
Universal Reinforcement Learning Algorithms: Survey and Experiments

John Aslanides†, Jan Leike‡∗, Marcus Hutter†
†Australian National University

‡Future of Humanity Institute, University of Oxford
{john.aslanides, marcus.hutter}@anu.edu.au, leike@google.com

Abstract
Many state-of-the-art reinforcement learning (RL)
algorithms typically assume that the environment
is an ergodic Markov Decision Process (MDP). In
contrast, the field of universal reinforcement learn-
ing (URL) is concerned with algorithms that make
as few assumptions as possible about the environ-
ment. The universal Bayesian agent AIXI and a
family of related URL algorithms have been de-
veloped in this setting. While numerous theoret-
ical optimality results have been proven for these
agents, there has been no empirical investigation
of their behavior to date. We present a short and
accessible survey of these URL algorithms under
a unified notation and framework, along with re-
sults of some experiments that qualitatively illus-
trate some properties of the resulting policies, and
their relative performance on partially-observable
gridworld environments. We also present an open-
source reference implementation of the algorithms
which we hope will facilitate further understanding
of, and experimentation with, these ideas.

1 Introduction
The standard approach to reinforcement learning typically as-
sumes that the environment is a fully-observable Markov De-
cision Process (MDP) [Sutton and Barto, 1998]. Many state-
of-the-art applications of reinforcement learning to large
state-action spaces are achieved by parametrizing the policy
with a large neural network, either directly (e.g. with deep
deterministic policy gradients [Silver et al., 2014]) or indi-
rectly (e.g. deep Q-networks [Mnih et al., 2013]). These ap-
proaches have yielded superhuman performance on numer-
ous domains including most notably the Atari 2600 video
games [Mnih et al., 2015] and the board game Go [Silver et
al., 2016]. This performance is due in large part to the scal-
ability of deep neural networks; given sufficient experience
and number of layers, coupled with careful optimization, a
deep network can learn useful abstract features from high-
dimensional input. These algorithms are however restricted
in the class of environments that they can plausibly solve,
∗Now at DeepMind.

due to the finite capacity of the network architecture and the
modelling assumptions that are typically made, e.g. that the
optimal policy can be well-approximated by a function of a
fully-observable state vector.

In the setting of universal reinforcement learning, we lift
the Markov, ergodic, and full-observability assumptions, and
attempt to derive algorithms to solve this general class of en-
vironments. URL aims to answer the theoretical question:
“making as few assumptions as possible about the environ-
ment, what constitutes optimal behavior?”. To this end sev-
eral Bayesian, history-based algorithms have been proposed
in recent years, central of which is the agent AIXI [Hutter,
2005]. Numerous important open conceptual questions re-
main [Hutter, 2009], including the need for a relevant, ob-
jective, and general optimality criterion [Leike and Hutter,
2015a]. As the field of artifical intelligence research moves
inexorably towards AGI, these questions grow in import and
relevance.

The contribution of this paper is three-fold: we present a
survey of these URL algorithms, and unify their presentation
under a consistent vocabulary. We illuminate these agents
with an empirical investigation into their behavior and prop-
erties. Apart from the MC-AIXI-CTW implementation [Ve-
ness et al., 2011] this is the only non-trivial set of experiments
relating to AIXI, and is the only set of experiments relating
to its variants; hitherto only their asymptotic properties have
been studied theoretically. Our third contribution is to present
a portable and extensible open-source software framework1

for experimenting with, and demonstrating, URL algorithms.
We also discuss several tricks and approximations that are re-
quired to get URL implementations working in practice. Our
desire is that this framework will be of use, both for education
and research, to the RL and AI safety communities.2

2 Literature Survey
This survey covers history-based Bayesian algorithms; we
choose history-based algorithms, as these are maximally gen-
eral, and we restrict ourselves to Bayesian algorithms, as

1The framework is named AIXIJS; the source code can be found
at http://github.com/aslanides/aixijs.

2A more comprehensive introduction and discussion including
more experimental results can be found in the associated thesis at
https://arxiv.org/abs/1705.07615.

http://github.com/aslanides/aixijs
https://arxiv.org/abs/1705.07615

they are generally both principled and theoretically tractable.
The universal Bayesian agent AIXI [Hutter, 2005] is a model
of a maximally intelligent agent, and plays a central role
in the sub-field of universal reinforcement learning (URL).
Recently, AIXI has been shown to be flawed in important
ways; in general it doesn’t explore enough to be asymptot-
ically optimal [Orseau, 2010], and it can perform poorly,
even asymptotically, if given a bad prior [Leike and Hutter,
2015a]. Several variants of AIXI have been proposed to at-
tempt to address these shortfalls: among them are entropy-
seeking [Orseau, 2011], information-seeking [Orseau et al.,
2013], Bayes with bursts of exploration [Lattimore, 2013],
MDL agents [Leike, 2016], Thompson sampling [Leike et al.,
2016], and optimism [Sunehag and Hutter, 2015].

It is worth emphasizing that these algorithms are models
of rational behavior in general environments, and are not in-
tended to be efficient or practical reinforcement learning al-
gorithms. In this section, we provide a survey of the above
algorithms, and of relevant theoretical results in the universal
reinforcement learning literature.

2.1 Notation
As we are discussing POMDPs, we distinguish between (hid-
den) states and percepts, and we take into account histories,
i.e. sequences of actions and percepts. States, actions, and
percepts use Latin letters, while environments and policies
use Greek letters. We use R as the reals, and B = {0, 1}.
For sequences over some alphabet X , X k is the set of all
sequences≈strings of length k over X . We typically use the
shorthand x1:k := x1x2 . . . xk and x<k := x1:k−1. Concate-
nation of two strings x and y is given by xy. We refer to
environments and environment models using the symbol ν,
and distinguish the true environment with µ. The symbol ε
is used to represent the empty string, while ε is used to rep-
resent a small positive number. The symbols → and are
deterministic and stochastic mappings, respectively.

2.2 The General Reinforcement Learning Problem
We begin by formulating the agent-environment interac-
tion. The environment is modelled as a partially observable
Markov Decision Process (POMDP). That is, we can assume
without loss of generality that there is some hidden state s
with respect to which the environment’s dynamics are Marko-
vian. Let the state space S be a compact subset of a finite-
dimensional vector space RN . For simplicity, assume that
the action spaceA is finite. By analogy with a hidden Markov
model, we associate with the environment stochastic dynam-
ics D : S × A S. Because the environment is in general
partially observable, we define a percept space E . Percepts
are distributed according to a state-conditional percept distri-
bution ν; as we are largely concerned with the agent’s per-
spective, we will usually refer to ν as the environment itself.

The agent selects actions according to a policy π (· |æ<t),
a conditional distribution over A. The agent-environment in-
teraction takes the form of a two-player, turn-based game;
the agent samples an action at ∈ A from its policy
π (· |æ<t), and the environment samples a percept et ∈ E
from ν (· |æ<tat). Together, they interact to produce a his-
tory: a sequence of action-percept pairs h<t ≡ æ<t :=

a1e1 . . . at−1et−1. The agent and environment together in-
duce a telescoping distribution over histories, analogous to
the state-visit distribution in RL:

νπ (æ1:t) :=

t∏
k=1

π (ak|æ<k) ν (ek|æ<kak) . (1)

In RL, percepts consist of (observation, reward) tuples so
that et = (ot, rt). We assume that the reward signal is real-
valued, rt ∈ R, and make no assumptions about the structure
of the ot ∈ O. In general, agents will have some utility func-
tion u that typically encodes some preferences about states of
the world. In the partially observable setting, the agent will
have to make inferences from its percepts to world-states. For
this reason, the utility function is a function over finite histo-
ries of the form u (æ1:t); for agents with an extrinsic reward
signal, u (æ1:t) = rt. The agent’s objective is to maximize
expected future discounted utility. We assume a general class
of convergent discount functions, γtk : N × N → [0, 1] with
the property Γtγ :=

∑∞
k=t γ

t
k < ∞. For this purpose, we

introduce the value function, which in this setting pertains to
histories rather than states:

V πuνγ (æ<t) := Eπν

[∞∑
k=t

γtku (æ1:k)

∣∣∣∣∣æ<t

]
. (2)

In words, V πuνγ is the expected discounted future sum of re-
ward obtained by an agent following policy π in environment
ν under discount function γ and utility function u. For con-
ciseness we will often drop the γ and/or µ subscripts from V
when the discount/utility functions are irrelevant or obvious
from context; by default we assume geometric discounting
and extrinsic rewards. The value of an optimal policy is given
by the expectimax expression

V ?uνγ (æ<t) = max
π

V πuνγ

= lim
m→∞

max
at∈A

∑
et∈E
· · · max

at+m∈A

∑
et+m∈E

(
t+m∑
k=t

γtku (æ1:k)

k∏
j=t

ν (ej |æ<jaj)

)
(3)

which follows from Eqs. (1) and (2) by jointly maximiz-
ing over all future actions and distributing max over

∑
. The

optimal policy is then simply given by π?ν = arg maxπ V
π
ν ;

note that in general the optimal policy may not exist if u is un-
bounded from above. We now introduce the only non-trivial
and non-subjective optimality criterion yet known for gen-
eral environments [Leike and Hutter, 2015a]: weak asymp-
totic optimality.
Definition 1 (Weak asymptotic optimality; Lattimore & Hut-
ter, 2011). Let the environment classM be a set of environ-
ments. A policy π is weakly asymptotically optimal inM if
∀µ ∈M, V πµ → V ∗µ in mean, i.e.

µπ

(
lim
n→∞

1

n

n∑
t=1

{
V ∗µ (æ<t)− V πµ (æ<t)

}
= 0

)
= 1,

where µπ is the history distribution defined in Equation (1).

AIXI is not in general asymptotically optimal, but both
BayesExp and Thompson sampling (introduced below) are.
Finally, we introduce the the notion of effective horizon,
which these algorithms rely on for their optimality.

Definition 2 (ε-Effective horizon; Lattimore & Hutter, 2014).
Given a discount function γ, the ε-effective horizon is given
by

Ht
γ (ε) := min

{
H :

Γt+Hγ

Γtγ
≤ ε

}
. (4)

In words,H is the horizon that one can truncate one’s plan-
ning to while still accounting for a fraction equal to (1− ε)
of the realizable return under stationary i.i.d. rewards.

2.3 Algorithms
We consider the class of Bayesian URL agents. The agents
maintain a predictive distribution over percepts, that we call
a mixture model ξ. The agent mixes≈marginalizes over a
class of models≈hypotheses≈environmentsM. We consider
countable nonparametric model classesM so that

ξ (e) =
∑
ν∈M

ν(e)︷ ︸︸ ︷
p (e|ν) p (ν)︸︷︷︸

wν

, (5)

where we have suppressed the conditioning on history
æ<tat for clarity. We have identified the agent’s credence in
hypothesis ν with weights wν , with wν > 0 and

∑
ν wν ≤ 1,

and we write the probability that ν assigns to percept e
as ν (e). We update with Bayes rule, which amounts to
p (ν|e) = p(e|ν)

p(e) p (ν), which induces the sequential weight

updating scheme wν ← ν(e)
ξ(e)wν ; see Algorithm 1. We will

sometimes use the notation wν|æ<t to represent the posterior
mass on ν after updating on history æ<t ∈ (A× E)

∗, and
w (· | ·) when referring explicitly to a posterior distribution.

Definition 3 (AIξ; Hutter, 2005). AIξ is the policy that is
optimal w.r.t. the Bayes mixture ξ:

π?ξ := arg max
π

V πξ

= lim
m→∞

arg max
at∈A

∑
et∈E
· · · max

am∈A

∑
em∈E

(
m∑
k=t

γkrk

k∏
j=t

∑
ν∈M

wνν (ej |æ<jaj)

 . (6)

Computational tractability aside, a central issue in
Bayesian induction lies in the choice of prior. If computa-
tional considerations aren’t an issue, we can chooseM to be
as broad as possible: the class of all lower semi-computable
conditional contextual semimeasuresMLSC

CCS [Leike and Hut-
ter, 2015b], and using the prior wν = 2−K(ν), where K
is the Kolmogorov complexity. This is equivalent to using
Solomonoff’s universal prior [Solomonoff, 1978] over strings
M (x) :=

∑
q : U(q)=x∗ 2−|q|, and yields the AIXI model.

AIξ is known to not be asymptotically optimal [Orseau,
2010], and it can be made to perform badly by bad priors
[Leike and Hutter, 2015a].

Algorithm 1 Bayesian URL agent [Hutter, 2005]
Inputs: Model classM = {ν1, . . . , νK}; prior w : M →

(0, 1); history æ<t.

1: function ACT(π)
2: Sample and perform action at ∼ π(·|æ<t)
3: Receive et ∼ ν(· |æ<tat)
4: for ν ∈M do
5: wν ← ν(et|æ<tat)

ξ(et|æ<tat)wν
6: end for
7: t← t+ 1
8: end function

Knowledge-seeking agents (KSA). Exploration is one of
the central problems in reinforcement learning [Thrun, 1992],
and a principled and comprehensive solution does not yet
exist. With few exceptions, the state-of-the-art has not yet
moved past ε-greedy exploration [Bellemare et al., 2016;
Houthooft et al., 2016; Pathak et al., 2017; Martin et al.,
2017]. Intrinsically motivating an agent to explore in envi-
ronments with sparse reward structure via knowledge-seeking
is a principled and general approach. This removes the de-
pendence on extrinsic reward signals or utility functions, and
collapses the exploration-exploitation trade-off to simply ex-
ploration. There are several generic ways in which to for-
mulate a knowledge-seeking utility function for model-based
Bayesian agents. We present three, due to Orseau et al.:
Definition 4 (Kullback-Leibler KSA; Orseau, 2014). The
KL-KSA is the Bayesian agent whose utility function is given
by the information gain

uKL (æ1:t) = IG (et) (7)
:= Ent (w (·|æ<t))− Ent (w (·|æ1:t)) . (8)

Informally, the KL-KSA gets rewarded for reducing the en-
tropy (uncertainty) in its model. Now, note that the entropy in
the Bayesian mixture ξ can be decomposed into contributions
from uncertainty in the agent’s beliefswν and noise in the en-
vironment ν. That is, given a mixture ξ and for some percept
e such that 0 < ξ (e) < 1, and suppressing the history æ<tat,

ξ (e) =
∑
ν∈M

uncertainty︷︸︸︷
wν ν (e)︸︷︷︸

noise

.

That is, if 0 < wν < 1, we say the agent is uncertain
about whether hypothesis ν is true (assuming there is ex-
actly one µ ∈ M that is the truth). On the other hand, if
0 < ν (e) < 1 we say that the environment ν is noisy or
stochastic. If we restrict ourselves to deterministic environ-
ments such that ν (e) ∈ {0, 1} ∀ν ∀e, then ξ (·) ∈ (0, 1) im-
plies that wν ∈ (0, 1) for at least one ν ∈M. This motivates
us to define two agents that seek out percepts to which the
mixture ξ assigns low probability; in deterministic environ-
ments, these will behave like knowledge-seekers.

Definition 5 (Square & Shannon KSA; Orseau, 2011). The
Square and Shannon KSA are the Bayesian agents with utility
u (æ1;t) given by −ξ (æ1:t) and − log ξ (æ1:t) respectively.

Square, Shannon, and KL-KSA are so-named because
of the form of the expression when one computes the ξ-
expected utility: this is clear for Square and Shannon, and
for KL it turns out that the expected information gain is
equal to the posterior weighted KL-divergence Eξ [IG] =∑
ν∈M wν|eKL (ν‖ξ) [Lattimore, 2013]. Note that as far

as implementation is concerned, these knowledge-seeking
agents differ from AIξ only in their utility functions.

The following two algorithms (BayesExp and Thompson
sampling) are RL agents that add exploration heuristics so
as to obtain weak asymptotic optimality, at the cost of in-
troducing an exploration schedule {ε1, ε2, . . . } which can be
annealed, i.e. εt ≤ εt−1 and εt → 0 as t→∞.

BayesExp. BayesExp (Algorithm 2) augments the Bayes
agent AIξ with bursts of exploration, using the information-
seeking policy of KL-KSA. If the expected information
gain exceeds a threshold εt, the agent will embark on an
information-seeking policy π?,IGξ = arg maxπ V

π,IG
ξ for one

effective horizon, where IG is defined in Equation (7).

Algorithm 2 BayesExp [Lattimore, 2013]
Inputs: Model classM; priorw : M→ (0, 1); exploration

schedule {ε1, ε2, . . . }.

1: loop
2: if V ∗,IGξ (æ<t) > εt then
3: for i = 1→ Ht

γ (εt) do

4: ACT
(
π?,IGξ

)
5: end for
6: else
7: ACT

(
π?ξ

)
8: end if
9: end loop

Thompson sampling. Thompson sampling (TS) is a very
common Bayesian sampling technique, named for [Thomp-
son, 1933]. In the context of general reinforcement learn-
ing, it can be used as another attempt at solving the explo-
ration problems of AIξ. From Algorithm 3, we see that TS
follows the ρ-optimal policy for an effective horizon before
re-sampling from the posterior ρ ∼ w (·|æ<t). This commits
the agent to a single hypothesis for a significant amount of
time, as it samples and tests each hypothesis one at a time.

MDL. The minimum description length (MDL) principle
is an inductive bias that implements Occam’s razor, originally
attributed to [Rissanen, 1978]. The MDL agent greedily picks
the simplest probable unfalsified environment σ in its model
class and behaves optimally with respect to that environment
until it is falsified. If µ ∈ M, Algorithm 4 converges with
σ → µ. Note that line 2 of Algorithm 4 amounts to maximum
likelihood regularized by the Kolmogorov complexity K.

Algorithm 3 Thompson Sampling [Leike et al., 2016]
Inputs: Model classM; priorw : M→ (0, 1); exploration

schedule {ε1, ε2, . . . }.

1: loop
2: Sample ρ ∼ w (·|æ<t)
3: d← Ht (εt)
4: for i = 1→ Ht (εt) do
5: ACT

(
π?ρ
)

6: end for
7: end loop

Algorithm 4 MDL Agent [Lattimore and Hutter, 2011].
Inputs: Model classM; prior w : M→ (0, 1), regularizer

constant λ ∈ R+.

1: loop
2: σ ← arg minν∈M

[
K(ν)− λ

∑t
k=1 log ν(ek|æ<kak)

]
3: ACT (π?σ)
4: end loop

3 Implementation
In this section, we describe the environments that we use in
our experiments, introduce two Bayesian environment mod-
els, and discuss some necessary approximations.

3.1 Gridworld
We run our experiments on a class of partially-observable
gridworlds. The gridworld is an N ×N grid of tiles; tiles can
be either empty, walls, or stochastic reward dispenser tiles.
The action space is given by A = {←,→, ↑, ↓, ∅}, which
move the agent in the four cardinal directions or stand still.
The observation space is O = B4, the set of bit-strings of
length four; each bit is 1 if the adjacent tile in the correspond-
ing direction is a wall, and is 0 otherwise. The reward space
is small, and integer-valued: the agent receives r = −1 for
walking over empty tiles, r = −10 for bumping into a wall,
and r = 100 with some fixed probability θ if it is on a reward
dispenser tile. There is no observation to distinguish empty
tiles from dispensers. In this environment, the optimal pol-
icy (assuming unbounded episode length) is to move to the
dispenser with highest payout probability θ and remain there,
subsequently collecting 100θ reward per cycle in expectation
(the environment is non-episodic). In all cases, the agent’s
starting position is at the top left corner at tile (0, 0).

This environment has small action and percept spaces and
relatively straightforward dynamics. The challenge lies in
coping with perceptual aliasing due to partial observability,
dealing with stochasticity in the rewards, and balancing ex-
ploration and exploitation. In particular, for a gridworld with
n dispensers with θ1 > θ2 > θn, the gridworld presents a
non-trivial exploration/exploitation dilemma; see Figure 1.

3.2 Models
Generically, we would like to construct a Bayes mixture
over a model class M that is as rich as possible. Since

we are using a nonparametric model, we are not concerned
with choosing our model class so as to arrange for conjugate
prior/likelihood pairs. One might consider constructing M
by enumerating all N ×N gridworlds of the class described
above, but this is infeasible as the size of such an enumera-
tion explodes combinatorially: using just two tile types we
would run out of memory even on a modest 6 × 6 gridworld
since |M| = 236 ≈ 7 × 1010. Instead, we choose a dis-
crete parametrization D that enumerates an interesting subset
of these gridworlds. One can think of D as describing a set
of parameters about which the agent is uncertain; all other
parameters are held constant, and the agent is fully informed
of their value. We use this to create the first of our model
classes,Mloc. The second,MDirichlet, uses a factorized distri-
bution rather than an explicit mixture to avoid this issue.

Mloc. This is a Bayesian mixture parametrized by goal
location; the agent knows the layout of the gridworld and
knows its dynamics, but is uncertain about the location of the
dispensers, and must explore the world to figure out where
they are. We construct the model class by enumerating each
of these gridworlds. For square gridworlds of side length N ,
|Mloc| = N2. From Algorithm 1 the time complexity of our
Bayesian updates is O (|M|) = O

(
N2
)
.

MDirichlet. The Bayes mixture Mloc is a natural class of
gridworlds to consider, but it is quite constrained in that it
holds the maze layout and dispenser probabilities fixed. We
seek a model that allows the agent to be uncertain about these
features. To do this we move away from the mixture formal-
ism so as to construct a bespoke gridworld model.

Let sij ∈ {EMPTY,WALL,DISPENSER, . . . } be the state
of tile (i, j) in the gridworld. The joint distribution over all
gridworlds s11, . . . , sNN factorizes across tiles, and the state-
conditional percept distributions are Dirichlet over the four
tile types. We effectively use a Haldane prior – Beta (0, 0)
– with respect to WALLs and a Laplace prior – Beta (1, 1) –
with respect to DISPENSERs. This model class allows us to
make the agent uncertain about the maze layout, including the
number, location, and payout probabilities of DISPENSERs.
In contrast toMloc, model updates areO(1) time complexity,
makingMDirichlet a far more efficient choice for large N .

This model class incorporates more domain knowledge,
and allows the agent to flexibly and cheaply represent a much
larger class of gridworlds than using the naive enumeration
Mloc. Importantly, MDirichlet is still a Bayesian model – we
simply lose the capacity to represent it explicitly as a mixture
of the form of Equation (5).

3.3 Agent Approximations
Planning. In contrast to model-free agents, in which the
policy is explicitly represented by e.g. a neural network,
our model-based agents need to calculate their policy from
scratch at each time step by computing the value function
in Equation (6). We approximate this infinite forsight with
a finite horizon m > 0, and we approximate the expecta-
tion using Monte Carlo techniques. We implement the ρUCT
algorithm [Silver and Veness, 2010; Veness et al., 2011],
a history-based version of the UCT algorithm [Kocsis and
Szepesvári, 2006]. UCT is itself a variant of Monte Carlo
Tree Search (MCTS), a commonly used planning algorithm

originally developed for computer Go. The key idea is to try
to avoid wasting time considering unpromising sequences of
actions; for this reason the action selection procedure within
the search tree is motivated by the upper confidence bound
(UCB) algorithm [Auer et al., 2002]:

aUCT = arg max
a∈A

(
1

m (β − α)
V̂ (æ<ta) + C

√
log T (æ<t)

T (æ<ta)

)
,

(9)
where T (æ<t) is the number of times the sampler has

reached history æ<t, V̂ (æ<ta) is the current estimator of
V (æ<ta), m is the planning horizon, C is a free parame-
ter (usually set to

√
2), and α and β are the minimum and

maximum rewards emitted by the environment. In this way,
the MCTS planner approximates the expectimax expression
in Equation (3), and effectively yields a stochastic policy ap-
proximating π defined in Equation (6) [Veness et al., 2011].

In practice, MCTS is very computationally expensive;
when planning by forward simulation with a Bayes mix-
ture ξ over M, the worst-case time-complexity of ρUCT is
O (κm |M| |A|), where κ is the Monte Carlo sample bud-
get. It is important to note that ρUCT treats the environment
model ξ as a black box: it is agnostic to the environment’s
structure, and so makes no assumptions or optimizations. For
this reason, planning in POMDPs with ρUCT is quite waste-
ful: due to perceptual aliasing, the algorithm considers many
plans that are cyclic in the (hidden) state space of the POMDP.
This is unavoidable, and means that in practice ρUCT can be
very inefficient even in small environments.

Effective horizon. Computing the effective horizon ex-
actly for general discount functions is not possible in gen-
eral, although approximate effective horizons have been de-
rived for some common choices of γ [Lattimore, 2013]. For
most realistic choices of γ and ε, the effective horizonHγ (ε)
is significantly greater than the planning horizon m we can
feasibly use due to the prohobitive computational require-
ments of MCTS [Lamont et al., 2017]. For this reason we
use the MCTS planning horizon m as a surrogate for Ht

γ . In
practice, all but small values of m are feasible, resulting in
short-sighted agents with (depending on the environment and
model) suboptimal and highly stochastic policies.

Utility bounds. Recall from Equation (9) that the
ρUCT value estimator V̂ (æ1:t) is normalized by a factor of
m (β − α). For reward-based reinforcement learners, α and
β are part of the metadata provided to the agent by the en-
vironment at the beginning of the agent-environment inter-
action. For utility-based agents such as KSA, however, re-
wards are generated intrinsically, and so the agent must cal-
culate for itself what range of utilities it expects to see, so
as to correctly normalize its value function for the purposes
of planning. For Square and KL-KSA, it is possible to get
loose utility bounds [α, β] by making some reasonable as-
sumptions. Since uSquare (e) = −ξ (e), we have the bound
−1 ≤ uSquare ≤ 0. One can argue that for the vast majority
of environments this bound will be tight above, since there
will exist percepts ef that the agent’s model has effectively
falsified such that ξ (ef)→ 0 as t→∞.

In the case of the KL-KSA, recall that uKL (e) =

Figure 1: Left: An example 10 × 10 gridworld environment, with
the agent’s posterior wν|æ<t over Mloc superimposed. Grey tiles
are walls, and the agent’s posterior is visualized in green; darker
shades correspond to tiles with greater probability mass. Here, AIξ
has mostly falsified the hypotheses that the goal is in the top-left cor-
ner of the maze, and so is motivated to search deeper in the maze,
as its model assigns greater mass to unexplored areas. In the ground
truth environment µ, the dispenser is located at the tile represented
by the orange disc. Right: A 20 × 20 gridworld that is too large to
feasibly model withMloc, with the agent’s posterior overMDirichlet
superimposed. White tiles are unknown, pale blue tiles are known to
be walls, and purple tiles are known to not be walls; darker shades of
purple correspond to lower credence that a DISPENSER is present.
Notice that despite exploring much of the maze, AIξ has not discov-
ered the profitable reward dispenser located in the upper centre; it
has instead settled for a suboptimal dispenser in the lower part of
the maze, illustrating the exploration-exploitation tradeoff.

Ent (w (·)) − Ent (w (·|e)). If we assume a uniform prior
w (·|ε), then we have 0 ≤ uKL (e) ≤ Ent (w (·|ε)) ∀e ∈ E
since entropy is non-negative over discrete model classes.

Now, in general uShannon = − log ξ is unbounded above
as ξ → 0, so unless we can a priori place lower bounds on
the probability that ξ will assign to an arbitrary percept e ∈ E ,
we cannot bound its utility function and therefore cannot cal-
culate the normalization in Equation (9). Therefore, planning
with MCTS with the Shannon KSA will be problematic in
many environments, as we are forced to make an arbitrary
choice of upper bound β.

4 Experiments
We run experiments to investigate and compare the agents’
learning performance. Except where otherwise stated, the fol-
lowing experiments were run on a 10 × 10 gridworld with a
single dispenser with θ = 0.75. We average training score
over 50 simulations for each agent configuration, and we use
κ = 600 MCTS samples and a planning horizon of m = 6.
In all cases, discounting is geometric with γ = 0.99. In all
cases, the agents are initialized with a uniform prior.

We plot the training score averaged over N = 50 simu-
lation runs, with shaded areas corresponding to one sigma.
That is, we plot s̄t = 1

tN

∑N
i=1

∑t
j=1 sij where sij is the in-

stantaneous score at time j in run i: this is either reward in the
case of reinforcement learners, or fraction of the environment
explored in the case of KSA.

Model class. AIξ performs significantly better using the
Dirichlet model than with the mixture model. Since the
Dirichlet model is less constrained (in other words, less in-
formed), there is more to learn, and the agent is more moti-

Figure 2: Performance of AIξ is dependent on model class (Mloc
in red,MDirichlet in blue, ‘Cycles’≡ t). Left: Exploration fraction,
f = 100 × Nvisited

Nreachable
. Note that MC-AIXI and MC-AIXI-Dirichlet

both effectively stop exploring quite early on, at around t ≈ 150.
Right: Average reward.

vated to explore, and is less susceptible to getting stuck in lo-
cal maxima. From Figure 2, we see that MC-AIXI-Dirichlet
appears to have asymptotically higher variance in its aver-
age reward than MC-AIXI. This makes sense since the agent
may discover the reward dispenser, but be subsequently in-
centivized to move away from it and keep exploring, since its
model still assigns significant probability to there being bet-
ter dispensers elsewhere; in contrast, underMloc, the agent’s
posterior immediately collapses to the singleton once it dis-
covers a dispenser, and it will greedily stay there ever after.
This is borne out by Figure 2, which shows that, on aver-
age, AIXI explores significantly more of the gridworld using
MDirichlet than withMloc. These experiments illustrate how
AIξ’s behavior depends strongly on the model classM.

KSA. As discussed in Section 2.3, the Shannon- and
Square-KSA are entropy-seeking; they are therefore suscepti-
ble to environments in which a noise source is constructed so
as to trap the agent in a very suboptimal exploratory policy,
as the agent gets ‘hooked on noise’ [Orseau et al., 2013]. The
noise source is a tile that emits uniformly random percepts
over a sufficiently large alphabet such that the probability of
any given percept ξ (e) is lower (and more attractive) than
anything else the agent expects to experience by exploring.

KL-KSA explores more effectively than Square- and
Shannon-KSA in stochastic environments; see Figure 3. Un-
der the mixture modelMloc, the posterior collapses to a sin-
gleton once the agent finds the goal. Given a stochastic dis-
penser, this becomes the only source of entropy in the envi-
ronment, and so Square- and Shannon-KSA will remain at
the dispenser. In contrast, once the posterior collapses to the
minimum entropy configuration, there is no more informa-
tion to be gained, and so KL-KSA will random walk (break-
ing ties randomly), and outperform Square and Shannon-
KSA marginally in exploration. This difference becomes
more marked under the Dirichlet model; although all three
agents perform better under MDirichlet due to its being less
constrained and having more entropy than Mloc, KL-KSA
outperforms the others by a considerable margin; KL-KSA is
motivated to explore as it anticipates considerable changes to
its model by discovering new areas; see Figure 4.

Exploration. Thompson sampling (TS) is asymptotically
optimal in general environments, a property that AIξ lacks.
However, in our experiments on gridworlds, TS performs
poorly in comparison to AIξ; see Figure 5. This is caused

Figure 3: Intrinsic motivation is highly model-dependent, and the
information-seeking policy outperforms entropy-seeking in stochas-
tic environments. Left:Mloc. Right:MDirichlet.

by two issues: (1) The parametrization of Mloc means that
the ρ-optimal policy for any ρ ∈ Mloc is to seek out some
tile (i, j) and wait there for one planning horizon m. For all
but very low values of θ or m, this is an inefficient strategy
for discovering the location of the dispenser. (2) The per-
formance of TS is strongly constrained by limitations of the
planner. If the agent samples an environment ρ which places
the dispenser outside its planning horizon – that is, more than
m steps away – then the agent will not be sufficiently far-
sighted to do anything useful. In contrast, AIξ is motivated to
continually move around the maze as long as it hasn’t yet dis-
covered the dispenser, since ξ will assign progressively higher
mass to non-visited tiles as the agent explores more.

Thompson sampling is computationally cheaper than AIξ
due to the fact that it plans with only one environment model
ρ ∈ M, rather than with the entire mixture ξ. When given
a level-playing field with a time budget rather than a samples
budget, the performance gap is reduced; see Figure 5b.

Occam bias. Since each environment ν ∈ Mloc differs by
a single parameter and has otherwise identical source code,
we cannot use a Kolmogorov complexity surrogate to differ-
entiate them. Instead we opt to order by the environment’s
index in a row-major order enumeration. On simple deter-
ministic environments (effectively, λ = 0 in Algorithm 4),
the MDL agent significantly outperforms the Bayes agent AIξ
with a uniform prior overM; see Figure 6. This is because
the MDL agent is biased towards environments with low in-
dices; using theMloc model class, this corresponds to envi-
ronments in which the dispenser is close to the agent’s start-

Figure 4: KL-KSA-Dirichlet is highly motivated to explore every
reachable tile in the gridworld. Left (t = 36): The agent begins ex-
ploring, and soon stumbles on the dispenser tile. Center (t = 172):
The agent is motivated only by information gain, and so ignores
the reward dispenser, opting instead to continue exploring the maze.
Right (t = 440): The agent has now discovered> 90% of the maze,
and continues to gain information from tiles it has already visited as
it updates its independent Laplace estimators for each tile.

Figure 5: TS typically underperforms AIξ. Left: Both agents are
given the same MCTS planning parameters: m = 6, and a samples
budget of κ = 600. Here, Thompson sampling is unreliable and
lacklustre, achieving low mean reward with high variance. Right:
When each agent is given a horizon of m = 10 and a time budget
of tmax = 100 milliseconds per action, TS performs comparatively
better, as the gap to AIξ is narrowed.

ing position. In comparison, AIξ’s uniform prior assigns sig-
nificant probability mass to the dispenser being deep in the
maze. This motivates it to explore deeper in the maze, often
neglecting to thoroughly exhaust the simpler hypotheses.

5 Conclusion
In this paper we have presented a short survey of state-of-
the-art universal reinforcement learning algorithms, and de-
veloped experiments that demonstrate the properties of their
resulting exploration strategies. We also discuss the de-
pendence of the behavior of Bayesian URL agents on the
construction of the model class M, and describe some of
the tricks and approximations that are necessary to make
Bayesian agents work with ρUCT planning. We have made
our implementation open source and available for further de-
velopment and experimentation, and anticipate that it will be
of use to the RL community in the future.

Acknowledgements
We wish to thank Sean Lamont for his assistance in develop-
ing the gridworld visualizations used in Figures 1 and 4. We
also thank Jarryd Martin and Suraj Narayanan S for proof-
reading early drafts of the manuscript. This work was sup-
ported in part by ARC DP150104590.

Figure 6: Left: MDL vs uniform-prior AIξ in a deterministic
(θ = 1) gridworld. Right: AIξ compared to the (MC-approximated)
optimal policy AIµ with θ = 0.75. Note that MC-AIXI paradoxi-
cally performs worse in the deterministic setting than the stochastic
one; this is because the posterior over ξ very quickly becomes sparse
as hypotheses are rejected, making planning difficult for small m.

References
[Auer et al., 2002] Peter Auer, Nicolò Cesa-Bianchi, and

Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine Learning, 47(2-3):235–256, 2002.

[Bellemare et al., 2016] Marc G. Bellemare, Sriram Srini-
vasan, Georg Ostrovski, et al. Unifying count-based ex-
ploration and intrinsic motivation. CoRR, abs/1606.01868,
2016.

[Houthooft et al., 2016] Rein Houthooft, Xi Chen, Yan
Duan, et al. VIME: Variational information maximizing
exploration. In Advances in Neural Information Process-
ing Systems 29, pages 1109–1117. 2016.

[Hutter, 2005] Marcus Hutter. Universal Artificial Intelli-
gence. Springer, 2005.

[Hutter, 2009] Marcus Hutter. Open problems in universal
induction & intelligence. Algorithms, 3(2):879–906, 2009.

[Kocsis and Szepesvári, 2006] Levente Kocsis and Csaba
Szepesvári. Bandit based monte-carlo planning. In Eu-
ropean Conference on Machine Learning, pages 282–293,
2006.

[Lamont et al., 2017] Sean Lamont, John Aslanides, Jan
Leike, and Marcus Hutter. Generalised discount functions
applied to a Monte-Carlo AImu implementation. In Au-
tonomous Agents and Multiagent Systems, pages 1589–
1591, 2017.

[Lattimore, 2013] Tor Lattimore. Theory of General Rein-
forcement Learning. PhD thesis, ANU, 2013.

[Leike and Hutter, 2015a] Jan Leike and Marcus Hutter. Bad
universal priors and notions of optimality. In Conference
on Learning Theory, pages 1244–1259, 2015.

[Leike and Hutter, 2015b] Jan Leike and Marcus Hutter.
On the computability of Solomonoff induction and
knowledge-seeking. In Algorithmic Learning Theory,
pages 364–378, 2015.

[Leike et al., 2016] Jan Leike, Tor Lattimore, Laurent
Orseau, and Marcus Hutter. Thompson sampling is asymp-
totically optimal in general environments. In Uncertainty
in Artificial Intelligence, 2016.

[Leike, 2016] Jan Leike. Nonparametric General Reinforce-
ment Learning. PhD thesis, ANU, 2016.

[Martin et al., 2017] Jarryd Martin, Suraj Narayanan S, Tom
Everitt, and Marcus Hutter. Count-based exploration in
feature space for reinforcement learning. In Proceedings
of the Twenty-Sixth International Joint Conference on Ar-
tificial Intelligence, IJCAI’17. AAAI Press, 2017.

[Mnih et al., 2013] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, et al. Playing Atari with deep reinforcement
learning. Technical report, Google DeepMind, 2013.

[Mnih et al., 2015] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, et al. Human-level control through deep re-
inforcement learning. Nature, 518(7540):529–533, 2015.

[Orseau et al., 2013] Laurent Orseau, Tor Lattimore, and
Marcus Hutter. Universal knowledge-seeking agents for

stochastic environments. In Algorithmic Learning Theory,
pages 158–172. Springer, 2013.

[Orseau, 2010] Laurent Orseau. Optimality issues of univer-
sal greedy agents with static priors. In Algorithmic Learn-
ing Theory, pages 345–359. Springer, 2010.

[Orseau, 2011] Laurent Orseau. Universal knowledge-
seeking agents. In Algorithmic Learning Theory, pages
353–367. Springer, 2011.

[Pathak et al., 2017] D. Pathak, P. Agrawal, A. A. Efros,
and T. Darrell. Curiosity-driven Exploration by Self-
supervised Prediction. ArXiv e-prints, May 2017.

[Rissanen, 1978] Jorma Rissanen. Modeling by shortest data
description. Automatica, 14(5):465–471, 1978.

[Silver and Veness, 2010] David Silver and Joel Veness.
Monte-Carlo planning in large POMDPs. In Advances in
Neural Information Processing Systems 23, pages 2164–
2172. 2010.

[Silver et al., 2014] David Silver, Guy Lever, Nicolas Heess,
et al. Deterministic policy gradient algorithms. In Tony
Jebara and Eric P. Xing, editors, International Conference
on Machine Learning, pages 387–395, 2014.

[Silver et al., 2016] David Silver, Aja Huang, Chris J Mad-
dison, et al. Mastering the game of Go with deep neu-
ral networks and tree search. Nature, 529(7587):484–489,
2016.

[Solomonoff, 1978] Ray Solomonoff. Complexity-based in-
duction systems: Comparisons and convergence theorems.
IEEE Transactions on Information Theory, 24(4):422–
432, 1978.

[Sunehag and Hutter, 2015] Peter Sunehag and Marcus Hut-
ter. Rationality, optimism and guarantees in general re-
inforcement learning. Journal of Machine Learning Re-
search, 16:1345–1390, 2015.

[Sutton and Barto, 1998] Richard Sutton and Andrew Barto.
Reinforcement Learning: An Introduction. MIT, 1998.

[Thompson, 1933] William R Thompson. On the likelihood
that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, pages 285–294,
1933.

[Thrun, 1992] S. Thrun. The role of exploration in learn-
ing control. In Handbook for Intelligent Control: Neural,
Fuzzy and Adaptive Approaches. 1992.

[Veness et al., 2011] Joel Veness, Kee Siong Ng, Marcus
Hutter, William Uther, and David Silver. A Monte-Carlo
AIXI approximation. Journal of Artificial Intelligence Re-
search, 40(1):95–142, 2011.

	1 Introduction
	2 Literature Survey
	2.1 Notation
	2.2 The General Reinforcement Learning Problem
	2.3 Algorithms

	3 Implementation
	3.1 Gridworld
	3.2 Models
	3.3 Agent Approximations

	4 Experiments
	5 Conclusion

