawa-
bata and Rashid (2003) and redundancy bounds was
proved for stationary (d:th order)Markov sources. We
are instead first going to consider a source whose
Bernoulli parameter moves within an interval that is
small in the Kullback-Leibler sense and then consider
drifting sources as well as sources when the parame-
ters (or interval of parameters) can jump significantly
but rarely.

Related work. Stationary sources have been ex-
tensively studied, Krichevsky and Trofimov (1981)
provides a good survey. For example, Krichevsky
(1968) provides an asymptotic lower bound for redun-
dancy of block to variable universal code for Bernoulli
sources; Krichevsky (1970) provides a correspond-
ing upper bound. Trofimov (1974) provides a fi-
nite bound for stationary d:th order Markov sources
which is also studied by Kawabata and Rashid (2003).
Krichevsky (1998) looks at asymptotic one step re-
dundancy bound for stationary Bernoulli sources.

2 Windowed Krichevsky-Trofimov Estima-
tion for Non-Stationary Sources

The KT estimator Krichevsky and Trofimov (1981),
in this article often referred to as the regular KT es-
timator, is obtained using a Bayesian approach by
assuming a ( 1

2 ,
1
2 )-Beta prior on the parameter of a

Bernoulli distribution. Let y1:t be a binary string
containing a zeros and b ones. We write Pkt(a,b) to
denote Pkt(y1:t). The KT estimator can be incremen-

tally calculated by: Pkt(a+1,b) = a+1/2
a+b+1Pkt(a,b) and

Pkt(a,b+1)= b+1/2
a+b+1Pkt(a,b) with Pkt(0,0)=1.

Allowing changes in the underlying sources sug-
gests that ‘outdated’ histories do not necessarily pro-
vide useful and accurate information for predicting
the next bit as it does in the stationary case. The reg-
ular KT estimator is very slow to update once many
samples have been collected, so it cannot quickly
adapt to a change in the source. Therefore, we will in
this section look at a scheme where we estimate the
probability of the next bit using the KT estimator,
however, as opposed to counting the number of zeros
and ones in the entire history, we only take the latest
n bits into account. We call this moving window KT
or windowed KT.

Redundancy bounds for windowed KT. We are
interested in one-step prediction. Assuming a station-
ary Bernoulli source θ, an estimation for the proba-
bility of the next bit x when given the latest n bits, as
a string w, yields a code length −lnp̂(x|w). We then

take an expectation over all possible x and history w
to define the (expected) redundancy by

Rθ(n)=
∑
|w|=n

pθ(w)
∑
x∈IB

pθ(x)(−lnp̂(x|w))−H(θ)

where H(θ) is the entropy of source θ. pθ(w) and
pθ(x) are the probabilities of observing string w and
x under θ respectively. p̂(x|w) is given by the KT-
estimator

p̂(x|w)=
rx(w)+1/2

n+1
(1)

where rx(w) is the number of x that appears in w.
For a non-stationary Bernoulli source, the one step
redundancy is defined accordingly. Suppose x1:m is
generated by a non-stationary Bernoulli process, with
xi being sampled according to θi, the one step redun-
dancy Rm(n) at step m given a window size n is∑

|w|=n

pθm−n+1:m
(w)

∑
x∈IB

pθm+1
(x)(−lnp̂(x|w))

−H(θm+1).

Theorem 1. Suppose that a binary sequence is gen-
erated by a non-stationary Bernoulli process, with pa-
rameters θi where θi=θ

1 when i≤n and θi=θ
2 when

i > n. We estimate the probability of the (n+1):th
letter by the KT-estimator. If θ1,θ2 ∈ (0,1), θ1≤ θ2,
then

R(n)≤KL(θ2||θ1)+
1+o(1)

n

+
θ2(3−4θ1)

2nθ1
+

(1−θ2)(4θ1−1)

2n(1−θ1)

The proof technique used is largely borrowed from
Krichevsky (1998) where the following Lemma was
proven.

Lemma 2. Krichevsky (1998). Let

b(n,k,θ)=

(
n
k

)
θk(1−θ)n−k.

There is a constant C such that the inequality

λ−δ∑
k=0

b(n,k,θ)<Cλe−(δ
2/λ)+((δ+1)2/2(λ−δ))

holds for n>2, 0<θ<1, λ=np, 1<δ<λ.

Proof for Theorem 1. The one step redundancy we
want to bound is R(n)=∑
|w|=n

pθm−n+1:m
(w)

∑
x∈IB

pθm+1
(x)(−lnp̂(x|w))

−H(θm+1) (2)

where p̂(x|w)) is given by the classic KT-estimator

p̂(x|w)=
rx(w)+1/2

n+1
(3)

with rx(w) being the number of x in string w. More
specifically, the redundancy for the special case of this



Theorem, Rθ1,θ2(n), can be rewritten as∑
|w|=n

pθ1(w)
∑
x∈IB

pθ2(x)(−lnp̂(x|w))

−H(θ2) (4)

We can rewrite H(θ2) as

H(θR)=lnn− 1

n
(λR,1lnλR,1+λR,0lnλR,0) (5)

where λR,x is the number of expected x that appear

in n, i.e. λR,x = nθxR(1−θR)(1−x). Noticing that
−lnp̂(x|w) in equation (2) contains ln(n+1) while
H(θR) contains an lnn term, we Taylor expand the
function ln(n+1) at the origin and get that

ln(n+1)< lnn+
1

n
− 1

2n2
(6)

Plugging equation (3,5,6) into (4) yields

nRθ1,θ2(n)≤1+
1

n
− 1

2n2

+λR,1lnλR,1−λR,1
n∑
k=0

b(n,k,θ1)ln(k+
1

2
)

+λR,0(lnλR,0−
n∑
k=0

b(n,k,1−θ1)ln(k+
1

2
)) (7)

where b(n,k,θ)=

(
n
k

)
θk(1−θ)n−k. Letting

F (n,θ,θ′)=

1

2
+λlnλ−λ

n∑
k=0

b(n,k,θ′)ln(k+
1

2
) (8)

where λ=nθ, we can rewrite equation (7) as

nRθ1,θ2(n)≤ 1

n
− 1

2n2
+

F (n,θ2,θ1)+F (n,1−θ2,1−θ1) (9)

and to bound this we are going to show that

F (n,θ,θ′)≤ 1

2
+nθln

θ

θ′
+C ′′n

for some constant C ′′. Next we Taylor expand ln(k+
1
2 ) at λ′=nθ′

ln(k+
1

2
)=lnλ′+

k+ 1
2−λ

′

λ′
+R(k) (10)

The remainder R(k) is

R(k)=−
(k+ 1

2−λ
′)2

2ξ(k)2
(11)

where ξ(k) lies between λ′ and k+ 1
2 . By plugging

equation (10) into (8), we get

F (n,θ,θ′)= (12)

1

2
+nθln

θ

θ′
− θ

2θ′
−λ

n∑
k=0

b(n,k,θ′)R(k) (13)

Take n> 1
θ′ +1 and choose a natural number δ with

1<δ <λ′. We split the summation in the last term
into two parts: 0≤ k ≤ λ−δ and λ−δ < k ≤ n. To
bound the first part, we use that ξ(k)> 1

2 . Putting

δ=λ3/4 and using the previous lemma it follows that
R(k)≥−2(k−λ+ 1

2 )2 and therefore

−λ
λ−δ∑
k=0

b(n,k,θ′)R(k)≤

2λ(λ′+
1

2
)2
λ−δ∑
k=0

b(n,k,θ′)<C ′λ(λ′+
1

2
)2e−

√
λ′

for some constant C ′. To deal with the second part,

we choose n large enough such that ξ(k)> λ′

2 and then
we have

R(k)≥−
2(k−λ′+ 1

2 )2

λ′2

Therefore,

−λ
n∑

k=λ−δ

b(n,k,θ′)R(k)≤

2λ

λ′2

n∑
k=0

b(n,k,θ′)(k−λ′+ 1

2
)2

Using the second central moment of binomial distri-
bution m2 =λ′(1−θ′) together with the first central
moments, we have

−λ
n∑

k=λ−δ+1

b(n,k,θ′)R(k)≤ 2θ(1−θ′)
θ′

+
θ

nθ′2

Thus, we conclude that for large enough n

F (n,θ,θ′)≤ 1

2
+nθln

θ

θ′
(14)

+
θ(3−4θ′)

2θ′
+C ′λ(λ′+

1

2
)2e−

√
λ′ (15)

The last term decrease exponentially as n→∞ and
can be replaced by o(1), and write

F (n,θ,θ′)<
1

2
+nθln

θ

θ′
+
θ(3−4θ′)

2θ′
+o(1)

Therefore, through Equation 9 we have

Rθ1,θ2(n)≤KL(θ2||θ1)+
1+o(1)

n

+
θ2(3−4θ1)

2nθ1
+

(1−θ2)(4θ1−1)

2n(1−θ1)

If we allow the parameters to move within an in-



terval [θL,θR], then Theorem 1 above deals with the
worst case situation, namely when θi is at one end
point for m steps and then jumps to the other.

Corollary 3. Suppose x1:m is generated by a non-
stationary Bernoulli process, with xi being sampled
according to θi. We estimate the probability of the
i:th letter by the KT-estimator with a moving window
of size n<m. If i is such that m−n+1≤i≤m+1, θi∈
[θL,θR],θL,θR∈(0,1) and θL≤θR, then the redundancy
for this prediction is bounded by

R(n)≤ 1+o(1)

n
+

max{KL(θL||θR),KL(θR||θL)}

+
1

n
max{θR(3−4θL)

2θL
+

(1−θR)(4θL−1)

2(1−θL)
,

θL(3−4θR)

2θR
+

(1−θL)(4θR−1)

2(1−θR)
}

Example 4. In the above bounds we notice that the
constant factor in the O(1/n) term grows unboundedly
when the parameters tend to 0 or 1. This is not just a
problem with the bounds but a genuine phenomenon.
Suppose that θi=1 for n time steps and then switch to
θ<1. The redundancy for the next time step is then
O(log(1+n)). We conclude that if we want a uniform
constant for the O(1/n) term we need to assume that
we are a minimum distance away from the end points.

Corollary 5. Suppose x1:m is generated by a non-
stationary Bernoulli process, with xi being sampled
according to θi ∈ [L,R] where 0 < L ≤ R < 1. We
estimate the probability of the i:th letter by the KT-
estimator with a moving window of size n<m. If i is
such that m−n+1≤i≤m+1, θi∈[θL,θR],θL,θR∈[L,R]
and θL≤θR, then, the redundancy for this prediction
is bounded by

R(n)≤max{KL(θL||θR),KL(θR||θL)}+C/n

where C does depend on L and R but not on θL or
θR.

Remark 6. For the case when θL = θR we do not
have a problem at the end points. Consider θi=1 ∀i
which means that we will almost surely have a con-

stant sequence. Then the redundancy is −log 1/2+n
n+1 =

log(1+ 1
2(n+1) )≤

1
2(n+1) . Corollary 5 holds for L= 0

and R=1 as long as θR=θL.

Geometrically drifting sources. Suppose x1:m is
generated by a non-stationary Bernoulli process, with
xi being sampled according to θi. If the source is such
that for all i, KL(θmax(i,n),θmin(i,n))≤g(n), where

θmin(i,n) = min
i≤j≤i+n

{θj}

θmax(i,n) = max
i≤j≤i+n

{θj}

we can for any fixed i, apply Theorem 1. We next
define a class of drifting sources for which there is a
simple function g of this sort.

Definition 7 (Geometrically drifting source). Sup-
pose a sequence {xi}∞i=1 is generated by a non-
stationary Bernoulli process, identified by {θi}∞i=1
(with θ1 ∈ (0,1)) with each xi sampled according to
θi. We say that the source is geometrically drifting

if and only if 1≤max{ θi
θi+1

, 1−θi
1−θi+1

}≤ c for all i and

some constant c≥1.

The idea behind this definition is that the source
can only drift, i.e. increase or decrease by a certain
ratio c. This notion of drift allows us to bound the KL
divergence of the maximum and minimum θ during n
consecutive steps.

KL(θi||θi+1)=θiln
θi
θi+1

+(1−θi)ln
1−θi

1−θi+1
< lnc

for all i and it holds that 1≤ θmax

θmin
≤cn

1≤ 1−θmin

1−θmax
≤cn

which results in a bound for KL(θmax||θmin) (and the
same for KL(θmin||θmax)), namely

KL(θmax||θmin)=

θmaxln
θmax
θmin

+(1−θmax)ln
1−θmax
1−θmin

≤nlnc

3 Discounted Estimation

When dealing with non-stationary sources, it is nat-
ural that one wants to weight recent history higher.
We define an adaptive KT estimator, which we call
discounting KT based on replacing an and bn in
the definition of the KT estimator with discounted
counts. These counts are defined by applying the fol-
lowing discounting operation after adding a new zero
(an=an+1) or a new one (bn=bn+1),

an+1 :=(1−γ) an bn+1 :=(1−γ) bn

where γ ∈ [0,1) denotes the discount rate. For dis-
counting KT with γ>0, we have an effective horizon
of length 1

1−γ . The windowed estimator from the pre-

vious section can be viewed as a hard version of this
scheme.

Consider a situation where we have a stationary
source (θi=θ ∀i) where we use a windowed KT with
window length n = 1

1−γ . Compare the distribution

for the coefficient a (the number of zeroes in the win-
dow) with the distribution for the a coefficient defined
from discounting from an infinite history. Both distri-
butions are symmetric around the same mean but the
one arising from the discounting has more mass close
to the mean. Hence the discounting method will have
a lower redundancy. This is not surprising in this situ-
ation because the discounting estimate gets to use an
infinite history of observations and if we use the full
history KT we have zero redundancy. This is, how-
ever, not the situation that we want to use discounting
KT in. Discounting KT effectively only depends on a
small number of observations. The reason we let it de-
pend at all on things further back is for convenience,
it yields a very simple update formula where noth-
ing has to be stored. This is very convenient when,
as in the CTW algorithm, a KT estimator is created
for every node in a tree, which might be deep. The
conclusion is that the upper bounds for the redun-
dancy of windowed KT should at least approximately
also hold for discounting KT. Furthermore, when the



source has been close to stationary for longer then the
window length, one should expect marginally better
from the discounting algorithm. Another case when
one expect better from the discounting algorithm is
for slowly drifting sources. We will below provide a
class of drifting sources that is such that for any win-
dow, we are going to satisfy the assumption of Corol-
lary 5 and one can conclude a redundancy bound for
moving window which does tell us what we should at
least expect from discounting KT.

4 Implications for Compression and Detec-
tion of Change Points and Outliers

We have showed that if the parameters stay within a
small interval and we have a large enough (though not
too large) window, the expected redundancy for win-
dowed KT is small. This also applies if instead the
parameter drift is small. We argue that this is not
only true for windowed KT with a suitable window
length (for the amount of drift) but for discounting
KT with an appropriate discount factor. In this sec-
tion we discuss the implications for the motivating
applications.

Compression. Since expectation is a linear opera-
tion, the total redundancy is the sum of the per step
redundancies. In the case of a stationary source, a
source constrained to a small interval or a slowly drift-
ing source within a larger interval our per bit redun-
dancy bounds are simply multiplied by the file length
to get the total redundancy. When we have a source
with a small number of jumps and otherwise only slow
(geometric) drift, Theorem 1 tells us that we have to
add the sum of the KL-divergences times the window
length for the jumps to the estimate. Note that with
a window length n, the worst code length for a step is
less than log(1+n). If we have h(N) jumps during the
first N time steps, the total accumulated redundancy
is less than h(N)log(n+1)+O(N/n). Hence, if jumps
are rare, they will not affect the total compressed
length significantly. Regular KT has unbounded one
step redundancy and the regular KT estimator also
continues to be affected by all old data as much as
newer observations. Hence, if there is substantial
change in the middle of the file, the first part will
adversely affect the rest of the file. In O’Neill et al.
(2012), an empirical advantage of adaptive CTW over
regular CTW was demonstrated on files, which were
created by concatenating two different shorter files.

Here we have so far only proved bounds for the
adaptive KT estimators and not the CTW algo-
rithm which is more relevant for practical compres-
sions since it takes context into account. However,
bounds for the adaptive KT estimator is all that is
needed to prove bounds for adaptive CTW. This can
be done easily because there are three parts contribut-
ing to the redundancy bounds for CTW Willems et al.
(1995): (1) redundancy used to find the ‘right’ tree (2)
parameter redundancy given the ‘right’ tree (3) arith-
metic coding redundancy (always bounded by 2). The
first term has nothing to do with the underlying esti-
mator but with the code length of the ‘right’ tree. The
problem is thus reduced to the second term (the main
term), which is the redundancy of the underlying KT
estimator. For regular KT in the stationary case, this
is O(1/m) for the m:th time step. This adds up to a
logarithmic term for the first N time steps and this
is the only non-constant term. The O(1/n) terms is
for windowed KT replaced by an O(1/n) term (The-
orem 1) in the stationary case (where n is the size
of the window) which accumulates to O(N/n) if N is
the total length of the file. In the interval case the

term is replaced by KL+O(1/n), again according to
Theorem 1. In these cases the total redundancy of
adaptive CTW is O(N/n). If we have h(N) jump
point of KL-divergence at most D, the redundancy is
h(N)D+O(N/n).

Detecting change points and outliers. The algo-
rithm for detecting change points and outliers in Ya-
manishi and Takeuchi (2002), Takeuchi and Yaman-
ishi (2006), Kawahara and Sugiyama (2012) relies on
logPr(xt+1 | x1:t) as a score. The idea is that this
score is large in expectation if the distributions have
changed significantly and smaller if it has not. They
average over a number of time steps to get a good es-
timate of this expectation. That it will be large if the
distribution change by much is clear but for it to be a
well founded method one also needs to be able to say
that it will be small if the distribution has at most
changed a little. This is what we provide a theory for
in this article.

5 Conclusion

Some recent advances in real-time online change point
detection, outlier detection and compression have
relied on discounting when estimating parameters of
a distribution that is changing over time. A closely
related alternative for dealing with non-stationarity
in a computationally efficient manner is to only use
the last few observations for the estimation. In this
article we have provided a theoretical analysis of
how these estimators behave for important classes
of non-stationary environments and outlined the
implication of the results for the application of the
mentioned algorithms.
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