
An Introduction to
Universal Artificial Intelligence

Marcus Hutter

David Quarel

Elliot Catt

24 December 2024
(� Christmas � Edition �)

“Is it possible to mathematically define and study artificial superintelligence? If that sounds
like an interesting question, then this is definitely the book for you. Starting with probability
theory, complexity theory and sequence prediction, it takes you right through to the safety
of superintelligent machines.”

– Shane Legg, co-founder of DeepMind

“This is seminal work!”

– Roman Yampolskiy, Tenured Associate Professor at the University of Louisville, USA

“This is an important, timely, high-quality book by highly respected authors.”

– Jürgen Schmidhuber, Director of the AI Initiative at King Abdullah University of Science
and Technology, Scientific Director at the Swiss AI Lab IDSIA, Co-Founder & Chief Scientist
at NNAISENSE

“Clearly very strongly based on mathematical foundations. This offers a theoretical depth
which will be of value in research, education (at an appropriate level), and for advanced
practitioners.”

– Alan Dix, Director of the Computational Foundry at Swansea University and Professorial
Fellow at Cardiff Metropolitan University

Dedicated to all transhumans
and descendants of AIXI

Preface

This book provides a gentle introduction to Universal Artificial Intelligence (UAI), a theory
that provides a formal underpinning of what it means for an agent to act intelligently in
an unknown environment. First presented in [Hut00, Hut05b], UAI offers a framework in
which virtually all other AI problems can be formulated, and a theory of how to solve
them. UAI unifies ideas from sequential decision theory, Bayesian inference, and algorithmic
information theory to construct AIXI, an optimal reinforcement learning agent that learns to
act optimally in unknown environments. AIXI is the theoretical gold standard for intelligent
behavior.

The book covers both the theoretical and practical aspects of UAI. Bayesian updating
can be done efficiently with context tree weighting, and planning can be approximated by
sampling with Monte Carlo tree search. It provides algorithms for the reader to implement,
and experimental results to compare against. These algorithms are used to approximate
AIXI. The book ends with a philosophical discussion of Artificial General Intelligence: Can
intelligent agents even be constructed? Is it inevitable that they will be constructed? What
are some potential consequences of their construction?
Introduction. Chapter 1 starts with an overview of the problem of Artificial Intelligence
(AI) and provides motivation for why we want to solve this problem. We then go on to
explain informally the Universal Artificial Intelligence (UAI) approach, as well as the various
benefits of this approach compared to other directions for solving the AI problem. Chapter 2
introduces the mathematical background and required prerequisites. This includes (Bayesian)
probability theory and statistics, information theory, computability theory, and (algorithmic)
information theory.
Algorithmic Prediction. Chapter 3 then goes on to discuss the topic of algorithmic
prediction. Specifically, we provide theoretical results concerning the universal Bayesian
mixture and how it theoretically solves the prediction problem. One drawback of the
Bayesian mixture is that it can be difficult to compute. Chapter 4 provides a cohesive
explanation of a practical and implementable algorithm, known as Context Tree Weighting
(CTW), for computing the Bayesian mixture for prediction. Chapter 5 extends the CTW
algorithm in various ways to allow for more general prediction.
Family of Universal Agents. Chapter 6 introduces the history-based framework of
general reinforcement learning, and demonstrates how the AI problem can be captured
in this framework. Chapter 7 provides the Bayesian solution to the general reinforcement
learning problem, known as AIXI, and shows that it is the most intelligent agent. Chapter 8
discusses various measures and notions of optimality in the general reinforcement learning
framework and provides insight as to why some optimality notions may be preferred over
others. Chapter 9 introduces the family of universal agents, many of which are augmentations
and variations of the agent AIXI, and explains how each of these agents extends the theory
of UAI. Chapter 10 introduces concepts from game theory and explains how they can be
applied to a multi-agent perspective on the general reinforcement learning problem. In

viii

ix

particular, a solution to the Grain of Truth problem is presented.

Approximating Universal Agents. Chapter 11 describes a straightforward approximation
of the AIXI agent which is able to learn and play simple games. Chapter 12 then moves on
to a more sophisticated approximation of AIXI based on the CTW algorithm and Monte
Carlo Tree Search, which is able to perform well in more complex games. We provide
explanations of various other approximations of AIXI and UAI that have been proposed,
and motivate them via discussion of their strengths and weaknesses. Chapter 13 investigates
the (in)computability of universal agents and presents the closest computable approximation
of AIXI, known as AIXItl.

Alternative Approaches. Chapter 14 takes an in-depth look at an alternative approach to
the general reinforcement learning problem, called Feature Reinforcement Learning. We show
that following this approach is appealing from both a theoretical and practical perspective.

Safety and Discussion. Chapter 15 gives an overview of many of the problems related
to the safe construction of super-intelligent agents and how many of these problems can
be studied within the UAI framework. We go over some potential solutions to these
problems that have been proposed in the UAI framework. Chapter 16 discusses many of
the philosophical aspects of what has been covered thus far, including arguments for and
against the possible existence of an artificial general intelligence, and the philosophy and
mathematics of intelligence itself.

Reader’s & Lecturer’s Guide and Course Outline

This book is suitable for upper undergraduate students. It provides an extensive chapter
to fill in the required mathematics, probability, information, and computability theory
background. Further material (slides, code, errata, updates, ...) can be found on the book’s
website: hutter1.net/ai/uaibook2.htm. Feedback of any kind is welcome. The website also
contains information on how you could contribute if you are inclined to do so.

We have aimed at making the chapters as independent as possible. The approximate
dependency is shown in the graph below. All chapters build on the mathematics, statistics,
and information theory introduced in the extensive background Chapter 2, though most
of the ASI-safety and Philosophy chapters can be appreciated without. All agent chapters
in the second half of the book depend on the Bayesian/universal agent AIXI introduced in
Chapters 6 and 7.

The entirety of this book would be far too much for a single-semester university course.
Chapter 7 introducing AIXI is obviously core, and could demarcate Semester 1 from Semester
2. One could also split the book by discipline: some chapters are more mathematical (squares),
others are more algorithmic (triangles), and a few are more philosophical (circles).

1 2

3

45

6 7

8 9 10

1112

13

14

15 16

hutter1.net/ai/uaibook2.htm

x

Exercise Classification

Exercises of different motivation and difficulty are included at the end of each chapter. We
use Knuth’s rating scheme for exercises [Knu73] in slightly adapted form (applicable if the
material in the corresponding chapter has been understood). In-between values are possible.

C00 Very easy. Solvable from the top of your head.
C10 Easy. Needs 15 minutes to think, possibly pencil and paper.
C20 Average. May take 1–2 hours to answer completely.
C30 Moderately difficult or lengthy. May take several hours to a day.
C40 Quite difficult or lengthy. Often a significant research result.
C50 Open research problem. An obtained solution should be published.

The rating is possibly supplemented by the following qualifier(s):

i Especially interesting or instructive problem.
m Requires more or higher math than used or developed here.
o Open problem – could be worth publishing (see web for prizes).
s Solved problem with published solution.
u Unpublished result by the author.
c Exercise involves Coding.

The exercises represent an important part of this book. They have been placed at the end
of each chapter in order to keep the main text better focused, with an exception for the
background chapter, where the exercises are at the end of each section.

Difference to the First UAI Book

The technical report [Hut00] first introduced the theory of Universal AI. After four years
of dedicated research later it had grown to nearly 300 pages, which turned into the first
book on UAI [Hut05b]. That dense monograph reported (at the time) cutting-edge research,
primarily for researchers with strong theoretical background. The book you are currently
holding (or reading on a screen) is not a revision or expansion or second edition. It has been
written from scratch, and may be regarded as both a prequel and a sequel. The overlap
has been deliberately kept minimal. It grew out of lecture notes over many years, which
included all necessary prerequisites and kept up-to-date with the development of the field.

As such, the first book is not obsolete, but contains a treasure trove of insights and
advanced material that didn’t make it into the current book. Concretely, the following
topics in [Hut05b] are not covered in [HQC24]: Cox’s axioms for beliefs, (non)existence
of universal (semi)measures for the various computability concepts, (non)convergence on
Martin-Löf-random sequences, application of loss bounds to games of chance, lower error
prediction bounds, multi-step predictions, (prediction bounds for) continuous parametric
classes, comparison of Bayesian prediction to prediction with expert advice, and reinforcement
learning to adaptive control theory; factorizable=episodic environments, the (in)adequacy
of optimality notions for agents, self-optimizingness in ergodic MDPs, more discussion on
the choice of (effective) horizon, how AIXI behaves for sequence prediction, strategic games,
function optimization, and supervised learning, the fastest algorithm for all well-defined
problems and its precursor Levin search, a comparison to other RL/A(G)I approaches, how
to incorporate (universal) prior knowledge, a review of the assumptions, problems, and
limitations of UAI; a discussion of the existence of objective probabilities, the free will
paradox (with solution), non-computable physics, brains, evolution, and Chaitin’s number
of wisdom. Each chapter ends with research problems rather than exercises, a good fraction
of them still waiting to be solved.

xi

Acknowledgements

We would like to thank all people who, in one way or another, have contributed to the
success of this book. Apologies for any omissions. First and foremost, we would like to thank
Amy Zhang. You have done so much to help with this book, and without your help we would
never have been able to make this book. Additionally, we would like to thank Gregoire
Deletang, Cole Wyeth, Aram Ebtekar, Samuel Alexander, and Tor Lattimore for providing
a tremendous amount of feedback, each grinding through nearly the whole book. Their
feedback significantly improved the book’s quality. Thank you so much! Sultan Majeed,
Laurent Orseau, Tom Everitt, Matthew Aitchison, and Joel Veness also gave valuable
feedback on various chapters. Long-term thanks go to Jürgen Schmidhuber, who strongly
believed in me (MH) and my ideas from the very start (April 2000), and gave me the freedom
to work them out in his AI lab. Without him and the many PhD students I supervised since
then and who worked on the topic (the first one co-founding DeepMind), neither the first nor
this second book would have come into existence. Our thanks also go to all DeepMinders
and to the team at Taylor & Francis Group for the pleasant working atmosphere and their
support, to the London Initiative for Safe AI (LISA), the Cambridge AI Safety Hub (CAISH)
and the Meridian office for graciously hosting me (DQ) and providing a warm welcome so far
from home, and last but not least to Giwoo Shin for putting up with crazy working hours.
This book was in parts supported by the ARC grant DP150104590, and by DeepMind.

London, UK, December 2024 Marcus Hutter, David Quarel, Elliot Catt

Table of Contents

0 Front Matter i
Preface . viii
Table of Contents . xii
List of Figures and Tables . xvii
List of Algorithms . xix

I Introduction & Background 1

1 Introduction 3
I Background . 6
II Algorithmic Prediction . 7
III A Family of Universal Agents . 9
IV Approximating Universal Agents . 12
V Alternative Approaches . 13
VI Safety and Discussion . 14

2 Background 16
2.1 Binary Strings . 18
2.2 Probability and Measure Theory . 23
2.3 Statistical Inference and Estimation . 60
2.4 Bayesian Probability Theory . 67
2.5 Information Theory and Coding . 75
2.6 Computability Theory . 89
2.7 Kolmogorov Complexity . 101
2.8 Miscellaneous . 118
2.9 History and References . 127

II Algorithmic Prediction 136

3 Bayesian Sequence Prediction 138
3.1 Bayes Mixture ξ . 139
3.2 Generalized Solomonoff Bound . 143
3.3 Predictive Convergence . 146
3.4 Model Misspecification . 147
3.5 Bounds on Prediction Loss . 149
3.6 Pareto-Optimality of ξ . 154
3.7 Choices of Class M and Prior wν . 155

xii

TABLE OF CONTENTS xiii

3.8 Solomonoff Distribution MU . 159
3.9 Martingales . 165
3.10 Algorithmically Random Strings . 166
3.11 Exercises . 168
3.12 History and References . 170

4 The Context Tree Weighting Algorithm 174
4.1 Krichevsky–Trofimov (KT) Estimator . 175
4.2 Context . 179
4.3 Variable Length Context . 184
4.4 Mixing Distributions . 198
4.5 Context Tree Weighting . 199
4.6 Exercises . 212
4.7 History and References . 213

5 Variations on CTW 215
5.1 Adaptive CTW . 216
5.2 Context Tree Switching . 217
5.3 Partition Tree Weighting . 222
5.4 Forget-Me-Not Process . 231
5.5 Context Tree Maximization . 232
5.6 Exercises . 232
5.7 History and References . 233

III A Family of Universal Agents 234

6 Agency 236
6.1 Policy and Environment . 237
6.2 Assigning Rewards . 240
6.3 (PO)MDP vs. History RL . 241
6.4 Time Discounting . 243
6.5 Time Consistency . 244
6.6 Value Functions . 246
6.7 Q-Value . 249
6.8 Exercises . 251
6.9 History and References . 253

7 Universal Artificial Intelligence 255
7.1 Acting Optimally in Known Environments 256
7.2 Bayesian Mixture of Environments . 257
7.3 Acting Optimally in Unknown Environments 260
7.4 Universal Optimal Agent AIXI . 265
7.5 Exercises . 267
7.6 History and References . 268

8 Optimality of Universal Agents 271
8.1 Definitions of Optimality . 272
8.2 Bad Priors . 280
8.3 Problems with Optimality Criteria . 282
8.4 Exercises . 284

xiv TABLE OF CONTENTS

8.5 History and References . 285

9 Other Universal Agents 286

9.1 Optimistic Agents . 287

9.2 (Thompson)Sampling Agents . 290

9.3 Knowledge-Seeking Agents . 291

9.4 Exploring Agents (BayesExp and Inq) . 296

9.5 Planning-Avoiding Agents (Self-AIXI) . 299

9.6 Exercises . 301

9.7 History and References . 302

10 Multi-Agent Setting 304

10.1 From Preferences to Utilities . 305

10.2 Game Theory . 306

10.3 Multi-Agent Extensive-Form Games . 313

10.4 Strategic Games vs Reinforcement Learning 315

10.5 Reflective Oracles . 316

10.6 The Grain of Truth . 318

10.7 Reflective AIXI . 320

10.8 Exercises . 322

10.9 History and References . 322

IV Approximating Universal Agents 327

11 AIXI-MDP 329

11.1 AIXI-MDP Setup . 330

11.2 Definition of AIXI-MDP . 332

11.3 Experimental Results . 333

11.4 Exercises . 336

11.5 History and References . 336

12 Monte Carlo AIXI with Context Tree Weighting 337

12.1 Learning and Searching . 338

12.2 Searching via Monte Carlo Tree Search . 339

12.3 Learning via Context Tree Weighting . 353

12.4 All Together . 357

12.5 Experiments . 359

12.6 AIXIjs Implementation . 365

12.7 Discussion . 367

12.8 Exercises . 367

12.9 History and References . 368

13 Computational Aspects 373

13.1 Computability of AIXI . 373

13.2 Time- and Space-Bounded AIXI . 377

13.3 Exercises . 381

13.4 History and References . 381

TABLE OF CONTENTS xv

V Alternative Approaches 383

14 Feature Reinforcement Learning 385
14.1 Feature Reinforcement Learning Setup . 386
14.2 History Aggregation beyond MDPs . 387
14.3 Feature MDP . 394
14.4 Context Tree Maximization Reinforcement Learning 398
14.5 Exercises . 402
14.6 History and References . 402

VI Safety and Discussion 405

15 ASI Safety 407
15.1 The Technological Singularity . 408
15.2 Safety Subtopics . 410
15.3 The Control Problem . 411
15.4 Instrumental Convergence . 413
15.5 Orthogonality Thesis . 414
15.6 Value – Reward – Utility . 415
15.7 Death and Suicide of Agents . 418
15.8 Self-Modification . 421
15.9 Wireheading . 423
15.10 Delusion Boxes, Survival, and Exploration 425
15.11 Corrupted Reward Channel . 427
15.12 Embedded Intelligence . 429
15.13 Exercises . 431
15.14 History and References . 432

16 Philosophy of AI 436
16.1 Philosophy of Universal Induction . 437
16.2 Consciousness, Free Will, and Other Qualia 439
16.3 Moral Considerations . 441
16.4 Teleporting and Copying AGI . 442
16.5 Arguments against AGI . 443
16.6 Arguments for AGI . 447
16.7 Intelligence . 454
16.8 Deep Learning . 461
16.9 Conclusion . 462

End Matter 463

Bibliography 463

Table of Notation 503

Index 514

Back Cover 527
Biographies . 527

xvi TABLE OF CONTENTS

Blurb . 1
Critics’ Reviews . 1

List of Figures and Tables

2.1 A geometric representation of cylinder sets as intervals. 23
2.2 Pathological distributions generated by biased coin flips 25
2.3 The jargon of set theory and probability theory [GS20]. 27
2.4 A plot of the pdf pX vs the cdf FX for Example 2.2.27. 36
2.5 A collection of pdf’s with the same mean, but different variances. 47
2.6 A convex function lies below a line segment joining two of its points. 50
2.7 The convex function f(x)=(x−1)2 with several tangent lines. 50
2.8 Convergence almost surely of the empirical mean to the expected value. . . 53
2.9 The inclusions of various notions of probabilistic convergence. 56
2.10 An illustration of the intervals I2m+i defined in Example 2.2.74. 56
2.11 A plot of Beta(α,β) (2.4.7) for various values of α and β. 72
2.12 Updating the posterior distribution after observing each bit in a sequence. 73
2.13 The entropy of a biased coin as a function of the bias. 77
2.14 A plot of KL(P ||Q) vs. KL(Q||P) (see Example 2.5.13). 77
2.15 The KL divergence between two biased coins. 81
2.16 Difference plot for Pinkser’s inequality . 81
2.17 Minimizing forward vs. reverse KL divergence 82
2.18 The geometric intuition for Kraft’s inequality (Theorem 2.5.17). 84
2.19 A Huffman tree described in Example 2.5.24. 84
2.20 Arithmetic encoding of the sequence ‘AIXI’ 87
2.21 A plot of the Kolmogorov Complexity K(x) (Definition 2.7.3). 108
2.22 Analogous properties of Kolmogorov Complexity vs. Shannon Entropy. . . . 117

4.1 A table of PKT(a,b) for various values of a,b (Definition 4.3.25). 176
4.2 Frequency distribution of letters in English. 179
4.3 Conditional frequency distribution of letters in English following "DE". . . 179
4.4 A 2-Markov process used in Example 4.2.9. 183
4.5 Performance of k-Markov KT estimators for prediction. 183
4.6 An example of a context tree for "run/drink from the cup/cop". 185
4.7 A Prediction Suffix Tree described in Example 4.3.14. 189
4.8 The encodings of various suffix trees, for depths D={1,2,3}. 191
4.9 The optimal Prediction Suffix Tree for a given environment. 195
4.10 Performance of Prediction Suffix Trees for prediction. 198
4.11 Running the CTW update algorithm on a context tree. 204
4.12 Performance of CTW models for prediction. 209
4.13 Running CTW update with online context tree initialization optimization. . 211

5.1 Instantaneous KL divergence for various CTW models and switching model. 218
5.2 A collection of binary temporal partitions and their partition trees. 224
5.3 Constructing a binary temporal partition 226

xvii

xviii LIST OF FIGURES AND TABLES

5.4 Binary partition tree . 226

6.1 An illustration of the cybernetic model (Definition 6.1.4). 238
6.2 The discount function γt and normalizer Γt′ at time t= t′. 244
6.3 Environment demonstrating indefinitely delayed gratification. 245
6.4 A table of various discounts together with their effective horizons. 246
6.5 Optimal policies for a gridworld environment for various choices of penalty. 248

7.1 Taxonomy of environments that (do not) admit self-optimizing agents. . . . 264

8.1 An instance of the Heaven-Hell environment (Example 8.1.3). 273

9.1 A collection of toy environments for the KSA agent 296

10.1 The multi-agent model . 314
10.2 Reinforcement learning vs. extensive-form game terminology. 315

11.1 Realization of simultaneous actions within the sequential cybernetic model. . 331
11.2 Performance of AIXI-MDP on classic 2×2 matrix games. 334

12.1 The MC-AIXI-CTW agent-environment interaction loop. 340
12.2 A visualization of the expectimax operation (Theorem 7.4.2). 341
12.3 The four steps of the Monte Carlo Tree Search algorithm (Section 12.2.2). . 342
12.4 Table of properties for the MC-AIXI-CTW environments [VNHS10]. 359
12.5 4×4 grid environment. 362
12.6 Cheese Maze environment. 362
12.7 Kuhn Poker environment. 363
12.8 POCMAN environment. 364
12.9 Performance of MC-AIXI-CTW on various environments. 364
12.10 gridworld in AIXIjs, a testbed for approximations of universal agents. . . . 366
12.11 Performance of various universal agents in AIXIjs [ALH17]. 367

15.1 The cybernetic model modified to include the delusion box [RO11]. 426

16.1 Approximate correspondence of concepts in induction vs. deduction [RH11]. 439
16.2 An illustration of cut-and-paste teleportation. 443
16.3 An illustration of copy-paste and delete teleporting. 443
16.4 An illustration of Searle’s Chinese room thought experiment. 445
16.5 Moore’s Law: How computing power has increased through time. 449

List of Algorithms

4.1 Initializing PST ΨS,ΘS from S and ΘS . 188
4.2 Suffix Tree Prediction . 196
4.3 Suffix Tree Update . 196
4.4 CTW Update (Online Tree) . 202
4.5 CTW Prediction . 203
4.6 CTW Revert . 212
5.1 Switch distribution τα(x1:n) [VNHB12, BMS+20] 219
5.2 Context Tree Switching update [VNHB12, BVT14] 221
5.3 Partition Tree Weighting PPTW

D (x1:n) [VWBG13] 227
9.1 Optimistic Agent (πo) for Deterministic Environments [SH12a] 288
9.2 Optimistic Agent (πo) for Stochastic Environments [SH12a] 289
9.3 Thompson sampling policy πTS [Lei16b] . 291
9.4 BayesExp Algorithm πBE [Lat14, Lei16b] 297
9.5 Inq Algorithm πInq [CCH19] . 299
11.1 Q-value function of AIXI-MDP Q∗,m

ξMDP
(h<t,at) 334

12.1 Monte Carlo planning(h,m,tmax) [KS06] . 345
12.2 Sample(Ψ,h,m) [KS06, VNHS10] . 345
12.3 UpdateValue(Ψ,h,a,q) [KS06, VNHS10] . 345
12.4 Agent-Environment Interaction Loop . 351
12.5 ρUCT(h,m,tmax,π,ρ) [VNHS10] . 351
12.6 MCTS(Ψ,h,m,π,ρ) [VNHS10] . 351
12.7 SampleObservations(Ψ,h,a,m,ρ) [VNHS10] 351
12.8 SelectAction(Ψ,h,C) [VNHS10] . 351
12.9 Rollout(h,m,π,ρ) [VNHS10] . 351
12.10 Action-Conditional CTW [VNHS10] . 355
12.11 FAC-CTW [VNHS10] . 355
13.1 AIXItl [Hut05b] . 379
14.1 ΦImprove(S,ϕS ,h<t) . 395
14.2 ΦMDP Agent . 396
14.3 CTMRL [Ngu13] . 401

xix

Part I

Introduction & Background

1

Chapter 1

Introduction

It seems to me that the most important discovery since
Gödel was the discovery by Chaitin, Solomonoff, and
Kolmogorov of a concept called Algorithmic Probability.
... This is a beautiful theory ... Everybody should learn
all about that and spend the rest of their lives working
on it.

Marvin Minsky, 2010

I Background . 6
II Algorithmic Prediction . 7
III A Family of Universal Agents . 9
IV Approximating Universal Agents . 12
V Alternative Approaches . 13
VI Safety and Discussion . 14

Inspiration from nature. Humans have been learning and copying from nature since
time eternal. The airplane would hardly have been conceived as a possibility had we not
first seen animals capable of flight. The components for a camera mimic that of the eye:
The aperture of the camera acts as the pupil does to moderate the amount of light let in,
and the photosensitive sensor at the back of the camera mimics the retina. The hydraulic
piston on a mechanized digger mimics the action the muscles in an arm, and unlike human
muscles, will never get tired or sore from repetitive work. Even the humble hook-and-loop
fastener was inspired by the hooked barbs of a thistle bush (or plagiarized, from the point
of view of the thistle bush). We do not just copy what nature has directly provided, but
we learn the rules by which she works, so that we may improve her for our own needs: We
domesticate wolves into dogs and selectively breed fruit and vegetables for a higher yield.
As our understanding of nature advances, we have learned how to artificially fertilize soil,
and how to directly edit the genetic code of organisms to take on properties that we desire.

Human civilization. How is it that humanity can perform such miracles? At first it is
merely recognition of patterns: Humans discovered that crop rotation improved yields at
harvest, or that selectively breeding animals with desired traits improved upon those traits,
well before it was understood why these approaches worked. Later on, we constructed theories

3

4 CHAPTER 1. INTRODUCTION

and laws to help explain the observations of the world around us, and make predictions
based on those laws. We study natural phenomena, and then harness them for our own
ends. This acts as a positive feedback loop: The more our knowledge is extended, the
better equipped we are to advance it further. Innovations with agriculture allowed people
to specialize in other skills, or devote a lifetime to furthering knowledge through literature,
philosophy, science and mathematics. The written word allows transmission of ideas and
concepts at an unprecedented bandwidth, allowing a conversation with some of the greatest
minds in history beyond the grave. Calculus, once a branch of mathematics that only a few
dozen people were skilled practitioners in, is now taught to most teenagers as part of their
standard curriculum in school.

The human brain and mind. All of these innovations share a common source, and that
source is what makes humanity unique among other animals: our high level of intelligence,
the ability for us to reason, strategize, and plan ahead, taking actions to bring the state of
the world into one more desirable to us. We would like to do to the brain what the combine
harvester did to the oxen: To build an artificial version that can think and plan for us, and
further satisfy our values. Intelligence is one of the remaining unsolved phenomena that we
still know very little about. How does the brain, a kilogram or so of meat through which
electrical impulses fire, give us our intelligence, our consciousness, and a personality? While
the field of neuroscience has categorized portions of the brain based on the parts of the body
they interface with (vision, speech, hearing) or the tasks by which the brain can function to
control the body (memories, reflexes, emotions), it provides (so far) at best coarse answers
to the above questions.

Artificial Intelligence. While there have been many (successful) attempts at the con-
struction of Artificial Narrow Intelligence (ANI), an AI that performs well in a single or
narrow class of domains (such as board games, vocal transcription, image recognition),
the natural ultimate goal is the creation of AI which is able to match or exceed human
intelligence in a wide class of environments. The term Artificial General Intelligence (AGI)
is often used to describe a hypothetical agent that can perform virtually all intellectual
tasks as well as a typical human could. We use the term Artificial Super-Intelligence (ASI)
to describe an agent that is on par or beyond human geniuses exceeding the cognitive
performance of most humans in a reasonably broad domain. It could compose music like
Mozart, or derive new insights in mathematics to rival that of Gauss. Combining AGI and
ASI we get an Artificial General Super-Intelligence (AGSI) that in Bostrom’s [Bos14] words
greatly exceeds the cognitive performance of humans in virtually all domains of interest. At
the time of writing, there is a lot of excitement about Large Language Models (LLMs), a
type of AI originally designed for natural language translation, but which has generalized to
a large class of problems, and considered by some to be proto-AGI. LLMs are able to exceed
average (and sometimes nearing best!) performance of humans in a large variety of tasks
[BCE+23], including question answering, text and even image comprehension, reasoning,
coding, text summarization, creative writing, and many more, as well as displaying other
properties that are normally associated with intelligence, such as tool use and theory of
mind.

Universal Artificial Intelligence. Before we can (or should) build an AGI or ASI,
arguably we must (or should) first develop an understanding of what AGI is. How could we
possibly hope to understand something as daunting and complex as AGI? The same way
we are able to understand other complicated phenomena such as the transmission of genes,
or the processes that fuel the stars or even the whole universe: through the construction
of a formal mathematical theory through which properties about the phenomena can be
derived. At its core, that is the purpose of this book: to construct, explain, and demonstrate

5

Universal Artificial Intelligence (UAI), a formal theory of intelligence. Through exploring
this theory, we define AIXI, a mathematically well-defined AGSI about which we can prove
properties and derive theorems. With respect to how UAI defines intelligence, AIXI is
optimal with respect to this definition, and is often used as a stand-in for AGSI in work
exploring the hypothetical behavior of such agents.

Proliferation of AI terminology. Historically AI aimed at AGSI but became ANI, so
Shane Legg coined the term AGI as a substitute. Having arguably achieved proto-AGI in
2023, it became necessary to be more precise, and delineate proto-AGI, AGI, ASI and AGSI.

AI-Type #domains Intelligence Level Achieved
ANI one idiot savant 1980–1997

Proto-AGI many human 2023–2028
AGI most smart 2028–2033
ASI some/many genius 2033–2038
AGSI nearly all humanity+ 2038–2042
UAI all singularity 2042–2048
AIXI all maximal 2000/theory

Sophisticated inventions require theory. While it is difficult to predict the internal
structure or architecture that a hypothetical future AGSI would possess, we are primarily
concerned with a theory of the behavior of such intelligent agents1 which can guide practical
realizations of A(G)(S)I.

Many innovations are simple enough as they fill an immediate need, and a deep under-
standing of the underlying mechanics is not required to use it (digging a hole with bare
hands quickly motivates using a digging stick, which can be incrementally improved upon to
obtain a crude shovel). The level of effort to have a working prototype for a more complex
device (like a computer or a rocket) is much higher, and more complex devices tend to be
more fragile to mistakes. An almost complete shovel can still be used to dig (albeit less
effectively), whereas an almost complete computer is an expensive paperweight, and an
almost complete rocket explodes on the launch pad.

We did not get to the moon by building lots of different rockets in the hope that one
might work, nor did we build computers by connecting components together haphazardly
until computation was observed. We first created idealized models to see if such a task is
even feasible. The Turing machine predates practical computers by a decade. The theories of
computing and space flight have been well-developed, and the devices very well understood,
before the first successful computer and space rocket began construction. At the time of
writing, AGSI is still very much at the theory stage. As such, theory will be the main focus
of this book.

A mathematical theory of (super)intelligence. It may be difficult to believe that
there exists a theory which is expansive enough to capture all the intricacies we usually
associate with intelligence, such as reasoning, creativity, curiosity, pattern recognition,
problem solving, memorization, planning, learning, and many more. However, we will show
that UAI encapsulates any reasonable definition of intelligence (Section 16.7). In addition,
we will show that within this theory there exists an agent that can be shown to be in a sense
“maximally intelligent”, known as AIXI.

1How the human brain works from an inside view is still a mystery, but this hasn’t stopped fields of study
such as psychology trying to model the behavior of an individual, or economics/game theory from modelling
the interactions between large groups.

6 CHAPTER 1. INTRODUCTION

This book is meant to serve as an introductory text to the formal treatment of the topic
of artificial general super-intelligence, as well as a summary of the work done so far.

I Background

Much of Universal Artificial Intelligence (UAI) theory builds upon and uses results from many
already established theories. These include (but are not limited to) Bayesian probability
theory, computability theory, complexity theory, (algorithmic) information theory, sequence
prediction, (sequential) decision theory, reinforcement learning, and game theory. We have
included an extensive background chapter (Chapter 2), referencing suitable auxiliary sources
(Section 2.9), to help the reader with the prerequisite material that this book builds upon.
In the following we give a brief glimpse on what to expect with a focus on why we need
these concepts.

Binary strings. Deep down, computers operate exclusively on bits (portmanteau of
binary digit) and sequences of bits. While real-world experiences come in a variety of forms
(vision, tactile, audio, ...), artificial sensors all convert them into bit-streams. UAI theory
assumes that all data has been preprocessed into binary strings, though finite alphabets
will be permitted later for convenience. See [Hut12c] for a deeper philosophical treatment
of how bit-string ontology avoids some difficult epistemological questions about knowledge.
To further this reduction, we introduce binary encodings of various data types through
prefix-free codes, which allows for unique recovery of concatenated and transmitted strings.
While all real-world sequences are finite, for asymptotic convergence analysis, we also need
to consider infinite (binary) sequences.

Measure theory and probability theory. The world experienced by an agent is not
deterministic but contains (quantum physical) random processes. Some observations may
be deterministic in theory, but for all practical purposes have to be modelled as random,
such as outcomes of coin flips. Probability theory mathematically models this uncertainty.
Unfortunately, for more sophisticated applications, the simple combinatorial “high-school”
probabilities do not suffice. Probability theory done rigorously is based on measure theory,
which is a vast (mine)field, which we tried to keep to a minimum.

Statistical inference and estimation. Another source of uncertainty is that agents have
only partial knowledge of the world. They must infer the unknown underlying probability
distribution from which observations have been sampled from. This is served by the field
of statistical estimation. For simple independent and identically distributed (i.i.d.) data,
such as repeated coin flips, simple frequency estimates work well. For more complicated
(non-i.i.d.) processes, the maximum likelihood estimator is often an excellent choice.

Bayesian probability theory. Super-intelligent agents need to be able to learn even
in the most difficult of situations. Maximum likelihood estimation breaks down, and even
various frequentist patches, such as regularization, are suboptimal or fail. In Bayesian
statistics, the agent’s uncertainty is itself modelled by probabilities. The agent maintains
a subjective belief distribution over world models. Bayes’ Law is a completely general
and optimal learning rule for updating prior beliefs to posterior beliefs in the face of new
observations, with solid philosophical and mathematical foundations. In order to choose
and deal with an AGSI-appropriate model class and a prior belief, we need to dig into
information theory and coding, computability theory, and Kolmogorov complexity.

Information theory and coding. An intelligent agent is essentially a (cybernetic)
information processing system, so it should be rather unsurprising that we need some

II. ALGORITHMIC PREDICTION 7

information theory. Classical Shannon information theory uses entropy to measure the
information content of a random process. This can be used to optimally compress data
drawn from that process via Shannon–Fano or Huffman or arithmetic coding. Most modern
data compressors estimate (somehow) the probability of the next symbol given the past
sequence, and feed this into an arithmetic encoder to compress the sequence online. Shannon
information requires a stochastic source and measures only the expected code length.
Kolmogorov complexity, based on computability theory, can measure the intrinsic information
contained in a particular message itself, and even well-defines what it means for a fixed
sequence to be (non)random.

Computability theory. Computability theory formalizes and studies the concepts sur-
rounding algorithms. The discovery of universal Turing machines that can emulate all
computable processes was a major milestone, and is the theoretical foundation of why a
single smartphone can be programmed to do anything we desire.

Computability theory serves two purposes. Ultimately we want an AGSI algorithm, not
just a (non-constructive) mathematical theory. There are various degrees of computability
(finite-, lower-, upper-, limit-) and degrees of incomputability (the arithmetic hierarchy).
The boundary between the computable and the incomputable2 is particularly interesting.

Kolmogorov complexity. The other, deeper purpose of computability theory is to well-
define Occam’s razor, a fundamental principle of science, which states that among competing
theories one should aim for simpler ones. An intelligent agent reasoning about the world is
essentially a scientist and needs to have internalized a mathematical version of this principle,
and an AGSI needs a fully general and optimal version. Kolmogorov complexity fits the bill.
It is a measure of complexity (and hence simplicity) of binary sequences and by extension of
arbitrary objects, especially of models of the world.

This can then be used as a universal prior in a Bayesian sequence predictor based on
a model class that contains every computable stochastic world model. This is the famous
Solomonoff predictor. When plugged into sequential decision theory (Chapter 6), this leads
to the Universal Artificial Intelligent agent AIXI.

Miscellaneous. The final background section introduces various distance measures and
nuisances swept under the rug. There are many ways of measuring distances between proba-
bility distributions (absolute, 2-norm, Kullback–Leibler, Hellinger) with various relations
between them. Their judicious application serves as a workhorse in proofs. Some programs
may (undecidably) not halt, leading to defective probability measures, called semimeasures,
but semimeasure theory essentially does not exist (yet), so we provide various workarounds.
Probability zero events are another nuisance permeating the book, but we tried to confine
them into a background section.

II Algorithmic Prediction

Prediction is the ability to accurately estimate the outcome of future events based on the
results from past events. A good predictor should be able to work out which of many possible
futures is the most likely. When we formalize this in mathematics, we will often describe it
as predicting the next element (or elements) in a given sequence. For example, given the
sequence

3, 1, 4, 1, 5, 9

2Or ‘uncomputable’, but ‘in’ and ‘computable’ both have Latin origin so bond nicely, while ‘un’ has
proto-Germanic origin.

8 CHAPTER 1. INTRODUCTION

a predictor would be tasked with determining the next element.

Prediction is at the heart of any intelligent behavior. Whether this prediction is explicit
or implicit, prediction is required for intelligence. Good prediction is necessary but not
sufficient for intelligence. This is because (under how we define intelligence) intelligence is
measured as a function of the actions the agent takes, whereas prediction assumes that the
predictions made do not affect the environment.

Occam’s razor and Epicurus’ principle of multiple explanations. Returning to the
above sequence, how do we determine the next element? The observant reader may have
noticed that this sequence matches the first six digits of π in base 10. With this information
we could predict the next element to be the seventh digit of π in base 10, the number 2.
This is likely to be a good prediction, however, digits of π in base 10 is not the only possible
continuation. There are infinitely many other sequences that start with 3,1,4,1,5,9; one such
example would be the decimal expansion of 355/113, which is arguably as simple as the
circle constant π. Why should we prefer the sequence continuation to be the digits of π
over that of 355/113, or any other valid continuation? According to Epicurus’ principle of
multiple explanations,

Keep all theories consistent with the observations.

So, we cannot discount the possibility that the decimal expansion of 355/113 (or something
else) is the correct continuation. But this does not mean we should consider all possible
continuations as being equally likely to be the true answer. Here we can employ the most
important philosophical tool for science, Occam’s Razor , which states Entities should not be
multiplied beyond necessity. which can be interpreted as

Keep the simplest theory consistent with the observations.

So in our above example we consider the possibility that any number could be next in
the sequence, but we bias ourselves towards more simple explanations, in this case biasing
ourselves towards the number 2. More digits will soon reveal the distinction between π and
355/113, and the hypothesis inconsistent with the data can be ruled out.

Bayesian sequence prediction and Solomonoff induction. Following the above
principles, we do consider all possible sequences in some reference class3, discard those
inconsistent with the data so far, and bias our prediction toward the simplest (to be
formalized later) sequences. This is aptly called learning by elimination. Given a prior belief
distribution over various sequences, the posterior belief among the sequences not yet ruled
out by data is simply a rescaled version of the prior beliefs (so as to some to 1). In more
realistic settings, sequences may be random or contain errors, and sequences are assigned a
likelihood under each stochastic model. The prior belief would then be multiplied with this
likelihood, and lower or raise or posterior belief in the model. The mechanism behind this
is called Bayes’ Law or Bayes’ Rule. The only thing left to specify is the choice of prior
P (O=o), to which Bayes’ Law is agnostic. Motivated by Occam’s razor, we can bias the
prior with higher credence towards outcomes that are “simpler”. This can be done formally
by building upon material from computability theory (Section 2.7) and was neatly combined
into a single formal theory of inductive inference known as Solomonoff Induction [Sol64]
based on algorithmic probability.

3We cannot consider all uncountably-many possible sequences extensions of 3,1,4,1,5,9 for reasons which
will become clear later. The class should not be too restrictive either to ensure it contains the true sequence,
otherwise we could never learn it. A solution to this will be discussed later.

III. A FAMILY OF UNIVERSAL AGENTS 9

Motivation of Occam’s razor and Solomonoff induction. Occam’s razor is intuitive:
a more convoluted explanation of a phenomenon that has more edge cases is less likely to
be true. For example, it was noticed in the mid-19th century by Urbain Le Varrier that
the orbit of Mars precesses4 around the sun in a way that was not explainable by classical
mechanics [Bor62]. To “hack” around the problem by adding an edge case where classical
mechanics applies normally, but not for the precession of planets dramatically increases
the complexity of the theory (especially as classical Newtonian mechanics is built on few
assumptions). This was later explained by Einstein’s theory of general relativity, which, as
well as being a theory with few core assumptions, has all of classical mechanics as a special
case, and explains other anomalous behavior such as the deflection of light around massive
objects, time dilation, and the redshift of fast, distant objects [Ein87].

Solomonoff takes the principle of Occam’s razor, and constructs from it a mathematically
well-principled theory to describe how to infer a rule or pattern based on observation. A
prior over a countably infinite model class must necessarily assign more probability to some
outcomes than others. By choosing a prior in this way, the number of prediction errors
made by the corresponding Bayesian predictor is proportional to the complexity of the
true environment (Chapter 3). Simple environments are thus learned quickly. Naturally,
such a predictor makes many errors when learning a complex environment, but any other
predictor would struggle as well. Solomonoff induction essentially solves the century-old
induction problem [RH11]. We will show that in a strong sense, Solomonoff is the best
possible predictor for arbitrary unknown stochastic sources. Solomonoff serves as an ideal
gold standard for prediction that practical predictors should strive at.

Context Tree Weighting. One such method is the Context Tree Weighting (CTW)
predictor, which uses as its reference class the set of all variable-order Markov models, the
probability over the next symbol is a function solely of the last variable number of symbols,
and uses a tree structure to efficiently update the belief distribution based on symbols
observed (Chapter 4). Like Solomonoff induction, the Bayesian mixture provided by CTW
uses a prior based on simplicity. Each hypothesis in the model class can be represented by a
binary tree (Section 4.3.1) and the prior is related to the length of an encoding of the tree as
a binary string (Definition 4.3.20). This was shown to be a viable algorithm for prediction,
with good theoretical bounds on performance (Section 4.5.2) as well as demonstrating strong
prediction performance in practical experiments (Section 4.3.5).

There are several extensions of Context Tree Weighting which are able to efficiently
predict larger model classes with comparable efficiency to standard CTW. These include
methods such as Context Tree Switching (Chapter 5), which includes models that switch
between different distributions depending on the context seen, Partition Tree Weighting,
which includes piecewise stationary source, useful for compressing tar balls of different file
type, and the Forget-me-not Process which remembers the statistics of past pieces. Context
Tree Maximization extracts the single most plausible model in case mixing is not appropriate
as e.g. in Chapter 14.

III A Family of Universal Agents

Intelligence is more than being able to predict well; intelligence also requires being able to
act well. Acting well could mean many different things:

- Achieving some predetermined goal

4The elliptical orbit of a celestial object is said to undergo apsidal precession if the major axis of the
orbit changes orientation.

10 CHAPTER 1. INTRODUCTION

- Maintaining some objective

- Minimizing a loss function

- Respecting a set of constraints

- Acting rationally (however it is defined)

- Making correct decisions based on information present

Cybernetic model. We can capture all of these ideas within a single framework, known
as the cybernetic model : An agent π interacts with an environment µ in cycles t=1,2,...,m.
In cycle t, the agent takes action at (e.g. a limb movement) based on past percepts e1...et−1,
where ek := okrk is defined below. Thereafter, the environment µ provides a (regular)
observation ot (e.g. a camera image) to the agent and a real-valued reward rt. The reward
can be very scarce, e.g. just +1 (−1) for winning (losing) a chess game, and 0 at all other
times. Then the next cycle t+1 starts. In general reinforcement learning or history-based
reinforcement learning, the agent policy π and environment µ are allowed to arbitrarily depend
on the whole past history (in contrast to most RL which assumes Markov environments
and policies, that only depend on the most recent observation and action). The agent may
maintain an internal memory (see book cover or Figure 6.1 for an illustration).

The goal of the agent is to maximize the expected reward from the environment, called
value. The intelligence of humans is merely a by-product of an evolutionary arms-race
optimizing for reproductive fitness (the smarter you are, the better you can seek food, avoid
predators, and survive to bear children who inherit your genes). Evolution has baked into
humans the “reward signals” of pleasure and pain which are activated when taking actions
that are correlated with reproductive fitness (eating, mating, feeling safe, making friends
is pleasurable; injury, social ostracism, and hunger are painful). It stands to reason that
this might also be possible with artificial agents seeking to maximize a reward signal of our
design to incentivize the behaviors we desire.

Known environment. The actual goal that we want the agent to achieve can be encoded
in the rewards issued. If we want the agent to win games of chess, we can issue positive
rewards for when it wins a game, and negative rewards when it loses a game. An agent
trying to maximize the expected sum of rewards will have to learn to play well at chess.

As we will see (Chapter 6), with this setup we can describe all the above ideas in one
unifying fashion, through judicious choice of the reward and the environment with which
the agent interacts.

If the agent is aware of which environment it interacts with, then it can (in principle)
deduce the best course of action (assuming no constraints on computational resources). For
example, the game of chess can be solved at least in theory, as one can use the minimax
algorithm from the initial board state to find out who wins, given perfect play on both
sides. While this would be intractable in practice, we can at least say that there exists an
algorithm for determining the optimal action in chess.

Unknown environment. However, the interesting case for AG(S)I is when the agent does
not know which environment it is in and must learn from experience. We need a method by
which an agent can interact with an unknown environment, learn what environment it is in
via experience, and learn to act optimally.

Imagine you are playing a video game you have never played before. Initially you will
likely not play the game well, since you do not understand the mechanics of the game, and
may make either suboptimal or illegal moves since you do not fully understand the rules of
the game (you do not know which environment you are in). Over time you will learn the
rules of the game and narrow down the possible environments you are in until you fully

III. A FAMILY OF UNIVERSAL AGENTS 11

understand the rules and dynamics of the game (environment), and can then try to act
optimally.

Similarly, the agent initially knows nothing about the true environment. We make the
(weak) assumption that the environment with which the agent interacts is computable, so
by taking the set of all computable environments as the reference class of environments, we
have that the true environment will be contained in the agent’s reference class.5

AIXI.6 Solomonoff induction allows us to determine the probability we are in a given
environment, as predicted by an optimal predictor. Using this within an optimal sequential
decision maker, we arrive at the universal Bayes-optimal agent AIXI:

AIXI: at := argmax
at

∑
otrt

...max
am

∑
omrm

[rt+...+rm]
∑

p :U(p,a1..am)→o1r1..omrm

2−length(p)

where t=now, action, observation, reward, Universal TM, program, m=lifespan

The expression shows that AIXI tries to maximize its total future reward rt+...+rm.
If the environment is modeled by a deterministic program p, then the future perceptions
...otrt...omrm=U(p,a1...am) can be computed, where U is a universal (monotone Turing)
machine executing p given a1..am. Since p is unknown, AIXI has to maximize its expected
reward, i.e. average rt+...+rm over all possible future perceptions created by all possible
environments p that are consistent with past perceptions. The simpler an environment, the
higher is its a-priori contribution 2−length(q), where simplicity is measured by the length of
program p. AIXI effectively learns by eliminating Turing machines p once they become
inconsistent with the progressing history. Since noisy environments are just mixtures of
deterministic environments, they are automatically implicitly included. The sums in the
formula constitute the averaging process. Averaging and maximization have to be performed
in chronological order, hence the interleaving of max and Σ (similarly to minimax for games).

One can fix any finite action and perception space, any reasonable U , and any large
finite lifetime m. This completely and uniquely defines AIXI’s actions at, which are limit-
computable via the expression above (all quantities are known).

Optimality of AIXI. We will derive this core equation in Chapter 7, and argue further
in Chapter 8 and Section 16.7 why and in which sense AIXI is the most intelligent general-
purpose agent possible. For instance, we show that AIXI will eventually act as well as
the optimal informed agent which knows the true environment in advance. Essentially,
whatever optimal behavior looks like in an environment, AIXI will learn to eventually
act optimally. Since Bayes’ Law is a maximally data-efficient learning rule, and AIXI is
a universal Bayesian learner, learning is as fast as theoretically possible. Of course, due
to Solomonoff being incomputable, AIXI is also incomputable, but it can serve as a gold
standard in the construction of more practical paths to AGI, much like the intractable
algorithm of exhaustive minimax for chess paved the way for practical realizations of chess
programs.

5For more about this assumption, see Section 16.1.
6AIXI is pronounced [aiksi] (Latin) or [’aiksi:] (IPA) and

- stands for Artificial Intelligence (AI) based on Solomonoff’s distribution ξ (Greek letter Xi)
- stands for Artificial Intelligence (AI) crossed (X) with Induction (I)
- stands for action ai and percept xi in cycle i (though we use et)
- is a Catalan word (aix́ı) meaning ‘in this way’ or ‘like that’
- is Pinyin romanization (àix̄ı,àix́ı) of Chinese 愛惜 meaning ‘to cherish/treasure’

http://ipa-reader.xyz/?text=aiksi%CB%90&voice=Carla

12 CHAPTER 1. INTRODUCTION

Variations of AIXI. While Bayes-optimality is arguably a sensible choice of optimality
criterion for agents in the UAI framework, there are several alternative optimality criteria
for intelligent agents, each with their upsides and downsides, in particular various versions
of asymptotic optimality. The agent AIXI has been extended in several directions to both
deal with these alternative criteria, and answer some of the remaining open questions in the
construction of AIXI.

One example of these is the Knowledge Seeking Agent (KSA), which behaves like AIXI,
however instead of maximizing the rewards issued from the environment, it replaces this with
expected future information gain, that is, it takes actions that result in the most “surprising”
observations from the environment.

It turns out that AIXI is not asymptotically optimal, but minor variations which
explore more are: Unlike in prediction, where pessimism can be optimal, interestingly in
the agent setting acting optimistically leads to optimal behavior. Optimism/pessimism
means the agent/predictor assumes itself to be interacting with the best/worst realistically
possible environment. Instead of taking a Bayesian mixture, Thompson sampling takes the
optimal action with respect to an environment sampled from the posterior belief distribution.
BayesExp and Inq intersperse Bayes-optimal actions with extra explorative actions. SelfAIXI
and AIXItl are variations which self-predict their own action stream.

Multi-agent setting. This book mostly deals with the single-agent settings, where there
is only one agent and the environment. Since we make virtually no assumptions on the
structure of environments, the environment may as well contain other agents, much as
we can regard fellow humans as simply part of the world. Still, the multi-agent setting
gives rise to new questions, problems, and opportunities as the field of game theory (e.g.
Nash equilibria, Section 10.2) and multi-agent (reinforcement) learning show (Chapter 10).
A particular problem of multiple interacting Bayes-optimal agents is the Grain of Truth
problem: Roughly, Bayes works if the true environment is in the considered class, but a
Bayes-optimal agent is typically not in its own class. Remarkably, there is a superclass of
AIXI, based on reflective oracles, which is closed under Bayesian optimality.

In this book we will go into full detail of all the AIXI variations and extensions, as well
as their potential satisfaction of the various optimality criteria (Part III).

IV Approximating Universal Agents

We cannot compute the optimal AIXI agent directly, but we can still try to implement
weaker forms that approximate AIXI. There exist several such approximations of AIXI
that we discuss here. Unsurprisingly, the “better” the approximation is, the harder it is to
compute.

AIXI-MDP. AIXI-MDP considers the class of possible environments to be the set of
Markov environments, that is, the set of environments where the probability of the next
observation and reward depends only on the previous observation and action. While AIXI-
MDP is computable and can perform well in Markov environments, obviously it should and
does struggle on more complex environments, as it can only at best learn the closest Markov
approximation to the environment.

Monte Carlo AIXI with Context Tree Weighting. MC-AIXI-CTW (Chapter 12)
uses the context tree weighting mentioned earlier to efficiently update its belief in each
possible environment, using the set of all variable-order Markov environments as its reference
class. This, combined with Monte-Carlo Tree Search for planning (Section 12.2), leads to an
agent which is able to learn and perform well on more complex environments.

V. ALTERNATIVE APPROACHES 13

Time- and space-bounded AIXI. The downsides of MDP-AIXI and MC-AIXI-CTW are
that the class of considered environments is specific and immutable, even if evidence suggests
to increase the class and/or if spare compute is available. Also, separately approximating
(Solomonoff) learning and (expectimax) planning can be very suboptimal.

AIXItl, the resource-constrained version of AIXI, addresses both problems. It searches
through program space and selects the program performing closest to AIXI but of size at
most l that acts in time at most t per interaction cycle, hence it performs as well as the
best (l,t)-bounded agent. AIXItl runs in time O(2lt), and is a compute-optimal anytime
algorithm which approaches AIXI as t and l go to infinity.

While program search itself is straight-forward, the problem in this instantiation is that
even just evaluating which programs constitute good agent policies is incomputable. This
is solved by carefully designing a lower semicomputable universal value function, and then
requiring that policies provably conservatively evaluate themselves.

(In)computability of AIXI. The mildly good news is that AIXI at least lies within
the arithmetic hierarchy. Carelessly taking the various limits (limit-compute environments,
average over infinitely many of them, infinite horizon, incomputable discount, ...) shows
that all versions of AIXI are at worst in ∆0

4, but with more care, some versions of AIXI
are limit-computable, so can actually be converted into an anytime algorithm: The more
compute one spends to approximate the current value function, the more accurate it becomes,
with convergence in the limit to the exact value, hence converging to the optimal action.
Unfortunately convergence is unimaginably slow, but the involved lower semicomputable
universal value function is put to use good in AIXItl.

V Alternative Approaches

The Bayesian approach of Universal Artificial Intelligence is not the only attempt to solve
the general reinforcement problem. Of the other approaches, one of the more studied ones is
Feature Reinforcement Learning (Chapter 14).

One class of environments that has been intensely studied is Markov Decision Process
(MDPs), where the future only depends on the most recent observation (in this case called
state) and action. For finite-state MDPs of reasonable size, efficient learning and planning
algorithms exist. One may regard this problem as fully solved. Unfortunately the real-world
is not an MDP.

The idea of Feature Reinforcement Learning (FRL) is that the agent learns to reduce
the difficult general (history-based) reinforcement learning problem to a finite MDP, and
then learns and solves this more tractable problem. FRL is a more practical substitute for
Solomonoff induction, and also avoids expensive expectimax planning in AIXI.

Reduction means mapping histories to states, which conflates histories, so only sufficiently
similar histories should be mapped to the same state, but at the same time we also want to
keep the number of states small. We describe two fundamentally different criteria for feature
maps: One which requires the history process to map approximately to an MDP, the other
more powerful only requires their values to be similar, and then construct a surrogate MDP.
Remarkably the second approach allows extreme aggregation of histories to an MDP of
universal size (polynomial in action, discount, and accuracy), independent of the complexity
of the original RL problem. Still, unstructured MDPs are limiting, but this approach has
been extended to the more powerful class of Dynamic Bayesian Networks (DBNs) which
allows to efficiently learn exponentially larger structured/factored MDPs.

14 CHAPTER 1. INTRODUCTION

VI Safety and Discussion

Even though we may not understand the internal reasoning components of super-intelligent
agents, we can utilize UAI theory and the AIXI agent as a model of how an AGSI may act.
To this end we will present several problems regarding the possibility and safety of AGSI
and how we can use our understanding of AIXI to answer the involved questions.

Although there are many questions about AGSI for which we are able to provide clean
and complete (often mathematically formal) answers, there are just as many or (yet) more
that possess no such clean answers (yet). These (often philosophical) questions about AGSI
and intelligence require a different perspective than the formal mathematical view of the
majority of this book. For instance, even if it were possible to successfully construct an
AGSI that has our best interests in mind to do our bidding, should we?

ASI Safety. Would it not be a great moral harm to have intelligent machines forever
indentured to servitude? Might we have a future where AIs campaign for rights, or take
them by force? Should we ascribe moral values to such agents, and grant them certain rights
as we do with other sentient creatures? To what degree? Laws against cruel treatment of
AI as for animals, or recognition of personhood on the same level as humans, or beyond?

The fundamental problem of ASI safety is whether it is possible to create agents with
super-human intellect willing to serve humans (as housekeepers, Bicentennial Man scenario)
or peacefully co-exist (as friends, Her scenario) or guide humanity and protect it from
(self)destruction (like a parent, Colossus scenario) or mind their own business (like blue
whales, Deep Thought scenario) or with whom we merge (to cyborgs or transhumans, Kurzweil
scenario) or whether ASI will pose an existential threat to humanity (Terminator scenario)
or a future we lack the fantasy to imagine (or simply missed). The hypothetical scenario
of self-accelerating technological progress caused by AGI has been termed ‘technological
singularity’.

We will introduce and discuss many important AGSI-safety concepts, such as the align-
ment problem, the control problem, instrumental convergence of goals, the goal-intelligence
orthogonality thesis, ASI mortality and suicide, self-modification and self-delusion, reward
tampering, and embedded intelligence. We focus on existential threats that an ASI may
pose (rather than societal implications of proto-AGI) within the framework of universal
artificial intelligence.

Some ethical and safety issues require digging deeper into the philosophy of AI.

Philosophy of AI. The possibility of (super)human-level AI raises many philosophical,
societal, ethical, safety, and other questions, which are traditionally less amenable to
mathematical analysis or algorithmic implementation. Indeed, intelligent machines have
captivated human imagination for centuries before computers and suitable mathematics
emerged.

The problem of induction has stumped philosophers for thousands of years, and came
under closer scrutiny after David Hume’s treatise nearly 300 years ago. Solving it became
more pressing with the advancement of science, and even more so with the advent of machine
learning and large model classes. A theory of AGSI requires a general and formal solution,
which Solomonoff finally provided.

Consciousness and free will are also millennia-old philosophical conundrums with moral
implications. To what degree do living organisms have them, will machines have them too,
and does it matter? Biological life evolved via (imperfect) replication. Will AGSI and in
particular AIXI (have a desire to) replicate and evolve too? Many arguments have been
put forward over the centuries for and against the possibility of various versions of AGSI:
the Chinese room argument, Penrose–Lucas Gödel argument, no-free-lunch theorems, the

VI. SAFETY AND DISCUSSION 15

physical Church-Turing thesis, Moore’s Law, and many others.
Intelligence has been studied extensively in psychology and philosophy, and in the early

AI days (e.g. in Alan Turing’s seminal paper), but due to lack of formal progress it fell out
of fashion to tackle it head-on. On the other hand it is not good for a discipline aiming at
developing (artificial) X, to not be able to agree on what X actually is. Universal AI and
Legg–Hutter intelligence fills this gap for X=intelligence.

* * *

We hope that this book can provide the reader with the required understanding to be
able to further study, develop, and implement the presented theory of super-intelligence
towards the ultimate goal of practical AGSI.

Chapter 2

Background

Give me six hours to chop down a tree and I will spend
the first four sharpening the axe.

Abraham Lincoln, 1863

2.1 Binary Strings . 18
2.1.1 Finite Binary Strings B∗ and Natural Numbers N0 18
2.1.2 Prefix Codes . 20
2.1.3 Infinite Binary Sequences B∞ and the Unit Interval 22
2.1.4 Exercises . 23

2.2 Probability and Measure Theory . 23
2.2.1 Introduction and Motivation . 24
2.2.2 The Axioms of Probability Theory 25
2.2.3 (Semi)Measures on Infinite Sequences 31
2.2.4 Random Variables . 32
2.2.5 Joint and Conditional Probabilities 37
2.2.6 Expectation and Variance . 40
2.2.7 Probability Inequalities . 48
2.2.8 Convergence of Random Variables 51
2.2.9 Exercises . 58

2.3 Statistical Inference and Estimation . 60
2.3.1 Statistical Inference and The Sunrise Problem 60
2.3.2 Maximum Likelihood . 61
2.3.3 Reparametrization Equivariance of the MLE 63
2.3.4 Consistency . 63
2.3.5 Exercises . 66

2.4 Bayesian Probability Theory . 67
2.4.1 Bayes’ Theorem . 67

16

17

2.4.2 Bayes Estimation and Prediction 69
2.4.3 Laplace Rule . 70
2.4.4 Exercises . 75

2.5 Information Theory and Coding . 75
2.5.1 Shannon Entropy . 76
2.5.2 Shannon–Fano Code . 79
2.5.3 Kullback–Leibler Divergence . 80
2.5.4 The Kraft Inequality . 83
2.5.5 Shannon Coding Theorem . 84
2.5.6 Arithmetic Coding . 86
2.5.7 Exercises . 88

2.6 Computability Theory . 89
2.6.1 Models of Computation . 89
2.6.2 The Halting Problem . 92
2.6.3 (Semi-)Computable Functions . 94
2.6.4 Arithmetic Hierarchy . 98
2.6.5 Exercises . 101

2.7 Kolmogorov Complexity . 101
2.7.1 Motivation . 102
2.7.2 Making Simplicity Rigorous . 103
2.7.3 Properties of K-Complexity . 107
2.7.4 The Minimum Description Length Principle 112
2.7.5 Approximating K-Complexity 115
2.7.6 Relation to Shannon Entropy . 116
2.7.7 Exercises . 117

2.8 Miscellaneous . 118
2.8.1 Distances and Their Relation . 119
2.8.2 Dealing with Semimeasures . 122
2.8.3 Probability Zero . 125
2.8.4 Exercises . 127

2.9 History and References . 127

This (optional) chapter covers the prerequisite knowledge that later chapters build
upon. Although Sections 2.3 and 2.4 build on Section 2.2, we have aimed for the other
sections to be as self-contained as possible. Readers are encouraged to choose sections
as required to fill gaps in their knowledge. Apart from defining notation, this chapter
can be more-or-less skipped without losing context for the remainder of the book. A
complete table of notation chapter-by-chapter and for the whole book can also be found
in Section 16.9. Section 2.1 introduces the fundamental concept of strings and their
binary encoding through prefix codes, which allows for unique recovery of concatenated
and transmitted strings.

Section 2.2 delves into probability theory, which we use to clearly define states of
uncertainty. We also touch upon measure theory, which serves as the foundation of
probability theory. The concept of random variables and their properties, which are
central to many theorems in this book, are also introduced. Next, Section 2.3 considers
random processes governed by unknown probability distributions, and introduces the
concept of estimators to learn these distributions from sample data. The maximum
likelihood estimator is often an excellent choice. We also provide a metric for evaluating
the efficacy of an estimator. Further, Section 2.4 introduces the celebrated Bayes’
Rule, a robust and general principle for updating beliefs with solid philosophical and

18 CHAPTER 2. BACKGROUND

mathematical foundations. We study the particular instantiation for binary i.i.d. data,
and derive the famous Laplace’s Rule for prediction.

Section 2.5 is devoted to (classical Shannon) information theory, where we quantify the
randomness of a process through its entropy, discuss how low entropy messages can be
compressed, and present practical algorithms for compression, which form the basis for
modern data compressors. Section 2.6 explores computability theory, focusing primarily
on defining the boundary between the computable and the incomputable. Building
on computability, Section 2.7 discusses Kolmogorov complexity, which complements
information theory by measuring the intrinsic complexity of a message, rather than the
randomness of the process that generated it. We will see that Kolmogorov complexity
provides a rigorous and universal formalization of the concept of “simplicity”, and
hence can be used to quantify Occam’s razor.

The final Section 2.8 introduces various distances between probability distributions and
their relation used throughout the book: the absolute, total variation, squared, 2-norm,
Kullback–Leibler, and Hellinger distance. It also discusses the extra complications
semimeasures cause beyond the already vast measure theory. The final nuisance we
discuss is how to deal with probability zero events, especially how to condition on them,
and how to take expectations of partial functions.

2.1 Binary Strings

We assume a brief familiarity with set theory, real analysis, metric spaces, norms and
topological spaces (for a comprehensive introduction, see [RT64]). Often we take these
mathematical structures for granted, as a lot of the theory developed here builds upon
them. To be able to prove properties, we need to provide a formal definition of the object in
question, and mathematics provides to us the tools of rigor, without which we would be
limited to philosophical discussion.

In this section we define basic notation that we will use throughout the book: strings
and the operations defined on them, self-delimiting prefix codes, and cylinder sets used later
to define probability measures.

2.1.1 Finite Binary Strings B∗ and Natural Numbers N0

We define Bn as the set of all binary strings of length n. The set of all finite strings over B
is defined as

B∗ :=

∞⋃
n=0

Bn = {ϵ,0,1,00,01,10,11,000,...}

We typeset bits in monospace to distinguish them from numbers (101 is the binary string
one-zero-one, 101 is the number “one-hundred-and-one”). For two strings x=x1x2x3...xn
and y=y1y2y3...ym, we define the concatenation as

xy :=x1x2x3...xny1y2y3...ym

Clearly, B∗ is closed under the operation of concatenation. The set of infinite binary
sequences is denoted as B∞.

By convention, we use the term string or word to describe an element of B∗. Unless
otherwise noted, all strings are defined over the binary alphabet B={0,1}.

2.1. BINARY STRINGS 19

The length of a finite binary string x is the number of bits it contains, and is denoted as
ℓ(x), where ℓ:B∗→N0 is a mapping from strings to their length. For example, x=x1x2x3...xn
is a finite binary string of length ℓ(x)=n. The ith bit of x is denoted by xi for 1≤ i≤ℓ(x).
The symbol ϵ is the empty string with ℓ(ϵ)=0. Given i,j with 1≤i≤j≤n, the substring xi:j
(pronounced “x from i to j”) represents the length-(j−i+1) segment xixi+1...xj of x. For
j <i we define xi:j= ϵ. We will use both x1:n and x≤n as shorthand for x1x2x3...xn. The
symbol x<n is defined as x1x2x3...xn−1. Each binary digit is called a bit .

We let R denote the set of real numbers, Q denotes the set of rationals, N0={0,1,2,...}
is the set of natural numbers including zero, and N+={1,2,...} is the set of natural numbers
excluding zero. We avoid usage of N to avoid ambiguity, unless the inclusion of zero is
irrelevant. The Iverson bracket JP K evaluates to 1 if the predicate P is true, and 0 otherwise.

It turns out that we can form a one-to-one correspondence between the set N0 and B∗

by constructing a bijection. The standard binary representation of natural numbers is to
interpret a binary string as a number in base 2: Let B :N+→B∗ be a function that takes
a positive natural number n and returns the binary string representing n. Note that by
definition, B(n)1=1 for all n>0, as the leading bit in the binary representation is always
1 for all numbers other than zero. One can show that B is injective, but not surjective,
as no number maps to the e.g. string 00. We can then define our bijection ⟨·⟩ by a slight
modification of B: We write out the string representing the binary expansion of n+1, (which
will always have a leading 1), and then remove the leading 1.

⟨n⟩ := B(n+1)2:l where l = ⌊log2(n+1)⌋+1.

For example, the number 4 maps to the string ⟨4⟩=B(4+1)2:3= �101=01 under this
bijection.

n∈N0 0 1 2 3 4 5 6 7 8 ...
B(n)∈B∗ 0 1 10 11 100 101 110 111 1000 ...
x=⟨n⟩∈B∗ ϵ 0 1 00 01 10 11 000 001 ...

We can formally define the above bijection as follows:

Proposition 2.1.1 (Canonical bijection from N0 to B∗) Let n∈N0. Define

⟨n⟩ := B(n+1)2:l with B(n)i :=
⌊
n/2l−i

⌋
mod 2

with l = ⌊log2(n+1)⌋+1. Then ⟨·⟩ is a bijective map from N0 to B∗, as well as
enumerating B∗ in length-lexicographical order.

Proof. Left as an exercise to the reader. �

The inverse of this bijection can be easily defined in the reverse direction:

⟨x⟩−1 = b(1x)−1 with b(x) :=

ℓ(x)∑
i=1

2ℓ(x)−iJxi=1K (2.1.2)

which prepends 1 to x, then b :B∗→N0 interprets string 1x as a natural number written
in binary (which is surjective but not injective), and finally subtracting 1. It is easy to see
this is a valid inverse of ⟨·⟩ by construction. We have the following useful bound for this
bijection.

20 CHAPTER 2. BACKGROUND

Proposition 2.1.3 (Bijection length bound) Let x be a binary string. Then

2ℓ(x)−1 ≤ ⟨x⟩−1 ≤ 2ℓ(x)+1−2

Proof. Note that 0≤b(x)≤2ℓ(x)−1, from which the result follows. �

Now that we have a bijection between strings and numbers, we will often drop the
bijection ⟨·⟩ and assume from the context whether to apply ⟨·⟩ or its inverse so the statement
is syntactically valid. For example, we may write ℓ(n) instead of ℓ(⟨n⟩) for a natural number
n, or x+1 instead of ⟨x⟩−1+1 for a string x.

2.1.2 Prefix Codes

Often, when transmitting a message across a medium, the message is converted into a
sequence of symbols, called a code, which can then be transmitted (as say, a sequence of
electrical pulses along a wire, or a sequence of movements of semaphore flags), received on
the other end, and then decoded to obtain the original message. Using a binary code is ideal
due to requiring only two distinct symbols. However, this proves problematic if we want to
send multiple messages. Suppose we want to transmit the sequence of numbers (1,3). We
encode the numbers ⟨1⟩=0 and ⟨3⟩=00, and transmit the concatenation ⟨1⟩⟨3⟩=000. The
receiver also has access to the code, but this code is ambiguous, as 000 may be decoded
as (3,1) or (1,1,1) or (1,3). One solution could be to add an additional delimiter symbol #,
and transmit 0#00, but this means we have to waste an additional symbol on the delimiter,
which itself has to be encoded somehow if we wish to transmit only binary strings. It turns
out there is a neat solution: we restrict the set of allowed encodings to a prefix-free set of
binary strings: a set for which no member is a prefix of another.

Let x,y∈B∗ be strings. We say that x is a prefix of y (denoted by x⊑y) if ∃z∈B∗ such
that xz=y. Furthermore, if z ̸=ϵ, then we call x a proper prefix of y (denoted by x⊏y). A
set P⊆B∗ is called prefix-free if no element of the set is a proper prefix of another. Given an
injection c :B∗→B∗, if {c(x):x∈B∗} is prefix-free, then we call c a prefix-code. The elements
in P are called (prefix) codewords. Using prefix codes, a message is always uniquely decodable
(Item 1), that is, there is no ambiguity in decoding the message (unlike the above example).
Thus, the message can be transmitted as a sequence of concatenated codewords without any
reserved delimiter symbol to separate the words in the message. For example, Morse code1

is not a prefix code, as -.-- could be decoded as any of {Y,KT,NTT,NM,TAT,TW,TEM,TETT}.
Morse code actually uses three symbols (a space character, the absence of a pulse alongside
short and long pulses), and adds spaces between letters as a delimiter.

There are many2 ways to construct prefix codes in B∗. We can construct an infinite
family of prefix codes Ei for B∗ in the following way: given a string x∈B∗, its ith order
prefix codeword Ei(x) is defined recursively as

Ei(x) =

{
1x0 i=0

Ei−1(ℓ(x))x otherwise
(2.1.4)

where 1n denotes3 a string 111...1 of length n. We call Ei(x) a self-delimiting encoding of
the binary string x. For example, the zeroth-order prefix codeword for a binary string x is

1an internationally recognized code to encode letters as short (dot) and long (dash) pulses
2In fact, uncountably many. One can draw a correspondence between prefix codes and binary trees, and

note there are uncountably many binary trees.
3Not to be confused with 1 raised to the power of n.

2.1. BINARY STRINGS 21

the digit 1 repeating ⟨x⟩−1 many times, followed by a 0. The ending 0 acts as a delimiter,
so that if many strings had their zeroth-order prefix codewords concatenated, we could tell
where one stops and the next begins. Despite its simplicity, the zeroth-order prefix code is
undesirable as the codewords are much longer than the original message, and thus inefficient
when it comes to practical data transmission. In fact, by Proposition 2.1.3 we have that
ℓ(E0(x)) = ⟨x⟩−1+1=O(2ℓ(x)) grows exponentially with respect to the length of x. We
would desire an encoding with length approximately4 equal to ℓ(x) with minimal overhead.
Due to this reason, we often need to resort to a higher-order prefix code. In particular, we
often use the first-order prefix code x of x as

x :=E1(x) = E0(ℓ(x))x = 1ℓ(x)0x

and the second-order prefix code x′ of x as5

x′ := E2(x) = E1(ℓ(x))x = ℓ(x)x = 1ℓ(ℓ(x))0ℓ(x)x.

Higher-order prefix codes offer diminishing returns, and are seldom used. The length of x
and x′ are bounded as follows:

ℓ(x) = 2ℓ(x)+1

ℓ(x′) = ℓ(x)+2ℓ(ℓ(x))+1

= ℓ(x)+2log2(ℓ(x))+O(1) (2.1.5)

The first-order prefix code x of a string x adds at most 2log2x overhead to the length of x,
and the second-order prefix code adds log2x+2log2log2x overhead, both of which grow as
O(log2x), a modest penalty compared to the length of x.

This concept of self-delimiting encodings will show up again when we introduce the
concept of Kolmogorov complexity in Section 2.7.

Lemma 2.1.6 (ith-order code is prefix) Ei(·) is a prefix code for all i∈N0.

Proof. The case i=0 we have already discussed. For i=1, suppose there were two strings
x ̸=y such that x was a prefix of y. So ∃z ̸=ϵ s.t xz=y. Then

1ℓ(x)0xz=1ℓ(y)0y

The strings are equal, so they must agree at least up to the first zero. 1ℓ(x)0=1ℓ(y)0, hence
ℓ(x)=ℓ(y). But then ℓ(x)+ℓ(z)=ℓ(xz)=ℓ(y)=ℓ(x), hence ℓ(z)=0, which implies that z=ϵ
and thus x=y, a contradiction. The proof for i>1 follows the same line of reasoning and by
induction and is left as an exercise. �

Theorem 2.1.7 (Uniqueness of prepending prefix codes) For any two given
strings x,y∈B∗ and any prefix code c, c(x)y is uniquely decodable.

Proof. Since c is a prefix code, the prefix of c(x)y that lies in the range of c must be unique.
Since c(x) is by definition in the range of c, we can separate the concatenation c(x)y into
the strings c(x) and y without ambiguity. We can then recover x from c(x). �

Theorem 2.1.7 motivates encoding a pair of strings (x,y) as xy or x′y. Leaving the last
string unencoded is more economical of bits than encoding as xy or x′y′ and crucial for
certain definitions related to Kolmogorov complexity.

4The code cannot map all strings x to a codeword shorter than ℓ(x), as this would provide an injection
from Bn to B<n, which is impossible.

5Note the omission of ⟨·⟩! As ℓ :N0→B∗, obviously ℓ cannot be composed with itself, and technically we

should write x′ = ⟨ℓ(x)⟩x = 1ℓ(⟨ℓ(x)⟩)0⟨ℓ(x)⟩x. We hope this motivates keeping the usage of ⟨·⟩ implicit.

22 CHAPTER 2. BACKGROUND

2.1.3 Infinite Binary Sequences B∞ and the Unit Interval

Recall that the set of infinite binary sequences is denoted as B∞. An element in B∞ is a
one-way infinite sequence, normally denoted by ω=ω1:∞=ω1ω2ω3... with ωi∈B for all i.
There is a correspondence between elements of B∞ and predicates (Boolean valued functions)
over N+. For example, the predicate “is a prime number” corresponds to the binary sequence

ωi =

{
1 i is prime

0 otherwise

Infinite sequences may be prefixed (but not suffixed) with finite binary strings. For a finite
binary string x=x1:n=x1x2...xn and an infinite binary sequence ω=ω1:∞=ω1ω2..., their
concatenation is

xω=x1x2...xnω1ω2...

We can draw a correspondence between real numbers and binary sequences. Given an infinite
sequence ω1:∞∈B∞, f :B∞→ [0,1] sends it to a real number in the following way:

f(ω1:∞) =

∞∑
n=1

2−nωn (2.1.8)

Essentially, this maps the infinite sequence ω1:∞ to the real number with binary expansion
0.ω1ω2....

Example 2.1.9 (Mapping infinite sequence to real numbers) We write (x1:n)
∞ to

denote the infinite sequence comprised of repeating the finite string x1:n. The following
are some examples of the evaluation of f : f(0∞) = 0; f(010∞) = 0.25; f(110∞) = 0.75;
f(10∞)=f(01∞)=0.5; f((01)∞)=1/3. �

This function is surjective but not injective (one-to-one) as shown in the preceding
example, both 10∞ and 01∞ are mapped to 0.5. This is due to numbers having a non-unique
expansion in binary: we can represent 1 in binary as 1.000... or 0.111....

Cylinder sets. We have a geometric representation of R as the infinite number line [Com]:

One can ask what geometric representation can be associated with B∞. This can be
achieved using cylinder sets, which are defined as follows:

Definition 2.1.10 (Cylinder sets) The cylinder set Γx of a string x∈B∗ is a subset
in B∞ that contains all (one-way) infinite sequences starting with x. That is,

Γx := {xω |ω∈B∞}

Remark 2.1.11 (Cylinder sets as intervals) Geometrically speaking, the cylinder Γx

can be identified with the closed interval f(Γx) (see (2.1.8)) of Γx under f as shown in
Figure 2.1. �

2.2. PROBABILITY AND MEASURE THEORY 23

0 1

Figure 2.1: A geometric representation of various cylinder sets Γx as intervals f(Γx)
(2.1.8).

2.1.4 Exercises

1. [C07] (ith order prefix code for 11111) Compute the zeroth-, first- and second-
order prefix codes for the binary string 11111.

2. [C10] (Counting prefix-free sets) Prove that the number of prefix-free sets for a
binary alphabet is uncountable.

3. [C12] (Unique decodability) Given strings x,y∈B∗, which of the following are
uniquely decodable? xy, xy, x′y, xy′, x̄ȳ, x′y′. In each case, provide a proof or a
counterexample.

4. [C15] (ith order codes are prefix-free) Prove that the family of codes Ei (2.1.4)
are prefix-free for all i∈N0.

5. [C10] (Sequence to real number) Given the function f defined in (2.1.8), find
the pre-image f−1(1/3), and prove that f is a surjection.

6. [C07] (Cylinder set inclusions) Prove that Γy⊆Γx if and only if x⊑y.

7. [C20] (Complete prefix codes can have holes) Construct a complete prefix
code P (Definition 2.5.19) for which

⋃· x∈PΓx ̸=X∞. Show that equality holds iff P is
finite. Construct a complete prefix code P such that X∞\⋃· x∈PΓx is uncountable. Is
it possible to construct a complete prefix code P such that X∞\⋃· x∈PΓx is of positive
measure?

2.2 Probability and Measure Theory

We aim to establish a functional understanding of probability theory for this book while min-
imizing the reliance on measure theory, the formal mathematical framework that probability
theory is built upon. We cover the axioms, definition, basic properties of probability theory
and expectation and variance in Sections 2.2.2 and 2.2.6, build up to the abstractions that
it provides and then only work in these abstractions as much as possible. Some references
to the underlying measure theory are required, when we discuss probabilistic convergence
(Section 2.2.8). We cover the most important properties from probability theory such as
representing stochastic phenomena with random variables (Section 2.2.4), the inequalities
of Markov and Chebyshev (Section 2.2.7), and rigorously define convergence of limits for
random variables (Section 2.2.8).

24 CHAPTER 2. BACKGROUND

For readers who would like a background in measure theory, see [SS05]. For more detail
on probability see [GS20], and [Ros72].

2.2.1 Introduction and Motivation

Finite, countable, uncountable, and beyond. Consider naive high-school probability
on finite “outcome” spaces Ω such as coins {Heads,Tails} or dice {1,2,3,4,5,6} or {0,1}n.
Any subset A of Ω is an “event” with probability P(A)=

∑
a∈Apa where pa is the probability

of a∈Ω. The conditional probability that a randomly sampled outcome a∈Ω lies in A, given
that we already know that some b∈B occurred is easily seen to be P(A|B)=P(A∩B)/P (B).
The expected value of a function f :Ω→R is E[f]=

∑
a∈Ωf(a)pa, and all the usual properties

of P and E are easily derived by elementary means. Countable Ω such as N or X ∗ for finite
X still allow assignment of probabilities pa to every atomic event a∈Ω, but one now needs
to be careful with countable sums and limits. Things get really hairy for uncountable Ω
such as R and X∞, since we cannot simply start with atomic probabilities pa anymore, and
P (A) cannot be defined anymore for every subset A⊂Ω. Finally, semimeasure theory is the
ultimate level and does not even properly exist yet.

Should I read this long section? We aim to stay within random strings x∈Xn for finite
X wherever possible, so Ω=Xn is finite and naive probability theory suffices. Sometimes
only asymptotic results for n→∞ are possible, or they are cleaner or more instructive or
easier to derive, which requires a deeper dive into measure theory. Readers not interested in
the proofs of such theorems may gloss over the measure theory in this section, and should
still be able to appreciate the results themselves.

Identifying infinite sequences with the unit interval. The only uncountable sample
space we have to deal with is the set of infinite sequences Ω=X∞, so one may hope this
somehow allows avoiding or simplifying general measure theory, in particular since we assume
X is finite. For binary X ={0,1} we could identify every sequence ω∈Ω with the real number
0.ω∈[0,1] whose binary expansion is ω (2.1.8). This easily generalizes to finite X ≃{0,...,b-1}
via an expansion in base b. One problem as pointed out in Section 2.1.3 is that the mapping
is not bijective: x10∞ and x01∞ are mapped to the same real number 0.x1. As sequences,
the difference cannot ignored. Say, a greedy action may yield an immediate reward ω1=1

now, but bars you from any future reward ω2:∞=0∞, while deferring gratification gives no
immediate reward ω1=0, but leads to continuous reward ω2:∞=1∞ thereafter.

This problem can be solved by adding an extra unused symbol b to X . This leads to the
construction of a Cantor-like set, which avoids the ambiguity. Not all real numbers r∈ [0,1]
are accessible anymore, but this in itself is not a problem. The real problem arises elsewhere,
with or without adding b.

A (de)motivating example. All terminology will be properly defined later, but the
intuition should be clear. Consider a sequence of independent biased coin flips: Heads=1

with probability θ∈(0,1) and Tails=0 with probability 1−θ. The probability of sequence
x1:n is P[x1:n] = θn1(1−θ)n0 where n0/1 is the number of tails/heads in x1:n. For finite
n this is fine, but for n→∞, P[x1:∞]≡ 0 for all sequences, which is useless. Of course,
we know that for real numbers we need to consider probability densities. If we uniformly
spread out the probability of x1:n to the interval f(Γx1:n

)=[0.x1:n,0.x1:n+2−n] of length 2−n,
we get the piecewise constant probability density function (pdf) pn(0.x1:∞) :=P[x1:n]/2

−n.
Unfortunately pn diverges almost surely (with P-probability 1) for n→∞, while at the same
time the fraction of sequences on which it vanishes is 1 (with uniform probability 1). So
the probability density does not exist either. The cumulative distribution function (cdf)
F (z) :=P [0.x1:∞≤z] does exist, is continuous and strictly monotone increasing (Figure 2.2),

2.2. PROBABILITY AND MEASURE THEORY 25

0.0 0.2 0.4 0.6 0.8 1.00.x
0.0

0.2

0.4

0.6

0.8

1.0
cumulative (cdf)
return R

0

1

2

3

4

5

6

7prob. density
1

Figure 2.2: A biased coin with heads probability 2/3 is flipped 7 times. The sequence x1:7 is
encoded as interval [0.x1:7,0.x1:7+2−7). The probability density and cumulative distribution
are very irregular when viewed as functions of the unit interval [0,1]. Discounted reward sum

R(x1:7) :=0.2
∑7

t=10.8
t−1xt looks troubling as well.

but otherwise is as weird as but distinct from the Cantor function: F ′(z)=0 uniformly almost
everywhere, but F ′(z)=∞ P-almost surely. F ′(z) also assumes every value in-between in
any ε-neighborhood of any point z∈ [0,1]. F is not differentiable at the dense set of binary
fractions {0.x :x∈{0,1}∗} and beyond.

Plotting the impossible. This weird behavior is depicted in Figure 2.2. The plot
shows pn for n=7 and θ= 2

3 . The probability P [x1:n] would be 27 =128 times smaller,
with maximum (23)

7=0.059 on the right. For n→∞ the function would disintegrate into
disconnected dust.

Consider receiving a reward of xt∈{0,1} at time t but discounting is γ=0.8 (Chapter 6).
Then the total return is R(x1:n) := (1−γ)∑n

t=1γ
t−1xt. There is nothing contrived about

this reward function, but when mapped to [0,1] the “curve” is also pathological. While
it converges for n→∞, it is discontinuous (only) at all binary fractions. Defining and
computing the expected return (value function) for finite n is trivial, and often this suffices,
taking the limit n→∞ at the every end of the calculation. But sometimes we need to
directly deal with n=∞, and in this case, there seems to be no escape from measure theory.

If even simple independent coin flips cause trouble, there is little hope of a simple solution
for general dependent stochastic sequences we need to deal with. We also heed Villani’s
[Vil09] general warning: “Experience shows that it is quite easy to fall into logical traps
when working with the measurable isomorphism, and my advice is to never use it.”

2.2.2 The Axioms of Probability Theory

We introduce probability theory from the fundamentals, and build up to the properties
and definitions that we already have an intuitive understanding for, like the chain rule,
P (A,B)=P (A|B)P (B) and expectations E[X].

26 CHAPTER 2. BACKGROUND

Definition 2.2.1 (σ-algebra) Given a set Ω (whose elements are called outcomes), a
collection F of subsets of Ω is called a σ-algebra if it satisfies the following axioms:

(i) Contains the empty set: ∅∈F .
(ii) Closed under countable union: If A1,A2,...∈F , then

⋃∞
n=1An∈F .

(iii) Closed under complement: If A∈F , then Ω\A=:Ac∈F .

Note that a σ-algebra F is also closed under countable intersection, due to De Morgan’s
law

⋂∞
n=1An=(

⋃∞
n=1A

c
n)

c
.

Definition 2.2.2 (Measurable space) A measurable space is a pair (Ω,F) where F
is a σ-algebra on Ω.

We call Ω the sample space, the σ-algebra F the event space, and a set A in the event
space F an event or F-measurable set .

Axiom 2.2.3 (Probability (semi)measure) A probability measure (or measure) P
on a measurable space (Ω,F) is a function P:F→ [0,1] satisfying the following axioms:

(i) Normalization: P(Ω) = 1

(ii) Countable additivity: For any sequence of events A1,A2,...∈F that are pairwise
disjoint (i.e, if i ̸=j then Ai∩Aj = ∅) then

P

(∞⋃
i=1

Ai

)
=

∞∑
i=1

P(Ai)

(iii) Semi-probability: If we weaken the Axiom (i) to only require P(Ω)≤1, then we
call P a semi-probability measure, or simply a semi-probability.

(iv) Semimeasure: If we weaken the axioms further to only require P(Ω)≤1 and

P

(∞⋃
i=1

Ai

)
≥

∞∑
i=1

P(Ai)

then we call P a probability semimeasure or simply a semimeasure.

While these axioms seem rather sparse, all of the intuitive properties that we would
expect a probability function to have can be derived from these two axioms, as we will see
later in Theorem 2.2.10.

Definition 2.2.4 (Probability Space) A probability space is a triple (Ω,F ,P) where
(Ω,F) is a measurable space, and P is a probability measure on (Ω,F).

A probability measure can be thought of as a function that takes a particular event A in
the event space F , and assigns to it a number representing how likely that event is to occur.
Given that we express probability through the language of set theory, Table 2.3 taken from
[GS20] is a useful reference.

2.2. PROBABILITY AND MEASURE THEORY 27

Table 2.3: The jargon of set theory and probability theory [GS20].

Symbol Set jargon Probability jargon

Ω Collection of
objects

Sample space

ω Element in Ω Singleton event, outcome
A Subset of Ω An outcome in A occurs
Ac Complement

of A
No outcome in A occurs

A∩B Intersection An outcome in both A and B occurs
A∪B Union An outcome in A or B occurs
A\B Set difference An outcome in A but not B occurs
A∆B Symmetric

difference
Event that an outcome in either A or B occurs (but
not both)

A⊂B Inclusion If an outcome in A occurs, then an outcome in B occurs
∅ Empty set Impossible event, where no outcome of the set of all

outcomes occurs. The event is the empty set containing
no outcomes.

Ω Universal set Certain event, some outcome in the set of all outcomes
occurs. The event is the entire sample space Ω.

Discussion. There are a number of important corollaries from the probability Axiom 2.2.3:

1. The sample space Ω is always an event. The event Ω can be thought of as “something
in the set of all outcomes happens” event, and satisfies P(Ω)=1.

2. The impossible event ∅ is an event, corresponding to the case where no outcome in
the set of all possible outcomes occurs. Unsurprisingly, the impossible event satisfies
P(∅)=0.

3. Every finite union of events is an event and every countable (and in particular, every
finite) intersection of events is an event. This is because for any sequence of events
A1,A2,... we can write

⋂∞
n An=(

⋃∞
n A

c
n)

c from De Morgan’s law.

4. The number of axioms has been kept to the minimum required to define all the other
desirable properties of probability theory.

5. The axioms do not imply that every subset of Ω, is an event. For example the set
{Ω,∅} (called the coarse σ-algebra) is a valid (though boring) σ-algebra.

6. For finite sets and countable sets, we can (but don’t have to) freely choose F =2Ω,
that is, any subset of Ω is an event. By countable additivity Axiom 2.2.3(ii) we have
P[A]=

∑
a∈AP [{a}] for every A⊂Ω, i.e. the elementary events {a} unquiqely determine

the whole probbility measure P.

7. Attempting to naively do the same or similar for uncountable Ω leads to many (subtle)
problems beyond the scope of this book. For instance, suppose we wanted to define a
probability space to model random numbers sampled uniformly from the unit interval.
We could choose Ω=(0,1), and let events be represented by the smallest σ-algebra F
containing all intervals (a,b)⊂Ω. We can then define the probability measure over an
interval as its “length”, P((a,b)) :=b−a, and then for disjoint intervals A1,...,An we
define P(

⋃
iAi)=

∑
iP(Ai) in line with Axiom 2.2.3. This particular choice of measure

is called the Lebesgue measure. It is tempting to then try to define the Lebesgue

28 CHAPTER 2. BACKGROUND

measure for any subset of (0,1) by covering it with a union of intervals, and then
taking the smallest such covering.

P (E) = inf

{∑
i

(bi−ai) : E ⊂
⋃
i

(ai,bi)

}

This is called the Lebesgue outer measure. Furthermore, for sets E that satisfy the
Carathéodory’s criterion, that for every event S we have

P (S) = P (S∩E)+P (S∩Ec)

then we say that E is Lebesgue measurable. The set of all Lebesgue measurable sets
forms a σ-algebra that includes the Borel σ-algebra. Unfortunately, there exist sets
E that do not satisfy Carathéodory’s criterion, and for which a measure cannot be
well-defined without contradicting the axioms, so it is not possible to naively choose
F=2Ω [SS05].

Example 2.2.5 (Biased coin) Suppose we wanted to represent the outcome of flipping a
biased coin, with bias θ. We could model this with the probability space (Ω,F ,P), where
Ω={H,T}, F=2Ω, and

P (∅) = 0, P({H}) = θ, P ({T}) = 1−θ, P({H,T}) = 1

Here, each of the events can be understood as a possible outcome for the experiment of
flipping a coin. Here, ∅ is the event that the coin shows neither heads nor tails, {H} (resp.
{T}) is the event corresponding to the coin showing heads (resp. tails), and Ω is the event
that the coin shows either heads or tails. One can easily verify that (Ω,F ,P) satisfies the
properties of a probability space of Definition 2.2.4. �

Example 2.2.6 (Different Ω for counting heads) Sometimes, there are different reason-
able choices of Ω for a problem. Suppose we flipped three coins and are interested in the num-
ber of heads shown. (i) We could write out the sample space as Ω={HHH,HHT,HTH,...}
with F=2Ω and distribution P(A)= 1

8 |A|. Each outcome corresponds to one possible result
for flipping the three coins. The event E={HHT,HTH,THH} corresponding to flipping 2
heads would then have the probability P(E)= 1

8 |E|= 3
8 as expected. (ii) As an alternative

presentation, we could choose the sample space Ω′={0,1,2,3} to be the number of heads
shown when three coins are flipped, the event space as F ′=2Ω

′
any set of outcomes, and

P′({0})=1/8

P′({1})=P′({2})=3/8

P′({3})=1/8

from which we would get the same answer as before, P′({2})= 3
8 . The second choice of Ω

is just as valid as the first, but it is rather specialized to the problem at hand with the
solution essentially hardcoded in P ′. Essentially, we construct Ω′ by partitioning Ω based
on the number of heads (e.g. {2}≡{HHT,HTH,THH}) and then construct P′ using the
probability P assigns to that particular partition, P′({2}) :=P({HHT,HTH,THH})= 3

8 .
We will see a more elegant version of inferring a probability distribution over a partition of
Ω (like the number of heads) later on when we introduce random variable in Section 2.2.4.

�

2.2. PROBABILITY AND MEASURE THEORY 29

Definition 2.2.7 (Generating a σ-algebra) Given a family of subsets S⊆2Ω, we
define the σ-algebra generated by S (denoted σ(S)) as

σ(S) =
⋂

C is a σ-algebra ⊇S

C

σ(S) can be thought of as the smallest σ-algebra that contains S. That is, if F is a
σ-algebra that contains S, then σ(S)⊆F .

Example 2.2.8 (The smallest σ-algebra that contains A) If A⊆Ω, then σ({A})=
{∅,A,Ac,Ω} is the smallest σ-algebra containing A. We cannot remove any elements of
σ({A}) without violating Definition 2.2.7. If Ω={1,2,3,4} and A={{1},{2}}, then

σ(A) = {∅,{1},{2},{1,2},{3,4},{1,3,4},{2,3,4},Ω} �

An important property (that we will not prove here) is that given a measurable space
(Ω,F) where F=σ(S) for some S⊆2Ω, we can uniquely identify P solely from the values it
takes on each set in S. This property is called the Carathéodory Extension Theorem. We
only need to know that the collection of cylinder sets forms a so-called semi-ring and that
pre-measures are consistent with probability Axiom 2.2.3(i,ii) for sets in §.

Theorem 2.2.9 (Carathéodory Extension Theorem) Let S be a semi-ring over a
set Ω and let µ be a pre-measure defined on S. If F is the σ-algebra generated by S,
then there exists a unique measure P on F that extends µ, i.e., for every set A∈S, we
have P (A)=µ(A).

We now present some important theorems that can be derived from Axiom 2.2.3, many
of which are (hopefully) intuitively obvious properties that probabilities should satisfy.

Theorem 2.2.10 (Probability properties) Let (Ω,F ,P) be a probability space,
A,B∈F be events, {An}∞n=1 be a collection of events, and {Dn}∞n=1 be a collection of
pairwise disjoint events. Then, the axioms imply the following properties:

P(∅) = 0 (2.2.10a)

P(A∪B) = P(A)+P(B)−P(A∩B) (2.2.10b)

P(Ac) = 1−P(A) (2.2.10c)

if A ⊆ B then P(A)≤P(B) (2.2.10d)

P(A) = P(A∩B)+P(A∩Bc) (2.2.10e)∑∞
n=1P(Dn) ≤ 1 (2.2.10f)

P(
⋃∞

n=1An) ≤
∑∞

n=1P(An) (2.2.10g)

P(
⋃∞

n=1An) = limm→∞P(
⋃m

n=1An) (2.2.10h)

P(
⋂∞

n=1An) = limm→∞P(
⋂m

n=1An) (2.2.10i)

if A1⊆A2⊆A3... then P(
⋃∞

n=1An) = limn→∞P(An) = supnP(An) (2.2.10j)

if A1⊇A2⊇A3... then P(
⋂∞

n=1An) = limn→∞P(An) = infnP(An) (2.2.10k)

Proof. (2.2.10a) to (2.2.10f) follow directly from the definition of a probability measure, and
so are left as an exercise.

30 CHAPTER 2. BACKGROUND

(2.2.10g), also known as Boole’s Inequality , together with (2.2.10h) and (2.2.10i), are sketched
as follows:
(2.2.10g) is known as Boole’s Inequality Let {An}∞n=1 be a family of events and let Bn=

An\
⋃n−1

i=1 Ai. Note that {Bn}∞n=1 is pairwise disjoint, Bn⊆An and
⋃

nAn=
⋃

nBn. Then,

P(
⋃

nAn) = P(
⋃

nBn) =
∑

n P(Bn) ≤
∑

n P(An)

The first equality is obvious, the second equality is from Axiom 2.2.3(ii), and the third
(in)equality is from (2.2.10d).
(2.2.10h) Continuing the above we get

P

(∞⋃
n=1

An

)
=

∞∑
n=1

P(Bn) = lim
m→∞

m∑
n=1

P(Bn) = lim
m→∞

P

(
m⋃

n=1

Bn

)
= lim

m→∞
P

(
m⋃

n=1

An

)

The third equality is Axiom 2.2.3 again, the others are obvious.
(2.2.10i) follows by using De Morgan’s rule on the above.
(2.2.10j) and (2.2.10k) are trivial corollaries of (2.2.10h) and (2.2.10i) respectively. They say
that the probability of a limit of unions/intersections is equal to the limit of the probabilities.
In other words, the limit operation can be “pushed” through P. �

Definition 2.2.11 (Conditional probability and independence)
The conditional probability of event A given event B is defined as:

P(A|B) :=
P(A∩B)

P(B)
provided P(B)>0,

One way to intuitively understand P(B|A) is to think of restricting the set of possible
outcomes to those where A occurs (subsets of A), and then measuring (using P) the
proportion of those outcomes where B also occurs.

Theorem 2.2.12 (Conditional probability measures are probability measures)
If (Ω,F ,P) is a probability space, and A∈F with P(A)>0, then (Ω,F ,PA) is also a
probability space, with PA(·) :=P(·|A).

Theorem 2.2.12 is very useful, as it means that many results that hold for a probability
measure P, also hold for P conditioned on some event A satisfying P(A)>0.

Sometimes we need to relate two measures P and Q. For countable Ω, provided P({a})=0
whenever Q({a})=0, this can be done via

P(A) =
∑
a∈A

P({a}) =
∑

a∈A,Q(a)̸=0

f(a)Q({a}) with f(a) :=
P({a})
Q({a})

An analogue for arbitrary Ω based on Lebesgue integrals (which we will not define) also
exists:

2.2. PROBABILITY AND MEASURE THEORY 31

Theorem 2.2.13 (Radon–Nikodym derivative) If P and Q are probability measures
and P is absolutely continuous w.r.t. Q in the sense that Q[A] = 0 implies P[A] = 0
∀A∈F , then there exists an essentially unique measurable function f :Ω→R+

0 such
that

P(A) =

∫
A

f dQ ∀A∈F

where the r.h.s. is the Lebesgue integral of A w.r.t. measure Q. This remains true for
unnormalized σ-finite measures P,Q. For instance, for Ω=R, and the Lebesgue measure
Q((a,b))=b−a, we get the familiar P(A)=

∫
A
p(x) dx, where p(x) is “the” probability

density of P.

The Radon–Nikodym derivative f is commonly written as dP/dQ, motivated by∫
A

f dQ =

∫
A

dP

dQ
dQ =

∫
A

dP = P (A)

which makes it easy to memorize but looks dangerously tautological which it is far from.
We will simply take the existence and uniqueness for granted.

2.2.3 (Semi)Measures on Infinite Sequences

The most important choice of measurable space (Ω,F) which we will use throughout this
book is the set of infinite sequences Ω=Γϵ≡X∞ (Definition 2.1.10) together with the event
space F=σ({Γx :x∈X ∗}) generated by the cylinder sets Γx.

Definition 2.2.14 ((Semi)measures on Ω=X∞) We define (semi)measures on
the sample space Ω=Γϵ=X∞ with event space F=σ(Γ) :=σ({Γx :x∈X ∗}). For this
sample space, we denote the (semi)measure as ν instead of the usual P. We will abuse
the following notation: For x,y∈X ∗,

ν(x) := ν(Γx) and ν(y|x) := ν(xy)/ν(x)

Under this notation the probability semimeasure Axiom 2.2.3 for ν :X ∗→ [0,1] can be
restated as

ν(ϵ) ≤ 1 and ν(x) ≥
∑
x∈X

ν(xa)

and with equality for (probability) measures. Intuitively, ν(x) should be thought of
as the probability that a sampled sequence starts with the string x, and ν(y|x) as the
probability that a given sequence x continues with y.

The following lemma is a direct consequence of P[Ω]≤1 for Ω=X∞.

Lemma 2.2.15 For a given n and (semi)measure ν, we have
∑

x∈Xnν(x)≤1, where
equality holds for measures.

Proof. We proceed by induction on n. The base case follows immediately since ν(ϵ)≤1. For
the step case, we have ∑

x∈Xn+1

ν(x) =
∑

x∈Xn

∑
a∈X

ν(xa) ≤
∑

x∈Xn

ν(x) ≤ 1

�

32 CHAPTER 2. BACKGROUND

The cylinder sets form a semi-ring, so for measures ν we can apply Carathéodory’s
extension theorem to uniquely get a measure ν(A) for all σ(Γ)-measurable sets A. The more
elementary developments and statements that only rely on ν on the cylinder sets, often
naturally generalize to semimeasures. More advanced semimeasure theory, especially if it
requires ν on σ(Γ)-measurable sets beyond cylinder sets, has yet to be developed. Those
results are therefore only developed in this book for proper probability measures ν. See
Section 2.8.2 for the intricacies of semimeasures which go beyond the already involved
measure theory.

2.2.4 Random Variables

Usually, we are not interested in the particular value of ω∈Ω that was sampled from the
distribution P, but of the value of some parameter that depends on the outcome of that
experiment.

For example, when we roll a pair of dice for a board game, for many games we do not
care what particular pair of values (e.g (3,4) or (5,2)) is obtained, but rather the sum of the
dice (7 in this case). Similarly, gamblers playing roulette are not interested in the particular
outcome of each spin (33-Black or 9-Red), but only if the resulting wager is won or lost.

We can express this through the concept of random variables, which can be thought
of as a variable or function, the value of which depends on outcomes ω sampled from Ω
according to the probability distribution P.

Remark 2.2.16 (Types of random variables) Some random variables can be classified
into categories like discrete, continuous, and mixed. We will mostly focus on discrete (and
occasionally continuous) random variables. The theorems in this book will usually be proven
only for the discrete case, though they usually also hold for the continuous case by replacing
sums with integrals. �

Definition 2.2.17 (Random variable) A (real-valued) random variable (also called
F-measurable function) is a function X :Ω→R that satisfies the property

{X≤r} := {ω∈Ω:X(ω)≤r} ∈ F

for all r∈R. We call the image X(Ω)={X(ω) :ω∈Ω} the alphabet for X.

A more general definition includes random variables X of type X :Ω→E , where E itself
is a measurable space, but we do not need them. Vector-valued random variables X :Ω→Rd

can be reduced to an n-tupels of real-valued random variables X=(X1,...,Xn).

First, note that there is nothing “random” about a random variable. It is a deterministic
function of type Ω→R. The “randomness”, as we will see, comes from the interaction
between X and the underlying probability measure P . This may seem rather abstract
compared to the intuitive definition usually given for random variables: A discrete random
variable is usually defined as a countable set of possible outcomes with a probability assigned
to each, and continuous random variables are usually defined as an interval I⊆R with a
corresponding probability distribution p :I→R. As it happens, both discrete and continuous
random variables can be defined as special cases of this definition (See Proposition 2.2.30).
The probability measure P on (Ω,F) together with the function X implies a distribution for
the random variable X, as follows.

2.2. PROBABILITY AND MEASURE THEORY 33

Definition 2.2.18 (Cumulative distribution function (cdf)) The cumulative
distribution function (cdf) FX :R→ [0,1] for a random variable X is defined as

F (x) ≡ FX(x) := P({ω∈Ω:X(ω)≤x}) ≡ P({X≤x}) =: P[X≤x]

Note that P({ω∈Ω :X(ω)≤x}) is always defined for any x∈R, as random variables
have the property that ∀x∈R.{ω∈Ω:X(ω)≤x}∈F . It is easy to see that F is monotone
increasing from 0 to 1 and right-continuous.

Similar to functions, we abbreviate X(ω)≤r ∀ω∈Ω to X≤r. Furthermore we say X≤x
holds almost surely (a.s.) if P[X≤x]=1 (cf. Definition 2.2.64). The qualifier a.s. can become
a nuisance, so we may omit it if tangential to the argument.

Theorem 2.2.19 (Induced measure) Any cdf F induces a (Borel) measure on R
via PR[(−∞,r]] :=F (r) for r∈R and Carathéodory’s extension Theorem 2.2.9 uniquely
gives PR[R] for any (Borel) measurable set R ⊆ R. For F (x) = P[X ≤ x] we have
PR(R)=P[X∈R]=:PX(R).

Definition 2.2.20 (Discrete random variable) A random variable X is discrete if
the alphabet X(Ω) is countable.

Definition 2.2.21 (Probability mass function (pmf)) For a discrete random
variable X, we can define the probability mass function (pmf) pX :R→ [0,1] as

p(x) ≡ pX(x) = P({ω∈Ω:X(ω)=x}) = P({X=x}) =: P[X=x]

Example 2.2.22 (Fair coin flips) Following Example 2.2.6, we consider describing the
number of heads in three flips of a coin using a random variable. Take the probability
space (Ω,2Ω,P) with Ω= {HHH,HHT,...,TTT} and P(A)= |A|/8. The choice of P here
represents that each outcome ω∈Ω is one possible result from flipping three fair coins, so
the probability of an event is just the number of outcomes in that event, times (12)

3= 1
8 . We

define a random variable X :Ω→R as

X(ω) = number of heads in ω

It is clear that X is discrete, as X(Ω)={0,1,2,3}. The corresponding pdf pX now assigns a
probability pX(h) to the event of obtaining h heads in 3 coin flips. For example,

pX(2) := P({ω∈Ω:X(ω)=2}) = P({HHT,HTH,THH}) = 3/8 �

Proposition 2.2.23 (Relating cdf and pdf) For a discrete random variable X, the
cdf FX and the pmf pX can be related as follows:

FX(x) =
∑
t≤x

pX(t) and pX(x) = FX(x)− lim
t↗x

FX(t)

where the sum is taken over all t∈X(Ω) such that t≤x.

34 CHAPTER 2. BACKGROUND

Proof.

FX(x)
(a)≡ P({ω∈Ω:X(ω)≤x}) (b)

= P
(⋃
·

t∈X(Ω),t≤x

{ω∈Ω:X(ω)= t}
)

(c)
=

∑
t∈X(Ω),t≤x

P({ω∈Ω:X(ω)= t}) ≡
∑

t∈X(Ω),t≤x

P[X= t]
(d)
=
∑
t≤x

pX(t)

(a) by Definition 2.2.18, (b) follows from expanding the set into a disjoint (∪·) union, (c)
follows from Axiom 2.2.3, (d) since pX(t)=0 for t ̸∈X(Ω), so we are implicitly summing only
over t∈X(Ω). �

Discrete random variables are used for situations where there are finitely or countably
many outcomes to consider, whereas continuous random variables are used for situations
where there are uncountably many outcomes to consider. For example, consider the distri-
bution of the height of people in a room. We would expect that “most” people are “about”
1.8 meters tall, or that it is “very likely” that any randomly selected person is between 1
and 2 meters tall. Continuous random variables allow the above statements to be stated
rigorously.

To ask the question “how likely is it that a person selected randomly is 1.8 meters tall?”
is useless, as for any height the probability that someone is exactly 1.8000... meters tall is
zero! Instead, we can only ask for probabilities that the height of an individual lies in some
interval (how likely is it that a randomly selected person is between 1.79 and 1.81 meters in
height?)

For this reason, we cannot naively define the pmf pX(x) in the same way as we did
for discrete random variables. By doing so, we would obtain a paradoxical result that
P(X=x)=0 for all x∈X(Ω). Instead, we generalize from Proposition 2.2.23:

Definition 2.2.24 (Continuous random variable) A random variable X is contin-
uous if there exists an integrable function f :R→ [0,∞) such that

FX(x) =

∫ x

−∞
f(t) dt.

The word “continuous” in “continuous random variable” is a bit of a misnomer. It neither
implies that the function X is continuous, nor that the set X(Ω) is connected. It refers
to the fact that the cdf FX is continuous (in fact, it is absolutely continuous, a stronger
property), as it is the integral of an integrable function.

Definition 2.2.25 (Probability density function (pdf)) For a continuous random
variable X, we define the probability density function (pdf) as pX(x) := f(x) from
Definition 2.2.24.

We use the same symbol pX for the pmf (when X is discrete) and the pdf (when X
is continuous), as many other definitions (that we will see later on) are identical for both
discrete and continuous random variables (up to swapping sums for integrals).

Note the similarity between the expression in Proposition 2.2.23 and the definition
FX(x)=

∫
t≤x

pX(t) dt =
∫ x

−∞pX(t) dt of the pdf for continuous random variables, identical
up to interchanging the sum for an integral.

Remark 2.2.26 (Densities may not be bounded by 1) Note that (unlike the cdf or
pmf) the pdf for a continuous random variable may not be bounded by 1. In fact, it could

2.2. PROBABILITY AND MEASURE THEORY 35

even be unbounded, as long as the integral over the domain still converges. It can be shown
that pdf’s must still satisfy

∫∞
−∞pX(t) dt=1. One example is pX(x)=−ln(x)J0≤ x≤ 1K,

which is unbounded (pX(x)→∞ as x→0) but
∫∞
−∞pX(t) dt=

∫ 1

0
−ln(t) dt=1. �

We use the pdf to define the probability that X lies inside an interval [a,b]

P(a≤X≤b) :=

∫ b

a

pX(x) dx = FX(b)−FX(a).

For a “sufficiently nice” set B, which can be decomposed into countable unions of disjoint
intervals B=

⋃· ∞i=1(ai,bi), we can write the probability the

P(X∈B) =

∫
B

pX(x) dx :=

∞∑
i=1

∫ bi

ai

pX(x) dx

Example 2.2.27 (Uniform measure on interval [0,1]) Consider the unit interval [0,1].
A dart is thrown that hits somewhere along the interval.6 We would like a probability space
to formalize this mechanism. Naturally, we choose Ω=[0,1]. We will consider the σ-algebra
generated by the open intervals {(a,b) :a<b}. We define F as the closure of the set of all
open intervals under complements and countable unions. Each event can be thought of as the
dart landing somewhere inside the region specified. For example, the event E=(15 ,

2
5)∪(35 , 45)

corresponds to the dart landing somewhere between 1
5 and 2

5 , or somewhere between 3
5 and

4
5 . By assuming that the dart is equally likely to land anywhere, it seems natural to assign
the probability of an event to be the fraction of the total “length” of the interval taken up.
Singleton sets have no length, so we define P({a})=0 for any a. We define the probability
measure P((a,b))=b−a for an open interval (a,b). We define the probability measure for
a disjoint union of open intervals in the obvious way to ensure Axiom 2.2.3 is satisfied. If
A=

⋃· ∞i=1(ai,bi) with 0≤a1≤b1≤a2≤b2≤ ... then A is a disjoint union, and so we can define

P(A) :=

∞∑
i=1

(bi−ai)

We obtain for free that if a set A is a complement of unions of open intervals, then

P(Ac) := 1−P(A)

as complements of unions of open intervals are unions of closed intervals, and we can write
closed intervals [a,b] as {a}∪(a,b)∪{b}. Finally, by applying Axiom 2.2.3, we obtain

P([a,b]) = P({a}∪(a,b)∪{b}) = P((a,b))

While this procedure defines P on most sets of practical interest, we need to invoke Theo-
rem 2.2.9 to define P on all events in F . This tedious legwork is required to ensure we cover
all elements of F . Unfortunately there exist subsets E of [0,1] that are non-measurable, for
which no value of P (E) can be assigned without causing a contradiction [RT64]. Restricting
F to the σ-algebra defined above avoids this problem.

As a corollary of the above, P assigns the same measure to an interval regardless if the
endpoints are included or not:

P([a,b])=P((a,b])=P([a,b))=P((a,b))

6If managing to hit an infinitesimally thin line with a dart breaks your suspension of disbelief, you can
imagine instead throwing a dart at a unit square, and then measuring the distance from the left-hand side of
the square.

36 CHAPTER 2. BACKGROUND

which intuitively makes sense, since each singleton point {a} in Ω has zero length, and the
likelihood of hitting any particular real number in Ω is zero. As a result, we can freely union
in or subtract out countably-many singleton sets without affecting the probability assigned
to a set.

Now that we have defined the probability space, we can talk about random variables on
this space. Consider X(ω)=ω, the identity random variable. X represents the location at
which the dart landed. We can write the cdf FX of X from the definition:

FX(x) = P({ω∈Ω:X(ω)≤x}) = P({ω∈Ω:ω≤x}) = P([0,x)) =

0 x<0
x 0≤x<1
1 1≤x

which then gives the pdf of X

pX(x) =

{
1 0≤x≤1

0 otherwise

from which we can verify that ∫ x

−∞
pX(t) dt = FX(x)

Figure 2.4 plots the pdf pX and the cdf FX . �

−1 −0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

x

va
lu
e
of

d
is
tr
ib
u
ti
o
n

pX
FX

Figure 2.4: A plot of the pdf pX vs the cdf FX for Example 2.2.27.

In full generality we have

Theorem 2.2.28 (Measure for random variables) For a Borel-measurable set
R⊆R and a random variable X,

P[X∈R] =
∑
x∈R

pX(x) for discrete A

P[X∈R] =
∫
R

pX(x) dx for continuous A

2.2. PROBABILITY AND MEASURE THEORY 37

Proof. For discrete X, by countable additivity of P we have

P[X∈R] = P
[⋃
·

x∈R

{ω :X(ω)=x}
]
=
∑
x∈R

P
[
{ω :X(ω)=x}

]
=
∑
x∈R

pX(x)

For continuousX it follows from Theorems 2.2.13 and 2.2.19: P[X∈R] ≡ PX(R) =
∫
R
p(x)dx,

but since we proved neither, the reader may as well trust that replacing
∑

by
∫

and pmf by
pdf works. �

Remark 2.2.29 (Defining a random variable by distribution) Often when talking
about random variables, the actual definition of the function X :Ω→R is not important.
We may only need the alphabet X(Ω) and the pmf/pdf pX(x)=P(X=x) that is induced
from X and P. It turns out we can always define a probability space and random variable
to match any desired set of outcomes and probabilities, as follows. �

Proposition 2.2.30 (Specifying a random variable by an alphabet and prob-
abilities) Let (ri)

∞
i=1 and (pi)

∞
i=1 be sequences of real numbers, with ∀i.pi≥ 0 and∑∞

i=1pi=1, and each ri distinct (ri ̸=rj whenever i ̸=j). Then, there exists a probability
space (Ω,F ,P) and random variable X : Ω→R such that X(Ω) = {rn : n∈N+} and
P[X=rn]=pn for all n∈N+.

Proof. We let Ω=N+ and F=2Ω, and define the probability measure P({i})=pi for singletons,
and P (A)=

∑
a∈AP({a} for all other sets A⊆N+ to ensure P satisfies Axiom 2.2.3. Then,

we define X(i)=ri. Note that X is injective as each ri is distinct, meaning a left inverse
X−1 :X(Ω)→Ω with X−1(ri)= i exists. Then,

P(X=rn) = P({ω∈Ω:X(ω)=rn}) = P
(
{ω∈Ω:ω=X−1(rn)}

)
= P({ω∈Ω:ω=n}) = P({n}) = pn �

Remark 2.2.31 (Discrete random variable via probability mass function) In some
probability textbooks, this is how a (discrete) random variable is defined instead: X is a
tuple (X ,PX), where X is the sample space, and pX :X → [0,1] is a function mapping each
x∈X to pX(x)≡P[X=x] such that

∑
x∈X pX(x)=1 and pX(x)≥0. A continuous random

variable can be alternatively defined in a similar fashion. �

When we specify a random variable by a sample space and probability distribution, we
write X ∼ (X ,PX) to denote that X has outcomes in X distributed according to PX , or
simply X∼PX when X is clear from context.

2.2.5 Joint and Conditional Probabilities

The Definitions 2.2.21, 2.2.24 and 2.2.25 of pmf, cdf, pdf naturally generalize to finite
collections of n random variables. We give the definition for n=2, the generalization to
n>2 is obvious.

Definition 2.2.32 (Joint cdf, pmf, pdf) Given two random variables X and Y
over the same probability space (Ω,F ,P) we can define the joint cumulative distribution
function (joint cdf) as

FX,Y (x,y) := P(X≤x and Y ≤y) = P({ω∈Ω:X(ω)≤x and Y (ω)≤y})

38 CHAPTER 2. BACKGROUND

If X and Y are discrete, the joint probability mass function, (joint pmf) is defined as

pX,Y (x,y) = P(X=x and Y =y) = P({ω∈Ω:X(ω)=x and Y (ω)=y})

We have to be careful how we define the joint pdf. Assuming certain “niceness conditions”
that we gloss over, there exists an integrable function f :R2→ [0,∞) such that

FX,Y (x,y) =

∫ v=y

v=−∞

∫ u=x

u=−∞
f(u,v) du dv

We define the joint probability density function (joint pdf) as pX,Y (x,y) :=f(x,y). We
often drop the subscripts and write F (x,y) and p(x,y) where it does not introduce
ambiguity.

The natural generalization of Theorem 2.2.28 to pairs of discrete random variables and
measurable set S⊆R×R is

P[(X,Y)∈S] = P
[⋃
·

(x,y)∈S

{(X,Y)=(x,y)}
]
=
∑

(x,y)∈S

P
[
{(X,Y)=(x,y)}

]
=

∑
(x,y)∈S

pX,Y (x,y)

and P[(X,Y)∈S] =
∫
S

pX,Y (x,y)dx dy if X and Y are continuous. (2.2.33)

Proposition 2.2.30 was a bit tautological. We could even have chosen Ω={ri}∞i=1 and
X the identity function. It becomes more interesting for a collection of random variables,
in which case Ω=X1×...×Xn and Xi(ω)=ωi is a projection on “coordinate” i. It is often
natural to start with specifying a collection of variables that correspond to potentially
measurable events and their (joint) probabilities (or pmf’s or pdf’s or cdf’s). As long as
probabilities are assigned consistently, Kolmogorov’s extension theorem ensures that one
can always construct a probability space from a collection of random variables, consistent
with these probabilities, even for (un)countably-many general real-valued random variables.
And typically there is no need to construct (Ω,F ,P) explicitly; it suffices to know it exists.

We defined in Definition 2.2.11 the probability of an event conditioned on another event.
Similarly, we can also define the conditional distribution of an event given the outcome of
another random variable.

Definition 2.2.34 (Conditional cdf, pmf, pdf) Given two random variables X
and Y over the same probability space (Ω,F ,P) we can define the conditional pmf, cdf,
and pdf of X given Y =y as follows. For discrete X,Y with P [Y =y]>0, we have

pX|Y (x|y) :=
pX,Y (x,y)

pY (y)
=

P(X=x,Y =Y)

P(Y =y)
= P [X=x|Y =y]

FY |X(x|y) = P[X≤x|Y =y] =
∑
x′≤x

p(x′|y)

For continuous X, and Y with density pY (y)>0 we have

pX|Y (x|y) :=
pX,Y (x,y)

pY (y)
and FX|Y (x|y) :=

∫ x

−∞
pX|Y (x

′|y)dx′

We often write p(x|y) and F (x|y) without the subscripts.

Remember that P[X=x] is just a short-hand for P (A) for event A={ω :X(ω)=x}≡
{X=x}, and similarly for P[X=x|Y =y]. As such, mixed P(A|Y =y) for discrete Y and

2.2. PROBABILITY AND MEASURE THEORY 39

any A∈F and P[X=x|B] if P (B)>0 for any B∈F also make sense. What about continous
X and Y ? Note the absense of some expressions in Definition 2.2.34 in this case, and that
we have appeared to manage to condition on a probability P[Y =y]=0 event. In this case
P[X=x|B]=0, while a limited definition of P[A|Y =y] is possible despite P[Y =y]=0. A
conditional version of Theorem 2.2.28 is suggestive:

P[X∈R|Y =y] :=

∫
R

pX|Y (x|y) dx (2.2.35)

for any Borel set R⊆R, but note that unlike Theorem 2.2.28 this is a definition. The dangers
are discussed in Section 2.8.3.

Now that we have defined the conditional and joint distributions, we introduce the
familiar sum and product rules.

Theorem 2.2.36 (Sum and product rule) Given discrete/continuous random
variables X and Y with pmf’s/pdf’s p·(·), we have the

Sum rule: pX(x) =

∫∑
y∈Y (Ω)

pX,Y (x,y)

Product rule: pX,Y (x,y) = pX|Y (x|y)pY (y)

Proof. The product rule (both discrete and continuous) is just Definition 2.2.34rearranged
and noting it holds for pY (y)=0 as well in thi form. For the discrete sum rule,

pX(x) = P[X=x] = P({ω∈Ω:X(ω)=x})
= P({ω∈Ω:X(ω)=x and ∃y∈Y (Ω).Y (ω)=y})
= P

(⋃· y∈Y (Ω){ω∈Ω:X(ω)=x and Y (ω)=y}
)

=
∑

y∈Y (Ω)P({ω∈Ω:X(ω)=x and Y (ω)=y})
=
∑

y∈Y (Ω)P(X=x,Y =y) = pX,Y (x,y)

We leave the continuous sum rule as an exercise. �

Example 2.2.37 (Conditional coin flips) Recall Example 2.2.22 where we defined a
probability space to model the outcome from flipping three fair coins and X was a random
variable that counts the number of heads flipped. We introduce a new random variable
Y :Ω→R,

Y (ω) = Jω ̸=TTT K

That is, Y (ω)=1 if at least one head was flipped, and Y (ω)=0 otherwise. Then, we can
formally express the statement “How likely is it that two heads were flipped, given that at
least one was flipped” using conditional probabilities.

P(X=2 |Y =1) =
P(X=2,Y =1)

P(Y =1)

We can then compute the numerator as

P(X=2,Y =1) = P({ω∈Ω:X(ω)=2,Y (ω)=1}) = P({HHT,HTH,THH}) = 3
8

and the denominator as
P(Y =1) = P(Ω\{TTT}) = 7

8

40 CHAPTER 2. BACKGROUND

which gives P(X = 2 | Y = 1) = 3/8
7/8 = 3

7 . What is the intuition behind the result of 3
7?

Since we are given that Y = 1, this eliminates the possibility of TTT , so we are essen-
tially asking how likely is it that we obtain one of HHT,HTH,THH by selecting one of
HHH,HHT,HTH,HTT,THH,THT,TTH, each of which is equally likely. There are 3
desired outcomes out of a possible of 7. Hence, P(X=2 |Y =1)= 3

7 . �

Discrete random variables X and Y are naturally defined to be independent if the
events {X=x} and {Y = y} are independent for all x,y∈R, and identially distributed if
P[X=x]=P[Y =x] for all x∈R. For continuous X,Y , these events have probability 0, and
we have to resort to the cdf. The fully general and self-contained definition for a collection
of random variables is as follows:

Definition 2.2.38 (Independent and identically distributed) A collection of
random variables {Xi}i∈I with corresponding cdfs {FXi}i∈I are identically distributed
if all cdf’s are identical. The family {Xi}i∈I is (mutually or collectively) independently
distributed if the cdf’s satisfy the following:

FXj :j∈J(xj :j∈J) =
∏

j∈J
FXj

(xj)

for all {xj}j∈J , and for all finite subsets J⊆I. Note that this is a stronger property
than pairwise independence, which only requires the above property for |J |=2. If both
conditions hold, we say that {Xi}i∈I are independent and identically distributed (i.i.d.).

One can show that X and Y are independent if and only if

PX,Y (A×B) = PX(A)·PY (B) and/or pX,Y (x,y)=pX(x)pY (y) (2.2.39)

for all Borel-measurable sets A,B∈R in general in the former case, and discrete or continuous
X,Y in the latter case, which looks more familiar, and similar for larger collections I.

Example 2.2.40 (Dependent random variables) In Example 2.2.37, X and Y are not
independent, since

P(X=0,Y =1) = P(∅) = 0

but P(X=0)P(Y =1) = P({TTT})P(Ω\{TTT}) = 1
8 · 78 = 7

64 �

2.2.6 Expectation and Variance

Given a random variable, one can talk about the “average” result of the random variable by
sampling outcomes ω1,ω2,... and feeding them into X to obtain the sequence X(ω1),X(ω2),....
We define X̄n :=

1
n

∑n
i=1X(ωi) which represents an empirically calculated average over n

returns from X. For large n, we would expect that if P(X=xi)=pi, then approximately
npi of the outcomes should be equal to xi:

X̄n =
1

n

n∑
i=1

X(ωi) ≈
1

n

∑
x∈X(Ω)

(nP (X=x))x =
∑

x∈X(Ω)

xP (X=x)

This motivates calling and defining the r.h.s. as the expectation E[X] of X, and similarly
for continuous X with the

∑
x replaced by an integral over x. The general definition

involves Lebesgue integrals and is cumbersome. There is a neat alternative by reducing it to
one-dimensional “high-school” integrals, formally called Riemann integrals, whose definition
and elementary properties we will take for granted.

2.2. PROBABILITY AND MEASURE THEORY 41

Definition 2.2.41 (Expected value) The expected value (expectation or mean) of a
non-negative random variable X w.r.t. measure P is defined as

E[X] ≡ EP[X] :=

∫ ∞

0

P [X(ω)>x] dx

where
∫∞
0

is the one-dimensional improper Riemann integral. Any signed random
variable can be decomposed as X=X+−X− with X±≥0, and its expectation is defined
as

E[X] := E[X+]−E[X−] =

∫ ∞

0

F̄X(x)−FX(−x) dx
provided E[X+]<∞ or E[X−]<∞, where F̄X(x) :=P[X(ω)>x]=1−FX(x) is called
the complementary cdf or tail distribution or survival function.

The next theorem showes that Definition 2.2.41 reduces to the natural definitions of
expectation for discrete and continuous X.

Theorem 2.2.42 (Expected value for discrete and continuous X)
Let X be a random variable. Assuming the r.h.s. exists (absolutely), then

(i) E[X]=
∑

x∈X(Ω)x·p(x) for discrete X with pmf p(x)

(ii) E[X]=
∫∞
−∞x·p(x) dx for continuous X with pdf p(x)

(iii) E[X]=
∑

ixiP[Ωi] for a piecewise constant X
with X(Ωi)={xi} on a countable partition Ω=

⋃· iΩi

In (i) we can simply write
∑

x∈R or
∑

x instead of
∑

x∈X(Ω), with the understanding

that we are still only summing over a countable set, as p(x) will be zero for all but a
countable subset X(Ω)⊆R. The X in (iv) is called {Ωi}-measurable. Note that the above
sums/integrals may not be defined, in which case E[X] is undefined. For example, the
Cauchy density p(x)= 1

π
1

1+x2 is known to have an undefined expected value.

Proof sketch. We prove the theorem for X≥0. The results generalize to signed X by using
E[X]=E[X+]−E[X−], and combining the two resulting

∫∑
’s if at least one of them is finite.

(i) For discrete X≥0, we have P[X>z]=
∑

x>zp(x)=
∑

x∈X(Ω)p(x)Jx>zK by Theorem 2.2.28,
which implies

E[X] =

∫ ∞

0

P [X>z]dz =
∑

x∈X(Ω)

p(x)

∫ ∞

0

Jx>zK dz =
∑

x∈X(Ω)

x·p(x)

(ii) The proof for continuous X≥0 is the same just with
∑

x replaced by
∫
dx.

(iii) Inserting p(x)=P[X(ω)=x]=
∑

i:xi=xP [Ωi] into (i) gives

E[X] =
∑

x∈X(Ω)

x·
∑

i:xi=x

P [Ωi] =
∑

x∈X(Ω)

∑
i:xi=x

xiP [Ωi] =
∑
i

xiP[Ωi]
�

Example 2.2.43 (Expected value of a fair die) Consider a fair six-sided die. By
Proposition 2.2.30 we can represent this with a random variable X with alphabet X =Ω=
{1,2,3,4,5,6} and probabilities P(x)= 1

6 for all x. The expected value is

E[X] =
∑

x∈{1,2,3,4,5,6}

x
6 =

7
2

�

42 CHAPTER 2. BACKGROUND

Theorem 2.2.44 (Expected value - basic properties)
Let X and Y be random variables with finite expectations. Then

(i) Non-negativity: E[X]≥0 if X≥0 (a.s.)

(ii) Linearity: E[cX]=cE[X] for c∈R and E[X+Y]=E[X]+E[Y]

(iii) Constant: E[c]=c for constant c∈R
(iv) Monotonicity: E[X]≤E[Y] for X≤Y (a.s.)

(v) Non-degeneracy: E[|X|]=0 iff X=0 (a.s.)

(vi) Triangle inequality: |E[X]|≤E[|X|]
(vii) Indicator function: EP[11A]=P[A] where 11A(ω)=Jω∈AK

(viii) Independence: E[X ·Y]=E[X]·E[Y] if X and Y are independent

Note that the converse of (viii) is not true.

Proof. (i,iii,iv) follow immediately from Definition 2.2.41.
(ii) E[cX]= cE[X] for X≥0 and c>0 follows from applying Definition 2.2.41 to cX and
then changing the integration variable from x to x′=x/c. The other cases are left as an
exercise. We first prove E[X+Y]=E[X]+E[Y] for discrete X and Y . We expand out the
representation Theorem 2.2.45 (which is elementary for discrete X,Y) of the expectation
with f(x,y)=x+y, split the two summations, and marginalize y or x using the sum rule
(Theorem 2.2.36):

E[X+Y] =
∑

x,y(x+y)p(x,y)

=
∑

x,yx·p(x,y)+
∑

x,yy ·p(x,y)
=
∑

xx
∑

yp(x,y)+
∑

yy
∑

xp(x,y)

=
∑

xx·p(x)+
∑

yy ·p(y) = E[X]+E[Y]

We reduce the general case to the discrete case by discretizingX toXε∈εZ with |X−Xε|≤ 1
2ε,

and similarly for Y ,

E[X+Y]
(iv)

≶ E[Xε+Yε±ε]
(iii)
= E[Xε]+E[Yε]±ε

(iv)

≶ E[X± ε
2]+E[Y± ε

2]±ε
(iii)
= E[X]+E[Y]±2ε

Since the upper and lower bound hold for all ε>0 this implies E[X+Y]=E[X]+E[Y].
(v) If X=0 a.s., then P [|X|>ε]=0 ∀ε>0, hence E[|X|]=0 by Definition 2.2.41. Conversely,
assume E[|X|]=0. Let Ak :={ω : |X(ω)|>1/k} and Xk :=J|X|>1/kK≤k|X| for k∈N and
A∞ :=JX ̸=0K=

⋃
kXk. Then

P(Ak)
(vii)
= E[Xk]

(iv)

≤ E[k|X|] (iii)
= kE[|X|] = 0

=⇒ 0 ≤ P(A∞) ≤
∑
k

P (Ak) = 0 hence X=0 a.s.

(vi) Let X=X+−X− with X±≥0, then

|E[X]| = |E[X+]−E[X−]|
(i)

≤ E[X+]+E[X−]
(ii)
= E[X++X−] = E[|X|]

(vii) E[11A] =
∫∞
0
P [{ω :11A(ω)>x}]dx =

∫∞
0
P [{ω∈A :1>x}] = P (A)

(viii) We only provide the proof for discrete X and Y . By Theorem 2.2.45 with f(x,y)=x·y
and (2.2.39),

E[XY] =
∑

x,yx y p(x,y) =
∑

x,yx y p(x)p(y) =
(∑

xx p(x)
)(∑

yy p(y)
)
= E[X]E[Y]

2.2. PROBABILITY AND MEASURE THEORY 43

For the general case one can use the same discretization trick as in (ii). �

Next we consider expectations of functions of random variables. Given a function
f :Rn→R and random variables Xi :Ω→R,

Z :=f(X1,...,Xn) is defined via Z(ω) := f(X1(ω),...,Xn(ω))

f is called measurable, if Z is itself a random variable for all choices of Xi, i.e. satisfies
Definition 2.2.17.

Since Z= f(X1,...,Xn) is just another random variable if f is a measurable function,
all results apply to Z as well. The next property involves f explicitly. We present and
prove the results for n=2 which is notationally more convenient, but they straightforwardly
generalize to n>2. We use

∫∑
x,y to mean

∑
x,y for discrete X,Y and pmf p(·) and

∫ ∫
dx dy

for continuous X,Y and pdf p(·), and similarly elsewhere.

Theorem 2.2.45 (Law of the unconscious statistician) Let X and Y be random
variables, f a measurable function, and assume the r.h.s. exists. Then

E[f(X,Y)] =

∫∑
x,y

f(x,y)p(x,y) for discrete/continuous X,Y

The law received its curious name, since it is common to simply regard it as a definition,
while in fact it is a (in the continuous case non-trivial) consequence of Definition 2.2.41
applied to random variable Z := f(X,Y). See Section 2.8.3 for an extension to partial
functions.

Proof. We assume Z ≥ 0 and leave the general case as an exercise. For discrete X,Y ,
Definition 2.2.41 and (2.2.33) give

E[Z] =

∫
P[Z>z] dz =

∫
P[f(X,Y)>z] dz =

∫ ∑
(x,y):f(x,y)>z

p(x,y) dz

=

∫ ∑
x,y

p(x,y)Jf(x,y)>zK dz =
∑
x,y

p(x,y)

∫
Jf(x,y)>zK dz =

∑
x,y

p(x,y)f(x,y)

As often, for continuous X,Y , we can simply replace
∑

by
∫

and pmf by pdf. �

The next set of results involves exchanging limits and expectations of random variables.
First not that if Xn are random variables, then supnXn, lim infn→∞Xn, etc., and (provided
the limit exists pointwise a.s.) also limn→∞Xn, are random variables. This follows directly
from Definition 2.2.17 and Theorem 2.2.10.

Theorem 2.2.46 (Expectation of limits) Let X,Y,X1,X2,X3,... be random vari-
ables. Then under the stated conditions (which only need to hold almost surely), all
expectations exist (some may be infinite though) and

(i) Fatou’s lemma: E[lim inf
n→∞

Xn]≤ lim inf
n→∞

E[Xn] provided 0≤Xn≤∞

(ii) Monotone convergence: supnE[Xn]=E[supnXn] if 0≤Xn≤Xn+1≤∞
(iii) Dominated conv.: E[|Xn−X|]→0 if Xn→X a.s. and |Xn|≤Y with E[Y]<∞
(iv) Fatou–Lebesgue: E[lim infnXn]≤ lim infnE[Xn]≤ lim supnE[Xn]

≤E[lim supnXn]≤E[Y] if |Xn|≤Y and E[Y]<∞
(v) Countable linearity: E[

∑∞
n=1Xn]=

∑∞
n=1E[Xn] if Xn≥0

44 CHAPTER 2. BACKGROUND

Proof sketch. (ii) By (2.2.10d), 0≤Xn≤Xn+1 implies

F̄Xn
(x) ≡ P[Xn>x] ≤ P[Xn+1>x] ≡ F̄Xn+1

(x)

Let X :=supnXn. Then by (2.2.10j)

supnF̄Xn(x) ≡ supn P[Xn>x] = P[supnXn>x] ≡ P[X>x] ≡ F̄X(x)

Now if we take monotone convergence for the one-dimensional Riemann integral for granted,
we would immediately get

sup
n
E[Xn] ≡ sup

n

∫ ∞

0

F̄Xn
(x) dx =

∫ ∞

0

sup
n
F̄Xn

(x) dx =

∫ ∞

0

F̄X(x) dx = E[X] = E[sup
n
Xn]

An elementary proof via discretization similar to Theorem 2.2.44(ii) is as follows. Let
Xε

n :=ε⌊ 1εXn⌋∈N0, hence X
ε :=supnX

ε
n∈εN0. and ak,n :=εF̄Xε

n
(εk). Then

E[Xε
n] =

∑
x∈Xε

n(Ω)

ε F̄Xε
n
(x) =

∞∑
k=0

ε F̄Xε
n
(εk) =

∞∑
k=0

ak,n,

and E[sup
n
Xε

n] = E[Xε] =

∞∑
k=0

ε F̄Xε(εk) =

∞∑
k=0

ε sup
n
F̄Xε

n
(εk) =

∞∑
k=0

sup
n
ak,n

Now sup
n
E[Xε

n] = E[sup
n
Xε

n] follows from sup
n

∞∑
k=0

ak,n =

∞∑
k=0

sup
n
ak,n

The latter is the monotone convergence theorem of non negative sums (0≤ak,n≤ak,n+1)
and left as Exercise 21. Finally,

E[supnXn] ≤ E[supnX
ε
n+ε] = supnE[Xε

n]+ε ≤ supnE[Xn]+ε

and similarly E[supnXn]≥supnE[Xn]−ε. Since ε>0 was arbitrary, (ii) follows. (i,iii−v)
can be reduced to (ii) as follows:
(i) First, Yn :=infk≥nXk≤Yn+1 and hence

E[Yn] = E[inf
k≥n

Xk] ≤ E[Xk] ∀k≥n

Taking infk≥n on the r.h.s, and then supn on both sides gives

sup
n
E[Yn] ≤ sup

n
inf
k≥n

E[Xk] = lim inf
n→∞

E[Xn]

Applying monotone convergence (ii) to Yn gives

supn E[Yn] = E[supnYn] = E[lim infnXn]

(i-reverse) Let Xn≤X with E[X]<∞. Applying Fatou’s lemma (i) to Yn :=X−Xn≥0 we
get the reverse

E[lim supnXn] = E[X−lim infnYn] = E[X]−E[lim infnYn]

≥ E[X]−lim infnE[Yn] = lim supnE[X−Yn] = lim supnE[Xn]

(iii) Applying reverse Fatou to 0≤Zn := |Xn−X|≤2|Y | gives
lim sup
n→∞

E[Zn] ≤ E[lim sup
n→∞

Zn] = E[0] = 0

(iv) is left as Exercise 22.
(v) follows from (ii) applied to Sn=

∑n
t=1Xn. �

2.2. PROBABILITY AND MEASURE THEORY 45

We could also pursue an axiomatic approach to defining expectation. We could take
some of the properties above as axioms and then prove its existence and uniqueness and
derive the other properties.

Axiom 2.2.47 (Expected value) If we regard Theorem 2.2.44(ii,vii) (linearity and
indicator function) and Theorem 2.2.46(ii) (monotone convergence) as axioms, this
uniquely determines the expectation E consistent with Definition 2.2.41.

As stated, this is a theorem, but in spirit it can be taken as an axiom.

Proof. First, Theorem 2.2.44(ii) and Theorem 2.2.46(ii) imply that E is countably additive.
For Xk≥0 we have

E[

∞∑
k=1

Xk] = E[sup
n

n∑
k=1

Xk] = sup
n
E[

n∑
k=1

Xk] = sup
n

n∑
k=1

E[Xk] =

∞∑
k=1

E[Xk]

Next we discretize X≥0 to accuracy 2−n,

Xn := 2−n⌊2nX⌋ = 2−n
∞∑
k=0

JXn>2−nkK

which implies that Xn converges pointwise to X. Taking the expectation and using
Theorem 2.2.44(ii,vii) we get

E[Xn] =

∞∑
k=0

2−nE[JXn>2−nkK] =
∞∑
k=0

2−nP[Xn>2−nk] =

∫ ∞

0

P[Xn>x]dx

where the integral representation is due to Xn∈2−nN0, hence P[Xn>x] is constant on pieces
x∈ [2−nk,2−n(k+1)). Finally we take the supreming over n:

E[X]
(a)
= sup

n
E[Xn]

(b)
=

∫ ∞

0

sup
n

P[Xn>x] dx
(c)
=

∫ ∞

0

P[X>x] dx

In (a) we applied Theorem 2.2.46(ii) again. It is easy to see that Xn and hence Ax
n :={ω :

Xn(ω)>x} are increasing in n, hence by (2.2.10d) fn(x) :=P(Ax
n) is a monotone increasing

sequence of functions, and so (b) follows from monotone convergence of the Riemann integral
[Tho10], or as in the proof of Theorem 2.2.46(ii). (c) follows from

⋃
nA

x
n={ω :X(ω)>x}

and (2.2.10j).

This proves Definition 2.2.41 for X≥0, which immediately generalizes to signed X via
Theorem 2.2.44(ii). �

We now define conditional expectation, which in the simplest case is just the expectation
w.r.t. measure PB(·) :=P(·|B), but is fiendish in the general case. There are at least four
“different” definitions. For us the most important one is (ii) for discrete X and Y . We state
(iv) for completeness but without further discussion since we do not need it. It can be used
to give a more general definition of E[X|Y] :=E[X|σ(Y)] which does not rely on densities.

46 CHAPTER 2. BACKGROUND

Definition 2.2.48 (Conditional expectation) For random variables X,Y we define
(assuming the r.h.s. exists) the conditional expectation as

(i) E[X|B] :=
∫∞
0

P[X>x|B]dx=:r is a real number r∈R∪{∞} for any X≥0 and
event B (a measurable set B∈F) with P[B]>0.

(ii) E[X|Y = y] :=
∫∑

xx ·pX|Y (x|y) =: f(y) is a function f :R→R∪{±∞} of y for
discrete(

∑
) or continuous(

∫
) Y .

(iii) E[X|Y] :=f(Y) is a random variable Z=f(Y) with f from (ii) if f above is a
measurable function.

(iv) E[X|H] is the a.s. unique H-measurable function Ω→R w.r.t. σ-algebra H⊆F
satisfying E[E[X|H]·11H]=E[X ·11H] for every H∈H.

They mostly behave as expected and in the same way as unconditional expectation. The
warning in Section 2.8.3 if P[Y =y] applies to conditional expectation as well.

Theorem 2.2.49 (Conditional expectation) All definitions and results in this book
involving expectations remain valid for conditional expectations by simply replacing
E[·] by E[·|B] and P(·) by P(·|B) for any P [B]>0. Similarly replace E[·] by E[·|Y =y]
and P(·) by P(·|Y =y) and pX(x) by pX|Y (x|y) and FX(x) by FX|Y (x|y) etc.
The (generalized) law of total expectation E[E[X|Y]g(Y)]=E[Xg(Y)] is new.

Proof sketch. Verifying that all results and proofs carry over to conditional expectation
without surprises is left as Exercise 20. The generalized law of total expectation follows
under mild conditions from

E[E[X|Y]] =
∫∑

y

[∫∑
xx·pX|Y (x|y)

]
g(y)pY (y)

=
∫∑

xx
∫∑

ypX|Y (x|y)g(y)pY (y)
=
∫∑

x,yx g(y)pX,Y (x,y) = E[Xg(Y)]
�

Definition 2.2.50 (Variance) The variance of a random variable X is defined as

Var[X] := E[(X−E[X])]2

The variance can be thought of as a measure of how far away, on average, X is from
its mean E[X], as measured by the squared error (X−E[X])2. Random variables with
low variance have most of their probability mass concentrated near the mean, whereas
distributions with higher variance have probability mass concentrated away from the mean
(see Figure 2.5).

Example 2.2.51 (Expectation and variance of a biased coin) Consider a random
variable X with sample space {0,1} and respective probabilities {1−p, p}, for some 0≤p≤1.
The expected value of X is

E[X] =
∑
x

xP(X=x) = p·1+(1−p)·0 = p

The variance is then given as

Var[X] = E[(X−E[X])2] =
∑
x

P(X=x)(x−p)2 = (1−p)(0−p)2+p(1−p)2 = p(1−p)
�

2.2. PROBABILITY AND MEASURE THEORY 47

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1
N (0,(12)

2)

N (0,1)

N (0,22)

N (−3,22)+N (3,22)

Figure 2.5: All these pdf’s have the same mean, labelled in order of increasing variance.
N (µ,σ2) denotes the Gaussian distribution with mean µ and variance σ2.

We have the following properties of the variance:

Theorem 2.2.52 (Properties of variance) Let X be a random variable, and let
X1,...,Xn be a (pairwise) independent family of random variables. Then for any a∈R,

(i) Var[X] = E[X2]−E[X]2

(ii) Var[aX] = a2Var[X]

(iii) Var[X1+...+Xn] = Var[X1]+...+Var[Xn]

Proof. (i) Let b=E[X], which is constant, i.e. not a random variable. Then by linearity of
expectation,

Var[X] ≡ E[(X−b)2] = E[X2−2bX+b2] = E[X2]−2bE[X]+b2 = E[X2]−E[X]2

(ii) We can now apply (i) to aX to prove (ii)

Var[aX]
(i)
= E[(aX)2]−E[aX]2 = E[a2X2]−(aE[X])2 = a2(E[X2]−E[X]2)

(i)
= a2Var[X]

(iii) We make use of the identity (
∑n

i=1Xi)
2 =

∑n
i=1

∑n
j=1XiXj and use (i) again for

X :=X1+...+Xn.

Var[X1+...+Xn]

= E
[(∑

i

Xi

)2]
−
[
E
(∑

i

Xi

)]2
= E

[∑
i,j

XiXj

]
−
(∑

i

E[Xi]
)2

=
∑
i,j

E[XiXj]−E[Xi]E[Xj]

48 CHAPTER 2. BACKGROUND

If i ̸=j, then by Theorem 2.2.44viii it follows that E[XiXj]−E[Xi]E[Xj]=0, so we can drop
these terms from the sum.

Var[X1+...+Xn] =

n∑
i=1

(
E[X2

i]−E[Xi]
2
)

=

n∑
i=1

Var[Xi]

�

2.2.7 Probability Inequalities

Probability inequalities are often used to provide bounds for the expectation or variance of
a random variable in cases where computing it exactly is computationally intractable. In
this section, we look at three important inequalities: Markov’s, Chebyshev’s and Jensen’s
inequalities. Some more advanced bounds such as the Hoeffding bound (Theorem 2.2.68)
and Ville’s supermartingale inequality (Lemma 3.9.6) will be presented later.

Theorem 2.2.53 (Markov’s inequality) If a non-negative random variable X has
expectation value E[X], then for any ε>0,

P[X≥ε] ≤ E[X]

ε

Proof. Define Y :=JX≥εK≤ 1
εX, since X≥0. Then by Theorem 2.2.44 we have

P[X≥ε] (vii)
= E[Y]

(iv)

≤ E[1εX]
(ii)
= 1

εE[X]
�

Theorem 2.2.54 (Chebyshev’s inequality) Let X be a random variable with
E[X]<∞ and Var[X]<∞. Then for any ε>0,

P[|X−E[X]|≥ε] ≤ Var[X]

ε2

Proof. Let Y =(X−E[X])2, then E[Y]=Var[X], by definition. Applying Markov’s inequality
(Theorem 2.2.53) to P[Y ≥ε2] and noting that Y is non-negative,

P[|X−E[X]|≥ε] = P[(X−E[X])2≥ε2] = P[Y ≥ε2] ≤ E[Y]

ε2
=

Var[X]

ε2
�

Markov’s and Chebyshev’s inequalities differ in several important ways. Firstly, Markov’s
inequality only bounds the upper tail of the distribution and applies solely to non-negative
random variables. Conversely, Chebyshev’s inequality bounds both tails and makes no
assumptions regarding the non-negativity of the variables. Additionally, the bound provided
by Markov’s inequality is inversely proportional to the distance from the origin, whereas
the bound provided by Chebyshev’s inequality is inversely proportional to the square of the
distance from the mean.

Example 2.2.55 (Expecation of sum of dice) A fair six-sided die is rolled n times. Let
Xi be the outcome of the ith roll, and let S=

∑n
i=1Xi be the sum of all the rolls. Note that

2.2. PROBABILITY AND MEASURE THEORY 49

E[Xi]=3.5 (Example 2.2.43) and using the fact that expectation is linear (Theorem 2.2.44ii)
we have the expectation of S as

E[S] = E

[
n∑

i=1

Xi

]
=

n∑
i=1

E[Xi] = nE[X] = 3.5n

Now, computing P(S≥k) for large n and k would be quite difficult due to the number of
dice rolls involved (one would have to compute all the ways a large number can be expressed
as the sum of n dice), but we can bound it using the Markov inequality.

P[S≥k] ≤ E[S]

k
=

3.5n

k

For k=80 and n=20 (the probability that the sum of 20 dice is at least 80) we obtain
P(S≥80)≤ 70

80 =
7
8 . Unfortunately, the bound that Markov’s inequality provides is often

extremely crude. We compute P(S≥80)=
∑6×20

i=80P(S= i) by brute-forcing all the possible
ways 20 dice can sum to ≥ 80, and obtain P[S ≥ 80]≈ 0.1075..., far less than 7

8 . Worse
still, for values k≤E[S], Markov’s inequality provides a vacuous bound, as E[S]/k will be
greater than 1. For sums of independent random variables S, exponentially better bounds
are available (see Theorem 2.2.68 below). �

Before we can state Jensen’s inequality, we first need to define what it means for a
function to be convex.

Definition 2.2.56 (Convex function) A function f :Rn→R∪{∞} is convex if
∀x1,x2∈Rn and ∀θ∈ [0,1] we have that

f(θx1+(1−θ)x2) ≤ θf(x1)+(1−θ)f(x2)

Furthermore, if we have strict inequality, then f is strictly convex .

For the one-dimensional case of functions f :R→R, Definition 2.2.56 can be understood
geometrically as follows: given any two points P =(x1,f(x1)) and Q=(x2,f(x2)) that lie on
f , the line segment from P to Q always sits above the function f (see Figure 2.6). Examples
of convex functions include x2,ex,−log(x),−√x.

Definition 2.2.57 (Concave function) A function f :Rn→R∪{−∞} is concave
if ∀x1,x2∈Rn and ∀θ∈ [0,1] we have that f(θx1+(1−θ)x2)≥θf(x1)+(1−θ)f(x2) or
strictly concave if the inequality is strict.

Note that f being (strictly) concave is equivalent to −f being (strictly) convex.

Lemma 2.2.58 (First-order convexity conditions [BV04])
Given a convex function f :Rn→R, we have that for all x,x0∈Rn,

f(x) ≥ f(x0)+(x−x0)·∇f(x0)

where ∇ denotes a sub-gradient of f at x0.

Again for n=1, Lemma 2.2.58 can be better understood as the claim that if f is convex,
the tangent line y=f(x0)+(x−x0)f ′(x0) of f at x0 is a lower bound for f , which is obvious
for e.g. f(x)=x2 from Figure 2.7. The proof is left as an exercise.

50 CHAPTER 2. BACKGROUND

−1 0 1 2 3
0

1

2

3

P

Q

(x−1)2
1
2x+1

Figure 2.6: The line segment from P to Q
sits above the convex function f(x)=(x−1)2.

−1 0 1 2 3

0

1

2

3

Figure 2.7: The convex function f(x) =
(x−1)2 with several tangent lines. Given
any point P on f , the tangent line at P sits
below f .

Theorem 2.2.59 (Jensen’s inequality [BV04]) Let X be a random vector, then

f(E[X]) ≤ E[f(X)] for convex f :Rn→R
g(E[X]) ≥ E[g(X)] for concave g :Rn→R

Proof. Apply Lemma 2.2.58 with x=X and constant x0=E[X], and take expectations of
both sides.

E[f(X)] ≥ E[f(x0)]+E[(X−x0)·∇f(x0)] = f(x0)+∇f(x0)·
=0︷ ︸︸ ︷

E[(X−x0)] = f(E[X])

Note that −g is convex, and apply Jensen’s inequality to obtain −g(E[X])≤E[−g(X)], from
which the result follows. �

Remark 2.2.60 (Var[X] ≥ 0) Since x2 is a convex function, E[X]2 ≤E[X2]. Hence
the variance Var[X]=E[X2]−E[X]2 is always non-negative, as is of course obvious from
Definition 2.2.50. �

Corollary 2.2.61 (Jensen’s inequality of averages) Let f be convex, and (xi)
n
i=1

a finite sequence. Then

f

(
1

n

n∑
i=1

xi

)
≤ 1

n

n∑
i=1

f(xi)

Proof. Let p=(p1,...,pn) be a uniform probability distribution with pi=1/n for all i, and let
X be a random variable with sample space {x1,...,xn}, and P (X=xi)=pi. Then,

f

(
1

n

n∑
i=1

xi

)
= f

(
n∑

i=1

pixi

)
= f(E[X]) ≤ E[f(X)] =

n∑
i=1

pif(xi) =
1

n

n∑
i=1

f(xi)

�

2.2. PROBABILITY AND MEASURE THEORY 51

2.2.8 Convergence of Random Variables

Given a sequence of real numbers (xn)
∞
n=1, we have a rigorous way of talking about whether

the limit limn→∞xn exists at all, and if it does, the value to which the sequence converges.
For a family of functions (fn)

∞
n=1 of type fn :R→R, the concept of convergence is more

difficult, as there are different ways we can define what it means for a sequence of functions
(fn) to converge to a function f , including:

• Pointwise Convergence: ∀x∈R, lim
n→∞

fn(x) = f(x)

• Uniform Convergence: lim
n→∞

sup
x∈R
|fn(x)−f(x)| = 0

• L2 Convergence: lim
n→∞

∫ ∞

−∞
|fn(x)−f(x)|2 dx = 0

Can we carry this notion across and analogously define convergence for a sequence of random
variables? We could follow the definition of pointwise convergence and try to define the
same thing for random variables:

Definition 2.2.62 (Pointwise convergence of random variables) A sequence of
random variables (Xn)

∞
n=1 converges pointwise to random variable X if, for all ω∈Ω,

lim
n→∞

Xn(ω) = X(ω)

For most purposes this definition turns out to be too strong. For each ω∈Ω, Xn maps ω
to a real number and thus (Xn)

∞
n=1 maps ω to a sequence of real numbers {Xn(ω)}∞n=1. For

“poor” choices of ω, this sequence may converge to X(ω), may converge to something else, or
it may not converge at all.

Example 2.2.63 (Bernolli pointwise (non)convergence) Consider an independent
identically distributed (i.i.d.) sequence of random variables Xn, each with sample space
Ω={0,1} and probabilities {1−θ,θ}. Here, each Xn models the behavior of a fair coin flip.
Each Xn can be thought of as a random variable that models the nth coin in an infinite
sequence of coin flips. If Ω={0,1} is the sample space to represent a single coin flip, we
can consider Ω∞ to be the sample space representing an infinite sequence of coin flips. We
define a family of random variables Sn :Ω

∞→R as

Sn(ω1:∞) =

n∑
i=1

Xi(ωi)

Here, Sn models the number of 1’s in the first n tosses of the coin. (Note that each Sn

depends only on the first n terms of ω1:∞.) We can ask about the behavior of Sn for large
n. Intuitively, we would expect that in the long run the number of heads will be about nθ,
that is,

∀ω∈Ω∞ lim
n→∞

Sn(ω)

n
=θ

However, this is not true for all choices of ω∈Ω∞. For example, select the sequence of all
zeros ωz=000.... Then,

lim
n→∞

Sn(ωz)

n
=0.

52 CHAPTER 2. BACKGROUND

However, we would expect this particular sequence ωz to be “unlikely”, as we would not
expect a fair coin to generate a sequence of all zeros. �

This motivates a way to weaken Definition 2.2.62 by requiring convergence not for
all ω∈Ω, but convergence for “almost all” ω, ignoring those ω that are “unlikely” to be
encountered. For a sequence of sets (here, events) En with associated indicator function
(here, random variables) Xn(ω) :=Jω∈EnK,

lim sup
n→∞

En := lim sup
n→∞

Xn = lim
n→∞

sup
k≥n

Xk =

∞⋂
n=1

∞⋃
k=n

Ek

Definition 2.2.64 (Almost sure convergence (a.s.)) A sequence of random vari-
ables (Xn)

∞
n=1 converges almost surely (converges a.s)a to a random variable X (denoted

as Xn
a.s−→X) if one and hence all of the following equivalent conditions hold:

(i) P
[{
ω∈Ω: lim

n→∞
Xn(ω)=X(ω)

}]
= 1

(ii) ∀ε>0. P
[
lim sup
n→∞

{ω∈Ω: |Xn(ω)−X(ω)|>ε}
]
= 0

(iii) ∀ε>0. lim
t→∞

P
[
{ω : sup

n≥t
|Xn(ω)−X(ω)|>ε}

]
= 0

aAlso called strong convergence or convergence with probability 1 (w.p.1)

We write converges almost surely with respect to P if it is not obvious with respect to what
probability measure P convergence is defined. An equivalent way to consider convergence a.s.
is that the set of all counterexamples to convergence, {ω∈Ω:Xn(ω) ̸→X(ω)} is a probability
zero event, so even though counterexamples exist, we will almost surely never see one.

Example 2.2.65 (Probability of eventually flipping heads) Consider the sample space
Ω={0,1}∞ (all infinite sequences of coin flips) with F=σ({Γx :x∈{0,1}∗}). We want the
probability distribution to represent that of a coin with bias 0<θ<1 towards heads, so we
choose P(Γx)=θ

h(1−θ)t, where h is the number of ones (representing heads) in the string
x, and t the number of zeros (representing tails). Consider the sequence of random variables
(Xn)

∞
n=1 where

Xn(ω1:∞) = J∃i.1≤ i≤n and ωi=1K

That is, Xn(ω1:∞)=1 if and only if w1:n contains at least one 1. Then, Xn
a.s−→17 as for any

ω∈Ω that contains a 1, there exists an N such that for all n≥N , Xn(ω)=1. The set of all
ω that contains a 1 can be written as the following disjoint union of cylinder sets:

{ω∈Ω:∃i.wi=1} =

∞⋃
i=0

Γ0i1

where 0i represents the sequence of i many consecutive zeros. We can then compute the
probability of the set of ω for which Xn(ω)→1,

P({ω∈Ω: lim
n→∞

Xn(ω)=1}) = P(

∞⋃
i=0

Γ0i1) =

∞∑
i=0

P(Γ0i1) =

∞∑
i=0

(1−θ)iθ =
θ

1−(1−θ) =1

�

7Here, “1” represents the constant random variable 1(ω)=1.

2.2. PROBABILITY AND MEASURE THEORY 53

Figure 2.8: A plot of P(| 1nSn−θ|≥ ε) for θ=0.4 and ε=0.1, with the Hoeffding bound
and an asymptotic approximation (assuming normality). As the weak law of large numbers
indicates, the empirical mean almost surely converges to the expected value.

Remark 2.2.66 (Weak law of large numbers) We can now repair Example 2.2.63 by
showing that the set of counterexamples ω for which 1

nSn(ω) ̸→θ forms a probability zero
event. Choose the same probability space as in Example 2.2.65, and let (Xn)

∞
n=1 be an i.i.d.

family of random variables8 (Xi)
N
i=1 with

Xi = X :=

{
1 with probability θ

0 with probability 1−θ.

Note that E[X]=θ and Var[X]=θ(1−θ). As before, let (Si)
N
i=1 be a sequence of random

variables defined as Sn :=
∑n

i=1Xi. Consider the predicate
∣∣ 1
nSn−θ

∣∣≥ε, the statement that
1
nSn is more than ε away from θ. The probability of this predicate happening, as a function
of n and ε, gives an idea of how concentrated the distribution for 1

nSn is on θ. We can see
in Figure 2.8 that as n grows the probability that

∣∣ 1
nSn−θ

∣∣≥ε appears to go to zero. Also
included is an asymptotic approximation: We have that Sn∼Binomial(n,θ). For for large
n the distribution is approximately normal with mean nθ and variance nθ(1−θ), hence by
Theorem 2.2.44 and Theorem 2.2.52 (approximately)

Sn−nθ√
nθ(1−θ)

∼ N (0,1) which implies

P(| 1nSn−θ|≥ε) = P
(∣∣∣ Sn−nθ√

nθ(1−θ)

∣∣∣≥ ε
√
n√

θ(1−θ)

)
≈ 2

[
1−Φ

(
ε
√
n√

θ(1−θ)

)]
where Φ(x) :=

∫ x

−∞N (x;0,1)dx is the CDF of a standard normal distribution. The full
derivation is left as Exercise 29. We can in fact prove that for any ε > 0 chosen, the
probability that this bound is violated tends to zero as n tends to infinity. �

8A sequence of random variables of this kind is called a Bernoulli process.

54 CHAPTER 2. BACKGROUND

Theorem 2.2.67 (Weak law of large numbers) Let Sn be a sequence of binomial
random variables as in Remark 2.2.66. Then for all ε>0,

lim
n→∞

P

(∣∣∣∣Sn

n
−θ
∣∣∣∣≥ε) = 0

That is, the probability distribution function associated with Sn/n tends to concentrate
all the probability mass on θ as n→∞.

Proof. Define Y = 1
nSn, then

E[Y] = E

[
1

n

n∑
i=1

Xi

]
=

1

n

n∑
i=1

E[X] = E[X] = θ

and by Theorem 2.2.52

Var[Y] =
1

n2
Var

[
n∑

i=1

Xi

]
=

1

n2

n∑
i=1

Var[X] =
1

n
Var[X]=

θ(1−θ)
n

By Chebyshev’s inequality, noting that θ(1−θ)≤ 1
4 for all θ∈ [0,1]

P

(∣∣∣∣Sn

n
−θ
∣∣∣∣≥ε) = P(|Y −E[Y]|≥ε) ≤ Var[Y]

ε2
=

θ(1−θ)
ε2n

≤ 1

4ε2n

from which the result follows. �

The proof of Theorem 2.2.67 also implies an upper bound on the rate of convergence
of the sample mean: Given any tolerance ε, the probability that the sample mean Sn/n
and the true value of θ are more than ε apart shrinks no slower than O(n−1). The actual
convergence rate is exponentially better and also holds much more generally:

Theorem 2.2.68 (Hoeffding bound [HFS94]) Let Sn be a sum of n independent
[0,1]-valued random variables. Then

P
(∣∣Sn−E[Sn]

∣∣≥ t) ≤ 2e−2t2/n

Indeed, for Sn =X1+ ...+Xn with i.i.d. Xi ∈ [0,1] with E[Xi] = θ and t= nε, we get

P (| 1nSn−θ|≥ε)≤2e−2nε2 .
We take a brief digression to introduce the concepts of limit supremum and limit infimum

for sets.

Definition 2.2.69 (Limit supremum / Limit infimum) Given a sequence of events
(An)

∞
n=1, we define

lim sup
n→∞

An :=

∞⋂
n=1

∞⋃
j=n

Aj and lim inf
n→∞

An :=

∞⋃
n=1

∞⋂
j=n

Aj

Remark 2.2.70 (Infinitely often and almost all) If ω∈ lim supAn, it means that for all
n≥1 there exists a j≥n such that ω∈Aj . This is equivalent to requiring that there exist

2.2. PROBABILITY AND MEASURE THEORY 55

infinitely many values of j such that ω∈Aj , or that there exists infinitely many events An

in the sequence that occurred. We can write

{An infinitely often} := lim sup
n→∞

An

If ω∈ lim infAn, it means there exists an n≥1 such that for all j≥n, ω∈Aj , so, beyond
some point n, all the events An,An+1,... occurred. Alternatively, all but finitely many events
occurred (as An−1 would be the last event to not occur). We can write

{An almost all} := lim inf
n→∞

An
�

Example 2.2.71 (Almost surely infinitely many 1s) Continuing from Example 2.2.65,
one can strengthen the result and show that the coin will almost surely flip 1 infinitely often.
Formally, consider the sequence of random variables (Xn)

∞
n=1 where Xn(ω1:∞)=Jωn=1K.

That is, Xn(ω)=1 if and only if the nth coin flip was 1. We leave as an exercise to show
that the coin will almost surely flip infinitely many 1s. �

Definition 2.2.72 (Convergence in probability (i.p.)) A sequence of random
variables (Xn)

∞
n=1 converges in probability (also called weak convergence) to X (denoted

Xn
P−→X) if for any ε>0,

lim
n→∞

P({ω∈Ω: |Xn(ω)−X(ω)|>ε}) = 0

In Theorem 2.2.67, we have shown that 1
nSn converges to θ in probability, which is an

instance of the weak law of large numbers.

Theorem 2.2.73 (Convergence a.s. implies convergence i.p.) Given a sequence

of random variables (Xn)
∞
n=1, if Xn

a.s−→X, then Xn
P−→X.

Proof. From Definition 2.2.64ii for arbitrary ε>0 we have

0 = P
(
lim sup
n→∞

{ω : |Xn(ω)−X(ω)|>ε}
)

= P
(∞⋂
N=1

∞⋃
n=N

{ω : |Xn(ω)−X(ω)|>ε}
)

≥ P
(∞⋂
N=1

{ω : |XN (ω)−X(ω)|>ε}
)

≥ lim
N→∞

P({ω : |XN (ω)−X(ω)|>ε}) = 0

where the last step follows from (2.2.10k). �

However, the converse implication does not hold, which is why convergence a.s. is often
termed as strong convergence while convergence in probability is called weak convergence. A
weaker still form of convergence of random variables is convergence in distribution (i.d.),
where the cdfs (Fn)

∞
n=1 of a sequence of random variables (Xn)

∞
n=1 converges to the cdf F

of the limiting random variable X. We do not make use of this notion of convergence, but
mention it here for completeness. The relationship between various notions of probabilistic
convergence is shown in Figure 2.9.

56 CHAPTER 2. BACKGROUND

in mean2 sum
(i.m.s) Xn

i.m.s−→X

µ-Martin-Löf
random (µ.M.L)

in mean2

(i.m.) Xn
L2

−→X

almost sure
(a.s.) Xn

a.s−→X

in probability

(i.p.) Xn
P−→X

in distribution
(i.d.)

Figure 2.9: The inclusions of various
notions of probabilistic convergence.

I1 10

I2 I30 11
2

I4 I5 I6 I7
0 1

4
1
2

3
4 1

Figure 2.10: An illustration of the intervals
I2m+i defined in Example 2.2.74.

Example 2.2.74 (Convergence i.p. does not imply convergence a.s.) We choose the
same probability space in Example 2.2.27. Define the following set of binary intervals

I2m+i=

[
i

2m
,
i+1

2m

)
(2.2.75)

for m=0,1,2,... and i=0,1,...,2m−1 (see Figure 2.10). For each m, there are 2m intervals,
each of length 2−m, which cover the interval [0,1) as illustrated. We have that

lim
n→∞

P(In)= lim
m→∞

P(I2m)= lim
m→∞

2−m=0.

Now consider a sequence of random variables Yn(ω) = Jω ∈ InK. It is easy to show that

Yn
P−→09 because for any 0<ε≤1,

lim
n→∞

P(|Yn−0|>ε)= lim
n→∞

P(Yn=1)= lim
n→∞

P(In)=0.

However, Yn ̸ a.s−→ 0 because for any ω ∈ [0,1) consider (2.2.75). For every m there exists
a unique i such that ω ∈ I2m+i as I2m ,I2m+1,...,I2m+1−1 forms a partition of [0,1). Since
ω∈I2m+i is equivalent to Y2m+i=1, we have that for any ω∈Ω, Yn(ω)=1 infinitely often,
so the limit limn→∞Yn(ω) diverges, giving

P
(
{ω∈Ω: lim

n→∞
Yn(ω)=0)}

)
=P (∅)=0 ̸=1

as required. �

Definition 2.2.76 (Convergence in mean2 (i.m.)) A sequence of random variables

(Xn)
∞
n=1 converges in mean2 to X (denoted as Xn

L2

−→X) if

lim
n→∞

E
[
(Xn−X)2

]
= 0

9That is, converges in probability to the identically zero random variable.
2This is an exponent, not a footnote; in mean2 is pronounced “in mean square”.

2.2. PROBABILITY AND MEASURE THEORY 57

Proposition 2.2.77 (Convergence in mean2 implies convergence in probability)

Given a sequence of random variables (Xn)
∞
n=1, if Xn

L2

−→X, then Xn
P−→X.

Proof. Let ε>0. Then by Markov’s inequality and assumption Xn
L2

−→X,

P(|Xn−X|>ε) = P(|Xn−X|2>ε2) ≤
1

ε2
E[|Xn−X|2] −→ 0 for n→∞

Hence, Xn
P−→X, as required. �

Example 2.2.78 (Convergence i.p. does not imply convergence i.m.) The converse
to Proposition 2.2.77 is false. Consider the sequence of random variables

Xn =

{
n with probability 1

n

0 with probability 1− 1
n

Then, Xn
P−→0 since P (|Xn|>ε)= 1

n→0 for n→∞, but Xn ̸L
2

−→0 since

lim
n→∞

E[|Xn|2] = lim
n→∞

∑
x∈{0,n}

x2P(Xn=x) = n2P(Xn=n) = lim
n→∞

n = ∞
�

Definition 2.2.79 (Convergence in mean2 sum (i.m.s)) A sequence of non-

negative random variables (Xn)
∞
n=1 converges in mean2 suma to X (denoted Xn

i.m.s−→X)
if ∞∑

n=1

E[(Xn−X)2] < ∞

aNot to be confused with convergence in mean2 (Definition 2.2.64).

Proposition 2.2.80 (Conv. in mean2 sum implies conv. in mean2)

Proof. Trivially follows from the fact that an infinite sum
∑∞

n=1E[(Xn−X)2] of non-negative
terms can only be finite if the sequence E[(Xn−X)2] summed over converges to zero. �

Lemma 2.2.81 (Borel–Cantelli) If the sum of the probabilities of a sequence of
events E1,E2,... is finite, then the probability that infinitely many of them occur is zero.
Formally, ∞∑

n=1

P(En) < ∞ implies P
(
lim sup
n→∞

En

)
= 0

That is, Xn
a.s−→0, where Xn(ω) :=Jω∈EnK.

Proof. Let An=
⋃∞

i=nEi. Then

P(lim sup
n→∞

En)
(a)
= P

(∞⋂
n=1

∞⋃
i=n

Ei

)
= P

(∞⋂
n=1

An

)
(b)
= lim

n→∞
P(An)

= lim
n→∞

P

(∞⋃
i=n

Ei

)
(c)

≤ lim
n→∞

∞∑
i=n

P(Ei)
(d)
= 0

58 CHAPTER 2. BACKGROUND

(a) follows from Definition 2.2.69 of lim sup, (b) from (2.2.10i), (c) is probability measure
Axiom 2.2.3, and (d) is the Cauchy convergence criterion: if the sum

∑∞
i=1xi converges,

then the tail
∑∞

i=nxi tends to zero as n→∞. �

Theorem 2.2.82 (Convergence i.m.s. implies convergence a.s.)

Proof. First, apply Markov’s inequality (Theorem 2.2.53) to Yn :=Xn−X:

P[Y 2
n ≥ε2] ≤ 1

ε2E[Y 2
n]

Now let En :={ω :Y 2
n (ω)≥ε2}. Then,

∞∑
n=1

P(En) =

∞∑
n=1

P[Y 2
n ≥ε2] ≤

1

ε2

∞∑
n=1

E[Y 2
n] < ∞

by assumption Yn
i.m.s−→0 (Definition 2.2.79). Now, the Borel–Cantelli Lemma 2.2.81 implies

P
(
lim sup
n→∞

{ω :Yn(ω)≥ε}
)
= P

(
lim sup
n→∞

{ω :Y 2
n (ω)≥ε2}

)
= P

(
lim sup
n→∞

En

)
= 0

which by Definition 2.2.64 implies Yn
a.s−→0, hence Xn

a.s−→X, as required. �

2.2.9 Exercises

1. [C30mi] (Measure theory headaches) Prove the many assertions made about the
(de)motivating example in Figure 2.2

2. [C05] (The empty set is an event) Prove that for any probability space, the
empty set ∅ is an event.

3. [C07] (Different F for same Ω) Give an example of a sample space Ω and two
distinct choices F1 ̸=F2 of event spaces.

4. [C07] (Semimeasure) Using only the alternative definition of a semimeasure (Defi-
nition 2.2.14), prove that µ(x)≤1 for all x∈B∗.

5. [C23i] (Probability properties) Prove the seven unproven properties in
Theorem 2.2.10.

6. [C10] (Conditional probability measures) Prove that conditional probability
measures are probability measures (Theorem 2.2.12).

7. [C12] (Evidence in favor/against) Prove that if event B is evidence in favor of
event A (P(A|B)>P(A)), then event Bc must be evidence against A (P(A|Bc)<P(A)).

8. [C07] (Density integrates to 1) Prove that for any continuous random variable X
we have that

∫∞
−∞pX(x) dx=1.

9. [C12] (Density transformation) Consider Example 2.2.27. We choose a new
random variable Y (ω)=ω2. Compute FY and pY .

10. [C18] (Limits of sets) Given a sequence (An)
∞
n=1 of sets, prove that lim infAn⊆

lim supAn and give an example to show that in general, lim infAn⊊ lim supAn.

2.2. PROBABILITY AND MEASURE THEORY 59

11. [C20] (Induced pushforward measure) Prove that PR in Theorem 2.2.19 is indeed
a probability measure, i.e. satisfies the probability measure Axiom 2.2.3.

12. [C14] (Sum rule) Prove the sum rule for continuous random variables (Theo-
rem 2.2.36).

13. [C15] (Mutual vs pairwise independence) Prove that mutual independence
implies pairwise independence, and give a counterexample to prove the converse is
false. (Definition 2.2.38).

14. [C20] (Independence) Prove that X and Y are independent if and only if PX,Y (A×
B)=PX(A)·PY (B) for all Borel sets A,B∈R. Hint: Use Carathéodory’s extention
2.2.9. Prove that for discrete/continuous Xi, replacing F (·) with pmf/pdf p(·) in
Definition 2.2.38 is equivalent to the provided general definition.

15. [C13] (Independence of itself) Find a necessary and sufficient condition for a
random variable X to be independent of itself.

16. [C10] (Identical but not independently distributed) Give an example of a
random process such that samples drawn from it are identically but not independently
distributed, and vice versa.

17. [C10] (Signed expectation) Prove E[X+]−E[X−] =
∫∞
0
F̄X(x)−FX(−x) in

Definition 2.2.41. Show that the last expression may even be well-defined and finite
even if both E[X±]=∞. Show this is true for the Cauchy distribution p(x)= 1

π
1

x2+1 .

18. [C20] (Consistency of expectation definitions) Show that where the Defini-
tions 2.2.41 and 2.2.48 overlap, i.e. more than one is provided or applies in certain
cases, they do indeed coincide.

19. [C20] (Basic properties of expectation) Fill in the missing steps and justifications
of the proof for the expressions of the expectation in Theorem 2.2.44.

20. [C30] (Conditional expectation) Prove Theorem 2.2.49, i.e. adapt all definitions
and results in this section involving expectations to conditional expectations.

21. [C12] (Monotone convergence of sums) Prove the montone convergence theorem
for sums: supn

∑∞
k=0ak,n =

∑∞
k=0supn ak,n if 0≤ ak,n≤ ak,n+1, used in the proof of

Theorem 2.2.46(ii).

22. [C15] (Fatou-Lebesgue theorem) Use Theorem 2.2.46(i-iii) to prove (iv).

23. [C12] (Variance) Find the bug in the following argument: Given a random variable
X, by Theorem 2.2.52(iii) we have

Var[2X] = Var[X+X] = Var[X]+Var[X] = 2Var[X]

which contradicts Theorem 2.2.52(ii), stating that Var[2X]=4Var[X].

24. [C22m] (Almost sure convergence) Proof the equivalence of Defini-
tion 2.2.64(i,ii,iii) of almost sure convergence.

25. [C22] (Almost surely infinitely many 1s) Complete the proof in Example 2.2.71
that a biased coin with θ>0 will almost surely flip 1 infinitely often.

60 CHAPTER 2. BACKGROUND

26. [C30i] (Probabilistic convergence relations) Prove the remaining convergence
relations in Figure 2.9 not proven in the main text and prove that the inclusions are
proper.

27. [C12] (Markov inequality) Prove that the non-negativity assumption in Markov’s
inequality (Theorem 2.2.53) is necessary.

28. [C15] (Convexity and subgradients) Prove the first-order conditions for a differen-
tiable convex function (Lemma 2.2.58) with ∇ being the gradient, and then generalize
to non-differentiable functions with ∇ being a subgradient.

29. [C25] (Weak law of large numbers) Fill in the gaps in the derivation of Theo-
rem 2.2.67 and in the sketch provided in Remark 2.2.66 to show that

P(| 1nSn−θ|≥ε) ≈ 2

(
1−Φ

(
ε
√
n√

θ(1−θ)

))

by asymptic normality, where Φ(x) is the cdf of N (0,1).

2.3 Statistical Inference and Estimation

To address the prediction problem, we first begin by assuming that we possess some
understanding of the underlying process that generates sequences. Initially, we will examine
the simplest scenario in which a binary sequence is produced independently and identically
distributed (i.i.d.) by a Bernoulli distribution, characterized by an unknown parameter θ
that needs to be inferred from past observations.

The assumption that the sequence is generated by a Bernoulli process is quite strong,
since each element in the sequence would be independent of preceding elements, which is
often an unrealistic assumption. Later in Chapter 3 we will relax this assumption to enable
induction on sequences where the distribution may depend on any past elements, and in
Chapter 4 an efficient predictor is discussed for sequences for which the distribution over
future elements depends only on a bounded number of past elements.

We first examine the problem from a frequentist perspective, and consider the Bayesian
approach thereafter.

2.3.1 Statistical Inference and The Sunrise Problem

Statistical inference revolves around inferring properties of a population or group of objects
using quantitative observations, based on a random sample taken from that population or
process. Typically, we make an assumption that the characteristics of the population or
process can be fully described by a specific probability model. This model is parameterized
by a set of parameters denoted as Θ. Note that Θ is often a subset of Rd, resulting in an
uncountable family of probability models. The problem can then be reduced to searching
for the correct choice of parameters θ∈Θ.

For example, we might assume that a binary sequence is generated i.i.d. by a Bernoulli
model Bern(x;θ) that is parameterized by Θ={θ}=[0,1]⊂R. In the following discussion, we
will stick to this Bernoulli example and investigate ways to estimate θ. For the moment,
we will only be interested in deriving a single numerical value as our best guess for the
true value of θ given a sample of observations x1:n. Later, we will show a more general
representation that also provides a measure of confidence for our best estimate of θ via

2.3. STATISTICAL INFERENCE AND ESTIMATION 61

interval estimation [Hut08a]. This gives a formal meaning to the event P(θ∈ [0.4,0.6]|D)
after having been conditioned on data D.

Example 2.3.1 (The Sunrise Problem) The sunrise problem concerns how to assign a
probability to an event that has never happened before. Consider the likelihood of the sun
not rising tomorrow. The naive frequentist estimate of

days the sun did not rise

days the Earth (or humans) have experienced

would give probability zero, as the sun has never been observed to fail to rise on any given
day10 before. This result seems absurd, as to assign zero probability to an event means
to declare it is impossible. This problem is of great importance in this book, as through
attempting to solve it, this problem gives rise to the Laplace rule and sheds light on many
other useful statistical methods to estimate the true probability of an unknown model.
Formally, the sunrise problem can be described as follows.

1. We choose as our sample space Ω={not rise, rise}n, and define a set of {0,1}-valued i.i.d.
random variables X1,...,Xn, each distributed according to a Bernoulli(θ) distribution.
For now, the parameter θ is fixed but unknown. The r.v. Xt takes an element
(ω1,...,ωn)∈Ω and returns 1 iff the sun has risen on the tth day, Xt(ω1,...,ωn)=Jωt=riseK
satisfying P(Xi=1)=θ and P(Xi=0)=1−θ.

2. Assume that observed values x1:n have been obtained from the n i.i.d. random variables
X1...Xn.

3. We wish to estimate θ (in practice, we learn a distribution over θ) as an intermediate
step based on the available observations x1:n, using some estimator which is a function
of the observed values T (x1:n). This value can be interpreted as the outcome of the
real random variable Tn(X1,X2,...,Xn).

4. Finally, based on our estimate of θ, we want to make a prediction for xn+1, i.e. whether
the sun will rise on the next day or not.

One might ask what the motivation is behind assuming the sun is a Bernoulli distribution,
or even why the behavior of the sun can be modelled as a sequence of i.i.d. processes. This
can be attributed to the historical background of the problem (proposed in the 18th century
by Laplace), where the mechanism by which the sun worked was not understood. Even
stronger, imagine explaining this problem to someone who had lived underground in a bunker
their entire life, and had no concept of what a “sun” is, only that it can “rise” or “not rise”,
and that every “day”, the sun rose. Without any prior information, the assumptions of i.i.d.
and Bernoulli do not seem absurd.

A more modern version of the problem would incorporate domain knowledge about the
sun from astrophysics to obtain a more accurate result (the sun is expected to continue to
rise every day for the next ≈5 billion years or so until it swells up and engulfs the Earth,
assuming the sun is not tampered with until then). �

2.3.2 Maximum Likelihood

Perhaps the most important and intuitively appealing of all estimation procedures is that of
maximum likelihood. A general framework for calculating the maximum likelihood estimator
(MLE) of a parameter θ that parameterizes a family of pdf’s pX(x;θ), is defined as follows.

10Ignoring the locations at extreme latitude that may not see the sun for months.

62 CHAPTER 2. BACKGROUND

The likelihood function for a parameter θ based on a sample of n random variables
X1,...,Xn, is defined to be the joint probability density function of the n random variables,
parameterized by the unknown parameter θ. We write,

L(θ) = L(θ;x1,...,xn) := pX1,...,Xn
(x1,...,xn;θ).

If the Xi’s are i.i.d. with probability density function pX(x;θ), then the likelihood can be
written as

L(θ) =

n∏
i=1

pX(xi;θ)

The likelihood function L(θ) can be thought of as the joint conditional probability
p(x1,...,xn|θ). However, for the above equation to hold, the Xi’s need to be condition-
ally i.i.d. given θ, that is, we require that

P(x1,...,xn|θ) =

n∏
i=1

p(xi|θ)

The maximum likelihood estimator (MLE) of a parameter θ is defined to be the value that
maximizes the likelihood

θ̂ML := argmax
θ∈Θ

L(θ;x1,...,xn)

where Θ is the set of allowable parameter values. Typically, the log-likelihood function is used,
as it is mathematically easier to deal with. Since the logarithm function is monotonically
increasing, we note that

argmax
θ∈Θ

L(θ) = argmax
θ∈Θ

lnL(θ)

In the case of conditionally i.i.d. random variables, the log-likelihood transforms a product
of probabilities into a more tractable sum of logs of probabilities:

lnL(θ) = ln

(
n∏

i=1

pX(xi;θ)

)
=

n∑
i=1

lnpX(xi;θ)

The derivative ∇θlnL(θ) is easier to compute than ∇θL(θ) (as derivatives are linear), which
can be used to then maximize θ by finding the θ for which the derivative is zero.

Example 2.3.2 (MLE of Bernoulli sequence) Suppose that X1,...,Xn∼Bern(θ) with
unknown θ. We can write the distribution for a Bernoulli random variable as

Bern(x;θ) = θx(1−θ)1−x

which has the corresponding log-likelihood function

lnL(θ) =

n∑
i=1

[xilnθ+(1−xi)ln(1−θ)].

Differentiating this function with respect to θ gives us

∇θlnL(θ) =

n∑
i=1

[
xi
θ
+
xi−1
1−θ

]

2.3. STATISTICAL INFERENCE AND ESTIMATION 63

and setting this derivative equal to zero and solving for θ yields the MLE estimate of θ as

θ̂ML =
1

n

n∑
i=1

xi

which is the average of all samples, which agrees with intuition (the average of many samples
is an estimate of the expectation value, which for a random variable X with Bernoulli
distribution Bern(θ) satisfies E[X]=θ). �

Note that the MLE in Example 2.3.2 estimates θ as the proportion of 1’s in the sequence.
We often call such estimators frequency estimators . The sunrise problem indicates a problem
with this approach, as the MLE estimate gives θ=1, which implies that the sun will rise
tomorrow with absolute certainty. As mentioned before, this seems a nonsensical solution,
as by induction the probability that the sun must rise every day is 1, but eventually the
sun must die, so on the “last” sunrise, this method still gives the overconfident answer of 1.
In general, we may wish to avoid probability estimates of an event as 1, since asserting an
event is certain (probability one) means these estimates will remain unchanged in light of
any new evidence.

More formally, if P (A)=1 then P (A|B)=P (A∩B)/P (B)=1, for any B with P (B)>0.
If P (B) = 0 then we are conditioning on an impossible event and P (A|B) is undefined
(or defined 0 for convenience). So, assuming the posterior is well-defined, it is unchanged
regardless of new evidence observed, which is an undesirable property for an estimator.

2.3.3 Reparametrization Equivariance of the MLE

The Bernoulli distribution is parameterized by θ, the probability of observing a 1. However,
we could have chosen a different parametrization, say the probability of observing a 0, or
the square of the probability of observing a 1. More generally, we can reparameterize θ as
τ=ψ(θ), for any bijection ψ. We would expect that the MLE estimate is invariant under

choice of parameterization, i.e. τ̂ML=ψ(θ̂ML), and this is indeed the case.

Proposition 2.3.3 (Reparameterization equivariance of the MLE) Let x1,...,xn
be i.i.d. samples from a distribution having likelihood function L(θ;x1,...,xn). Also, let

θ̂ML be the MLE of θ based on this likelihood function. For any bijective function τ ,
we can define the likelihood function induced by τ(·) as

L̃(τ(θ);x1,...,xn) := L(θ;x1,...,xn)

and τ̂ML is the value of τ that maximizes L̃. Then,

τ̂ML = τ(θ̂ML)

2.3.4 Consistency

In Section 2.3.2, we explored the maximum likelihood estimator, and while the results it
gives are often intuitively satisfying, the estimate provided by MLE has problems. For
instance, it is wholly dependent on the data present, which can lead to overfitting when
little data is available. In this section, we show that the MLE (assuming the data generated
is drawn from a Bernoulli process) is a consistent .

Given a sequence of i.i.d. random variables X1,X2,..., we would like to estimate some
parameter θ that controls the distribution of the Xi’s. We define the estimator Tn to be

64 CHAPTER 2. BACKGROUND

some measurable function of the sequence (Xi)
∞
i=1 that depends only on the first n random

variables. In other words,

Tn :X1×...×Xn→Θ that is Tn(X1,...,Xn)∈Θ

where Xi=Xi(Ω) is the alphabet of random variable Xi. We are interested in the asymptotic
behavior of Tn as the number n of random variables the estimator depends on tends to
infinity.

Note that Tn itself is a random variable (being a function of random variables). We would
like our estimators to be consistent , that is, the estimator Tn converges to the parameter θ
given sufficiently many samples.

Definition 2.3.4 (Estimator consistency) Given a sequence of i.i.d. random vari-
ables (Xi)

∞
i=1 with a distribution controlled by some parameter θ∈Θ, we say that an

estimator Tn for θ is consistent if Tn
P−→θ.

The estimator Tn =
1
n

∑n
i=1Xi for Bernoulli θ is consistent (and indeed unbiased, see

below) as from the proof of Theorem 2.2.67 we have

E[Tn] = θ and Var[Tn] =
θ(1−θ)
n

−→ 0

Consistency is a rather weak property of an estimator, as the estimator might also be
biased and systematically over- or under-estimate θ, even if it converges in the limit.

Definition 2.3.5 (Estimator Bias) Given (Xi)
∞
i=1 as in Definition 2.3.4, the bias of

an estimator Tn is defined as

Bias(Tn) := Eθ[Tn]−θ

Furthermore, if we have that for all n≥ 1 and all θ∈Θ that Bias(Tn)=0, then the
estimator Tn is said to be unbiased . Here, Eθ[Tn] indicates that we are taking the
expectation with respect to the pdf pX(·;θ).

Example 2.3.6 (Consistent but biased estimator) Given a sequence {xi}∞i=1 drawn
i.i.d. from Bern(θ), the estimator Tn=

(
1
n

∑
ixi
)
+ 1

n for θ is biased, as

Bias(Tn) = E
[(

1
n

∑
ixi
)
+ 1

n

]
−θ = E

[
1
n

∑
ixi
]
−θ+ 1

n = 1
n

so Tn overestimates θ (on average) by 1
n , but we still have that Tn

P−→θ, so Tn is consistent.

�

Example 2.3.7 (Unbiased but inconsistent estimator) The estimator Tn=X1, as an
estimation for θ is unbiased, as E[X1]=θ but fails to be consistent, as Tn will either be 0 or
1 for all n, which will not converge to θ for any θ∈(0,1). �

Checking the consistency and bias of an estimator is a good start, but we’d like something
more quantitative: To what degree is the estimator biased, and how fast does it converge to
the unknown parameter θ? Often in statistics the mean squared error is used as a measure
of performance, which motivates the following definition.

2.3. STATISTICAL INFERENCE AND ESTIMATION 65

Definition 2.3.8 (Estimator Mean Squared Error) The mean squared error
(MSE) of an estimator Tn is defined as

MSEθ[Tn] :=Eθ[(Tn−θ)2]

Theorem 2.3.9 (MSE of an estimator) If Tn is an estimator, then

MSEθ[Tn] = Varθ[Tn]+Bias(Tn)
2

In particular for an unbiased estimator, the MSE coincides with the variance. We can then
compare the quality of two estimators by comparing their MSEs.

Definition 2.3.10 (Estimator domination) An estimator T is said to dominate
another estimator T ′ if, for all choices of parameter θ∈Θ,

MSEθ[T] ≤ MSEθ[T
′]

Now that we have a partial ordering on estimators, we can ask the obvious question: is
there always an optimal choice for an estimator that dominates all other estimators? We
require some more mathematical preamble, from which we will show the Cramér–Rao Bound
(though the proof is too lengthy to replicate here), which gives a lower bound of the mean
squared error of an unbiased estimator.

Definition 2.3.11 (Score) Given a random variable X∼pX(x;θ) with distribution
parameterized by θ, the score Vθ of X is a random variable defined as

Vθ ≡ V (X;θ) := ∇θln pX(X;θ)

For a family of random variables X1,...,Xn∼pX1,...Xn
(x1,...,xn;θ), we can define the

n-sample score Vn of this family using the joint distribution in the obvious fashion

Vn = ∇θlnpX1,...,Xn
(X1,...,Xn;θ)

One can show that the expected value of the score Eθ[V] is zero, so Varθ[V]=Eθ[V
2]

(Exercise 2).

Definition 2.3.12 (Fisher Information Matrix) Given a random variable X∼
pX(x;θ), the Fisher information (matrix) I(θ) is the (co)variance (matrix) of its score
Vθ≡V (X;θ):

I(θ) := Varθ[Vθ] = Eθ[VθV
⊤
θ] =

∫∑
x

pX(x;θ)V (x;θ)V (x;θ)⊤

Similarly, the n-sample Fisher information In(θ) is defined as the variance of the
n-sample score Vn.

Intuitively, the Fisher information I(θ) provides a measure of how informative obser-
vations of X are about θ: If the log-likelihood lnpX(X;θ) is very sensitive to changes in
θ, i.e. if the gradient ∇θlnpX(X;θ) is large, then it should be easy to distinguish different

66 CHAPTER 2. BACKGROUND

values of θ based on how the samples from X are distributed. This would lead to a corre-
spondingly high Fisher information. Under some very mild technical conditions, the Fisher
information can be equivalently expressed as I(θ)=−Eθ[∇θ∇⊤

θ lnpX(X;θ)]=∇θ∇⊤
θ Hθ(X)

(Definition 2.5.1,Exercise 3). If θ is multi-dimensional, then I(θ) is the expected Hessian of
−lnpX(X;θ), a symmetric matrix which endows the parameter space with a metric so that
it becomes a Riemannian manifold, studied in information geometry [Ama16].

Running an experiment n times ought to be n times as informative as running the
experiment once, assuming the outcomes of the experiments are independent of each other.
Indeed this is the case, as the following theorem shows.

Theorem 2.3.13 (n-sample Fisher information) Given an i.i.d. family of random
variables X1,...,Xn with Xi∼pX(x;θ), then In(θ) :=Eθ[VnV

⊤
n]=nI(θ).

Proof. Exercise 4. �

The Fisher information is used as a measure of how much information (on average) can
be obtained from θ from each sample and appears in plenty of other statistical results.

Theorem 2.3.14 (Cramér–Rao Bound) The MSE of any estimator Tn is lower
bounded by the reciprocal of the Fisher information:

MSEθ[Tn] = Eθ[(Tn−θ)2] ≥ Varθ[Tn] ≥
1

In(θ)

Proof. Exercise 5. See [CT06]. �

Estimators that meet this bound, i.e. satisfy MSEθ[Tn]=1/In(θ), are called efficient ,
and are “best” in the sense that they dominate all other estimators.

2.3.5 Exercises

1. [C10] (Alternate form of estimator MSE) Prove Theorem 2.3.9.

2. [C08] (Expected score is 0) Show that the expected score Eθ[Vθ] is 0.

3. [C14] (Fisher information) Establish by partial integration under which con-
ditions the Fisher information for θ ∈ R can equivalently be written as I(θ) =
−Eθ[

∂2

∂θ2 lnpX(X;θ)]= ∂2

∂θ2Hθ(X), where Hθ(X) is the entropy of X (Definition 2.5.1).

4. [C12] (n-Sample Fisher information) Prove that In(θ)=nI(θ) (Theorem 2.3.13).

5. [C30m] (Cramér–Rao Bound) Prove the Cramér–Rao Bound (Theorem 2.3.14).

6. [C13] (Cramér–Rao Bound is tight) Prove that for a sequence of Bernoulli i.i.d
random variables (Xi)

∞
i=1 with Xi∼Bern(θ) and the estimator Tn=

1
n

∑n
i=1Xi, that

Varθ[Tn]=
1

In(θ)

and thereby show the Cramér–Rao Bound is tight.

2.4. BAYESIAN PROBABILITY THEORY 67

2.4 Bayesian Probability Theory

The previous section gave a glimpse of what is called frequentist statistics. Many powerful
and/or elegant estimators have been developed, but it lacks an underlying unifying principle.
Maximum likelihood estimation gets close but requires various (regularization) patches for
large model classes. One problem is that the uncertainty about the underlying probability
measure is only dealt with rather indirectly as witnessed by the continued misinterpretation
of e.g. confidence intervals.

In Bayesian statistics, the uncertainty about the probability measure is itself modelled
by probabilities. In the parametric case, starting with a prior (belief=epistemic) probability
wθ over θ∈Θ, Bayes general and optimal learning rule uniquely determines how to update
it to a posterior belief probability after new data=evidence arrives.

We give a brief introduction to Bayes rule and Bayesian inference, and demonstrate it
on a simple instantiation for binary i.i.d. data, leading to the famous Laplace’s Rule for
prediction. Later chapters will consider much larger (and indeed universal) model classes
and priors.

2.4.1 Bayes’ Theorem

In Section 2.3, the maximum likelihood estimator (MLE) depends wholly on the data
available, which can lead to overly confident estimates when little data is available. Moreover,
observations are rarely perfect and are often noisy, so on occasion the data given may not
always be perfectly trustworthy, and often the estimator may need to learn even when a
fraction of the given data is misleading or false. A naive MLE approach may give an overly
confident estimate of the parameter in question. We desire an estimator that is somewhat
“skeptical” of the data presented, incorporating prior knowledge before data is presented,
and also gives a measure of not just what the best estimate of the unknown parameters is,
but also how confident one should be in that estimate.

Example 2.4.1 (Estimating Lottery winning probability) Consider buying your first
ever ticket for the lottery, and you get lucky and win on the first try. Lacking any knowledge
about the win probabilities of the lottery, the maximum likelihood estimator would conclude
from this data that you are guaranteed to win the lottery every time you play. �

In an attempt to address this concern, we should first consider why the conclusion in
Example 2.4.1 seems implausible. A certainty of winning the lottery seems implausible
based on the prior knowledge we have of lotteries (in that out of many tickets, only a few
are winners, so winning the lottery should be a very rare event).

For example, if we are trying to find the parameter θ for the probability that a coin flips
heads, it might be the case that the coin is unfair and is slightly biased one way or the other,
but we would expect an ordinary coin to have θ≈ 1

2 , and after observing the coin land at
least once on heads and at least once on tails, we can rule out the options θ=0 or θ=1.

This is why a frequentist approach can often be limiting, as while it may converge in the
limit with a large amount of data, for small amounts of data we should also incorporate
current prior domain knowledge about the parameter of interest into the estimation procedure.
The distribution we then get over the set of parameters given the domain knowledge is called
the prior , and Bayes’ Rule (Theorem 2.4.2) gives a systematic method of determining a new
distribution after having received the data, called the posterior .

Bayes’ celebrated theorem allows the conditional probability P (A|B) to be computed in
terms of P (A),P (B) and P (B|A).

68 CHAPTER 2. BACKGROUND

Theorem 2.4.2 (Bayes’ theorem) Let D⊆Ω be an event with P(D)>0 and (Hi)i∈I

be a countable partition of Ω (i.e. ∀i ̸=j :Hi∩Hj=∅ and
⋃· iHi=Ω). Then

P(Hi|D) =
P(D|Hi)P(Hi)

P (D)
=

P(D|Hi)P(Hi)∑
j∈IP(D|Hj)P(Hj)

The key quantity P (D) is called Bayesian evidence or marginal distribution or mixture
distribution. P (Hi) is the prior belief in hypothesis Hi and P (Hi|D) the posterior belief
after observing data D, while P (D|Hi) is called the data likelihood under hypothesis Hi.
While the proof of Bayes’ theorem is elementary (Exercise 1), it gives a powerful technique
for updating confidences (the likelihood of an event, the choice of parameters for a model,
etc.) and is what the entire field of Bayesian statistics is based on. Mathematically, the
Bayesian “sample” space Ω is a product of the data (frequentist) sample space is ΩD and a
hypothesis space ΩH . A hypothesis Hi is an event of the form ΩD×{H̃i}⊂Ω. An observation
D is an event of the form D̃×ΩH⊂Ω. Usually it is H̃i∈ΩH and D̃⊂ΩD that are specified,
the tilde is dropped, and the lifting to the product space implicitly understood.

Interpretation. The intuition behind Bayes’ theorem is that it provides a method of
updating (belief) probabilities based on evidence. If Hi is some hypothesis, for example, H1

for a person having a particular disease, and H0 for not having it. Then we can consider
holding subjective beliefs and uncertainties about Hi. Before clinical tests are performed,
the probability P (Hi) can represent the doctor’s (subjective) degree of belief in Hi, e.g.
based on the patient’s symptoms and demographic data. The belief can change once the
doctor receives outcome D of some clinical tests for the patient, which may increase the
confidence in Hi (if D is evidence in favor of Hi) or decrease it (if D is evidence against).
Note that different people can have different confidence in events. For instance, before the
doctor tells the patient the outcome D of the tests, the patient will have a different belief in
Hi than the doctor. But even before the doctor learns about D or after both learn about
D, they likely hold different beliefs since their priors (and hence posteriors) are different.
The doctor should have much more experience in judging P (Hi), while the patient’s belief
is likely more driven by fear or wishful thinking. Let us compare the different encountered
interpretations of probabilities:

• Frequentist: Probabilities are defined as the relative frequency of an event occurring.
If in a sequence of n independent identically distributed (i.i.d.) trials an event occurs
k(n) times, the relative frequency of the event is k(n)/n. The probability of an event
is then defined as the limit limn→∞k(n)/n. The frequentist models P (D|Hi), but
neither assigns a prior nor a posterior (belief) probability to Hi.

• Objectivist : Probabilities are real aspects of the world, also called true probabilities.
The outcome of an observation or an experiment is not deterministic, but involves
chaotic or random (physical) processes. In the case of i.i.d. experiments the probabilities
assigned to events should be interpretable as and consistent with limiting frequencies,
but objective probabilities are not limited to this case. They could be for singular
events such as the probability of a volcanic eruption in Australia in the next t=1,2,3,...
centuries, which is a unique non-i.i.d. stochastic process (later denoted by µ).

• Subjectivist : Probabilities are merely subjective, and represent a particular individual’s
confidence or degree of belief, called epistemic probability. In this interpretation,
subjective probabilities are assigned to Hi, which depend on who holds them (doctor
vs. patient) and of course on potential available extra information D.

2.4. BAYESIAN PROBABILITY THEORY 69

• Bayesian: A Bayesian assigns a prior probability over Hi and uses a (frequentist)
likelihood model P (D|Hi) to update prior P (Hi) to a posterior probability P (Hi|D)
after observing evidence D. The posterior is the agent’s degree of belief in Hi. The
prior may be subjective [Gol06] (e.g. determined via expert elicitation [OBD+06]),
or objective [Ber06, BBS24] (like Jeffreys prior below), or universal [RH11] (see
Section 3.7), though this trichotomy is a gross over-simplification [Goo71].

Remarkably and conveniently, all types of probabilities above satisfy the same Kolmogorov
Axiom 2.2.3 of probability [Hut05b, Sec.2.3] [Pre02, Sec.2] [Car22, Part IV].

Example 2.4.3 (Blood type testing) Some blood types are rarer than others. A
particular blood type, O-negative (O−) is special, since it can be donated to anyone. The
proportion of people that have O− blood is 7%. We have a test that can check if someone
has O− blood or not. Unfortunately, this test does not always give the correct answer, and
is only 95% accurate in that if someone who does (doesn’t) have O− blood, the test will
return a false negative (positive) with probability 5%. We take a person sampled at random
from the population, and test them. The test shows they have O− blood. How confident
should we be that this person actually has O− blood? What if the test was negative?

A Bayesian formulation of the problem is as follows: Let H− be the hypothesis that
Person A has blood type O−, and H+ that Person A has some other blood type. The
prior probability is P (H−)=1−P (H+)=0.07. If this number comes from a simple random
population survey, then it is an objective prior. If it is based on some heuristic argument with
some judgement involved, e.g. by arguing that the population is similarly to another group, it
would be subjective. The hypothesis space is ΩH={H−,H+}. Let D− denote the event that
the test shows that Person A has O− blood. The likelihood is P (D−|H−)=P (D+|H+)=0.95
and P (D−|H+)=P (D+|H−)=0.05. The data sample space can be chosen as ΩD={D−,D+}.
Noting that {H−}∪· {H+}=ΩH , we can use Bayes’ Theorem 2.4.2 to derive the posterior
probability of Person A having blood type O− given the test outcome D±:

P (H−|D−) =
P (D−|H−)P (H−)

P (D−|H−)P (H−)+P (D−|H+)P (H+)
=

0.95×0.07
0.95×0.07+0.05×0.93 ≈ 59%

P (H−|D+) =
P (D+|H−)P (H−)

P (D+|H−)P (H−)+P (D+|H+)P (H+)
=

0.05×0.07
0.05×0.07+0.95×0.93 ≈ 0.4%

So, despite the fact that the test has a relatively high probability (95%) of success, the
probability of actually having O− type blood given the test indicated as such is only ≈59%.
This may seem counter-intuitive, and is due to the small base rate, or prior probability of
the blood type O−. As the likelihood of a false positive (5%) and having O− blood (7%)
are similar, this means that if the test indicates O− blood, we would intuitively expect that
(roughly) half the time it was due to the test being incorrect, and half the time the patient
actually having O− blood. This explains why the posterior is near 50%. Conversely, since
non-O− blood is so common, if the test does not indicate the presence of O−, it is very
unlikely the patient has O− blood (as both having O− blood and having the reliable test
fail are both unlikely events). �

2.4.2 Bayes Estimation and Prediction

We express our belief over plausible and implausible values of θ∈Θ as a density function
w(θ), called the prior .

In frequentist statistics, θ is not a random variable. The true value of the parameter θ,
for example the bias of a coin, is a fixed though unknown constant that depends on the

70 CHAPTER 2. BACKGROUND

physical makeup of the coin, precisely how the coin is flipped, etc. Frequentists can express
uncertainty in θ, e.g. via confidence intervals, but their interpretation is convoluted and
regularly confuses non-statisticians.

Bayesians simply model uncertainty about θ in the same way as for observations X,
treat θ as a random variable, and assign a (subjective prior) distribution w(θ) over it,
which encodes our prior beliefs about the relative plausibility of potential values of θ∈Θ.
This requires enlarging the sample space to Ω′′ =Ω×Ω′ to accommodate θ, and X(ω)
becomes X(ω′′). Typically Ω′=Θ and with some abuse of notation θ(ω′)=ω′=θ. While
mathematically, θ is now a random variable, and Θ part of the sample space, and ω′ a sample
most11 Bayesians would neither interpret θ as being random nor sampled. The awkward
clash in nomenclature though is more than compensated by the convenience and power this
mathematically unified treatment of observations and parameters offers.

We have already alluded to that the probability distribution pX(x;θ) for the observed
random variables X can be viewed as a conditional distribution on X given θ, and the
enlargement of Ω to Ω′′ now formalizes and justifies writing P(x|θ): Indeed, is we define the
joint distribution

p(x,θ) := pX(x;θ)w(θ)

then p(x|θ)≡p(x,θ)/w(θ)=pX(x;θ) provided w(θ)>0 and we may as well define it to be
equal even if w(θ)=0 (see also Section 2.8.3). The mixture distribution, also called marginal
distribution or Bayesian evidence,

p(x1,...,xn) =

∫
Θ

p(x1,...,xn|ϑ)w(ϑ) dϑ (2.4.4)

is a key quantity in Bayesian statistic. As a rule of thumb, if this quantity can be efficiently
computed, then everything else of interest can be efficiently computed.

(A continuous version of) Bayes’ rule Theorem 2.4.2 can now update the prior belief
about θ with observations x1,x2,...,xn to arrive at the posterior belief distribution

w(θ|x1,...,xn) =
p(x1,...,xn|θ)w(θ)

p(x1,...,xn)

This posterior distribution combines two sources of information that we have about the
parameter: our prior beliefs on what we expect θ to be, and any evidence provided by the
observed data. Bayes’ rule uniquely determines the posterior distribution given a prior, i.e.
how to update beliefs based on evidence.

Often, our interest in estimating the parameter θ is merely a means to an end; ultimately
we want to make (accurate) predictions. The predictive distribution is given by

p(xn+1|x1,x2,...,xn) =

∫
Θ

p(xn+1|ϑ)w(ϑ|x1,x2,...,xn) dϑ =
p(x1,...,xn+1)

p(x1,...,xn)
(2.4.5)

2.4.3 Laplace Rule

Section 2.4.2 describes how to include prior information about a parameter when estimating
its value from data, but is agnostic on where the prior w(θ) comes from. In practice, the
proper choice of a prior distribution may greatly affect the resulting estimate if little data is
available, though with sufficient data the posterior will have most of the probability mass
on the true value of the parameter θ for “sensible” choices of the prior w(θ) [Gho97].

11There are at least 46656 varieties of Bayesians [Goo71].

2.4. BAYESIAN PROBABILITY THEORY 71

If the domain is bounded, a usual choice is the uniform prior. For unbounded domains,
it is not so clear what to choose, as distributions like a Gaussian N (µ,σ2) will naturally bias
towards parameters near the mean µ. Without a method to choose a canonical choice for µ,
the bias will be rather arbitrary. One major focus of this book concerns choosing a sensible
prior distribution over not a parameter space Θ, but over a function space that contains all
computable measures in a way that respects Occam’s razor (simple/complex explanations
are more/less likely).

Derivation. Suppose we have a biased coin governed by a Bernoulli process with unknown
parameter θ. We observe a sequence of coin flips x1,x2,...∼Bern(θ), and would like to
estimate θ from the sequence. We can first apply Bayes Theorem 2.4.2 to obtain the
posterior distribution for θ after having observed the coin flips.

w(θ|x1,x2,...,xn) =
p(x1,...,xn|θ)w(θ)∫

Θ
p(x1,...,xn|ϑ)w(ϑ) dϑ

=
w(θ)

∏n
i=1Bern(xi;θ)∫

Θ
w(ϑ)

∏n
i=1Bern(xi;ϑ) dϑ

(2.4.6)

Note that Bern(x;θ)=θx(1−θ)1−x, so we can express
∏n

i=1Bern(xi;θ) as θ
b(1−θ)a, where

a is the number of zeros in the sequence x1,...,xn, and b the number of ones. The beta
distribution is defined as

Beta(θ;α,β) =
1

B(α,β)
θα−1(1−θ)β−1 where B(α,β) =

∫ 1

0

θα−1(1−θ)β−1 dθ (2.4.7)

is the beta function. If we have no prior information about the coin, choosing a uniform
distribution over the range [0,1] to represent our prior belief in the value of θ is reasonable.
Note that this uniform distribution should not be interpreted as the lack of a prior belief. In
fact, it effectively expresses a prior belief of indifference, that is, any value in [0,1] is a priori
as likely as any other. Other priors are discussed below. Using the indfference prior w(θ)=1
for 0≤θ≤1 and (2.4.7) allows us to express (2.4.6) as

w(θ|x1,x2,...,xn) =
θb(1−θ)a∫ 1

0
ϑb(1−ϑ)a dϑ

=
θb(1−θ)a

B(b+1,a+1)
= Beta(θ;b+1,a+1)

Figure 2.11 shows a plot of the beta distribution for some choices of α and β. In Figure 2.12
we plot the posterior w(θ|x1,x2,...,xn) for n=0,1,2,3 assuming the sequence x1:3=001was
observed one bit at a time (n=0 corresponds to having seen none of the sequence, which
means the posterior is just the prior). As can be seen, the posterior distributions put more
probability mass on smaller values of θ after observing x1=0 and x2=0, and then shifts
back slightly when x3=1 is observed.

Now that we have a posterior distribution over θ, we can use this to make predictions of
xn+1 after observing x1,...,xn using (2.4.5). By definition, the probability of P(Xn+1=1|θ)=θ
as Xn+1∼Bern(θ), so

P(Xn+1 = 1|x1,x2,...,xn) =

∫
Θ

P(Xn+1=1|θ) θb(1−θ)a
B(b+1,a+1)

dθ

=

∫ 1

0
θb+1(1−θ)adθ
B(b+1,a+1)

=
B(b+2,a+1)

B(b+1,a+1)

We can simplify this using properties of the gamma function

Γ(k) :=

∫ ∞

0

xk−1e−xdx, (2.4.8)

72 CHAPTER 2. BACKGROUND

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5
(α,β)=(1,1)

(α,β)=
(
1
2 ,

1
2

)
(α,β)=(2,2)

(α,β)=(5,2)

(α,β)=(1,5)

Figure 2.11: A plot of Beta(α,β) (2.4.7) for various values of α and β.

which can be interpreted as a continuous form of the factorial function, satisfying Γ(k)=(k−1)!
for k=1,2,..., and Γ(z+1)=zΓ(z) for all z∈R where Γ(z) is defined. Now, a property of the
beta function [Art15] is that it satisfies for any a,b>0,

B(a,b) = B(b,a) =

∫ 1

0

θb−1(1−θ)a−1dθ =
Γ(a)Γ(b)

Γ(a+b)

So, we can rewrite

P(Xn+1=1|x1,x2,...,xn) =
B(b+2,a+1)

B(b+1,a+1)

=
Γ(b+2)Γ(a+1)

Γ(b+a+3)

Γ(b+a+2)

Γ(b+1)Γ(a+1)

=
(b+1)����Γ(b+1)����Γ(a+1)

(b+a+2)�����
Γ(b+a+2)

�����
Γ(b+a+2)

����Γ(b+1)����Γ(a+1)

=
b+1

a+b+2
=

1

n+2

(
1+

n∑
i=1

xi

)

where in the last equality we have used that b was the number of ones in x1,...,xn and
n=a+b. This particular choice of prior distribution is called the indifference rule, or Laplace
rule, and the resulting estimator is thus called the Laplace estimator.

Theorem 2.4.9 (Laplace rule) For i.i.d. Xi∼Bern(θ) and uniform prior θ∈ [0,1],

P(Xn+1=1|X1=x1,...,Xn=xn) =
k+1

n+2
, where k =

∣∣{i≤n :xi=1}
∣∣ = n∑

i=1

xi

For the sunrise problem, the sun has risen every day (for all 1≤i≤n, xi=1) so this gives
the estimate n+1

n+2 that the sun will rise tomorrow given n days of having seen the sun rise
previously, which seems not an unreasonable degree of confidence absent prior knowledge.

2.4. BAYESIAN PROBABILITY THEORY 73

0 0.2 0.4 0.6 0.8 1
0

1

2

3
Prior≡1
x1=0
x1:2=00
x1:3=001

x1:100=(01)50

0

2

4

6

8

Figure 2.12: Given the coin flip example in Section 2.4.2, a plot of how the posterior
distribution for the parameter θ changes when observing the sequence x1:3=001, updating
one bit at a time, assuming a uniform prior over θ. Also included is the posterior after
observing 50 0’s and 50 1’s (see second y-axis).

General Beta prior. More generally, suppose we chose an arbitrary beta distribution as
our prior so that

w(θ) = Beta(θ;α,β) :=
1

B(α,β)
θα−1(1−θ)β−1

for some α,β>0. A uniform prior is a special case of this, as Beta(θ;1,1)=1. Repeating the
calculations in (2.4.6), we obtain the posterior and the predictive distribution

w(θ|x1,...,xn;α,β) = Beta(θ;b+α,a+β) (2.4.10)

P(Xn+1=1|x1,x2,...,xn;α,β) =
b+β

a+b+α+β
=

β+
∑n

i=1xi
n+α+β

. (2.4.11)

The parameters α and β can be thought of as representing hypothetical counts of observations
of ones and zeros before the experiment began (perhaps we were told of the outcome of an
experiment performed before we received the coin). These hypothetical prior counts are
called psuedocounts, and they act as a regularizer to smooth out the rapid changes when
very little data is observed.

Choosing α and β. If we have no information about whether observing a 0 is more or
less likely than 1, then a priori it would seem that choosing α=β would be a sensible choice,
eliminating a free parameter. But we still need to choose a value of α. When α=β=1, the
Beta distribution reduces back to a uniform distribution. For values α=β>1, this means
choosing a prior that is more heavily weighted towards values of θ≈1/2, and unlikely to be
near the extremes of 0 or 1. For instance, for normal coins we have a strong prior belief that
they are fair, so would choose α=β and both large. In this case (β+

∑n
i=1xi)/(n+α+β)≈ 1

2
for small n, so only a sufficiently large number of observations would persuade us that the
coin is unfair. Various beta distributions are plotted together in Figure 2.11. The opposite
case is when 0<α=β<1, which means choosing a prior that is more biased towards the
extremes, a prior assumption that the coin is likely to be unfair. In the extreme case where

74 CHAPTER 2. BACKGROUND

α=β limits to 0, the distribution degenerates to one with two point masses on 0 or 1, which
implies that our prior assumption is that the coin is deterministic, either always generating
zeros, or always generating ones.

Jeffreys prior. One approach is to choose α=β such that the prior is invariant under a
change of coordinates for the parameter θ. This can be done by choosing the Jeffreys prior:

Definition 2.4.12 (Jeffreys Prior) The Jeffreys prior is a prior with density function
proportional to the square root of the Fisher information.

w(θ) ∝
√
I(θ)

We can compute I(θ) for the distribution Bern(x;θ).

I(θ) = −Eθ

[
∂2

∂θ2
lnBern(X;θ)

]
= −Eθ

[
∂2

∂θ2
lnθX(1−θ)1−X

]
= −Eθ

[
∂2

∂θ2
Xlnθ+(1−X)ln(1−θ)

]
= Eθ

[
X

θ2
+

1−X
(1−θ)2

]
Using linearity of expectations and Eθ[X]=θ, we obtain

I(θ) =
θ

θ2
+

1−θ
(1−θ)2 =

1

θ(1−θ)

Hence, the Jeffreys prior is w(θ)∝1/
√
θ(1−θ), which can be expressed as a beta distribution

by choosing α=β=1/2.
The resulting estimator with this prior is called the KT estimator . We will explore this

estimator further in Section 4.1. While this choice is invariant and minimax optimal, for
large non-binary alphabet, other choices of α and β are better [Hut13a].

Decomposition and concentration. Finally, we note that (2.4.11) can be decomposed
as follows

P(Xn+1=1|x1,x2,...,xn;α,β) = λx̄+(1−λ)
(

β

α+β

)
(2.4.13)

where λ =
n

n+α+β
and x̄ =

1

n

n∑
i=1

xi

It can be shown that the expectation of a Beta distribution Beta(θ;α,β) is β
α+β . So (2.4.13)

shows that the predictive Bayes estimator with prior Beta(θ;α,β) can be viewed as a convex
combination of the maximum likelihood estimator x̄ (i.e. the naive estimator based solely on
the data without incorporating prior knowledge) and the “pure prior” estimator β

α+β . This

is the mean of the prior distribution Beta(θ;α,β), which is what the predictive estimator
returns if no data is available. Also note that the value of α+β in this convex combination
effectively controls our confidence in the prior for predicting the next bit, and as a result,
α+β is often termed as the concentration parameter .

As for the posterior, the mean and variance are

E[θ|x1,...,xn] =
b+β

n+α+β
(2.4.14)

Var[θ|x1,...,xn] =
(a+α)(b+β)

(a+α+b+β)2(a+α+b+β+1)
(2.4.15)

2.5. INFORMATION THEORY AND CODING 75

This implies that the posterior distribution has a low variance and hence a high confidence
in the parameter θ if n+α+β is large. So a strong prior belief or a lot of data results in
high confidence in θ (narrow credible intervals for θ), as expected. For large α+β≫n, the
posterior concentrates around the prior belief β

α+β , while for large n≫α+β, the posterior

concentrates around the relative frequency b/n of 1s.

2.4.4 Exercises

1. [C05] (Bayes rule) Prove Bayes’ Rule (Theorem 2.4.2).

2. [C12] (General predictive distribution) Derive the expressions for the predictive
distribution (2.4.5).

3. [C12] (Beta posterior and predictive distribution) Derive the expressions for
the posterior (2.4.10) and predictive distribution (2.4.11).

4. [C20] (Posterior Beta expectation and variance) Derive the expectation (2.4.14)
and variance (2.4.15) for beta random variable X∼Beta(x;a+α,b+β).

5. [C15] (Posterior concentration) Given the sequence X1:2N =(01)N of alternating
pairs of coin flips, we would expect that w(θ|X1:2N) concentrates on 1

2 as N→∞,
by Theorem 2.2.67. Compute a lower bound on how large N needs to be before we
can be at least 99% sure that the parameter θ lies in the range 0.49≤θ≤0.51 using
Theorem 2.2.68, and then also compute the smallest possible N for this to hold. Now
compute N using the weaker bound Theorem 2.2.67, and compare.

6. [C15] (Reparametrization of Fisher information) Compare the Fisher informa-
tion Iθ(θ) for Bern(x,θ) with the Fisher information Iϑ(ϑ) for Bern(x,1/(1+e−ϑ)) in
terms of ϑ=ln[θ/(1−θ)]∈R.

7. [C30m] (Reparametrization invariance of Jeffreys prior) Show that Jeffreys
prior is invariant under reparameterization. That is, consider prior density wθ(θ)∝√
I(θ), and a diffeomorphic reparameterization ϑ=f(θ). Then the density transforms

as wϑ(ϑ) = wθ(θ)/|f ′(θ)| at θ = f−1(ϑ). Show that wϑ(ϑ) ∝
√
Iϑ(ϑ). Verify the

particular case of the previous exercise.

2.5 Information Theory and Coding

We make observations all the time of the world around us, both through direct first-hand
observations, and indirect inferences based on collected data. Not all observations are equally
“informative”. If we already know the outcome before it occurs, the information is useless.
Conversely, if the outcome is extremely surprising (unlikely), then information that indicates
it will occur is highly informative. The formal theory underpinning the study of information
itself is relatively recent, first introduced in Shannon’s seminal paper [Sha48] in 1948.

This measure of information is concerned with, on average, the number of bits required
to uniquely identify messages drawn from a stochastic source, rather than the information
inherently contained in the message. A television tuned to a blank channel displaying white
noise is highly informative in this sense, as it would take a lot of bits to describe the exact
state of the static on the screen, even though the content of the static itself is useless.

Shannon called this measure of the average number of bits to encode a message from a
source entropy, which ties in with the field of data compression. The entropy of a source

76 CHAPTER 2. BACKGROUND

represents a bound on how well messages drawn from the source can be (on average)
compressed without loss.

We will cover how Shannon historically estimated the entropy of the English language, a
code he co-developed to compress messages into fewer bits, as well as some famous theorems
in information theory like the Kraft inequality (Theorem 2.5.17), a necessary and sufficient
condition for the existence of prefix codes, and Shannon’s coding theorem (Section 2.5.5),
which places bounds on the length of the optimal code based on the entropy of the source.

A different notion of information that measures the intrinsic information contained in
a particular message itself, rather than the unpredictability of a stochastic source, called
Kolmogorov complexity, will be introduced in Section 2.7.

2.5.1 Shannon Entropy

Recalling Remark 2.2.31, let X be a discrete random variable with sample space X and
probability distribution P .

Given an outcome x∈X for a random variable X, we define the Shannon information
content as h(x)=log2[1/P(x)]. The Shannon information can be thought of as a measure of
how “surprising” an event is in bits. Events that are very unlikely (P(x)=ε for small ε>0)
are very surprising when they happen, so a lot of information is conveyed when they do (h(x)
is large). Conversely, if someone were to tell you that the sun rose today (Example 2.3.1),
you have not learned much, as this is an extremely likely event, so h(the sun rose today)≈0.

One of the most crucial concepts in the study for information theory is entropy. Simply
put, it is the expectation of the Shannon information of a random variable. It gives a bound
on the average number of bits required to encode a sample drawn from that random variable.

Definition 2.5.1 (Entropy) We define the entropy H(X) of a discrete random
variable X=(X ,P) as

H(X) := EP[h(X)] =
∑
x∈X

P(X=x)log2
1

P (X=x)

with the convention that 0log2
1
0 :=limp→0plog2

1
p =0. We can also define the entropy

H(P) of a discrete probability distribution P ={p1,p2,...} as H(P) :=
∑

ipilog2
1
pi
.

The conditional entropy of X given an outcome y∈Y is defined as

H(X|Y =y) :=
∑
x∈X

P(x|Y =y)log2
1

P (x|Y =y)

The conditional entropy of X given Y is the expected value of H(X|Y =y),

H(X|Y) :=
∑
y∈Y

P(y)H(X|Y =y) =
∑

x,y∈X×Y
P(x,y)log2

1

P(x|y)

Example 2.5.2 (Entropy of a biased coin) Given a random variable X representing a
biased coin, with P(X=H)=θ hence P (X=T)=1−θ, the entropy of X is given by

H(X) = θlog2
1

θ
+(1−θ)log2

1

1−θ
Figure 2.13 plots H(X) for 0≤θ≤1. We can see that the entropy is maximized for a fair
coin, which has 1 bit of entropy. When θ=0 or θ=1, the entropy is zero bits, as we already

2.5. INFORMATION THEORY AND CODING 77

know the outcome of a two-headed coin, so observing a coin flip provides no information.
�

Note that here we define the entropy using the binary logarithm log2, meaning the result
is measured in bits. Sometimes entropy is defined using the natural logarithm ln, which
gives the same definition, only now the result is measured in nats. Both definitions are the
same up to a multiplicative constant.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

P(X=x)=θ

H
(X

)

Figure 2.13: The entropy H(X) of a bi-
ased coin, as a function of the bias θ (Exam-
ple 2.5.2).

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

θ

K
L

KL(P ||Q)

KL(Q||P)

Figure 2.14: A plot of KL(P ||Q) vs.
KL(Q||P) (see Example 2.5.13).

Example 2.5.3 (Entropy of horse betting) Suppose a gambler is listening in to the
results of a horse race with N competitors. The names of the horses might themselves be
complex, but are already known to the gambler, and so the only information obtained when
the winner is announced is the information required to distinguish which of the N horses
won the race. Assuming it is equally likely that any horse would win, then we could encode
each horse with a codeword ⌈log2N⌉ bits long. The complexity of the names of the horses is
irrelevant. From the perspective of entropy, the information content in the messages received
from the stochastic source is itself irrelevant; what matters is the number of bits required to
express which message was received, with respect to some predefined collection of allowed
messages. If, far more realistically, the probability distribution over the winning horse is
highly skewed, then being told the fastest horse won is an unsurprising result, as we were
confident that it was going to happen anyway. So, we could do better than uniform length
codewords, and assign short encodings to the likely outcomes, and long encodings to the
unlikely outcomes.12 This means that the length of the encoding will on average be shorter
than before. Even if the distribution of a source is not known, the probability distribution
governing a source can be estimated from samples (Section 2.3), and from there the entropy
can be estimated. �

12Despite predating Shannon’s work by about a hundred years, Samuel Morse had the foresight to do this
when he invented his namesake code: By counting the frequency at which letters appeared in English books,
he estimated the relative frequencies (and hence probabilities) that each letter would be used, and chose the
codewords appropriately. For example, commonly used letters like E and I have only short codewords: .

and .. respectively, whereas seldom used letters like Q and X get longer codewords, --.- and -..-.

78 CHAPTER 2. BACKGROUND

Remark 2.5.4 (Entropy of English) Shannon [Sha51] conducted an experiment to
estimate the entropy of the English language13 with a game: the objective being to encode a
message as a sequence of counts for how many guesses were required for the next symbol, and
to decode the sequences of guesses back to the message by performing the same game. The
core idea is that the better the encoder/decoder can model English text, the fewer guesses
they require to guess the next symbol, so the sequence should mostly be small numbers
(2.5.5), indicating that English is highly redundant. Performing this game on random text
would mean the encoder has no better strategy than random chance, and we would expect
that they would (on average) guess correctly after trying half the options, namely 13 letters.
The game is performed as follows: an experimenter has a hidden message x1,...,xn, and a
subject repeatedly guesses the first symbol of the message until correct, then tries guessing
the second symbol, and so on. The number of guesses gi for each symbol xi is recorded.
This sequence of guesses is highly compressible, as given a subject fluent in English, he will
have a strong intuition for the statistics of the English language. Given the letters TH... most
people would choose E as a reasonable guess for the next missing letter. As a result, the
sequence will contain mostly small numbers (as often few guesses are required.)

Now, we have a second subject who receives only the sequence of guess counts g1:n, and
(assuming both subjects act the same), we ask her to play the same guessing game as the
transmitter, except instead of knowing the correct message ahead of time, we let the second
subject make gi guesses before asking her to treat the last guess as correct, and then moving
on to the next symbol, thereby recovering the original message, assuming both subjects use
the same guessing strategy/order.

x1:n T H E R E - I S - N O - R E V E R S E - O N - A - M O T O R C Y C L E -

g1:n 1 1 1 5 1 1 2 1 1 2 1 1 15 1 17 1 1 1 2 1 3 2 1 2 2 7 1 1 1 1 4 1 1 1 1 1
(2.5.5)

In practice, both subjects can be replaced with a deterministic predictor encoded with the
statistics of letter frequencies, digraphs, trigraphs, and so on to ensure they make the same
guesses, and the message can be recovered. This was repeated many times, and an estimate
of the average entropy of English was thereby obtained. Shannon estimates it somewhere in
the range of 0.6 to 1.3 bits per character. More modern estimates with a larger corpus of
data and replacing human predictors with algorithms [Gue09] provides a higher estimate of
1.58 bits per character. �

Definition 2.5.6 (Code) Given a set of source words S, a code C :S→B∗ is a function
mapping messages to binary strings. The set of all encoded messages C(S) is called
a set of codewords, and often we just describe a code by its codewords rather than
specifying C. A code is uniquely decodable if for any two sequences of source words
x1,...,xn and y1,...,ym drawn from S, if C(x1)...C(xn)=C(y1)...C(ym), then xi=yi for
all i. That is, we can always uniquely recover the source message from a sequence of
concatenated codewords. A code is prefix if there does not exist x,y∈S such that C(x)
is a prefix of C(y) (see Section 2.1.2).

We usually desire prefix-codes, because they remain uniquely decodable if concatenated (see
Item 1) and decoding can be done in a single pass with at most constant memory overhead.

Note that this does not imply that any sequence of bits is a valid coding. For example,
given the source words S={a,b,c,d} and the codes C(a)=00,C(b)=01,C(c)=10,C(d)=11,
clearly the string 111 is not a valid encoding: no sequence of source words could produce it.

13Or more accurately, the entropy of a source generating messages in English. Shannon used excerpts
from the novel Jefferson the Virginian as the source.

2.5. INFORMATION THEORY AND CODING 79

2.5.2 Shannon–Fano Code

Often we wish to encode a message over an alphabet (for instance, the alphabet Σ={a,b,...,z})
into a binary string. We can define an encoding (also called a code) for each character in the
alphabet from which messages are constructed, and then encode a string by encoding each
character separately.14 Suppose we have a discrete random variable X=(Σ,P) with symbols
Σ = {x1,...,xn} and probabilities P = {p1,...,pn} such that P(X = xi) = pi. The random
variable X models the distribution of symbols we wish to encode. Without loss of generality,
all pi> 0 by removing any zero probability symbols15 and the symbols/probabilities are

indexed in decreasing order of likelihood, p1≥p2≥ ...≥pn. For i=1,...,n, let Fi=
∑i−1

k=1pi be
the cumulative probabilities up to pi−1. Note that 0=F1<F2<...<Fn=1−pn.

Definition 2.5.7 (Shannon–Fano code) Given Σ and P as defined above, the
Shannon–Fano code C :Σ→B∗ is defined as:

1. Take the binary expansion b(Fi) = 0.b1b2... of Fi

2. Truncate the result at li bits, where

li ≡ ℓ(C(xi)) :=

⌈
log2

1

pi

⌉
(2.5.8)

The resulting string C(xi) := b1b2...bli defines the code associated with xi.

The symbols that are the most (resp. least) likely are assigned the shortest (resp. longest)
codewords.

Theorem 2.5.9 (The Shannon–Fano code is a prefix code)

Proof. First, note that from (2.5.8) we can obtain

log2
1

pi
≤ li < 1+log2

1

pi

hence 2−li ≤ pi < 2−li+1

Let xi, xj be two different symbols (i.e i ̸=j). We wish to show that C(xi) is not a prefix of
C(xj). Suppose j>i, then

Fj =

j−1∑
k=1

pk =

j−1∑
k=i

pk+

i−1∑
k=1

pk ≥ (j−i)pi+Fi ≥ pi+Fi ≥ 2−li+Fi

and hence Fj−Fi≥2−li . This implies that the codewords C(xj) and C(xi) must have a
mismatched bit somewhere in the first li positions, since if they did not, all bits b1b2...bli
would match, implying |Fj−Fi|<2−li , which is a contradiction.

Since it is impossible for C(xi) to agree with C(xj) over the first li bits for j > i, so
C(xi) cannot be a prefix of C(xj). The case for j <i is analogous and left as an exercise
(Exercise 2.5.7.2). �

14This is a good starting point, but ignores higher-order statistics like digraphs and trigraphs. For instance,
assuming we are encoding strings of English text, the digraph QU is far more likely than any other digraph
starting with Q, so a more complex approach could be to encode digraphs or trigraphs instead.

15A symbol with zero probability will never appear in any sequence, so there is no need to assign it a
codeword.

80 CHAPTER 2. BACKGROUND

Theorem 2.5.10 (Shannon Coding) The expected Shannon–Fano code length (in
bits per symbol) is bounded as

H(X) ≤ E[ℓ(C(X))] ≡
∑
i

pili ≤ H(X)+1

with H(X) being the entropy per symbol of the source.

Proof. Using (2.5.8), we obtain

H(X) =
∑
i

pilog2
1

pi
≤
∑
i

pili <
∑
i

pi(1+log2
1

pi
) = 1+

∑
i

pilog2
1

pi
= H(X)+1

�

Example 2.5.11 (Shannon–Fano code) Given the source words {1,2,3,4} with respective
probabilities { 6

12 ,
3
12 ,

2
12 ,

1
12}, we can compute the Shannon–Fano code as shown:

n pn Fn b(Fn) log2[1/pn] ℓ(E(n)) E(n)
1 6/12 0 .0 1 1 0

2 3/12 6/12 .1 2 2 10

3 2/12 9/12 .11 log26 =̇ 2.6 3 110

4 1/12 11/12 .11101 log212 =̇ 3.6 4 1110
�

We will often use phrases such as “x has code length −logP (x)” to mean that there
exists a code C(x), e.g. Shannon–Fano code w.r.t. P such that ℓ(C(x))=⌈−logP (x)⌉.

2.5.3 Kullback–Leibler Divergence

A quantity closely related to Shannon entropy is the Kullback–Leibler (KL) divergence,
which is a measure of the “distance” between two probability measures:

Definition 2.5.12 (KL divergence) The Kullback–Leibler divergence KL between
discrete probability measure P and semi-probability Q, both over X , is defined as

KL(P ||Q) :=
∑
x∈X

P (x)log2
P (x)

Q(x)

where plog2
p
0 =∞ for p>0, but 0log2

0
q :=0 for q>0, consistent with Section 2.8.3.

Like the entropy Definition 2.5.1, we define the KL divergence here using log2 results are
measured in bits, which has a natural interpretation and is easier to calculate in examples.
Later we define the KL divergence using ln instead, as the natural log is mathematically
more convenient to work with and avoids the clutter of ln2 constants in various bounds
(Section 2.8.1).

————————-

Motivation of the KL divergence. The KL divergence is at first a rather strange
looking expression, and it may not be obvious why it would be a suitable choice of “distance”
between probability distributions. Consider a discrete r.v. X with probability P . The length
of the near-optimal Shannon–Fano code (Theorem 2.5.10) for x∈X w.r.t. P is, within one
bit, hP (x) :=−log2P (x). Now suppose P is unknown, and Q is our best guess of the true

2.5. INFORMATION THEORY AND CODING 81

Figure 2.15: The KL divergence KL(P ||Q)
between two distributions P and Q represent-
ing biased coins with biases p and q respec-
tively.

Figure 2.16: A plot of the difference be-
tween both sides in the binary Pinsker in-
equality (Lemma 2.8.1). Note that we have
equality for p=q as both sides are zero.

probabilities P . The Shannon–Fano code (Definition 2.5.7) for X using the distribution
Q is, within one bit, hQ(x) :=−log2Q(x). Now coding w.r.t. a wrong distribution incurs a
penalty (regret) of requiring hQ(x)−hP (x) more bits than optimal coding. The expected
regret , called redundancy , is

EP [hQ(x)−hP (x)] =
∑
x∈X

P (x)[log2P (x)−log2Q(x)] ≡ KL(P ||Q)

We will shortly see that the KL divergence is non-negative (Corollary 2.5.16), i.e. EP [hQ(x)]≥
EP [hP (x)]≡H(X), so coding with respect to the wrong distribution can only increase (on
average) the code length. The KL divergence can thus be interpreted as the penalty of how
many extra bits on average are required for Shannon–Fano or Huffman coding with respect
to the wrong distribution.

Example 2.5.13 (KL divergence between a biased and a fair coin) Consider biased
coins, each with bias p and q respectively. As an abuse of notation, we write P =(p,1−p)
and Q=(q,1−q) for the distributions for each coin. Then

KL(P ||Q) = plog2
p
q+(1−p)log2 1−p

1−q

Note that KL(P ||Q) is not symmetric in p and q. Figure 2.14 shows a cross-section of
Figure 2.15 along the line p= 1

2 . As can been seen, while similar in the neighborhood of
p= 1

2 , clearly symmetry does not hold as q→0 or q→1. Also note that KL(P ||Q) is finite
over the domain q∈ [0,1], whereas KL(Q||P) diverges as q→0 or q→1. �

Asymmetry of the KL divergence. Suppose that P is the true distribution, and we
are trying to fit an approximation Q to P by minimizing the KL divergence. Since the KL
divergence is not symmetric, one could define two metrics: the forward divergence KL(P ||Q)
or the reverse divergence KL(Q||P).

82 CHAPTER 2. BACKGROUND

Figure 2.17: Gaussian distribution Q=N (µ,Σ) minimizing KL(P ||Q) and KL(Q||P)
respectively, for a mixture of Gaussians P .

Consider the forward divergence KL(P ||Q)=∑xP (x)log
P (x)
Q(x) . The distribution Q only

appears in the denominator of logP (x)
Q(x) . For any points x that cannot be sampled from the

true distribution P (x)=0, the choice of Q(x) is irrelevant, as
∑

x0log
0

Q(x) =0 by definition.
So, Q can safely assign probability mass outside the support of P . However, if P (x)>0 and
Q(x)=0, then logP (x)

Q(x)→∞ and the (now aptly named) KL divergence diverges. This means
that optimizing KL(P ||Q) will cause Q to try and “cover” the support of P .

Conversely, consider the reverse divergence: KL(Q||P)=∑xQ(x)logQ(x)
P (x) . Any point

x where Q(x) = 0 makes no contribution to the total sum, but since Q is a probability
distribution, the probability mass must be assigned somewhere. If P (x)=0, then Q is also
forced to zero to prevent logQ(x)

P (x) diverging. This means that Q will avoid stretching over
regions where P (x)≈0.

Without constraints on Q, both KL divergences are minimized by Q=P , and the choice
does not matter. But under model mis-specification, briefly discussed in Section 3.4, the
minimizing Q will generally differ.

Example 2.5.14 (KL(P ||Q) vs. KL(Q||P)) Consider a mixture of two two-dimensional
Gaussians P = 1

2N
(
(00),(

1 −.5
−.5 1)

)
+ 1

2N
(
(22),(

1 .5
.5 1)

)
and restrict Q=N (µ,Σ) to a single two-

dimensional Gaussian. Since x ∈ R2, we have to replace the sum in the KL definition
by integrals. The minimizing parameters µ∈R2 and Σ∈R2×2 can be found numerically.
Looking at the result in Figure 2.17, we can see how argminQKL(P ||Q) tends to stretch
over both distributions to cover the full support of P , whereas argminQKL(Q||P) focuses on
one of the two distributions, entirely ignoring the other, and avoiding the region in between
the two peaks of P where P (x)≈0. �

Noticeably the KL divergence is not a metric, since it is neither symmetric nor does it
satisfy the triangle inequality. It does however satisfy the property that KL(P ||Q)=0 iff
P =Q, hence why we call it a divergence. This does not stop it from being invaluable in
the coming chapters. We also note that KL is always non-negative, as a corollary of the
following theorem:

2.5. INFORMATION THEORY AND CODING 83

Theorem 2.5.15 (Gibbs inequality) Given discrete probability {p1,...,pN} (
∑

ipi=1)
and semi-probability {q1,...,qN} (

∑
iqi≤1), we have

N∑
i=1

pilog2pi ≥
N∑
i=1

pilog2qi

defining plog20=−∞ for p>0 but 0log20:=0 as before.a Equality holds iff pi=qi for
all i.

aThese definitions are motivated by the limits limq→0plog2q=−∞ for p>0 and limp→0plog2p=0.

Proof. If any qi=0 (with pi>0) then the bound trivially holds, so suppose qi>0. All terms
in the sum with pi=0 are zero and do not affect the outcome, so w.l.g. assume pi>0. Then,∑

i

piln
qi
pi
≤
∑
i

pi

(qi
pi
−1
)

=
∑
i

[qi−pi] ≤ 1−1 = 0

Here, we used that lnx≤x−1 for all x>0. Dividing by ln2 gives
∑

ipilog2[qi/pi]≤0, which
can be rearranged to obtain Gibbs’ inequality. Now, note that lnx=x−1 only when x=1.
So to achieve an equality in the above bound, we require that qi/pi=1, i.e. pi=qi. �

Corollary 2.5.16 (KL divergence is non-negative) The KL divergence KL(P ||Q)
is non-negative, and is zero iff P =Q.

Proof. Both properties were shown during the proof of Theorem 2.5.15. �

2.5.4 The Kraft Inequality

Earlier we discussed prefix codes and gave some motivation as to why we might want to use
them. One important property of prefix codes is the Kraft inequality.

Theorem 2.5.17 (Kraft inequality) Let b1,b2,... be a finite or infinite sequence of
binary strings. There exists a prefix code C={c1,c2,...} such that ℓ(bn)=ℓ(cn) for all n
iff ∑

n

2−ℓ(bn) ≤ 1

Proof. (Only if) Recall from Remark 2.1.11 the standard one-to-one correspondence between
a finite binary string x and the interval Ix=[0.x, 0.x+2−ℓ(x)) on the real line. For each
cn, the length of Icn is 2−ℓ(bn) since they have matching lengths. Additionally, a prefix
code corresponds to a set of disjoint such intervals in [0,1). That is, Icn∩Icm =∅ for n ̸=m.
Because the sets are disjoint, the sum of the lengths is less than 1. All together, denoting
the length of an interval in R as λ([a,b)) :=b−a, we get∑

n

2−ℓ(bn) =
∑
n

λ([0.bn, 0.bn+2−ℓ(bn))) = λ
(⋃

n

[0.bn,0.bn+2−ℓ(bn))
)
≤ λ([0,1)) = 1

which proves that the inequality holds for prefix codes.

84 CHAPTER 2. BACKGROUND

1

1
2

1
4

01

1
2

1
4

1
8

100

1
8

101

1
4

11

Figure 2.18: The geometric in-
tuition behind Kraft’s inequality for
the prefix code C = {01,100,101,11}.
Note that the sum of the probability
mass assigned to each leaf (in bold)
sums to 3

4≤1.

36
36

21
36

9
36

4
36

x5
111

5
36

x6
110

12
36

6
36

x4
101

6
36

3
36

x3
1001

3
36

1
36

x1
10001

2
36

x2
10000

15
36

7
36

x7
01

8
36

x8
00

Figure 2.19: The Huffman tree for symbols
(x1,...,x8) with probabilities pi =

i
36 . Fractions

left unsimplified for clarity. The corresponding
codewords recovered from the Huffman tree are
{10001,10000,1001,101,111,110,01,00}. The code
is complete and

∑
ipi=1 and

∑
i2

−ℓ(xi)=1.

(If) Suppose b1,b2,... are given such that the inequality holds. We can also assume that
the sequence ℓ(bn)

∞
n=1 is non-decreasing. Choose disjoint adjacent half-open intervals I1,I2,...

of lengths 2−ℓ(b1),2−ℓ(b2),... from the left end of the interval [0,1). In this way, for each n≥1,
the right end of In is

∑n
i=12

−ℓ(bi). Note that the right end of In is the left end of In+1.
Since the sequence of ℓ(bi)’s is non-decreasing, each interval In equals [0.cn, 0.cn+2−ℓ(cn))
for some binary string cn of length ℓ(cn)=ℓ(bn). By construction, {c1,c2,...} forms a prefix
code. �

Remark 2.5.18 (Kraft inequality as sum over trees) The Kraft inequality has a
pleasing geometric interpretation: We will see in Section 4.3.116 that any prefix code can be
represented as a binary tree, where each codeword is represented by a leaf node of the tree.
We first assign probability mass 1 to the root node and then recursively for each non-leaf
node, the probability of the current node is split half each between the two children nodes.
Since the total probability is unchanged (or only decreases if some nodes only have one
child) during this progress, the sum of the probabilities of all leaf nodes is bounded above by
1. Note that a leaf node at depth d will receive probability mass 2−d after d such splittings.
Hence,

∑
n2

−ℓ(cn)≤1 for a prefix code C={c1,...,cn}. If each node has zero or two children
(never just one, called a perfect tree), the prefix code is complete and the sum equals 1. See
Figure 2.18 for an example. �

2.5.5 Shannon Coding Theorem

16Technically, the result is shown for suffix sets, but by reversing every codeword, one can recover a prefix
code, and vice versa. We read prefix codewords left-to-right, and suffix codewords right-to-left.

2.5. INFORMATION THEORY AND CODING 85

Definition 2.5.19 (Complete code) A prefix code C is complete if for any string
c ̸∈C, the code C∪{c} is not prefix free.

Intuitively, a code C is complete if there is no extra room to squeeze in another codeword
without violating the prefix free property. Consider the code C = {01,100,101,11} from
Figure 2.18. This code is prefix free, but not complete, as we could add the additional
codeword 00 and still obtain a prefix free code C∪{00}={00,01,100,101,11}. This new code
C∪{00} is complete, as no new codewords can be added.

It can be shown that a prefix code is complete if and only if we have equality for the
Kraft inequality (Theorem 2.5.17). However, a code that is complete may be suboptimal,
as we could always choose to assign the longest codewords to the most likely outcomes.
Completeness merely implies that we cannot add in another codeword without introducing
ambiguity when decoding. However, there does exist a (per symbol) complete code that is
optimal in the sense that it minimizes the average codeword length.

Definition 2.5.20 (Average codeword length and optimal codes) Given an
alphabet Σ = {x1,...,xn} with associated probabilities P = {p1,...,pn}, and a code
C :Σ→B∗, we define the average codeword length of C as

LC,P :=
∑
i

piℓ(C(xi))

and the minimal average codeword length as

L∗
P := min

C
{LC,P : C :Σ→B∗ is a prefix code}

An optimal prefix code C with respect to probabilities P is a prefix code such that
LC,P =L∗

P .

Remark 2.5.21 (On the optimality of optimal codes) Note that an optimal prefix
code is the best way to compress a message assuming the only code allowed is one that
assigns a separate codeword to each source word. More advanced compressors group source
symbols together and assign a single codeword to each, or change the code dynamically for
different parts of the message to be compressed (useful for when the data to be compressed
is not homogeneous, as is often the case.) For instance, given the symbols Σ={a,b,c}, with
probabilities {0.9,0.1,0.1}, it can be shown that choosing C such that {(x,C(x) :x∈Σ)}=
{(a,0),(b,10),(c,11)} is an optimal code, though the string a1000 would take 1000 bits under
this code to express, whereas the “encoding” repeat ‘a’ 1000 times takes far less than
1000 bits. �

Note that L∗
P depends on P but only weakly on Σ: We could always apply a transformation

f :Σ→{1,...,n} with f(xi)= i first, before applying the code C, and the receiver applies f−i

after decoding the codewords.
The following theorem gives bounds on the minimal average codeword length in terms of

the entropy H(P) of the distribution P .

Theorem 2.5.22 (Optimal coding [Sha48]) Let P be a discrete probability distri-
bution. The average length of the optimal prefix code L∗

P satisfies

H(P) ≤ L∗
P ≤ H(P)+1

86 CHAPTER 2. BACKGROUND

Proof. We first prove the upper bound L∗
P ≤ H(P)+1: Let lx := ⌈log2 1

P (x)⌉ for x ∈ Σ.

Therefore,

1 =
∑
x

P (x) =
∑
x

2−log2
1

P (x) ≥
∑
x

2−lx

By Kraft’s inequality, since
∑

x2
−lx≤1, there exists a prefix code with matching codeword

lengths l1,l2,.... Hence,

L∗
P ≤

∑
x

P (x)lx ≤
∑
x

P (x)
(
log2

1

P (x)
+1
)

= H(P)+1

We now prove the lower bound H(P)≤L∗
P : Let L∗

P =
∑

xP (x)l
∗
x for some collection of

optimal lengths l∗x. Let px :=P (x) and qx :=2−l∗x . Since l∗x are the lengths of a prefix code,∑
x2

−l∗x≤1 by Kraft’s inequality (Theorem 2.5.17). We can therefore apply Gibbs’ inequality
(Theorem 2.5.15)

H(P) ≡
∑
x

pxlog2
1

px
≤
∑
x

pxlog2
1

qx
=
∑
x

pxlx = L∗
P

�

Example 2.5.23 (Non-optimality of Shannon–Fano codes) Note that Shannon–Fano
codes are optimal within 1 bit, but they are not optimal in the strict sense of Definition 2.5.20.
Consider the source words {1,2,3} with respective probabilities {0.8,0.1,0.1}. An optimal
set of codewords can be shown to be {1,01,00}, but following the Shannon–Fano code (see
the below table) gives {0,1100,1110}, which is clearly strictly worse.

n pn Fn b(Fn) log2[1/pn] ℓ(C(n)) C(n)

1 0.8 0 .0 =̇ 0.32 1 0

2 0.1 0.8 .1100 =̇ 3.32 4 1100

3 0.1 0.9 .11100 =̇ 3.32 4 1110
�

Example 2.5.24 (Huffman Code) If optimality within 1 bit is not sufficient, there is
another class of codes called Huffman codes. They are constructed by creating a binary
tree (called a Huffman tree) with the symbols as leaf nodes (see Figure 2.19). The tree is
constructed by first assigning a leaf node to each symbol with its associated probability.
Then, a new node is created, and the two nodes with the lowest probability are added
as children. The parent node is assigned the sum of probabilities of its children. This is
repeated until all the leaf nodes are added to the tree, and the root node has probability 1.
Given the correspondence between prefix codes and binary trees (see Remark 2.5.18 and
Section 4.3.1) one can recover the Huffman code for each symbol by following the path
from the root node to each leaf. Huffman codes can be shown to be an optimal prefix code
[Huf52]. �

However, Huffman codes still code on a per-symbol basis, which ignores any structure in
the order of the symbols being coded. Obviously it should be easier to code aaaaabbbbcccccc
than abaaccaccbbcabc, but a Huffman code will produce the same length message for both.
This deficiency leads to the arithmetic code.

2.5.6 Arithmetic Coding

Since the lengths of assigned codewords must be whole numbers, Shannon–Fano coding
requires up to 1 bit in excess of the entropy of the source, and hence performs poorly on

2.5. INFORMATION THEORY AND CODING 87

0

0.5

1

b0

b1

Input (4 bytes)

Output (7 bit)
b0

0

0.25

b00

b01

b0?

0.125

0.25

b001

b010

b010

0.3125

b0100

b0101

b0101010

b0101010
0

0.45

0.75

1

P(A)=0.45

P(I)=0.3

P(X)=0.25

A

0

0.09

0.36

0.45

P(A|A)=0.2

P(I|A)=0.6

P(X|A)=0.2

I

0.09

0.144

0.266

0.36

P(A|AI)=0.2

P(I|AI)=0.45

P(X|AI)=0.35

X

0.266

0.322

0.341

0.36

P(A|AIX)=0.6

P(I|AIX)=0.2

P(X|AIX)=0.2

I

Figure 2.20: Arithmetic encoding of the sequence ‘AIXI’ over alphabet X ={X,I,A} with
probability measure P=µ(AIXI)=0.45·0.6·0.35·0.2=0.0189 leading to binary code ‘0101010’
of length ⌈log21/µ(x1:t)⌉+1=7 [DRD+24].

compressing sources of low entropy. Consider compressing a binary sequence x1:n drawn
from a random variable X=Bern(0.05):

000000100000000000000000000000000000000000000010000000000000001000...

The entropy of this sequence is H(X)=0.05log2
1

0.05+0.95log2
1

0.95 =̇ 0.286, whereas the best
possible symbol code has to assign 1 bit per symbol, leading to over three times as many
bits as the information contained in the sequence.

We can extend the idea of the Shannon–Fano code to encoding an entire sequence all
at once, rather than encoding on a per-symbol basis, considering Xn as the (huge) base
alphabet with (now) large entropy H(X1:n)=nH(X), but this has two down-sides. First,
coding requires time exponential in n and is limited to fixed n. A compromise is to carve
x1:n into chunks of reasonable and fixed length m.

Arithmetic coding is a much better “optimal” solution to this problem: It allows to
encode sequences online (i.e. extend rather than modify the code when n grows), has optimal
code length within 1 bit, runtime O(n|X |), and works for any joint distributions µ(x1:n)
without any independence nor stationarity assumption.

Figure 2.20 illustrates the basic idea: It arithmetically encodes the sequence ‘AIXI’ over
alphabet X ={X,I,A} with probability measure µ≡P (both in blue) resulting in the binary
code 0101001 (in green). Arithmetic coding compresses data by assigning unique intervals
to symbols based on the probabilities assigned by µ. It progressively refines these intervals
to output compressed bits, which represent the original message. To decode, arithmetic
coding initializes an interval based on the received compressed bits. It iteratively matches
intervals with symbols using the probabilities given by µ to reconstruct the original message.

Theorem 2.5.25 (Arithmetic coding) Sequence x1:∞∈X∞ can be encoded in an
online fashion, that is x1:t can be encoded as c1:k(t) ∈B∗ growing with t, in k(t) =
⌈log21/µ(x1:t)⌉+1 bits. Assuming µ(xt|x<t) can be evaluated sequentially in constant
time per t, encoding and decoding time is on average O(|X |) per symbol and total
space is O(t|X |).

88 CHAPTER 2. BACKGROUND

Proof. (sketch for binary sequences) Let µ be any (semi)measure from which x1:∞ ∈B∞

is sampled. To encode x1:t, define the cumulative probability F (x1:t)=
∑

x′
1:t≺x1:t

µ(x′1:t),

where x′1:t≺x1:t if x′1:t precedes x1:t in the standard lexicographical ordering. We associate
with each sequence x1:t the interval Ix1:t :=[F (x1:t), F (x1:t)+µ(x1:t)). Note by construction
that the intervals are disjoint. We want to choose as the codeword c(x1:t) the binary
expansion of the mid-point F (x1:t)+

1
2µ(x1:t) of the interval Ix1:t

, but the binary expansion
may require infinitely many bits to specify. So, instead we take a finite approximation of
F (x1:t)+

1
2µ(x1:t) by terminating the binary expansion early, but with sufficiently many

bits to uniquely identify the interval that it lies in. This is achieved by taking the first
⌈log21/µ(x1:t)⌉+1 bits of the midpoint.

As t grows, the interval shrinks, and more bits are simply added to the code. F can be
computed efficiently and incrementally via F (x1:t)=

∑
k≤t:xk=1µ(x<k0) (Exercise 3). There

are some a number of technical difficulties glossed over, which we leave as a (hard) exercise
to work out. The generalization to non-binary sequences is in theory rather straightforward.

�

Shannon–Fano and arithmetic coding require the probability distribution from which
the source was sampled. In reality, the distribution from which a sequence was drawn is
often unknown, and all that is available is the sequence itself to be compressed. One method
is to read the entire sequence, estimate a distribution (usually by a frequency estimate)
and then use that to compress the source. This method requires two passes of the data,
which is not possible if the data is to be compressed immediately after being received as in
online prediction and compression. Methods to learn a distribution online will be covered in
Chapter 4. Since arithmetic coding can be applied to any distribution, it can also be applied
to the distribution learned online, making it a universal online coding algorithm.

2.5.7 Exercises

1. [C12] (Prefix code are uniquely decodable) Show that all prefix codes are
uniquely decodable. Does the converse hold?

2. [C15] (Shannon–Fano coding) Complete the proof of Theorem 2.5.9 for the case
where j<i.

3. [C15] (Partitioning intervals into binary intervals) Show that every open
interval (a,b) for real 0≤a<b≤1 can be partitioned into half-open binary intervals of
the form Ix=[0.x, 0.x+2−ℓ(x)), i.e. (a,b)=

⋃· x∈PIx for some prefix-free set P.
4. [C19] (Extending Kraft inequality) Derive an extension of the Kraft inequality

(Theorem 2.5.17) to base b instead of binary.

5. [C15] (KL is non-degenerate) Extend the KL divergence to continuous
(semi)measures and prove that it satisfies the property that KL(µ||ν) = 0 iff µ= ν
mu-almost everywhere, and KL(µ||ν)≥0.

6. [C16] (Divergences are not metrics) Prove that the KL divergence does not in
general satisfy the triangle inequality KL(P,R)≤KL(P,Q)+KL(Q,R) by means of a
counterexample.

7. [C33] (Arithmetic coding) Work out the details for arithmetic (en/de)coding and
implement it.

8. [C20] (Non-binary arithmetic coding) Generalize arithmetic coding to non-binary
finite alphabet X .

2.6. COMPUTABILITY THEORY 89

2.6 Computability Theory

Computability theory narrowly predates computers themselves, mainly introduced in Turing’s
1936 paper [Tur36]. Despite the non-existence of what we now17 call computers, the concept
of algorithms had been known since antiquity, and it is that with which computability theory
is primarily concerned. Given some task or problem to solve, we can say that there exists
an algorithm to solve that problem if there exists a well-defined and unambiguous set of
steps to follow that can solve that problem. An example is Euclid’s algorithm to compute
the greatest common divisor between two numbers. The algorithm is broken down into a
sequence of steps such that each individual operation is simple enough to be obvious as to
how to perform in a constant amount of time (usually additions and multiplications are
treated in such a way).

To define an algorithm, one needs a reference class of allowed operations. For defining
an algorithm for multiplication one would usually only assume “lower level” operations like
addition, whereas for more complex algorithms like Gram-Schmidt one may take for granted
many operations defined on vectors like computing the norm or inner products. Clearly, we
need an agreed upon formal language in which algorithms can be written. For our purposes,
Turing machines (Definition 2.6.2) provide such a formalization. We explore the capabilities
of algorithms, and describe a hierarchy of computability, measuring the degree to which an
algorithm can be written to solve a given problem.

For readers looking for a more detailed background in computability theory, see [HMU06].
Now, before we can proceed any further, we need a formal definition of what a problem

is:

Definition 2.6.1 (Decision Problem and Language) Given an alphabet Σ (often
B), a decision problem or language L over Σ is a subset L⊆Σ∗.

This definition may seem strange and limited, but we can encode any predicate over Σ∗

as a set of strings for which the predicate returns true. We can then talk about predicates
over other sets (like natural numbers or other objects) by encoding them as (binary) strings
in some canonical fashion. Even computing a function f : Σ∗→ Ξ for finite Ξ can be
reduced to decision problems, first by replacing Ξ with Bm for suitable m, and then setting
Pi={x∈Σ∗ :f(x)i=1}. Solving the decision problems (x∈P1,...,x∈Pm) is equivalent to
computing f .

2.6.1 Models of Computation

Turing [Tur04] provides a formalization of his chosen model of computation, the Turing
machine. The Turing machine is composed of two parts, a finite control : A function
describing the operation the Turing machine will perform, as well as a finite collection of
states the Turing machine can transition between, and a tape. The tape is a one-dimensional
grid of cells extending infinitely far in both directions, and is discretized into cells, where
each cell holds one of a finite number of tape symbols. The Turing machine has a head that
can be used to read and write to the current cell of the tape, as well as move along the tape
in discrete steps following the cells. Input (a string of symbols) is fed to the Turing machine
by placing it on the tape, and filling all other cells on the tape with a reserved blank symbol
B. The head is initially located on the left-most cell of the input. The behavior of the
Turing machine is dictated by a transition function encoded within the finite control. On
each time step t=1,2,..., the Turing machine reads the contents of the cell pointed to by the

17Back then, computer was a job title for humans who worked out laborious calculations by hand.

90 CHAPTER 2. BACKGROUND

read head, the state the finite control is in, and decides (using the transition function) on a
new symbol to write back to the same cell, a new state to transition to, and a direction to
move the tape head in.

Formally, we can define a Turing machine as follows:

Definition 2.6.2 (Turing Machine [HMU06]) A Turing machine (TM) is a 7-tuple
T =(Q,Σ,Γ,δ,q0,B,F) where

• Q={q0,q1,...,qn} is a finite set of states.

• Σ is a finite set of input symbols, called the alphabet. (Unless otherwise specified,
we usually assume Σ=B.)

• Γ is a finite set of tape symbols such that Σ⊆Γ.

• δ is a partial function of type δ : Q×Γ→ Q×Γ×{L,R}, called the (partial)
transition function. It takes as input the current state of the Turing machine, as
well as the current symbol pointed at by the read head, and returns a new state,
a new symbol to write to the current cell, and a direction (L or R) in which to
move the tape head; one cell to the left (L) or right (R).The transition function
may also be undefined for some inputs, in which case the Turing machine ceases
computation, and is said to have halted.

• q0∈Q is the start state that the Turing machine is initialized in on the first time
step.

• B∈Γ\Σ is a reserved blank symbol that the tape is pre-initialized with (other
than the input). The blank symbol is not permitted to be a member of the input
alphabet.

• F ⊆Q is the set of final or accepting states.

Writing complex algorithms with a Turing machine is rather laborious, akin to writing
machine code directly instead of using a high-level programming language, but it provides a
theoretically useful fixed reference machine for executing algorithms. We can consider the
action of a Turing machine in two ways: as a predicate on strings, or as a function from
strings to strings.

Definition 2.6.3 (Language of a TM) Given a TM T , we say the language of T ,
denoted L(T), is the set of all strings x such that if T were run with the tape initialized
to x, the machine T would halt in an accepting state:

L(T) := {x∈Σ∗ :T (x) halts and accepts}

Definition 2.6.4 (Behavior of a TM) Given a TM T , we write T (x)=y if T halts
with y on the tape if the computation was started with x on the tape. If T does not
halt given x as input, we write T (x)=⊥:=undefined.

The notion of partial recursive functions originates from logic. We (only) describe the
gist below, but formally directly identify them with Turing-computable functions, since they
are equivalent:

2.6. COMPUTABILITY THEORY 91

Definition 2.6.5 (Partial recursive functions) A function f : Σ∗→Ξ∗∪{⊥} is
called partial recursive, if it is computable by a Turing machine T (with Γ⊇Σ∪Ξ), i.e.
if ∃T.f(x)=T (x) ∀x.

Turing found that many well-known algorithms (considered as functions from strings
to strings) can be computed by designing a Turing machine to perform the sequence of
operations the algorithm describes. The claim was then made that any operation that can
be performed methodically by an algorithm can also be performed by a Turing machine,
and vice versa.

Thesis 2.6.6 (Church-Turing thesis)
Church: The class of algorithmically computable numerical functions (in the intuitive
sense) coincides with the class of partial recursive functions.
Turing: Everything that can be reasonably said to be computable by a human using a
fixed procedure can also be computed by a Turing machine.

This is a thesis rather than a theorem as “computable in the intuitive sense” and
“computable by a human” are not formally defined. There have been a variety of other
attempts at constructing formal systems to model computation.

General resursive functions. Gödel and Herbrand [Sie05, Göd31, Her32] started with a
set of primitive functions: The constant function (of arbitrary arity), the unary successor
function, and the projection function (returns one of the n input arguments). They then
define a set of operators on functions: function composition, recursion (where a function
can call another several times) and minimization (which takes a n+1-ary function f and n
arguments x1,...,xn, and returns the smallest z such that f(z,x1,...,xn)=0 and f(z′,x1,...,xn)
is defined for all z′<z. The closure of the primitive functions under the three operators was
then called the general or partial recursive functions, and this was then used as a formal
definition for “algorithmically computable”.

Lambda calculus. Another formal system is lambda calculus (λ-calculus), introduced by
Alonzo Church [Chu36], which at face value is much simpler than general recursive functions.
Lambda calculus operates on lambda expressions, with a definition so simple it can be
written in one line. Fixing some set V ={x,y,z,...} of variables, we have that all lambda
expressions e are of the form

e := v |λv.e1 |e1e2

where e1,e2 represents arbitrary lambda expressions, and v represents a variable. So all
expressions are either variables, or an expression applied to another (e1e2), or an expression
abstracted by a variable (λv.e1). The only operations that can be performed are

• α-conversion: renaming variables bound to a λ quantifier to avoid name collisions, and

• β-reduction: or substituting an abstracted variable for an expression.

While the rules are very minimal, Church provides a way to define natural numbers
within lambda calculus, and operations upon the natural numbers (addition, multiplication,
equality). The details can then be abstracted away, and higher-level concepts can then be
constructed from these new concepts.

92 CHAPTER 2. BACKGROUND

Turing completeness. So, we have (at least) three prospective definitions of “al-
gorithmically computable”: Turing’s Turing machines, Church’s lambda calculus, and
Gödel/Herbrand’s general recursive functions. Which should we choose as our canonical
machine? As it turns out, all these definitions of “algorithmically computable” end up being
equivalent, in that they all represent the same class of functions. We use the term Turing
complete to describe a model of computation or formal system that is at least as expressive as
a Turing machine. That is, any algorithm that can be implemented with a Turing machine,
can also be implemented within the model considered.18 Many other models of computation
have been discovered, often a system designed for something else (rules for a game, for
instance) were later found to be Turing complete. A fun example are cellular automata, an
infinite collection of cells (usually as a 2-dimensional grid, sometimes 1d) where each cell can
be in one of finitely many possible states, and a rule describing how each cell will transition
depending on the states of nearby cells (usually the 4 directly adjacent cells, or the 8 cells
that surround it). Some particular choices of rulesets (Conway’s Game of Life [Gam70] or
the 1d Rule 110 [Wol83, Coo09]) demonstrate starkly complex behavior given the simplicity
of the rule set, and in fact turn out to also be Turing complete models of computation.

Choice. Given that the choice of a particular model of computation does not matter, we
stick with Turing machines by convention, though we will often appeal to the Church-Turing
thesis and assert the existence of a Turing machine for an algorithm rather than explicitly
constructing it. Since most programming languages are also Turing complete19 we may
make reference to those instead of Turing machines when it is convenient.

2.6.2 The Halting Problem

Reducing mathematics to logic. In 1900, the mathematician David Hilbert posed a
list of what he considered the most pressing open problems of mathematics [HA50]. In
zeroth-order logic (also known as propositional logic), statements are only constructed from
Boolean variables and logical connectives (e.g. ∧,∨,¬), and since each variable is Boolean-
valued, given a statement with n variables, we can (in principle) brute-force all 2n possible
assignments to check if it is valid , i.e. the statement evaluates to true under all choices of
variable assignment.

First-order logic extends zeroth-order logic by additionally allowing for the use of
quantifiers (∃ and ∀). If the domain over which predicates are defined were chosen to be an
infinite set (like the natural numbers), there would be infinitely many cases to check if we
were to naively verify that ∀x.P (x)→P (x) is valid by trying every possible value for x∈N0.
Simple statements like this can easily be proven valid, but Hilbert asked if an algorithm
exists that can verify the validity of every first-order logic statement.

Gödel incompleteness. Unfortunately, the answer to this turned out to be no, Gödel’s
incompleteness theorem [Göd31] showed that there exist limits to what can be formally
proven. He proved that any sufficiently powerful formal system (with a certain level of
arithmetic) that is consistent (cannot prove contradictions within the system) must contain
statements that are true, but cannot be proven true within the system itself. Gödel’s proof

18In practice, this is usually demonstrated by emulating a universal Turing machine within the formal
system, or emulating a simpler model also known to be Turing complete.

19Though there are exceptions, some programming languages like LOOP [MR67] require specifying
precisely the number of times a loop will execute before entering it, and can only represent the class of
primitive recursive functions, strictly weaker than general recursive functions.

2.6. COMPUTABILITY THEORY 93

is premised on constructing the self-referential20

Gödel statement: G := “G cannot be formally proven”

and encoding that statement as a number. Any system strong enough to construct arbitrary
predicates over numbers can indirectly state predicates such as G about itself. Gödel showed
that within the theory, G cannot be proven, but by using reasoning outside the formal
system, G can be shown to be true.21 This dealt a strong blow to mathematics, as many
mathematicians (including Hilbert) believed up to that point that every true statement in
mathematics has a corresponding proof demonstrating correctness, even if mathematicians
had not yet found the proof.

The Halting problem. As a corollary of the incompleteness theorem, there must be
problems that not even a Turing machine can hope to solve. The canonical example is
that of the Halting problem. Often, when we write computer programs, sometimes those
programs can run for a very long time, and sometimes it is not clear whether or not they will
run forever. It would be very useful, and save a lot of resources and time if there were a way
to check algorithmically if a program would run forever or eventually terminate. We could
even use such an algorithm to prove most open problems in mathematics. For instance, the
Goldbach conjecture (any even number n≥4 can be written as the sum of two primes) could
be resolved by writing a program that searches for counterexamples, and halts when the
first one is found. The Goldbach conjecture is then true if and only if such a program does
not halt, which we could then check. More generally, we could enumerate all mathematical
proofs and halt if a proof of a specific mathematical statement or its negation has been
found. This algorithm is guaranteed to halt if the statement is formally decidable. If we
could decide the halting problem, we could first check if this algorithm would halt, and if
not, we know the statement is formally undecidable. This would render all mathematical
problems algorithmically 3-way decidable (true, false, independent), which Gödel showed is
impossible.

First, assume some canonical encoding of Turing machines as binary strings, and the
ability to encode tuples as a single element in such a way that the two elements can be
recovered, for example by using a prefix code (Section 2.1.2). Then, we can talk about
Turing machines taking other Turing machines as input, by feeding the binary encoding of
one machine onto the input tape of another.

Theorem 2.6.7 (Halting problem) Let LH ={(⟨M⟩,w) :M(w) halts} denote the
halting language, the set of all pairs of Turing machines M and strings w such that M
run on w halts. Then there exists no Turing machine T that halts on all inputs, and
L(T)=LH .

Proof. Assume for a contradiction that such a T exists. Given T , we can construct a new
machine P that performs the following operation:

P (⟨M⟩) =

{
⊥ if T (⟨M⟩,⟨M⟩) accepts
1 if T (⟨M⟩,⟨M⟩) rejects

20Self-referential statements are often a thorn in the side of mathematics. Russell’s paradox, does the set
of all sets that do not contain themselves, contain itself? demonstrated that naive set theory is inconsistent
in this way.

21Indeed, assuming the sentence G can indeed be formally constructed and consistency, the proof is easy:
If G were provable, then G says it is not provable; a contradiction, therefore G cannot be formally proven.
But if G were false, it would say that G is provable, hence true; a contradiction. Therefore G must be true.

94 CHAPTER 2. BACKGROUND

That is, if T (⟨M⟩,⟨M⟩) rejects, then P halts and returns 1. If T (⟨M⟩,⟨M⟩) accepts, then
P gets stuck in an infinite loop. Given the description of P above (together with the
hypothetical machine T), we could construct a Turing machine that acts as P does. Now, P
is itself a Turing machine, so it has some binary encoding ⟨P ⟩. What would happen if we
tried to run P (⟨P ⟩)? Well, either P (⟨P ⟩) must run forever, or it must halt.

• Suppose that P (⟨P ⟩) halted. Then T (⟨P ⟩,⟨P ⟩) must have rejected, and so (⟨P ⟩,⟨P ⟩) ̸∈
LH . So P (⟨P ⟩) runs forever, a contradiction.

• Suppose that P (⟨P ⟩) runs forever. Then T (⟨P ⟩,⟨P ⟩) must have accepted, and so
(⟨P ⟩,⟨P ⟩)∈LH , which means P (⟨P ⟩) halts, a contradiction.

In either case, we obtain a contradiction, hence no such T exists. �

So, even with no constraints on memory or time allotted, not even Turing machines can
hope to solve all problems. With this limitation in mind, we can classify sets and functions
depending on whether they can be computed by a Turing machine or not.

Definition 2.6.8 (Recursive(ly enmerable) sets) We say that a language or set S
is recursive if there exists a totala Turing machine T such that L(T)=S. We say that
S is recursively enumerable, or RE, if we drop the requirement that T is total.

Similarly, a (partial) function f is recursive (resp. recursively enumerable) if there
exists a total TM (resp. partial TM) such that f(x)=y if and only if T (x)=y.

aA Turing machine that halts on all inputs, as opposed to a partial Turing machine, or simply a
Turing machine.

Note that if we describe S by an indicator function f : ⟨Domain⟩→B with f(x)=1 iff
x∈S, then S is recursively enumerable iff f is lower semicomputable. A set being recursive
is often also called computable or decidable when we are taking about sets in the context of
a decision problem.

2.6.3 (Semi-)Computable Functions

Up until this point we have considered Turing machines (and recursive functions) which map
strings to strings. However, we will often be faced with functions which map to real numbers
(such as in probability). We would like to say something about whether a real-valued
function is recursive or not. In this section, we will describe how this can be done. We
restrict ourselves to functions of type f :B∗→R. This can be easily extended to f :Nn

0→R
or f :Q→R by encoding an n-tuple (x1,...,xn) as x′1...x

′
n−1xn ∈B∗ or a fraction a/b as

a′b∈B∗ respectively. Surprisingly, defining computability for functions with real numbers as
domain is more intricate [Grz57]. Since we mostly do not need those, we confine them to
Remark 2.6.18.

Definition 2.6.9 (Finitely computable) f is finitely computable or recursive, if and
only if there are Turing machines T1,T2 with outputs interpreted as natural numbers
and f(x)=T1(x)/T2(x).

As a result, finitely computable functions can only return rational numbers. Finitely
computable functions include polynomials with rational coefficients, or progressively better

estimates of
√
2 (e.g. f(n) could return a rational approximation

√̂
2 such that |

√̂
2−
√
2|≤

1/n).

2.6. COMPUTABILITY THEORY 95

Definition 2.6.10 (Estimable) f is estimable or computable if and only if there is a
recursive function ϕ(x,k) such that ∀k∈N0.|ϕ(x,k)−f(x)|<2−k.

In essence, a function is estimable if there exists an algorithm ϕ that, when provided
with an input x and a tolerance ε=2−k, will return an estimate f̂(x) that is within ε of f(x).
Estimable functions include

√·, sin(·) or the constant function that returns π. Estimable
functions are functions that can be approximated to any given and known precision ε with
a guaranteed halting program, i.e. are finitely computable to ε-accuracy. Note that if the
co-domain of f is N0 or Z (not Q, see Exercise 2), then estimable and finitely computable
are equivalent, since finitely computable ϕ(x,1) rounded to the closest integer gives f(x).

Definition 2.6.11 (Upper semicomputable) f is upper semicomputable or (recur-
sively) co-enumerable if and only if there exists a partial recursive function ϕ such that
ϕ(x,k+1)≤ϕ(x,k) for all k∈N0, and limk→∞ϕ(x,k)=f(x).

Upper semicomputable functions are functions f for which we can compute a sequence
of monotonically decreasing upper bounds that converge to the true value of f , though
we would not know how good the approximations is, as ϕ(·,k) may decrease arbitrarily for
yet larger k. Upper semicomputable functions include the Kolmogorov complexity K (see
Section 2.7).

Definition 2.6.12 (Lower semicomputable) f is lower semicomputable or (re-
cursively) enumerable if and only if there exists a partial recursive function ϕ that
ϕ(·,k+1)≥ϕ(·,k) for all k∈N0, and limk→∞ϕ(x,k)=f(x).

This is just the mirror of upper semicomputable, but now we can compute bounds from
below. Unsurprisingly, a function f is lower semicomputable if and only if −f is upper
semicomputable. Examples include the Busy Beaver function, the maximum number of time
steps an n-state Turing machine with the tape initialized to blanks can run for and halt
[Rad62], and Solomonoff’s universal distribution M (see Section 3.8).

Definition 2.6.13 (Approximable) f is approximable or limit-computable if and
only if there is a recursive function ϕ such that limk→∞ϕ(x,k)=f(x).

Approximable represents the weakest form of computability that we can still reasonably
call “computable”. Anything beyond approximable is truly incomputable. Unlike for
estimable functions, we do not know how close any particular term ϕ(·,k) in the sequence is
to f(); it might intermittently drift away from or towards the true value, and we do not
even know if the current value is above or below the true value. The only property we have
is that the limit of the sequence is the true value. Note that if the range of ϕ is N0 or Z,
then eventually ϕ(x,k)=f(x) exactly, i.e. ∀x.∃k0.∀k≥k0 :ϕ(x,k)=f(x), but we may never
know when ϕ has stabilized. Equivalently one can consider a non-halting algorithm that
outputs an infinite sequence ϕ(x,1),ϕ(x,2),ϕ(x,3),... converging to f(x).

Theorem 2.6.14 lists the relations between the introduced computability concepts, and
also their relation to the lowest members of the arithmetic hierarchy introduced below.

96 CHAPTER 2. BACKGROUND

Theorem 2.6.14 (Implications among computable functions)

finitely computable

⇓
estimable = ∆0

1⇒ ⇒

Σ0
1 = lower semicomputable upper semicomputable = Π0

1
⇒ ⇒

approximable = ∆0
2

Also, if a function is both upper and lower semicomputable, then it is estimable.
No other implications are true in general.

Below are some examples of recursively enumerable sets we encounter in this book. Some
concepts and sets are defined only later, but we collect them here for convenience.

Theorem 2.6.15 (Recursively enumerable sets) The (countably infinite) sets S
of (encodings of)

(i) Turing machines,
(ii) computable partial functions,
(iii) lower semicomputable total functions with range R∪{±∞},
(iv) lower semicomputable semi-probability mass functions over N (or X ∗),
(v) lower semicomputable (joint or conditional) (sequence or chronological),

semimeasures over X∞ (Definitions 3.7.1 and 7.2.1 and Section 10.5)

are all recursively enumerable (Definition 2.6.8).

Proof sketch. (i) An effective enumeration of Turing machines is rather easy to construct
and has already been outlined earlier.
(ii) With suitable interpretation, Turing machines describe all partial recursive functions.
(iii) For the lower semicomputable functions, let φp(x,t) be the output of U(p′x) terminated
after t steps. Interpret the output as a rational number if possible, otherwise as −∞.
Then ϕ(x,t) :=maxs≤tφp(x,s) is computable and monotonically increasing and converges to
fp(x) :=suptφp(x,t). It is now easy to see that {⟨fp⟩ :p∈B∗} is a recursively enumerable set
of all and only lower semicomputable functions. Note that ⟨fp⟩ is a finite description of fp.
The supt is not calculated but described.
(iv) Semi-probabilities are functions that satisfy further properties. We modify the enumer-
ation of lower semicomputable functions as follows. First we set φp(x,t) = 0 for x > t,
which leaves fp unaffected. Now, if

∑
x≤tφp(x,t) > 1 (which is computable), we set

φp(x,t) = φp(x,t−1). This bounds fp to be a semi-probability, but does not affect the
fp that are already semi-probabilities, hence all and only the semi-probabilities are enumer-
ated.
(v) Similar/further modifications restrict the enumeration to all lower semicomputable (joint
or conditional) (sequence or chronological) semimeasures [Hut05b, Sec.5.10]. �

On the other hand, the sets of computable total functions, computable probability
mass functions, and computable probability measures are not recursively enumerable. The

2.6. COMPUTABILITY THEORY 97

proofs are based on diagonalization arguments similar to the incomputability of the halting
sequence, and are left as Exercise 5.

(Semi)computable sets and functions of infinite sequences. The Definitions 2.6.8
to 2.6.13 of the various computability concepts cannot only be used for finite strings x∈X ∗,
but also for other countable domains via a natural bijection to X ∗. They also have a
natural extension to infinite objects: For instance, infinite sequences x1:∞∈X∞ can straight-
forwardly be put on the input tape of a prefix Turing machine T (Definition 2.7.1) that
accepts L= {x1:∞ : T halts on some prefix of x1:∞} ⊆ X∞ or computes f : X∞→ R or
approximates it via ϕ :X∞×N0→Q. But since a halting Turing machine ever only reads a
finite initial part of its input, this has some surprising consequences: A computable property
that holds w.µ.p.1, holds for sure, provided µ has full support; non-empty recursive sets of
µ-measure 0 do not exist; and all limit-computable functions (and beyond) are measurable.

Theorem 2.6.16 (Computable functions with infinite sequence domain) Let
f :X∞→R be a total function and µ be a semimeasure with in (iv)−(vii) full support,
i.e. µ(x)>0 ∀x∈X ∗.

(i) Every limit-computable function f is σ(Γ)-measurable, hence Eµ[|f |] exists.
(ii) For lower- or upper-semi- or limit-computable f , the defining ϕ can be chosen as

ϕ(x1:k,k).

(iii) For estimable f there is a computable function g :N→N and ϕ(x1:g(k),k) that
estimates f .

(iv) For finitely computable f , there exists a finite complete prefix-free set P, such
that f is P-measurable, i.e. Eµ[f]=

∑
x∈Pµ(x)f(Γx).

(v) For lower-semicomputable f≥0, if Eµ[f]=0 then f≡0.

(vi) If some upper-semicomputable property=predicate φ :X∞→{False,True}≡{0,1}
holds w.µ.p.1 (Pµ[φ]=1), then it is tautologically true (φ≡True).

(vii) For a co-enumerable event E, Pµ[E]=1 implies E=X∞.

The results remain true for partial functions by replacing X∞ with the domain of
definition of f,ϕ,φ and with the following changes: In (i) we have to assume f ≥ 0 and
allow Eµ[f] =∞. In (iv), P may now be (countably) infinite. The results also remain
true if we equip the underlying Turing machine with any oracle that only has access to a
finite string on each invocation (i.e. not the whole infinite input tape). (i) and (ii) hold
more generally for any function in the arithmetic hierarchy with x∈X∞ in (2.6.22) but all
sup/inf remain over N0. That is, any function f definable via oracle Turing machines or
via a finite number of alternating sup/inf or ∀/∃ over N0 is measurable, which shows how
exotic non-measurable functions are. Extending the codomain of f is also possible with little
surprises by (re)interpreting the output of a Turing machine and defining an appropriate
metric |ϕ−f |.

Proof. Let ω∈X∞. (iv) A finitely computable function f on X∞ can be computed with a
prefix Turing machine T that halts on every input (Definition 2.7.1). The set of inputs on
which T is said to halt on forms a finite complete prefix-free set P (Exercise 2.7.7.1). That
is, if ω is on the input tape of T , then when T halts it has read o1:k∈P but no more. Hence
f(ω) is independent of ωk+1:∞, so the definition f(Γω1:k

) :=f(ω) is sound. Since P is finite
and complete, we can partition X∞=

⋃· x∈PΓx with f being constant on each part, hence f

98 CHAPTER 2. BACKGROUND

is P-measurable, and Eµ[f]=
∑

x∈Pµ(Γx)f(Γx) follows from Theorem 2.2.42.
(i) Let f = limkfk with finitely computable fk. By (iv), fk are P-measurable, hence
σ(Γ)-measurable. The point-wise limit of measurable functions is measurable, hence f is
measurable.
(iii) Let f(ω)= limkϕ(ω,k) with finitely computable ϕ(ω,k). By (iv), we know ϕ(ω,k) is
Pk-measurable for some finite Pk. Let g(k) :=max{ℓ(x) :x∈Pk}<∞. Then ϕ(ω,k) only
depends on ω1:g(k). The proof of (iv) shows that Pk and hence g(k) are computable.
(ii) Informally, since for semi- and limit-computable f we do not need to meet any target
precision, we can choose a TM for ϕ(·,k), which halts after k time steps, which guarantees
g(k)≤ k, so (iii) implies (ii). Formally, we can redefine φ(x1:t,t) := ϕ(x1:g(k),k), where
k=k(t) :=max{k :g(k)≤t and k≤t} is monotone increasing in t. The k≤t ensures that k(t)
stays finite in case g(k) is bounded. The g(k)≤t ensures that the definition of φ is sound. φ
converges to f since k→∞ for t→∞.
(v) Let ϕ(ω1:k,k)≥ 0 lower-semicompute f ≥ 0 via (ii). Then 0=E[f]≥Eµ[ϕ(ω1:k,k)] =∑

x∈Xkµ(x)ϕ(x,k)≥ 0. This is only possible if µ(x)ϕ(x,k) = 0 ∀x∈X k. By assumption,
µ(x)>0, hence ϕ≡0, which implies f(ω)≡supkϕ(ω1:k,k)=0 ∀ω.
(vi) f(ω) :=1−φ(ω) is lower-semicomputable with Eµ[f]=1−Pµ[φ]=0, hence by (v), f≡0,
hence φ≡True.
(vii) This is a simple reformulation of (vi) applied to φ(ω)=Jω∈EK. �

Example 2.6.17 (Computable sets of measure 0 are empty) Consider f(x1:∞)=Jω=
1∞K and uniform µ(x1:n)=(12)

n. Then E[f]=0, but f(x1:∞)=1. By Theorem 2.6.16(v) this
implies that f is incomputable. f can be upper-semicomputed via ϕ(x1:k,k)= Jx1:k=1kK.
A Turing machine T upper-semicomputing f would tentatively output 1, then read x1:∞
one-by-one, and as soon as the first 0 is read, lower the output to 0, but T would never
halt on input 1∞. If we look at the halting set P={1k0 :k∈N0} of T (Definition 2.7.1),
it is still a complete prefix-free set (Definition 2.5.19), but

⋃· x∈PΓx=X∞\{1∞} ̸=X∞ (cf.

Exercise 2.1.4.7). �

Remark 2.6.18 (Computability of functions with real domain) Defining computabil-
ity of functions with real domain is subtle. We could interpret x1:∞∈{0,1}∞ as real number
0.x1:∞∈ [0,1] in binary expansion. The problem is how to deal with computable functions
such as f(x1:∞) :=x1. Since 0.01111...=0.10000..., we need f(01111...)=f(10000...), but
it is computationally undecidable whether an input is equal to 01∞. The alternative is
to estimate f :R→R via ϕ :Q×N0→Q. So an algorithm computing, say, the exponential
function actually takes a (binary) fraction as input and outputs an approximation as a
(binary) fraction. A definition of real computable functions f :R→R consistent with this
input-approximation necessity is possible [Grz57], but renders all discontinuous functions
incomputable. So the innocuously-looking function f(x)=Jx> 1

2K becomes incomputable.
The computable real functions we encounter on occasion, are all benign, so the above
intuitive understanding suffices. �

2.6.4 Arithmetic Hierarchy

While anything beyond approximable is truly incomputable, one can still define degrees of
incomputability using quantifiers (or Halting oracles, a hypothetical device that can solve
the halting problem), which will turn out to be useful in classifying some of the agents we
will introduce. Within the arithmetic hierarchy , each tier symbolizes a distinct degree of
challenge in resolving computational conundrums. At the foundation, we discover issues
readily addressed by elementary algorithms, such as determining the parity of a number.
These problems, deemed computable, reside within the most fundamental stratum of the

2.6. COMPUTABILITY THEORY 99

hierarchy. Progressing upward through these structured tiers, the problems require an
increasing number of layers of quantifiers (or Halting oracles), such as “for all (∀)” and
“there exists (∃)”:

Definition 2.6.19 (Arithmetic hierarchy Σ0
n,Π

0
n,∆

0
n) A set A⊆N0 is Σ0

n if and
only if there is a computable relation η such that

k0∈A ⇐⇒ ∃k1.∀k2....Qnkn.η(k0,k1,k2,...,kn)

where Qn=∀ if n is even and Qn=∃ is n is odd. Similarly A is Π0
n if the outer-most

quantifier is ∀k1 instead. Equivalently and furthermore

A⊆N0 is Π0
n ⇐⇒ N0\A is Σ0

n

A⊆N0 is ∆0
n ⇐⇒ A is both Σ0

n and Π0
n

We can think of Σ0
n and Π0

n as an increasing hierarchy of complexity of sets, where n
describes the number of alternating quantifiers required to describe the set A in first-order
logic, together with some computable relation η. Instead of A⊆N0, we can allow A⊆B∗,
and hence effective binary encodings of objects including tuples, and indeed any recursive
set (membership is decidable, indicator function is computable). The superscript 0 in Σ0

n

indicates that there are even higher hierarchies. For instance, the analytic hierarchy Σ1
n

denotes higher-order arithmetic with its lowest member Σ1
0 containing in a certain sense the

whole arithmetic hierarchy
⋃

nΣ
0
n. The arithmetic hierarchy is the set of strict inclusions

... ∆0
n
⊂ Σ0

n ⊂
⊂ Π0

n ⊂
∆0

n+1
⊂ Σ0

n+1 ⊂
⊂ Π0

n+1 ⊂
∆0

n+2 ...

The arithmetic hierarchy can also be extended to functions. We only state it for countable
domain, but this can be extended to functions with real domain (see Remark 2.6.18).

Definition 2.6.20 (Σ/Π/∆-functions) A function f :B∗→R is called Σ0
n if and

only if the set If :={(x,q)∈B∗×Q :q<f(x)} is Σ0
n. f is Π0

n iff −f is Σ0
n. f is ∆0

n iff it
is both Π0

n and Σ0
n.

Note that for f,g∈∆0
n, we have {(x,y) :f(x)>g(y)}∈Σ0

n, but {(x,y) :f(x)≤g(y)}∈Π0
n

(the = causes the difference, not the direction of the inequality; Exercise 8)

Theorem 2.6.14 relates the lowest members of the arithmetic hierarchy to the computabil-
ity concepts introduced earlier: Estimable functions are ∆0

1, lower semicomputable functions
are Σ0

1, upper semicomputable function are Π0
1, and approximable functions are ∆0

2.

Functions are composed of functions and functionals of functions. The following properties
are useful and often let you read off (at least an upper bound on) the degree of incomputability
directly from the definition of the function.

100 CHAPTER 2. BACKGROUND

Theorem 2.6.21 (Properties of Σ/Π/∆-functions)

(i) Σ0
n=−Π0

n (f ∈Σ0
n ⇔ −f ∈Π0

n)

(ii) ∆0
m(∆0

n)=∆0
n+m−1 (function concatenation), esp. f(∆0

n)⊆∆0
n for f ∈∆0

1

(iii) ∆0
m(Σ0

n)=∆0
n+m and ∆0

m(Π0
n)=∆0

n+m

(iv) sup∆0
n=supΣ0

n=Σ0
n, inf∆0

n=infΠ0
n=Π0

n, supΠ0
n=Σ0

n+1, infΣ0
n=Π0

n+1

(v) lim supt=infssupt≥s and lim inft=supsinft≥s, hence e.g. lim∆0
n=∆0

n+1

(vi) f(Σ0
n)⊆Σ0

n for monotone increasing f ∈Σ0
1

(vii) f(Π0
n)⊆Π0

n for monotone increasing f ∈Π0
1

(viii) +,×,exp,log,...∈∆0
1 and finite max,min,

∑∈∆0
1, all monotone increasing

(ix)
∑∞

=limt

∑t
in general, hence

∑∞
∆0

n=∆0
n+1 in general

(x)
∑∞

=supt
∑t

if applied to non-negative functions, hence
∑∞

Σ0+
n =Σ0+

n .

Proof sketch. (i) follows directly from Definition 2.6.20 (Cf. Exercise 7).
(iv) f(x,t)∈Σ0

n iff {(x,t,q) : q <f(x,t)}∈Σ0
n implies {(x,q) : q < inftf(x,t)}≡{(x,q) :∀t :

q<f(x,t)}∈Π0
n+1 iff inftf(x,t)∈Π0

n+1 due to the extra ∀-quantifier, hence infΣ0
n⊆Π0

n+1.
Equality holds, since every Π0

n+1-function can be represented in this way. This follows
from a suitably lifted version of Posts’ Theorem [Odi89, Thm.IV.1.14]. Note that f(x,t)=
supsg(x,t,s) for some g∈∆0

n (possibly even Π0
n−1), hence suptf(x,t)=supt,sg(x,t,s)∈Σ0

n,
hence supΣ0

n=Σ0
n. The duals supΠ0

n=Σ0
n+1 and infΠ0

n=Π0
n are proven in the same way.

Together these also imply Σ0
n=supΠ0

n−1⊆ sup∆0
n⊆ supΣ0

n=Σ0
n, hence sup∆0

n=Σ0
n, and

similarly for the dual inf∆0
n=Π0

n.
(ii) First, a computable transformation of ∆0

n does not change the degree of incomputabil-
ity, hence f(∆0

n)⊆∆0
n for f∈∆0

1. Now, repeated application of (iv) gives sup inf sup...∆0
1=Σ0

n

for n alternating inf/sup. For f∈∆0
m take the representation that ends in ...supf0(x,...) with

f0∈∆0
1. For g∈∆0

n we have h(x):=f0(g(x),...)∈∆0
n. Consider the alternating representation

for h∈∆0
n that starts with sup. Then in this representation of f ◦g, the two sup can be

merged, leaving n+m−1 alternating quantifiers. Do the same but with f/h ending/starting
with inf. Together this shows f ◦g∈Σ0

n+m−1∩Π0
n+m−1. Equality holds since any sequence

of n+m−1 alternating quantifiers can be broken up in n and m.
(iii) Σ0

n⊂∆0
n+1 implies ∆0

m(Σ0
n)⊆∆0

m(∆0
n+1)=∆0

n+m from (ii). Equality follows from a
suitably lifted version of Posts’ Theorem [Odi89, Thm.IV.1.14].

(v) From (iv) we have infsup∆0
n=Πn+1 and supinf∆0

n=Σn+1. Taking the intersection
we get lim∆0

n=∆0
n+1 (Exercise 9).

(vi−x) follow easily from (i−v) and are left as Exercise 9. �

For instance, in analogy to the alternating quantifier definition of sets, a convenient
characterization of Σ0

n-functions is in terms of alternating sup−inf of some computable f1,
optionally interspersed with continuous computable functions f2,...,fn (Exercise 10).

f(x) := sup
kn

fn

(
inf
kn−1

fn−1

(
...f2

(sup
inf
k1

f1(x,k1,...,kn)
)
...
))
∈ Σ0

n if fi∈∆0
1 (2.6.22)

and similarly f ∈Π0
n if starting with infkn

.
For boolean functions with 1 identified as True and 0 identified as False, and boolean

relations and sets represented by such indicator functions, supkf(k)=∃k.f(k) and infkf(k)=
∀k.f(k). Replacing sup;∃ and inf;∀ and f1;η and the other fi by Identity, reduces
(2.6.22) to Definition 2.6.19. Also, any max becomes ∨ and min becomes ∧.

2.7. KOLMOGOROV COMPLEXITY 101

2.6.5 Exercises

1. [C23] (Halting problem) Derive a constructive proof (without contradiction) for
Theorem 2.6.7.

2. [C10] (Not finitely-computable rational function) Show that there are rational-
valued functions that are estimable but not finitely computable. Hint: Consider
ϕ(x,k) :=2−min{k+1,time(U(x))}, where time(U(x))∈N∪{∞} is the runtime of UTM U
on x.

3. [C12] (Estimable = upper- & lower semi-computable) Show that a function
is estimable if and only if it is upper- and lower semi-computable. Show that a
non-negative estimable function is lower semi-computable with non-negative ϕ.

4. [C30] (Computability implications) Prove the implications and equalities in
Theorem 2.6.14, and also prove that the converse of any of these implications is false.
Finally prove that lower semicomputable does not imply upper semicomputable, and
vice versa.

5. [C25] (Non-enumerable function classes) Show that the sets of computable
total functions, computable probability mass functions, and computable probability
measures are not recursively enumerable.

6. [C30] (Computability of functions with infinite sequence domain) Detail
some of the steps in the proof of Theorem 2.6.16. Extend/adapt the theorem and proof
as discussed after the theorem to partial functions, oracles, the arithmetic hierarchy,
and other codomains of f .

7. [C15] (Wrong Π0
n definition for functions) Show that f ∈Π0

n ⇍⇒ If ∈Π0
n (see

Definition 2.6.20). Hint: Consider f(⟨T ⟩) :=1/runtime(T (ϵ)) and the Halting problem.

8. [C15] (Arithmetic hierarchy for function pair) Prove that {(x,y):f(x)>g(y)}∈
Σ0

n, but {(x,y) :f(x)≥g(y)}∈Π0
n for f,g∈∆0

n, so the = makes a key difference.

9. [C30] (Arithmetic hierarchy properties) Prove the assertions in Theorem 2.6.21.
For instance, lim infΣ0

n⊆Σ0
n+1 means that g(x):=lim inft→∞f(x,t)∈Σ0

n+1 if f(x,t)∈Σ0
n,

and similarly for lim sup. Show that together this implies lim∆0
n⊆∆0

n+1, i.e. g(x) :=
limt→∞f(x,t)∈∆0

n+1 if f ∈∆0
n. Show that the converse lim∆0

n⊆∆0
n+1 immediately

follows from (iv).

10. [C10] (Alternating sup/inf representation of Σ0
n for functions) Use Theo-

rem 2.6.21 to prove (2.6.22).

11. [C13] (Composing computable functions) Prove that (i) if f(z1,z2,...,zn) is
computable (estimable) and gi(xi) are ∆0

n, then f(g1(x1),g2(x2),...,gn(xn)) is ∆0
n.

(ii) If f(z1,z2,...,zn) is lower semicomputable (Σ0
1) and monotone increasing in all

arguments, and gi(xi) are Σ0
n, then f(g1(x1),g2(x2),...,gn(xn)) is Σ

0
n.

2.7 Kolmogorov Complexity

In Section 2.5 we introduced Shannon entropy, which measures the expected information of
a stochastic source, that is, the expected number of bits required to encode a string sampled
from a distribution P .

102 CHAPTER 2. BACKGROUND

A different measure of information that measures the intrinsic information contained in
a message itself (rather than the degree of unpredictability of a stochastic source) is the
Kolmogorov complexity . This new definition of information is for a particular message rather
than random variables, defined in terms of the length of the shortest description of the
message. Intuitively, the Kolmogorov complexity represents the length of the shortest possible
compressed form of the message. It can be used as a formal measure of simplicity/complexity
of (any object that can be encoded as) a string using Turing machines (Definition 2.6.2) as
the reference language, as was done for algorithms (Section 2.6). The specific version based
on prefix Turing machines we call K-complexity. We explore the properties of K-complexity,
many of which have suitable intuitive meanings, e.g. more information can never hurt
compressing data. We show that “most” strings are highly complex with respect to this
measure (“most” sequences of random coin flips look “random”). For most properties of
K-complexity, there is a corresponding Shannon entropy concept (Definition 2.5.1). As we
will see, K-complexity is not finitely computable in that there provably cannot exist an
algorithm for it. While this means that there is no hope to computing the exact Kolmogorov
complexity of an object in practice, this still gives a useful theoretical underpinning for
simplicity on which universal predictors can be built. Given sufficient time, the K-complexity
can be approximated arbitrarily well from above (Theorem 2.7.27), and any practical data
compressor gives an upper bound to the true K-complexity of an object.

2.7.1 Motivation

We have mentioned the concept of simplicity in Section II, and why we want to favor the
simplest models or explanations consistent with the data observed. To be able to actually
use this concept, we need to rigorous define simplicity/complexity. For example, consider
the following binary strings:

x=10

y=1100100100001111110110101010001000100001

z=1011101100110101111110001110101101011000

The first string, x, has an obvious simple pattern, as it is just the pair 10 repeated
twenty times. The second string, y, at first glance looks “random”, but is actually the first
40 bits in the binary expansion of π [SI96]. The third string, z, was generated by measuring
quantum fluctuations of a vacuum [Lam], a method that (as far as is known) generates
“truly random” bits in the sense that given all the bits in the past so far, we cannot predict
the next bit with >50% accuracy.

What is it about the first string that makes it simple? One could argue it is the ease
with which the next bit can be predicted as after only observing a few bits, we can quickly
spot the obvious pattern and predict the rest of the sequence perfectly. A definition of
complexity of sequences via difficulty of prediction was explored by Legg and Hutter [LH07c].
However, the second string certainly appears to have no clear patterns, and it will pass most
statistical tests for randomness [Mar05]. The circle constant π appears to have properties of
a “random” sequence despite being deterministic. If we knew ahead of time that the string
y was just the binary expansion of π, then predicting the next bit can be done with zero
prediction errors by just computing π to the required precision, and then using the bits
received to tell how deep into the expansion of π we are, and what bit we should guess next.

So it is possible to predict both x and y perfectly, yet intuitively we would think that x is
still simpler than y. The difference lies in the length of the description. We could define x as

2.7. KOLMOGOROV COMPLEXITY 103

“repeat 10 twenty times” and y as “the binary expansion of 4
∑∞

i=0(−1)i/(2i+1) to 40 bits”.22

Had we taken the continuations of x and y to a few thousand bits, the description of those
sequences would be vastly smaller than the sequence itself. In other words, these sequences
are simple because they are compressible. This is (probably23) not true for string z, for which
(we believe) the shortest description is 1011101100110101111110001110101101011000, the
string itself. Now, at this stage our definition of simplicity is still informal, as we do not
have a formal definition of what a “description” is. To someone already well-versed in
mathematics, we could have described y = π[1:40] which is about the same length as
any reasonable description we could find for x, perhaps x="10"×20. To someone missing
mathematics as background knowledge, a description of y may take several pages, defining
how addition and multiplication work, what the Σ symbol means, and what it means to
assign a value to an infinite series. There are many other ways to describe π:

• in terms of an integral: π=4
∫ 1

0

√
1−x2 dx

• as some limiting geometric process: inscribe regular n-sided polygons in a circle of
radius 1 and calculate their area as n→∞.

• a description that uniquely identifies π (the ratio of the circumference of a circle to its
radius) but omitting the details of how to compute it entirely.

It is also not clear what symbols are permitted. Are we allowed to assume the decoder
understands calculus when we define π as an integral? Or would we have to define that too?
What if the description was much shorter if written in French or Russian? The simplicity of
a concept depends on who we are talking to, so we need a fixed universally agreed-upon
interpreter that takes “descriptions” and returns the sequence described. Such a machine
should be unbiased towards any particular class of sequences, to avoid the problems above.

Note in the above, we are looking for a definition of “simplicity” or “information content”,
and our existing measure of information, entropy (Definition 2.5.1), is unhelpful here. Any
deterministic process always provides zero bits of entropy; a machine that prints the digits
of π would be such an example. We are concerned instead with a definition that relates
to the intrinsic information contained in an individual object, the (minimal) quantity of
information required to reconstruct the object.

2.7.2 Making Simplicity Rigorous

Turing machines (Definition 2.6.2) provide an ideal model for a description interpreter,
as assuming the Church-Turing thesis (Thesis 2.6.6) for any algorithm that generates the
sequence, there exists a Turing machine that can implement that algorithm.

For technical reasons we define the following variants of a Turing machine.

Definition 2.7.1 (Prefix/Monotone Turing Machine [Hut05b]) A pre-
fix/monotone Turing machine is defined as a Turing machine with one unidirectional
input tape, one unidirectional output tape, and some bidirectional work tapes. Input
tapes are read only, output tapes are write only, and unidirectional tapes are those
where the head can only move from left to right. All tapes are binary (no blank symbol),
work tapes are initialized with zeros.

22This is the commonly known Leibniz formula for π [Roy90].
23There is a small probability that a randomly sampled string exhibits a regular pattern, and z may

be such a string with a non-obvious pattern. It could even be that quantum randomness is actually only
pseudo-random or Martin-Löf random, and all quantum random strings exhibit a hard-to-impossible to detect
pattern. We will show later that in a formal sense “most” strings are like z in that they are incompressible.

104 CHAPTER 2. BACKGROUND

Prefix TM. We say T halts on input p with output x, and write T (p)=x if p is to the
left of the input head and x is to the left of the output head after T halts. The set of p
on which T halts forms a prefix code (Exercise 1). We call such codes p self-delimiting
programs.
Monotone TM. We say T outputs/computes a string starting with x (or an infinite
sequence ω) on input p, and write T (p)=x∗ (or T (p)=ω) if p is to the left of the input
head when the last bit of x is output (T reads all of p but no more, and for every N
there exists time step t0 such that for all time steps t≥ t0, the output tape is prefixed
with ω1:N). T may continue operation and need not halt (must not halt for sequences).
For a given x, the set of such programs p forms a prefix code. We call such codes p
minimal programs.

Any Turing machine T can be expressed as a single binary string ⟨T ⟩ in some canonical
way, in such a way that all the defining properties of the machine T can be recovered from
⟨T ⟩. By enumerating all binary strings and checking if they represent a valid encoding of a
Turing machine, we can construct an effective enumeration T1,T2,... of all Turing machines.
This, together with the fact that running a Turing machine is (by definition) a computable
operation means there exists a universal Turing machine U that takes as input an index i
in this enumeration (along with some input q), and then simulates the action of Ti on q.

Definition 2.7.2 (Universal Turing Machine (UTM)) There exists a universal
prefix/monotone Turing machine (UTM) U which takes input y′i′q (recall x′ is a second-
order prefix code, see Section 2.1.2), and simulates the action of prefix/monotone Turing
machine Ti with side information y and input q, that is:

U(y′i′q) = Ti(y
′q)

If there is no-side information present (y′=ϵ′=0), then we omit the 0 and simply write
U(i′q)=Ti(q) instead of U(0i′q)=Ti(0q).

There are different ways of defining UTMs, but this way guarantees automatically that
U leads to optimal codes in the sense of satisfying the Invariance Theorem Theorem 2.7.6.

With this in mind, we can now define our measure of simplicity with respect to a choice
of Turing machine T .

Definition 2.7.3 ((Prefix) Kolmogorov complexity) The (conditional) K-
complexity KT (x) of a finite string x with respect to prefix Turing machine T is
the length of the shortest program p such that T outputs x when input p (given y as
side information)

KT (x) := min
p∈B∗
{ℓ(p) :T (p)=x}

KT (x|y) := min
p∈B∗
{ℓ(p) :T (y′p)=x}

If no such program exists, we define KT (x) :=∞.

Rarely we may also make use of a variant of Kolmogorov complexity, based on monotone
rather than prefix Turing machines.

2.7. KOLMOGOROV COMPLEXITY 105

Definition 2.7.4 (Monotone Kolmogorov complexity) Themonotone Kolmogorov
complexity KmT (x) of a finite string x (resp. infinite sequence ω) with respect to
monotone Turing machine T is the length of the shortest program p such that U(p)=x∗
(resp. T (p)=ω).

KmT (x) := min
p∈B∗
{ℓ(p) :T (p)=x∗}

KmT (ω) := min
p∈B∗
{ℓ(p) :T (p)=ω}

If no such program exists for x (resp. ω), we define KmT (x) :=∞ (resp. KmT (ω) :=∞).

These definitions of the Kolmogorov complexity are parameterized by the choice of
reference Turing machine T , and hence can be skewed by a choice of (universal) Turing
machine (much as the simplicity of π is subjective, depending on who you are talking to).

Example 2.7.5 (Biased universal Turing machine) We can always construct a universal
Turing machine U ′ that is arbitrarily biased towards a given object x. For example, given
any UTM U , define

UBook(0α) := U(α)

UBook(1α) := The LATEX source of this book

Then according to UBook, the complexity of this entire book is only 1 bit24,
KUBook

(The LATEX source of this book)=1. Of course, the universal machine UBook would
need to have a copy of this book25 “hardcoded” inside its finite control table to achieve this,
so this is a very contrived choice of UTM that we would wish to avoid. �

To this end, we would wish to select a “natural” universal Turing machine that has no
particular biases towards some strings over others. Some work has been done in identifying a
canonical choice of UTM [Mül10], but no conclusive answer has yet been found. One option
may be to learn a good UTM [SH14b].

To some degree, the actual choice of UTM does not matter, as for any two UTMs U1

and U2, the difference between the corresponding Kolmogorov complexities is bounded. Any
two UTMs can emulate each other, as any program p1 for U1 can be bundled together with
an U1 interpreter q designed to run on U2, and vice versa.

Theorem 2.7.6 (Invariance) For any two UTMs U1 and U2 there exists a constant
c such that for all strings x,

|KU1
(x)−KU2

(x)| ≤ c

Proof. Both U1 and U2 are UTMs, so there exists indexes i and j such that U1(i
′q)=U2(q)

and U2(j
′q)=U1(q) for all q. Then, given any program q1 (q2) for U1 (U2), it can be run on

U2 (U1) with constant overhead. So for any string x, let p1 (p2) be a shortest program for x

24We sincerely hope you’ve found more than 1 bit of information in this book!
25or at least, a compressed copy of this book and an associated decompressor. At the time of writing, all

the text in the book fits in 2’299’002 bytes before compression, and 465,949 bytes after compression using
ZPAQ, a family of compressors known for a high compression ratio, but slow to compress. If we included the
size of the decompressor (367’080 bytes) for a total of 833’029 bytes, this provides an upper bound of the
KT -complexity of this book with respect to the author’s computer standing in for T .

106 CHAPTER 2. BACKGROUND

on U1 (U2). Then j
′p1 (i′p2) is a program for x on U2 (U1), and

KU2
(x)≤ℓ(j′p1) = KU1

(x)+ℓ(j′)

KU1
(x)≤ℓ(i′p2) = KU2

(x)+ℓ(i′)

So by setting c=max{ℓ(j′),ℓ(i′)} (which does not depend on the choice of x we have)

|KU1
(x)−KU2

(x)| ≤ c

as required. �

Note that there are many possible choices of encodings and enumerations of Turing
machines. Different choices lead to defining different Universal Turing machines. Though
some work has been done to find a canonical choice of UTM, usually by trying to define a
UTM with the fewest number of tape symbols and states [KR02, Rog96], we leave this aside
and arbitrarily fix one “natural” reference machine U .

Remark 2.7.7 (Reference universal Turing machine) There are infinitely may different
choices of UTMs, so we arbitrarily fix some “natural” reference choice of UTM U for this
book, and define K(x) :=KU (x) and K(x|y) :=KU (x|y). Similarly for monotone complexity,
we define Km(·) :=KmU (·). �

Assuming that two universal Turing machines U1 and U2 are “natural”, we would expect
the constant c in Theorem 2.7.6 to be “small”.

Assumption 2.7.8 (Short compiler) Given two “natural” Turing-equivalent formal
systems F1 and F2, then there always exists a “small” program p on F1 that is capable
of interpreting all F2 programs.

Kolmogorov complexity for general objects. We can also define the K-complexity
for things other than binary strings by encoding them as binary strings in some canonical
fashion. For example, in Section 2.1.1 we defined a bijection ⟨·⟩ between N0 and B∗, so we
can define the K-complexity of a natural number n as K(n) :=K(⟨n⟩). The K-complexity
of other objects such as Turing machines, pictures, books, music etc., can be defined in a
similar fashion by providing some canonical encoding function ⟨·⟩′ of a class of objects to
binary strings, and then measuring the complexity of the resulting string using K. The
same can be said for the K-complexity of tuples of objects, as the complexity of an encoded
version such that the strings can be uniquely decoded. In the case of strings, we can define
K(x,y) :=K(x′y) and K(x,y,z) :=K(x′y′z), etc. For instance, for Turing machines, this
would be an encoding of its specifying 7-tuple T , which itself consists of objects of various
types, and in particular its transition function δ. Encoding of computable functions f
deserves its own Definition 2.7.18.

With this generalization we can generalize Theorem 2.7.6 and make it more precise by
explicating the constant c:

Theorem 2.7.9 (Universal minorization) For any choice of Turing machine T , we
have that

K(x) ≤ KT (x)+K(T)+O(1)

The theorem says that compression via a universal Turing machine U minorizes all
other choices of Turing machines T (which could, for example, be existing decompression
algorithms), up to an additive constant of the size of the description length of T , as the
universal Turing machine can be provided a program to simply emulate what T does, together
with the program to run on T .

2.7. KOLMOGOROV COMPLEXITY 107

Proof. Let p be the shortest program for x under T , i.e. ℓ(p)=KT (x). Let r be the shortest
description of ⟨T ⟩ under U , i.e. ℓ(r)=K(T). Let Ti be a Turing machine that reads in rp,
separates them into r and p (no prefix of r is a valid program), and then simulates the action
of T on p, that is, U(i′rp)=Ti(rp)=T (p). Noting that i has no dependency on x nor T , we
have

K(x) ≤ ℓ(i′)+ℓ(r)+ℓ(p) ≤ KT (x)+K(T)+O(1)

as required. �

2.7.3 Properties of K-Complexity

We now investigate some properties of the K-complexity function K. Where suitable, we
provide intuition as to why a property holds, before formalizing the statement and giving
a proof. For this it will be convenient to introduce

+≤ (
×≤) to indicate “less-than within an

additive (multiplicative) constant” and similarly for ≥ and =:

Definition 2.7.10 ((In)equalities within additive/multiplicative constants)

f(x)
+≤g(x) ⇐⇒ ∃c>0.f(x)≤g(x)+c ⇐⇒ f(x)=g(x)+O(1)

f(x)
×≤g(x) ⇐⇒ ∃c,x0.|f(x)|≤c|g(x)| ∀x>x0 ⇐⇒ f(x)=O(g(x))

f(x)
∗
≥g(x) ⇐⇒ g(x)

∗
≤f(x) for ∗∈{+,×}

f(x)
∗
=g(x) ⇐⇒ f(x)

∗
≤g(x) and g(x)

∗
≤f(x) for ∗∈{+,×}

Crucially, c and x0 do not depend on x.

We can always find an upper bound on the K-complexity of a string x, merely by having
a program that has a hardcoded copy of x built inside. Since the K-complexity is the
shortest such description, it certainly cannot be any worse than using the string itself as its
own description. We do incur a logarithmic penalty, since U requires programs p but not
outputs x to be self-delimiting.

Theorem 2.7.11 (Upper bound on Kolmogorov Complexity) Let x∈B∗ and
n∈N. Then,

K(x)
+≤ ℓ(x)+2log2ℓ(x)

K(n)
+≤ log2n+2log2log2n

Proof. There exists a Turing machine Ti that reads as input a second-order prefix encoded
string x′, and returns the decoded version x, i.e. Ti(x

′)=x, for all x. Then, U(i′x′)=x and
by (2.1.5), we have that

K(x) ≤ ℓ(i′x′) = ℓ(i′)+ℓ(x′)
+≤ ℓ(x)+2log2(ℓ(x))

since c :=ℓ(i′) is a constant independent of x. For the second property, note that we can use
⟨·⟩ (2.1.2) on n to obtain a string ⟨n⟩ of length ⌊log2(n+1)⌋ +=log2(n), from which the result
follows. �

Theorem 2.7.12 (Kraft’s inequality for K-complexity)
∑
x∈B∗

2−K(x) < 1

108 CHAPTER 2. BACKGROUND

Figure 2.21: Illustrative graph of prefix Kolmogorov complexity K(x) with string x inter-
preted as integer. K(x)≥ log2x for ‘most’ x and K(x)≤ log2x+2log2logx+c for all x for
sufficiently large constant c [Hut05b].

Proof.
∑
x∈B∗

2−K(x) =
∑
x∈B∗

2−min{ℓ(p):U(p)=x} ≤
∑
x∈B∗

∑
p:U(p)=x

2−ℓ(p) =
∑

p:U(p) halts

2−ℓ(p) < 1

where the last inequality is Kraft’s inequality (Theorem 2.5.17), noting that the set of
programs p such that U(p) halts is a prefix-free set by the design of a prefix Turing machine
(Definition 2.7.1). Strict inequality holds, since there are non-halting programs, so the prefix
set is not complete. �

Theorem 2.7.11 shows that K(n)
+≤ log2n+2log2log2n for all n, and Theorem 2.7.12

implies that K(n)≥ log2n for most n (if K(n)≤ log2n for a non-vanishing fraction of n, then∑
n2

−K(n)=∞). There is also some very weak notion of continuity: |K(n±k)−K(n)|+≤K(k),
so plunges in K(n) for simple n have some width. Furthermore, Theorem 2.7.14 below
implies that also the local minima increase with n, albeit slower than any computable
function (Exercise 3). Based on this, Figure 2.21 provides a schematic plot of K.

(In)compressibility. Now that we have a formal definition of simplicity, we can define
a string to be compressible if its shortest description is shorter than the string itself, i.e.
that K(x)<ℓ(x). Incompressible strings must exist, as by the pigeon-hole-principle, if all
strings were compressible, then we can construct an injection from Bn into B<n, where each
string gets mapped to its shortest program. The function must be injective since given the
shortest program, we can run the program to obtain the original string. An injection requires
|Bn|≤|B<n|, however |B<n|=∑n−1

i=0 |Bi|=∑n−1
i=0 2

i=2n−1<2n= |Bn|, a contradiction.

This gives no indication of how common incompressible strings are. Intuitively “most”
strings should be incompressible, since if we generate a sequence by fair coin flips, it is far
more likely that the string looks “random” rather than something with an obvious pattern
such as 101010.... The reason is that simple patterns correspond to short programs (highly
compressible), of which there are few. More quantitatively:

2.7. KOLMOGOROV COMPLEXITY 109

Theorem 2.7.13 (Most strings are incompressible) For any (injective) encod-
ing/compression, less than 2n strings x∈X ∗ can be compressed to less than n bits. In
particular, the fraction of strings of length n compressible by more than k bits is less
than 2−k. Compressing with a prefix-code increases the length of most strings.

(i) 2−n|{x :ℓ(C(x))<n−k}| < 2−k for injective C :X ∗→B∗

(ii) 2−n|{x :ℓ(C(x))≤n+k}| n→∞−→ 0 for a prefix code C :X ∗→B∗

In particular both statements hold for K-complexity, i.e. for ℓ(C(x))=K(x).

Proof. Since C is injective, we have

|{x :ℓ(C(x))<n}| ≤ |B<n| =
n−1∑
l=0

|Bl| =
n−1∑
l=0

2l = 2n−1 < 2n

(i) From this, (i) follows immediately by n;n−k and multiplying with 2−n.
(ii) Let us define the number of strings compressible to l bits as Nl := |{x : ℓ(C(x))= l}|.
Applying Kraft’s inequality to prefix code C, we get

1 ≥
∑
x∈X∗

2−ℓ(C(x)) =

∞∑
l=0

∑
x:ℓ(C(x))=l

2−ℓ(C(x)) =

∞∑
l=0

2−lNl =: δ0

This implies that δm :=
∑∞

l=m2−lNl→0 for m→∞. Now for any i≤n,

2−n|{x :ℓ(C(x))≤n}| = 2−n
n∑

l=0

Nl

=

n−i∑
l=0

2l−n2−lNl +

n∑
l=n−i+1

2l−n2−lNl

≤ 2−i
n−i∑
l=0

2−lNl +

n∑
l=n−i

2−lNl

≤ 2−iδ0 + δn−i
n→∞−→ 0 for e.g. i :=⌈n/2⌉

Finally we replace n by n+k and multiply by 2k to obtain (ii). �

One can use the notion of incompressibility to formally define randomness of individual
strings. This finally allows us to formally reason about individual random strings, and drop
the quotation marks from “random” in this context. We will define and refine this notion in
Section 3.10.

Theorem 2.7.14 (K-complexity tends to infinity) lim
n→∞

K(n)=∞

Proof. Suppose not. Then there exists some N such that K(n)<N for infinitely many n.
So infinitely many numbers have K-complexity less than N , so there are infinitely many
programs of length <N , a contradiction. �

Providing extra side information y can never hurt when trying to describe x: At worst,
y is a sequence of coin flips that is totally uncorrelated with x and ignored. At best, y is a
copy of x, so we only need a constant length program to copy the side information to the
output. Similarly, describing x and y together is at least as hard as describing x alone.

110 CHAPTER 2. BACKGROUND

Theorem 2.7.15 (Extra Information) K(x|y) +≤ K(x)
+≤ K(x,y)

Proof. Let p∗ be the shortest program such that U(p∗)=x. There exists an i0 such that
Ti0(y

′p∗)=U(p∗)=x as Ti0 can discard the side information y′, and then compute the output
of the program p∗. Then U(y′i′0p

∗)
+
=Ti0(y

′p∗)=U(p∗)=x. Thus,

K(x|y) ≡ min
p
{ℓ(p) :U(y′p)=x} ≤ ℓ(i′0p

∗) = ℓ(i′0)+ℓ(p
∗)

+
= K(x)

Now let q∗ be the shortest program such that U(q∗)=x′y. Then there exists i1 such that
Ti1(q

∗)=x as Ti1 uses q∗ to compute x′y on its internal tape and then copies only x to the
output tape. So U(i′1q

∗)=x, hence

K(x) ≡ min
p
{ℓ(p) :U(p)=x} ≤ ℓ(i′1q

∗) = ℓ(i′1)+ℓ(q
∗)

+
= K(x′y) = K(x,y)

�

Encoding the concatenation xy requires less information than being able to encode both
x and y in a way they can be separated uniquely. This is less information than encoding x
alone, along with encoding y given x. This is less still than encoding x, along with encoding
y with no help from x:

Theorem 2.7.16 (Subadditivity) K(xy)
+≤K(x,y)

+≤K(x)+K(y|x) +≤K(x)+K(y)

Proof. We prove each inequality separately.

1. Let p∗ be the shortest program such that U(p∗) = x′y. There exists i0 such that
Ti0(p

∗)=xy by emulating U(p∗)=x′y and decoding x′y to x and discarding y. Thus,
U(i′0p

∗)=xy, hence

K(xy) ≡ min
p
{ℓ(p) :U(p)=xy} ≤ ℓ(i′0p

∗) = ℓ(i′0)+ℓ(p
∗)

+
= K(x′y) = K(x,y)

2. Let q be the shortest program such that U(q)=x. Let r be the shortest program such
that U(x′r)=y. Then there exists an i1 such that

U(i′1qr) := U(q)′U(U(q)′r) = x′U(x′r) = x′y

This works, since we can uniquely decode the string qr back into q and r, as both q
and r are programs that halt when run on U , and we know that the set of all programs
p such that U(p) halts is prefix free. Now

K(x,y) ≡ min
p
{ℓ(p) :U(p)=x′y} ≤ ℓ(i′1qr)

+
= ℓ(q)+ℓ(r) = K(x)+K(y|x)

3. Finally, by Theorem 2.7.15 we have K(y|x) +≤K(y), which gives the final inequality
K(x)+K(y|x) +≤K(x)+K(y). �

The following theorem, K(x|y)+K(y)≈K(y|x)+K(x), is a bit more difficult to intuitively
understand. The idea is that the information contained in y, together with the minimal
information to recover x given y, should be roughly same as the information contained in x,
together with the minimal information to recover y from x. Consider a restricted example
with some assumptions about x and y. If x is complex and y simple, then we would expect
that K(x) is large, whereas K(y|x)≈0 is small (as knowing x, not much more information

2.7. KOLMOGOROV COMPLEXITY 111

is required to specify y). Conversely, K(y)≈0 is small (as y is simple) but K(x|y)≈K(x)
is large (since y is simple, it cannot help much with specifying x, as otherwise x would
also be simple). What is remarkable is that the sum of these terms, K(x|y)+K(y) and
K(y|x)+K(x) are in general about equal, regardless of the values of x and y. Equality
ony holds within a logarithmic additive correction, but this can be improved to the usual
additive fudge by augmenting x with K(x), and y with K(y). While x already includes the
information K(x), it does not in a computable way, i.e. K(x) cannot be computed from x,
so providing K(x) in addition is computationally helpful.

Theorem 2.7.17 (Symmetry of information)

K(x|y,K(y))+K(y)
+
= K(y|x,K(x))+K(x)

+
= K(x,y)

+
= K(y,x)

Proof. The last equality is easy to prove, as given a shortest program p for x′y, we can
recover x and y, second-order prefix code y, and output y′x, which gives K(x,y)

+≤K(y,x).
By a similar argument we can obtain K(y,x)

+≤K(x,y), from which the result follows.
Unfortunately, the first two equalities are very difficult to prove and beyond the scope of

this book, see [LV19, Thm.3.8.1] for a proof. �

We have defined the K-complexity for any object that can somehow be described as a
binary string, but mathematical functions f require special treatment. Assume we allowed
any mathematical description of a function f (in some precise, formal, axiomatic language)
and then encode this description somehow in binary as ⟨f⟩. This would make K(⟨f⟩) finite
even for mathematically describable but incomputable functions f ̸∈∆0

2. Below we provide a
more natural and useful definition for computable functions.

Definition 2.7.18 (Kolmogorov complexity of computable functions)
The K-complexity of a computable function f :B∗→B∗ is the length of the shortest
program that computes f(x) given x as side information:

K(f) := min
p∈B∗
{ℓ(p) :∀x.U(x′p)=f(x)}

We also need a custom complexity measure for semi-probability mass functions P and
semimeasures ν.

Definition 2.7.19 (Complexity of lower semicomputable semimeasures)
Let Msol = {ν1,ν2,ν3,...} be a canonical enumeration of all lower semicomputable
semimeasures (Definition 3.7.1), then the K-complexity of νi is defined as

K(νi) := K(i) for νi∈Msol

The definition of K(P) for lower semi-computable semi-probability mass functions is
analogous.

Remark 2.7.20 (Confusion of K(T) and K(f) and K(ν)) K(f) is conceptually
different from the K-complexity of strings and all other objects, including Turing machines.
There are many Turing machines T that can compute function f , but some are (unnecessarily)
complicated. Imagine the transition function δ contains a million superfluous states with
random transitions that are never reached. Then K(T) :=K(⟨T ⟩)≫K(f), since K(f)
only encodes the “essence” of f without the “garbage”. Note that minT {K(⟨T ⟩) :T (x)=

112 CHAPTER 2. BACKGROUND

f(x) ∀x}+=K(f), assuming ⟨T ⟩ is a “reasonable” encoding of T (Exercise 9). One downside of
Definition 2.7.18 is that K as functional of f is itself incomputable (not even approximable).

K(ν) is different again: It is relative to an enumeration ofMsol. Similarly to K(f), we
could have defined

K(f) = min
p,ϕ
{ℓ(p) :∀x. U(x′t′p)=ϕ(x,t) ∧ ϕ(x,t)→f(x)}

+
= min

p
{ℓ(p) : ∀x :U(x′p)=y′1y

′
2y

′
3...⇒yt→f(x)}

for f ∈∆0
2, with additional constraint of ϕ(x,t) and y′t being monotonically increasing

(decreasing) for f ∈ Σ0
1 (Π0

1). But this has two downsides: First, this would increase
confusion even more, since K(f) would now depend on whether we view f as computable or

semicomputable. This could be solved by making this explicit and defining K
Σ/Π/∆
n (f) as

the length of the shortest Σ0
n/Π

0
n/∆

0
n-description of f . But this leaves the second problem:

For ν∈Msol we need a definition such that K is an upper semicomputable functional of ν,
which Definition 2.7.19 provides, but K(f) does not. �

Consider some string x, which we transform via f to y=f(x). The result y cannot be
more complex than a description of the function f together with the input x, since if feeding
a simple x to a function f leads to a very complex output y, this is only possible when f
itself is also complex. Given a description of both x and f , little extra information on top is
required to describe f(x), as we can simply recover x and f from the descriptions, and run
f on x:

Theorem 2.7.21 (Information non-increase) Let f :B∗→B∗ be a computable
function. Then,

K(f(x))
+≤ K(x)+K(f)

Proof. Let q be the minimal self-delimiting program that computes f . Let r be the shortest
program such that U(r)=x. There exists an i such that

U(i′qr) := U(U(r)′q) = U(x′q) = f(x) =: y

noting that since q and r are self-delimiting programs, we can uniquely separate qr back
into q and r. So

K(f(x)) ≡ min
p
{ℓ(p) :U(p)=y} ≤ ℓ(i′qr)

+
= ℓ(q)+ℓ(r) = K(f)+K(x)

�

2.7.4 The Minimum Description Length Principle

The last property of Kolmogorov complexity that we will cover is the Minimum Description
Length (MDL) bound, which deserves its own subsection: The complexity of x can be bounded
above by the complexity of encoding some probability distribution P , plus ⌈−log2P (x)⌉, the
optimal code length of x with respect to the distribution P .

Theorem 2.7.22 (MDL Bound) If P :B∗→ [0,1] is a lower semicomputable semi-
probability mass function (i.e.

∑
x∈B∗P (x)≤1) and µ a lower semicomputable semimea-

sure (Definition 2.2.14), then

K(x)
+≤ −log2P (x)+K(P) and Km(x)

+≤ −log2µ(x)+K(µ)

2.7. KOLMOGOROV COMPLEXITY 113

Proof. We provide a sketch of the proof of the first bound, and leave the second one as
Exercise 10. The idea is to use a Shannon–Fano code (Definition 2.5.7) based on distribution
P to encode x. The second bound is proven similarly using arithmetic coding (Theorem 2.5.25)
and left as Exercise 10.

Let sx := ⌈−log2P (x)⌉. Then,
∑

x2
−sx ≤∑xP (x)≤ 1. By the Kraft Inequality (The-

orem 2.5.17) there must exist a prefix code c :B∗→B∗ with ℓ(c(x)) = sx = ⌈−log2P (x)⌉.
The proof of the Kraft inequality can be made constructive by avoiding the potentially
incomputable sorting step at the cost of one extra bit in code length [LV19]. Since the
MDL bound has an additive slack anyway, we leave this complication as Exercise 8 and
pretend the standard proof is constructive. So the proof of Kraft inequality describes an
“algorithm” by which the codewords are constructed by constructing a disjoint set of intervals
In = [0.cn,0.cn+2−ℓ(cn)). The binary string cn is then the nth codeword. Hence, there
exists a Turing machine T that takes as input a program p that computes semi-probability
P , and a Shannon–Fano codeword cx for x, and recovers the original string x. Let p∗ be
the shortest program for P under U (so ℓ(p∗)=K(P)) and i be the index for T such that
U(i′cxp)=T (cxp)=x. Note that i′cxp

∗ is a valid program for x under U (we can separate
cx from p as no prefix of cx would be a valid codeword). Hence,

K(x) ≤ ℓ(i′cxp
∗) = ℓ(i′)+ℓ(cx)+ℓ(p

∗)
+
= −log2P (x)+K(P)

as required. �

The MDL bound is useful for proving other theorems, but its most important application
is inmodel selection: Occam’s razor demands selecting the simplest theory or model consistent
with the data, which can be quantified as: The best explanation of x is the shortest program
p∗ on a universal Turing machine U for which U(p∗)=x.

Noisy data and probabilistic models. In practice, data is noisy and models will be
imperfect. To deal with this situation, we need to consider stochastic models. Let observation
x be sampled from (true) probability P , andM∋P be a class of such distributions. Given
P , the optimal code = shortest program of x has length log2[1/P (x)], achievable e.g. via
Shannon–Fano (Definition 2.5.7). Since/if we do not know P , we can take any Q∈M
instead, and encode x in log2[1/Q(x)] bits. Note that the decoder needs to know Q, so
we need to encode (a binary representation of) Q as well requiring K(Q) additional bits.
The case of sequential data x1:∞ and semimeasures µ as models using arithmetic coding
(Section 2.5.6) works analogously and is left as an exercise.

Occam’s razor tells us to choose simple models (small K(Q)), but stochastic models do
not predict perfectly, for which a −log2Q(x) penalty is added. This motivates the following
principle:

Definition 2.7.23 (The Minimum Description Length (MDL) Principle)
Given a class of probability distributionsM and data x, the MDL principle selects the
model with the shortest two-part code

QMDL := argmin
Q∈M

{−log2Q(x)+K(Q)}

This MDL principle gives Theorem 2.7.22 its name. Under very mild conditions one can
prove consistency (Definition 2.3.4) of the MDL estimator [PH05a, Hut09b].

In practice, we have to replace K(Q) by more easily computable upper bounds. For
instance, ifM=

⋃∞
d=0Md, whereMd is a class of i.i.d. distributions from which x=x1:n is

114 CHAPTER 2. BACKGROUND

sampled (e.g. polynomials of degree d−1 with Gaussian noise model), smoothly parameterized
by some θ∈Rd, then MDL becomes

QMDL := argmin
d∈N0,θ∈Rd

{−log2Qθ(x)+
d
2 log2(n)+O(d)} (2.7.24)

Intuitively, for sample size n, each parameter θi∈R can (only) be estimated to accuracy
O(1/

√
n), hence (only) the first log2[1/O(1/

√
n)]= 1

2 log2(n)+O(1) bits of the expansion of
each of the d parameters needs to be encoded.

The O(d) term depends on the smoothness of the parametrization and can explicitly
be quantified as log2

∫√
det[I(θ)/2πe]ddθ, where I(θ) is the Fisher Information Matrix

(Definition 2.3.12) of Qθ(xt), which is the same for all t due to the iid assumption. Note
that the dominant term, the negative log-likelihood −log2Qθ(x), is linear in n, the Bayesian
Information Criterion (BIC) [NC12] dimensional complexity penalty d

2 log2(n) is logarithmic
in n, while O(d) is a (small) curvature correction independent of n that may be ok to neglect.
See [Wal05, Grü07] for detailed explanations, derivations and consistency proofs for the i.i.d.
case and [Hut03e, Sec.6.1] beyond i.i.d.

Bayesian derivation. The same expression can be derived from Bayesian principles.
In the discrete case, the MDL principle can be regarded as an approximation to the full
Bayesian mixture distribution

∑
Q∈MQ(x)w(Q) which we primarily consider in this book.

Replacing the sum by a max, then taking the logarithm, changing sign, and choosing prior
w(Q)=2−K(Q) gives back Definition 2.7.23. In the parametric continuous case, if we assume
priors wd(θ) over the parameters, the Maximum A Posteriori (MAP) approximation is

QMAP := argmax
θ∈Rd∗

{Qθ(x)wd∗(θ)}, where d∗ := argmax
d∈N0

{
∫
Qθ(x)wd(θ)d

dθ} (2.7.25)

Using Laplace approximation for the integral for large n, and taking the negative logarithm,
one can show that (2.7.25) reduces to (2.7.24) [NC12]. If we choose the reparameterization-
invariant minimax-optimal Jeffreys/Bernardo prior (see Definition 2.4.12) for wd(θ), then
even the O(d) term coincides with MDL. In the continuous case, Bayes and MDL only differ
in o(1) terms that vanish for n→∞ [Wal05, Grü07].

Regularization in Machine Learning (RML). The MDL principle can also be under-
stood as a Penalized or Regularized Maximum Likelihood (RML) principle, maximizing Q(x)
which is the same as minimizing −log2Q(x) but punishing complex models by adding K(Q).
More generally, regularization is used in classical machine learning to combat overfitting to
a too complex model by adding a regularization term to the loss function. Some differences
and commonalities between MDL and RML are as follows:

• The MDL principle (Definition 2.7.23) is completely general. It makes no assumption
whatsoever on the underlying model classM: No i.i.d. or stationarity or ergodicity or
parametric or smoothness assumptions, while RML is somewhat tailored towards i.i.d.
data.

• MDL is limited to log-loss, while any loss can be used in RML [Hut07d].

• RML requires choosing a penalty and tune its strength, often by cross-validation, while
the MDL theory dictates the penalty term.

• MDL estimates probabilities Q, while RML determines mappings f , though this
difference is superficial: One can trivially generalize Q(x) to Q(y|x) in MDL, and
augment f with a noise model in RML.

2.7. KOLMOGOROV COMPLEXITY 115

2.7.5 Approximating K-Complexity

The K-complexity is a universal complexity measure, in that K will pick up any regularity
or pattern in the data, and use it to give as short as possible a description of the input.
Viewed another way, K(x) provides an absolute limit on the fewest number of bits required
to express x, when compressed by an optimal compressor. It beats all other lossless26

compressors in terms of space saved.
Unfortunately (though it shouldn’t come as a surprise) K is incomputable.

Theorem 2.7.26 (K is not finitely computable) K ̸∈ ∆0
1

Proof. Assume that K is finitely computable. We can define the function f(m) :=min{n :
K(n)≥m}, which is always well-defined, since K is unbounded (Theorem 2.7.14). Since K
is assumed computable, f is also computable (we just compute K(n) for increasing values of
n until we find the first n for which K(n)≥m, which will always exist). The value f(m) is
the smallest value n such that K(n)≥m, so by definition, K(f(m))≥m. By Theorem 2.7.21
we have that

K(f(m)) ≤ K(m)+K(f)+c1

and by Theorem 2.7.11 we have

K(m) ≤ log2m+2log2log2m+c2 ≤ 2log2m+c3

Combining both, we get

m ≤ K(f(m)) ≤ K(m)+K(f)+c1 ≤ 2log2m+K(f)+c1+c3 ≤ 2log2m+O(1)

which gives m≤2log2m+O(1) for all m, a contradiction. �

However, not all is lost. We can still approximate K in the limit from above (it is upper
semicomputable), obtaining better and better upper bound for the complexity of a string.
We can easily find some initial program p0 that prints x (just write a program that has a
copy of x hardcoded inside and outputs x). We then search over all programs p with length
less than p0, and run them in “parallel”. If any program p prints x and halts, we record the
length of p if it is better than the shortest program that prints x found so far. Eventually,
we must stumble across the shortest program p∗, and obtain K(x). The downside is that
we will not know whether we have found the shortest program yet or not, since during the
search, some programs might eventually print x if left to run for long enough, and some
would never halt. There would be no way to know for certain how many time steps would
be sufficient until the shortest program p∗ was run for long enough to print x, due to the
halting problem (Theorem 2.6.7).

We can simulate running a family of Turing machines “in parallel” with a single Turing
machine. This is done by taking an effective enumeration {T1,T2,...} of all Turing machines,
and allotting a half of the simulation time to the first machine, a quarter to the second
machine, an eighth to the third, and so on. This is done by timesharing the machines
according to the schedule 1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,5..., so the first machine is run for one
time step, then the second, the first, the third, and so on. Running countably-many programs
for an arbitrary length of time in this fashion is called dovetailing .27 As a corollary, we can

26We could potentially compress further if loss were allowed and we only needed to construct an approxi-
mation of the original, which is fine for movies or music, but not for source code.

27Incidentally, the term dovetail is taken from a method in woodworking where two pieces of wood are
joined by carving interlacing pins into the wood.

116 CHAPTER 2. BACKGROUND

also run finitely many machines {Ti1 ,Ti2 ,...,Tin} by the same construction, and sitting idle
on a time step t not associated with any machine in the list. We now prove the above result
formally.

Theorem 2.7.27 (K is upper semicomputable) K ∈ Π0
1

Proof. To prove that K is upper semicomputable, we need to describe a finitely computable
function ϕ : B∗×N0→ N0 such that limt→∞ϕ(x,t) =K(x) and ϕ(x,t) ≥ ϕ(x,t+1). The
algorithm for ϕ is as follows:

1. Initialize ϕ(x,0) :=⌈ℓ(x)+2log2ℓ(x)+ℓ(i
′)⌉, where i′ is the index of a Turing machine

that decodes second order prefix codes (by Theorem 2.7.11, k is an upper bound for
K(x)).

2. For t=1,2,3,... time steps, dovetail U(pi) for all prefix programs p1,p2,.... If at time
step t, some simulation U(pi) halts and outputs x, we let ϕ(x,t+1):=min{ϕ(x,t),ℓ(pi)},
otherwise ϕ(x,t+1):=ϕ(x,t) (which can only ever result in ϕ(x,·) getting smaller, while
still being an upper bound for K(x)).

Every time one of the dovetailed simulations halt, we check the length of the program pi that
was simulated, and if it is shorter than the length of the best found program so far (ϕ(x,t),
then ϕ decreases to the length of pi. For increasing t, the algorithm can only make ϕ smaller,
so ϕ(x,t)≥ϕ(x,t+1). Furthermore, for every x there exists a shortest program p∗ such that
K(x)=ℓ(p∗), so eventually for large enough t, the dovetailing procedure will stumble across
p∗, and run it for long enough to confirm that U(p)=x. Hence ∀x.∃T.∀t≥T.ϕ(x,t)=K(x),
and limt→∞ϕ(x,t)=K(x) follows. �

The above procedure to upper semicompute K(x) dovetails exponentially-many programs.
Remarkably, this can be reduced to polynomially-many programs [TZ16]. This also implies
that if the shortest program for x runs in polynomial time, it can be found in polynomial
time. Or phrased differently, optimal compression is no harder than decompression.

2.7.6 Relation to Shannon Entropy

We can compare the properties of K-complexity with those of Shannon entropy. Table 2.22
shows that many of the properties of K-complexity have an analogous version for Shannon
entropy.

Remark 2.7.28 (Further conditioning) Results for Shannon entropy, valid for some
probability distribution P (·|·), naturally also hold for P (·|·,Z) further conditioned on some
r.v. Z. The analogue for K-complexity is to condition K on a further string z by providing
z on an extra tape or concatenating with y or as an oracle. That is, all the results above
remain valid if conditioning K (further) on some string z. �

If X is sampled from a probability distributions P of low K-complexity, then the K-
complexity of X is close to the entropy of X in expectation, and is close to the Shannon–Fano
code length of X with high probability. This implies that not only can we compute upper
bounds on K(x), but if we know X∼P we can with high probability compute K(X) within
an additive constant. Given the incomputability Theorem 2.7.26 of K(x), this result has
particular practical importance.

2.7. KOLMOGOROV COMPLEXITY 117

Table 2.22: A comparison of the analogous properties shared between Kolmogorov Complexity
K and Shannon Entropy H. Both x and y are strings, X∼P and Y ∼Q are random variables,
and f is a computable function.

Thm. Name Kolmogorov Complexity Shannon Entropy

2.7.11 Upper bound K(x)
+≤ℓ(x)+2log2ℓ(x) H(X)≤ log2|X |

2.7.15 Extra Information K(x|y) +≤K(x)
+≤K(x,y) H(X|Y)≤H(X)≤H(X,Y)

2.7.16 Subadditivity K(x,y)
+≤K(x)+K(y) H(X,Y)≤H(X)+H(Y)

2.7.17 Symmetry of Info. K(x|y,K(y))+K(y)
+
=K(x,y)

+
=K(y|x,K(x))+K(x)

+
=K(y,x)

H(X|Y)+H(Y)=H(X,Y)
=H(Y |X)+H(X)=H(Y,X)

2.7.21 Info. Non-increase K(f(x))
+≤K(x)+K(f) H(f(X))≤H(X)

2.7.22 MDL Bound K(x)
+≤−log2Q(x)+K(Q) H(X)≤EP [−log2Q(X)]

Theorem 2.7.29 (Computing K via K(X)≈−logP (X) for X∼P) For X∼P ,

0 ≤ E[K(X)]−H(X)
+≤ K(P) and log2δ

∗
< K(X)+log2P (X)

+≤ K(P)

where
∗
< means that the inequality holds with probability at least 1−δ.

Proof. Inserting semi-probability Q(x) :=2−K(x) into Definition 2.5.12 of KL gives

0 ≤ KL(P ||Q) ≡ EP

[
log2

P (X)
Q(X)

]
= EP [K(X)]−H(X)

where in the equality we used Definition 2.5.1 of H(X). The last
+≤ in the theorem is the

MDL bound Theorem 2.7.22, and the first
+≤ follows by taking the P -expectation thereof.

The lower bound follows from Markov’s inequality

P
[
log2

P (X)
Q(X)≤ log2δ

]
= P

[Q(X)
P (X) ≥ 1

δ

]
≤ δEP [

Q(X)
P (X)] = δ

∑
x∈X∗

P (x)Q(x)
P (x) ≤ δ

hence −log2Q(X)+log2P (X)> log2δ with probability ≥1−δ. �

The difference between −log2P (x) and K(x) is called the randomness deficiency of x.
The statistical properties of x sampled from P and x with small randomness deficiency
are approximately the same. We will explore this in more detail for infinite sequences in
Section 3.10.

2.7.7 Exercises

1. [C15] (Prefix&montone Turing machines) Prove both claims in Definition 2.7.1:
(i) Given a prefix TM T , the set P :={p∈B∗ :T halts on p} is prefix-free. Additionally,
if T always halts (whatever the input), then P is complete and finite. Hint: View P
as tree and use Kőnig’s Lemma. (ii) Given a monotone TM T and a fixed string x,
the set {p∈B∗ :T (p)=x∗} is prefix-free.

2. [C10] (High-probability lower bound on code length) Let x∈X ∗ be sampled
from probability mass function P :X ∗→ [0,1], and C :X ∗→B∗ a prefix code. Show
that ℓ(C(x))>−log2P (x)+log2δ with probability at least 1−δ.

118 CHAPTER 2. BACKGROUND

3. [C22i] (No unbounded computable lower bound for K) Strengthen Theo-
rem 2.7.26 by proving that there is no unbounded computable lower bound to K. This
implies that the function f(m)=minn≥mK(n) grows incomputably slowly (in that
any computable unbounded function must asymptotically grow faster).

4. [C26] (Normalized compression distance is a metric) Define the normalized
compression distance d as

d(x,y) :=
max{K(y|x),K(x|y)}
max{K(x),K(y)}

Prove that (within additive constants) d is a metric on B∗.

5. [C10] (Arbitrariness of KU for unnatural U) Show that for every string x there
exists a universal Turing machine U ′ such that KU ′(x)=1. Argue that U ′ is not a
natural Turing machine if x is complex. Elaborate on the difficulties on making such a
statement rigorous.

6. [C16] (Compact encoding of halting sequence) The halting sequence h1:∞ is
defined as hi=1⇔Ti(ϵ) halts, otherwise hi=0. Show K(h1...hn)≤2log2n+O(loglogn)
and Km(h1...hn)≤ log2n+O(loglogn).

7. [C22] (Exponential wisdom in the halting probability) Let Ω :=∑
p:U(p) halts2

−ℓ(p) be the halting probability. Show that the first n bits in the
binary expansion of Ω encode the first 2n bits of the halting sequence, i.e. h1:2n can
be computed given Ω1:n. Show that K(Ω1:n)

+≥n, i.e. Ω is algorithmically random
(Definition 3.10.1).

8. [C16] (Constructive Kraft inequality) Modify the (If) part of the proof of the
Kraft inequality Theorem 2.5.17 so as to result in a computable code.

9. [C12] (K-complexity of functions) Prove minT {K(⟨T ⟩) :T (x)=f(x) ∀x} +
=K(f).

10. [C22] (MDL bound for sequences) Fill in the details in the proof of Theorem 2.7.22
of the first bound and prove the second MDL bound.

11. [C20] (MDL for sequences) Reformulate all expressions in Section 2.7.4 in terms
of sequential data x1:∞ and semimeasures µ.

2.8 Miscellaneous

This final background section contains material that implicitly permeates the book, but
is more distracting than helpful for all but the very mathematically inclined reader. The
casual reader can skip this section and will still have no problem understanding the essence
of the later chapters.

Section 2.8.1 introduces various distances between probability distributions: the absolute,
total variation, squared, 2-norm, Kullback–Leibler, and Hellinger distance. They all have
different properties and are used judiciously throughout the book. We prove upper bounds
for all of them in terms of the KL divergence. Section 2.8.2 discusses the extra complications
semimeasures (Definition 2.2.14) cause beyond the already vast measure theory, and lists a
variety of solutions and workarounds. Section 2.8.3 discusses how to deal with probability
zero events, especially how to condition on them, and how to take expectations of partial
functions.

2.8. MISCELLANEOUS 119

2.8.1 Distances and Their Relation

In this section we introduce various distances between probability distributions, and prove
various relationships (bounds) between them. These will be needed later in Chapter 3 and
elsewhere. The distances include the absolute distance (which is the same as twice the
total variation distance), the squared distance (square of the Euclidean distance), the KL
divergence (Section 2.5.3), and the (squared) Hellinger distance. Each distance has its pros
and cons: the absolute, squared distance, and (unsquared) Hellinger distance are (proper)
metrics, the total variation distance is very appropriate for probability measures, the squared
distance is the most common but least suitable in general (see exercise), and the KL is
information-theoretically the most useful for proving bounds. KL is an upper bound to many
distances, while at the same time is a lower bound for many loss functions. This property
makes KL an extremely useful tool in proofs.

One of the key bounds is Pinsker’s inequality. We prove a generalization of it, from
which most of the other relations follow. We limit ourselves to finite sample spaces Ω,
so probabilities can be represented as d-dimensional vectors in the probability simplex.
Generalization to probability measures on general sample spaces Ω is a formal exercise in
measure theory and left as an exercise.

The proofs are elementary but some are somewhat messy, and can be freely skipped
without missing context for the rest of the book.

We present Pinsker’s inequality for binary alphabet Ω=B first, since the general case will
be reduced to it. While the lemma stands as it is, the intended application is for p=P(1)
and q=Q(1), so the r.h.s. is the KL divergence between P and Q.

Lemma 2.8.1 (Pinsker’s binary inequality) For 0≤p,q≤1 we have that

2(p−q)2 ≤ pln
p

q
+(1−p)ln1−p

1−q

There are many proofs, none are particularly enlightening [Hut05b], so we just present the
possibly shortest one. Figure 2.16 clearly shows that ‘right-hand-side minus left-hand-side’
is non-negative.

Proof. We define f(x)=plnx+(1−p)ln(1−x), and note that plnp
q+(1−p)ln 1−p

1−q =f(p)−f(q).
Also note that for 0≤x≤1 we have that x(1−x)≤1/4. Then,

f(p)−f(q) =

∫ p

q

f ′(x) dx =

∫ p

q

p−x
x(1−x) dx ≥ 4

∫ p

q

(p−x) dx = 2(p−q)2
�

To generalize the Pinsker inequality beyond square distance and binary alphabet we
need the following elementary facts:

Lemma 2.8.2 (Convex even functions are monotonic on R+) Let f :R→R be
an evena convex function. Then f is monotonically increasing over the positive reals.

aAn even function f is one satisfying f(x)=f(−x).

Proof. Take the definition (Definition 2.2.56) of convexity f(αx+(1−α)y)≤αf(x)+(1−
α)f(y) for 0≤α≤1. and insert x=a+b and y=0 to obtain

f(α(a+b)) ≤ αf(x)+(1−α)f(0) (2.8.3)

120 CHAPTER 2. BACKGROUND

Now, assuming a,b≥ 0, and inserting α= a
a+b ≥ 0 or α= b

a+b ≥ 0 gives the following two
inequalities:

f(a) ≤ a

a+b
f(a+b)+

b

a+b
f(0)

f(b) ≤ b

a+b
f(a+b)+

a

a+b
f(0)

Adding the two inequalities to obtain

f(a)+f(b) ≤ f(a+b)+f(0) (2.8.4)

Also, in (2.8.3) we can choose α=1/2, x=−b, y=b and obtain f(0)≤ 1
2f(b)+

1
2f(−b)=f(b)

as f is even. Combine with (2.8.4) and simplify to obtain f(a)≤f(a+b), which proves f to
be monotonically increasing for positive arguments. �

Lemma 2.8.5 (Convex even functions are subadditive) Let f be an even convex
function such that f(0)≤0, Then f(a)+f(b)≤f(a+b) for all and a,b≥0.

Proof. Follows immediately from (2.8.4) and f(0)≤0. �

Theorem 2.8.6 (General entropy inequality [Hut05b, Sec.3.9.2]) Let (y1,...,yd)
(and (z1,...,zd)) be elements of a d-dimensional (semi)probability simplex, i.e. yi≥0
with

∑
iyi =1 (and zi ≥ 0 with

∑
izi ≤ 1). Then for any function f :R→R that is

convex (f(αx+(1−α)y)≤αf(x)+(1−α)f(y) for all x,y∈R and all α∈ [0,1]) and even
(f(x)=f(−x)) and satisfies f(0)≤0, we have

1

2

d∑
i=1

f(yi−zi) ≤ f

√√√√1

2

d∑
i=1

yiln
yi
zi

Proof. Let I={1,...,d}. Take any partition I=P∪· Q into two disjoint sets P and Q. Let S
represent P or Q, and define yS :=

∑
i∈Syi and z

S :=
∑

i∈Szi. Now, note that for i∈S, we
can normalize the probability distributions by defining pSi =yi/y

S and qSi =zi/z
S . One can

verify that {pSi }i∈S and {qSi }i∈S are valid probability distributions for S. Hence, by Gibbs’
inequality (Theorem 2.5.15) we have

0 ≤
∑
i∈S

pSi ln
pSi
qSi

=
∑
i∈S

yi
yS

ln
yi
yS

zS

zi
=
∑
i∈S

yi
yS

(
ln
yi
zi
+ln

zS

yS

)
=

1

yS

∑
i∈S

yiln
yi
zi
− 1

yS

∑
i∈S

yiln
yS

zS

hence
∑
i∈S

yiln
yi
zi
≥
∑
i∈S

yiln
yS

zS
= ln

yS

zS

∑
i∈S

yi = yS ln
yS

zS

Noting that yQ=1−yP and zQ≤1−zP , we write

d∑
i=1

yiln
yi
zi

=
∑
i∈P

yiln
yi
zi
+
∑
i∈Q

yiln
yi
zi

≥ yP ln
yP

zP
+yQln

yQ

zQ
≥ yS ln

yS

zS
+(1−yS)ln1−y

S

1−zS ≥ 2(yS−zS)2

2.8. MISCELLANEOUS 121

where the last inequality follows from Lemma 2.8.1. Therefore, we obtain

(yS−zS)2 ≤ 1

2

d∑
i=1

yiln
yi
zi

(2.8.7)

At this point we now choose P ={i∈ I : yi>zi} and Q={i∈ I : yi≤ zi} and upper bound∑
i∈Sf(yi−zi) as follows:∑
i∈S

f(yi−zi)
(a)
=
∑
i∈S

f(|yi−zi|)
(b)

≤ f
(∑
i∈S

|yi−zi|
)

(c)
= f

(∣∣∣∑
i∈S

yi−zi
∣∣∣) (d)

= f
(
|yS−zS |

)

= f

(√
(yS−zS)2

)
(e)

≤ f

√√√√1

2

d∑
i=1

yiln
yi
zi

(a) follows from the fact that f(x)=f(−x). (b) follows by Lemma 2.8.5. (c) holds as by
construction of S, all the yi−zi terms are either all positive, or all negative, so we can sum
first and then take the absolute value after. (d) follows by distributing the sum and inserting
the definitions of yS and zS . (e) is applying (2.8.7), together with monotonicity of

√· and f
(Lemma 2.8.2). We can now conclude the proof by noting that

1

2

d∑
i=1

f(yi−zi) =
1

2

∑
i∈P

f(yi−zi)+
1

2

∑
i∈Q

f(yi−zi) ≤ f

√√√√1

2

d∑
i=1

yiln
yi
zi

�

Corollary 2.8.8 (Specific entropy inequalities) Continuing from Theorem 2.8.6,
we also have that

(S) Square:

d∑
i=1

(yi−zi)2 ≤
d∑

i=1

yiln
yi
zi

(A) Absolute:

d∑
i=1

|yi−zi| ≤

√√√√2

d∑
i=1

yiln
yi
zi

(H) Hellinger2:

d∑
i=1

(
√
yi−
√
zi)

2 ≤
d∑

i=1

yiln
yi
zi

Proof. Taking Theorem 2.8.6 and substituting f(x) = x2 or f(x) = |x| gives (S) or (A)
respectively. To prove (H), for t,y,z>0,

g(t) := −ln(t)+t−1 ≥ 0 implies that

f(y,z) := yln
y

z
−(√y−√z)2+z−y = 2yg(

√
z/y) ≥ 0

hence yln(y/z)−(√y−√z)2≥y−z. Summing, we obtain∑
i

yiln
yi
zi
−
∑
i

(
√
yi−
√
zi)

2 ≥
∑
i

y−
∑
i

z ≥ 1−1 = 0

from which the result follows. �
2Hellinger2 stands for squared Hellinger distance.

122 CHAPTER 2. BACKGROUND

2.8.2 Dealing with Semimeasures

Measure theory is already quite advanced, but at least it has been well-developed. As for
semimeasures, we will present different ways to deal with them. Unfortunately we have
some need for semimeasures in this book, which will become clear later. Measure theory is
a vast non-trivial field we can tap into, but semimeasure theory essentially does not exist.
Below we discuss several solutions or workarounds, some of them are used in this book. The
only measurable space we need to consider is X∞ for finite X with σ-algebra F=σ({Γx})
(see Definition 2.2.14).

Only use ν on cylinder sets. For most parts of the book, we actually only need to
know ν on the cylinder sets Γx it is defined on. The most frequently used quantity is the
predictive distribution ν(xt|x<t)≡ν(Γx1:t

)/ν(Γx<t
). For predictions/agents only involving

fixed finite sequence length/lifetime m, we could even choose finite Ω=Xm and F =2Ω

which trivializes most of semimeasure theory.

Develop semimeasure theory. Extending volumes of measure theory definitions and
results to semimeasures may be an interesting research program, but is beyond the scope of
this book. We leave this to some eager math students (Exercise 7).

Derive required semimeasure results. A more focussed solution would be to only
develop the theory useful/needed/convenient for this book (Exercise 6). Unfortunately even
this would be a major undertaking. Extending the finitary results is often not too hard and
indeed has been done for some such as the entropy inequalities (Corollary 2.8.8). For others,
such as martingale convergence or even just the general definition of expectation, we would
have to dig too deep.

Defining ν on measurable sets. Strictly speaking, ν is only pre-semimeasure. For more
sophisticated results, we need to somehow extend the definition of ν to non-cylinder sets,
which is also most likely the first step towards developing a proper theory of semimeasures.
For this we need a semimeasure version of Carathéodory’s extension theorem. We only need
a special case for cylinder sets. The following (unverified) construction may work, but is
very speculative, and essentially states an open research problem: Let S,T ⊆X ∗ denote
prefix-free sets (Section 2.1.2), and define ΓS :=

⋃· x∈SΓx and

ν∗(A) := sup
S:ΓS⊆A

∑
x∈S

ν(Γx)

This definition is consistent with ν in the sense that ν∗(Γx)=ν(Γx) and ν∗ is a semimeasure
as per Axiom 2.2.3. Proof sketch: Let ΓS⊆A and ΓT ⊆B, then for disjoint A and B, we
have

∑
x∈Sν(Γx)+

∑
x∈T ν(Γx)=

∑
x∈S∪· T ν(Γx)≤ν∗(A∪· B), then taking supS and supT on

the l.h.s. gives µ∗(A)+µ∗(B)≤µ∗(A∪· B). Indeed, ν∗ is defined for all sets A⊆X∞ and
seems to be what is called an inner measure. Unfortunately there are F -measurable sets A
for which 0=ν∗(A) ̸=ν(A)=1 if ν is a measure extended to F : Take A=X∞\{x0∞ :x∈X ∗}
and Lebesgue measure ν. An outer semimeasure that is consistent with ν may be defined as

ν∗(A) := inf
S⊇A

∑
x∈S′

ν(Γx) where S ′ :=argmin
S′

{|S ′| :ΓS′ =ΓS}

That is, S ′ is the smallest representation of ΓS : S for which xa∈S for some x and all a∈X
are excluded. We cannot use the standard Carathéodory criterion to decide which sets are
measurable, but we already constructed the σ-algebra F , so if we define ν(A):=ν∗(A) for all
A∈F , this may be a (semi)measure on F . Another approach may be to define µ(A)=µ∗(A)
iff outer and inner semimeasures match and then extend this to all A∆Z for any Z with
ν∗(Z)=0 or so.

2.8. MISCELLANEOUS 123

Expectations w.r.t. semimeasures. Once we have defined ν for all measurable sets, we
could (mis)use (one of) the general definition(s) of expectations for non-negative f :

Eν [f] :=

∫ ∞

0

F̄ (s) ds with F̄ (s) := ν({ω∈Ω:f(ω)>s})

also for semimeasures (or maybe even use ν∗ or ν∗). For indicator function f(x1:∞) =
Jx<t=y<tK, this leads to F̄ (s)=ν(Γy<t

)Js<1K, hence Eν [f]=ν(Γy<t
) which is sensible, but

decomposing 1=
∑

a∈X fa with fa(x1:∞) :=Jx1=aK results in

E[
∑
a

fa] = Eν [1] = ν(Γϵ) ≥
∑
a∈X

ν(Γa) =
∑
a∈X

E[Jx1=aK] =
∑
a

E[fa]

so expectation is no longer linear under semimeasures. Other choices for E, possibly
(implicitly) based on the reductions to measures discussed below, may preserve linearity.

Include finite sequences. The necessity of semimeasures arises from the fact that some
monotone Turing machines may not output infinite sequences but stop or loop after a finite
output. The probably most honest treatment is to actually include these finite outputs
and enlarge the space Ω to X∞∪X ∗ and define the probability that the monotone TM has
finite output x∈X ∗. We can extend Ω from X∞ to X∞∪X ∗, and the cylinder sets become
Γ∗
x :={xy :y∈X∞∪X ∗}. In general we can convert any semimeasure ν to a measure ν̃ on
σ(Γ∗

x,x :x∈X ∗) via

ν̃(Γ∗
x) := ν(Γx) and ν̃({x}) := ν(Γx)−

∑
a∈X

ν(Γxa)

The latter we will interpret in Section 15.7 as the probability of the world ending or the
predictor/agent dying after observing x∈X . Now we have

Γ∗
x = {x}∪

⋃
a∈X

Γ∗
xa and indeed ν̃(Γ∗

x) = ν̃({x})+
∑
a∈X

ν̃(Γ∗
xa)

that is, ν̃ is a proper probability measure. For a lower semicomputable ν, ν̃ is only limit-
computable on X ∗, and the hybrid sample space is annoying making many equations
cumbersome to deal with.

Extend the alphabet. A similar “honest” idea is to consider alphabet X∪· {⊥} to include
a “death” symbol ⊥, and ∀x∈X ∗ extend µ via

ν(Γx⊥k) := ν(Γx)−
∑
x∈X

ν(Γxa) ∀k∈N+ and ν(Γx⊥y) := 0 ∀y∈(X∪{⊥})∗\{⊥}∗

Now ν is a proper measure on (X∪{⊥})∞. We keep the convenience of not having to deal
with finite sequences, and in the agent case, if we assign reward 0 if/once observing a ⊥
(death), the Bellman equations remain valid for (once semi now)measures, and agent death
is still modelled. ν remains lower semicomputable on x∈X ∗. It fails if x includes ⊥, but
this does not cause any problems, esp. if reward 0 is assigned to ⊥, and makes the value
function limit-computable (see Sections 6.7 and 13.1). Some results have only been derived
for binary X , so are not available on B∪{⊥}. ξ retains its mixture and hence dominance
property even on sequences containing ⊥.

124 CHAPTER 2. BACKGROUND

Solomonoff normalization. Given a semimeasure ν on cylinder sets, we can define

νnorm(xt|x<t) :=
ν(Γx1:t)∑

xt∈X ν(Γx1:t
)
, νnorm(Γx1:n

) :=

n∏
t=1

νnorm(xt|x<t), νnorm(ϵ) := 1

which is a properly normalized probability measure after extending it to F . Crucially, it
also preserves dominance (Proposition 3.1.5), since νnorm(Γx)≥ ν(Γx). Two downsides
are that νnorm is no longer lower semi-computable, even if ν was, but it is at least still
limit-computable. Also we lose the semimeasure defect later attributed to the death of an
agent. Note that we could redistribute the missing probability mass in (infinitely many)
other ways, all of them satisfying νnorm≥ν.

Lower limit normalization. We could also look for the largest measure ν≤ν. This is
unique and can explicitly be represented [Hut14b] as

ν(Γx<t) := lim
n→∞

∑
xt:n

ν(Γx1:n)

The limit exists since the argument decreases with n due to the semimeasure property of ν. It
is not a probability measure: One can show that ν(Γx)= ν̃(Γx) (note Γx, not Γ

∗
x, Exercise 4)

with the missing probability mass ν̃(X ∗) on finite sequences being unaccounted for in ν, but
ν can easily be normalized to one by ν(x)/ν(ϵ), unless ν is the (uninteresting) 0-measure.
If ν is generated (lower semicomputed) by a monotone Turing machine (Definition 2.7.1
and Definition 2.7.19), the conversion to ν corresponds to disregarding all finite outputs
with the Turing machine halting or looping forever. As such, ν is in general not even
limit-computable, and pushes it up to ν(x<t)=infn

∑
xt:n

supsν
s(x1:n)∈Π0

2 (2.6.22). Note

that in general ν ̸×≥ν, e.g. for ν(1n)=1/2 and ν(0n)=2−n−1 and 0 on all other sequences we
have ν(0)=0 despite ν(0)=1/4 and ν(ϵ)=1/2 ≠0. But if we normalize first, i.e. take a class
M={ν :ν∈M}, and then mix over it, we trivially have ξM≥wνν, but this pushes ξM even
to Σ0

3.

Computable measures. A monotone Turing machine that is guaranteed to output only
infinite sequences generates a properly normalized probability measure. LetMcomp be the
class of all such measures. Each measure inMcomp is computable, but unlikeMsol,Mcomp

is not effectively enumerable, and hence the mixture ξ overMcomp is not even approximable.

Assume the true environment µ is a proper probability measure. This is a
global assumption we make throughout this book. Indeed, some key theorems fail if µ is
a semimeasure, such as the entropy inequalities (Corollary 2.8.8). There may be a way to
generalize some results, but there seems to be no particular need, except possibly modelling
finite universes or death.

Primitive recursive measures Mpr. Instead of considering all Turing machines, we
could restrict ourselves to primitive recursive (p.r.) functions, which are total functions
that have a p.r. upper bound on the run-time. The class contains virtually all computable
functions one usually encounters. Functions computable but not p.r. are very slow, e.g. have
run time growing like the Ackermann function. The class of p.r. functions is itself recursively
enumerable (even without repetition if desired [Liu60]). This can be converted into an
enumeration of p.r. measuresMpr⊂Mcomp, e.g. by Solomonoff normalization. Assuming
computable prior weight wν , the Bayesian mixture ξ over Mpr is then computable, but
ξ ̸∈Mpr.

2.8. MISCELLANEOUS 125

Reflective-oracle computable measures MO
r . In Section 10.5 we will introduce a

classMO
r ⊃Mcomp of probability measures that are computable with the help of a reflective

oracle. It has the nice property that the normalized Bayes mixture dominates the class
and is in the class. Even more remarkable, the Bayes-optimal policy π∗

ξ is also in the class,
solving the long-standing Grain of Truth problem.

Conclusion. Ideally the whole book were developed for semimeasures, sinceMsol is the
core intended class of application used in Solomonoff induction and the AIXI agent, but this
is unfortunately not feasible. So a lot of theory in this book is developed for measures only,
and some of the approaches above have been or need to be applied when semimeasures crop
up. The text may on occasion be a bit sloppy or sweep subtleties under the carpet, but we
tried to be precise and explicit in the theorems. Any remaining problems should be fixable
with one of the approaches above. In case of doubt, assume ⊥ has been added to X and in
the agent case r=0 if ⊥ is perceived, or assumeMpr orMcomp instead ofMsol.

2.8.3 Probability Zero

Probably zero events are another nuisance. For continuous spaces Ω, they are ubiquitous, e.g.
when throwing darts at a board, the probability of hitting any specific point is zero. Even so,
the worst player has a non-zero probability of hitting some segment or ring. Technically, this
is modelled by a probability density. One can still define versions of conditional probability
and expectations conditioned on probability zero outcomes. Another question is what the
expectation of a function is that is infinity or undefined on a set of measure zero. Nearly all
of the book only deals with discrete random variables, which simplifies matters, but does
not trivialize the problem.

We collect the issues and how to deal with them below in one place, and implicitly
assume one such solution is adopted in the rest of the book, in order not to clutter the book
and distract from its core aim.

Expectation for partial functions. The expression of expectation in Theorem 2.2.45
is fine as long as the function f is total. To simplify notation, assume g(x) :=f(x,y) does
not depend on y, but can assume infinite values or is partial. The correct expression of
expectation for discrete X is

E[g(X)] =
∑

x∈X(Ω):p(x)>0

g(x)p(x) for g :R→R∪{±∞}∪{⊥}

Note the restriction of Σ to x for which p(x)>0. For finite-valued total functions g, i.e. with
range R, this restriction is ineffective and can be dropped. We still want the expectation to
be defined if g is infinity or undefined (⊥) for some x with p(x)=0. The standard convention
in measure theory is that if two functions differ on a set of measure 0, then they have the
same expectation. So if we assume g(x) ̸∈R only if p(x)=0 and define g̃(x):=g(x) if g(x)∈R,
and g̃(x) :=0 otherwise, then E[g(X)]≡E[g̃(X)]=

∑
xg̃(x)p(x)=

∑
x:p(x)>0g(x)p(x).

As a simple example, consider Ω={0,1} and g(x):=1/p(x), then E[g(x)]=
∑

xg(x)p(x)=∑
x∈Ω1=2 provided ∀x.p(x)>0. On the other hand, if p(0)=0 we get E[g(x)]=g(1)p(1)=1.

Without the restriction on the sum, the expectation would be undefined, or maybe 2 by
a limit argument p(0)→ 0. All this is sometimes sloppily expressed as “±∞·0 = 0 and
⊥·0=0 in measure theory.” As such, we will implicitly assume such sum restriction where
necessary. For instance, this would be an alternative view in the definition of entropy and
KL divergence that the term 0ln0 is simply absent rather than 0 by a limit argument.

126 CHAPTER 2. BACKGROUND

Conditioning on P (A)=0. Conditioning on probability 0 events is a subtle art. Since a
probability zero event will never happen, the safest option is to leave P(B|A) undefined if
P(A)=0, but this is restrictive (e.g. does not allow conditional densities) and cumbersome
(requires constant handling of this special case). There is no best solution to this problem.
The standard approach is as follows:

We have defined PA(B):=P(A|B) for event A,B∈F with P(B)>0. We also have defined
P [X=x|Y =y], which looks different but has the same meaning if A={ω :X(ω)=x} and
B={ω :Y (ω)=y}. Conversely any even B can be described by random variable Y =11B
and B= {Y =1}, and similarly for A. Hence we can also mix P [X=x|B] or P (A|Y = y)
without problems. Things get hairy when Y is a continuous random variable and P(B)=0.
In this case we retreated to densities and defined pX|Y (x|y)= pX,Y (x,y)/pY (y), which is
well-defined as long as the density pY (y)>0 even though P [Y =y]=0. In (2.2.35) we defined
P (X∈R|Y =y)=

∫
R
pX|Y (x|y) dy, which looks like we have managed to meaningfully condition

on a probability 0 event. An equivalent way of arriving at this expression is to condition
on BY

ε := {ω : |Y (ω)−y|<ε} and then take the limit ε→ 0. It is now tempting to define
P (A|B)=limε→0P (A|BY

ε) for arbitrary events A, which represents an exchange of limit with
integral, which may go wrong. Indeed, there are Z and z such that P (A|Y =y) ̸=P (A|Z=z)
despite the events {ω :Y (ω)=y}=B={ω :Z(ω)=z} being the same; see e.g. the famous Borel–
Kolmogorov paradox. The solution is to proceed with care, never write P (A|B) if P (B)=0
and remember that P (A|Y =y) has a special meaning and definition for continuous Y , and
depends on more than just B, namely P (A|Y =y):=limε→0P (A| |Y (ω)−y|<ε). This warning
also applies to the conditional expectation E[X|Y =y]. Analogous to E[X|Y] :=E[X|σ(Y)]
based on Definition 2.2.48(iv) we can define random variable P (A|Y) :=E[11A|Y] which does
not rely on densities.

See [Hut05b, Sec.3.9.1] for some (other, unorthodox, limited) suggestions.

Conditioning on µ(x<t)=0. We only encounter this problem for random sequences
and µ(·|x<t) when µ(x<t)=0, so we focus on this special case. If x were continuous and
µ a density, there are ways to condition on probability zero outcomes that have positive
probability density. But here x is discrete. The default solution would be to add to every
theorem “holds with µ-probability 1” if it is not there already. Since µ(x<t) = 0 is a
probability 0 event, we can safely ignore such histories x<t in our consideration.

Probability Kernels. In the agent case, we consider policy π interacting with environment
µ generating history h1:∞. Occasionally we are interested in how a policy π continues h<t,
for any h<t even if h<t would never occur (has probability 0 under π). For instance, h<t

could have been created by a different policy.
A satisfactory and general solution is to start with “conditional” distributions and then

take their product. Technically we start with probability kernels µt :X t→∆X for all t∈N,
where for each x<t, µt(·;x<t) is a probability distribution over X (note the semicolon and
index t). Then

µ(x1:n) :=

n∏
t=1

µt(xt;x<t) and µ(xt|x<t) = µt(xt;x<t)

is uniquely and well-defined even when µ(x<t)=0. The collection of probability kernels (µt)
contains strictly more information than the joint measure µ.

Consider a probabilistic Turing machine T that lower semicomputes semiprobability
kernels, i.e. νT (xt|x<t) is the probability that T (x<t,t,random noise) outputs xt. The class
{νT : T TM} is recursively enumerable and contains all and only semimeasures that are
conditionally lower semicomputable. This class is “slightly” smaller thanMsol, since ν∈Msol

are not necessarily conditionally lower semicomputable.

2.9. HISTORY AND REFERENCES 127

Pragmatic approach. The above is the approach we are generally taking, but without
being pedantic about the semicolon and index t, i.e. we directly define ν(xt|x<t), even though
strictly speaking it is a probability kernel and not a conditional distribution if ν(x<t)=0.
We will also not explicitly pursue this path everywhere, but implicitly assume when we say
“let ν be a (semi)measure” that the conditional distributions have been defined as well.

If we consider a concrete mechanism that generates ν, but do not provide the conditionals,
such as is the case for monotone Turing machines generating νT , we define ν(xt|x<t)
arbitrarily when ν(x<t)=0, and as far as possible consistent with other properties, such as
computability.

Example. For instance, if νsT (x<t) for s=1,2,3,... is a lower-computation of lower semi-
computable νT (x<t), define ν

s
T (xt|x<t)=1/|X | (or any other computable choice) as long as

νsT (x<t)=0. Once (if ever) νsT (x<t)>0, then of course νsT (xt|x<t)=ν
s
T (x1:t)/ν

s
T (x<t). Note

that the conditional distribution is not lower semicomputable but only limit-computable
in any case. In contrast, in Section 10.5 we directly define conditional (reflective-oracle)
computable measures.

2.8.4 Exercises

1. [C22] (A and
√
H are metrics but not KL) Prove that the Absolute distance

and UnSquared Hellinger distance
√
H are both metrics, but the KL divergence is not

(Definition 3.2.1).

2. [C15] (Entropy inequalities are tight) Show that the bounds in Corollary 2.8.8
are tight in the sense that the ratio of l.h.s./r.h.s. can get arbitrarily close to 1.

3. [C25] (Distance on general samples spaces) Generalize all definitions of distances
and bounds to probability measures on general sample spaces Ω, except for the 2-norm.
Explain what the problem with the 2-norm is.

4. [C12] (Lower limit normalization) Derive an explicit expression for ν̃(Γx) (note
Γx ̸=Γ∗

x) and show that ν(Γx)= ν̃(Γx), both defined in Section 2.8.2.

5. [C35] (Semimeasure nuisance) Prove all claims in Section 2.8.2.

6. [C40o] (Semimeasure results) Suitably generalize all results in this book to
semimeasures and prove them.

7. [C50o] (Semimeasure theory) Take a textbook on measure theory and suitably
extend all definitions and results to semimeasures.

2.9 History and References

The canonical reference text on artificial intelligence [RN20] gives a comprehensive overview
over AI approaches in general and contains over a thousand further AI-related references.
The introductory chapter of [LV19] covers similar material as our background chapter with
many further related references. This history and reference section significantly expands
[Hut05b, Sec.2.5].

128 CHAPTER 2. BACKGROUND

General math background. For those looking for a more thorough introduction to the
mathematical foundations of computer science, [GKP94] covers the basics from the ground up:
summations, recurrences, integer functions, elementary number theory, binomial coefficients,
sequences, generating functions, discrete probability, and asymptotic methods. [LLM17] is a
gentle introduction to formal mathematics, covering basic logic, various methods of proof,
set theory, number theory, graph theory, state machines, combinatorics and asymptotics.
There is also an entire part devoted to basic probability, digging into far more examples
than we introduce in this book. [Ham18] focuses on formal proof in mathematics though
elementary algebra, number theory and calculus. The core goal of the text is how to structure
mathematical proofs that are sound, clean and succinct, rather than teaching any particular
domain of mathematics. Gowers [GBLP08] Companion to Mathematics covers more high
level topics such as logic, set theory, number theory, algebra, geometry, topology, analysis,
probability and more, but is useful more as a reference text. [HDG+15] provides a similar
reference text for applied mathematics, covering many well known numerical methods, a
reference list of famous equations and laws, and quick summaries of various areas of applied
mathematics. The Matrix Cook Book [PP12] is a large collection of useful matrix relations.
[DFO20] provides a strong background in linear algebra, analytic geometry, probability
theory, and vector calculus. Abstract concepts are grounded through examples of how they
are used in machine learning. [HJ17] provides a collection of commonly used properties
or classes of matrices, matrix norms, various forms or decompositions, and definitions of
various matrix operations. [Koz00] is a two-page reference of inequalities, many of which
appear in our book. [Sho01] is a dry but precise introduction to mathematical logic, covering
propositional and first-order logic, set theory, recursion theory and Gödel’s incompleteness
theorems. For the casual reader, [Pic09] and [Pic14] give an illustrated introduction to the
history of mathematics and physics respectively. Logicomix [DPP09] presents some of the
history of mathematics and logic in a graphic novel format, following the life of Bertrand
Russell and the formation of logic and set theory.

Binary strings (2.1). This section is based on the corresponding sections in [Hut05b]
and [LV19]. Principles of mathematical analysis by Rudin [RT64] provides an introduction
to many mathematical concepts from real analysis that we assume. Prefix codes are also
discussed at depth in the book of Li and Vitányi [LV19]. The general theory of coding and
prefix codes can be found in [Gal68].

Measure theory and probability (2.2). This section is based on material from [GS20].
Most of the measure theory we required has been omitted as much as reasonably possible,
enough to lay a foundation for probability and no further. The book Real Analysis by Stein
and Shakarchi [SS05] provides a slower, more formal introduction to measure theory for
those so inclined. The i.i.d. assumption is prevalent in statistics and machine learning but
unsuitable for AGI [Hut22].

Although games of chance date back at least to around 300 b.c., the first mathematical
analysis of probabilities appears to be much later. Important breakthroughs have been
achieved (in chronological order and with significant simplification) by Cardano [Car63], a
systematic way of calculating probabilities by Pascal (in correspondence with Fermat) and
conditional probability [Pas54], Bayes’ rule [Bay63], the distinction between subjective and
objective interpretation of probabilities and the weak law of large numbers by Bernoulli
[Ber13], equi-probability due to symmetry and other things by Laplace [Lap12], the principle
of indifference by Keynes [Key21], Kolmogorov’s axioms of probability theory [Kol33],
early attempts to define the notion of randomness of individual objects/sequences by von
Mises [Mis19], Wald [Wal37], and Church [Chu40], finally successful by Martin-Löf [ML66],
the notion of a universal a priori probability by Solomonoff [Sol64] and its mathematical

2.9. HISTORY AND REFERENCES 129

investigation by Levin [ZL70, Lev74].

There are many suitable textbooks for probability [Shi96, Kal10]. The bulk of this
chapter is based on two books: Probability and Random Processes by Grimmett et al. [GS20]
provides a more gentle introduction to probability theory, with more exercises for practice
than we provide. They cover probability theory starting with an axiomatic foundation,
move on to random variables (both discrete and continuous), as well as covering sequences
and convergence of random variables. Introduction to Probability Models by Ross [Ros72]
is a more advanced book, that provides a similar introduction with events and random
variables (parameterized by commonly used distributions in statistics), but the bulk of the
book is beyond the scope of what we require. For a thorough treatment of the early history
of the concept of probability the reader is referred to the books by Hacking [Hac75] and
Hald [Hal90], and for the foundations developed in the 20th century to the book by Schnorr
[Sch71] and the PhD theses by van Lambalgen [Lam87] and Wang [Wan96]. See also the
book [SV01] by Shafer & Vovk from a more game-theoretic and finance perspective. Feller
[Fel68] is another good standard textbook. A philosophical treatise of conditional probability
can be found in [Haj11].

Statistical inference and estimation (2.3). A great introduction to (frequentist)
statistics is [Was10], which focuses on the general theory and fundamental principles rather
than specific models. Section 2.3.4 is based on a chapter from Elements of Information
Theory [CT06], where the Cramér–Rao inequality (Theorem 2.3.14) is proven. The sunrise
problem was first described by Laplace [LD95] in which the rule of succession now known as
Laplace’s Rule is described (Section 2.4.3).

bias, variance, consistency, MSE. More discussion about bias and consistency for estima-
tors can be found in most texts on statistics [LC98, CT06, CB02]. The Mean-Squared-Error
(MSE) for an estimator is a commonly used metric to determine the performance of an esti-
mator, motivated by being equal to the variance, plus the square of the bias, of the estimator
[WMS08]. The decomposition of the error in this way is called the bias-variance trade-off
[GBD92], describing the (competing) desires to have a model that fits the training data well
(small bias), as well as being able to generalize to unseen data (small variance). This (now
classic) decomposition of the loss has come into question in the modern deep learning era,
with the observed phenomenon of double descent : increasing model size well beyond the size
considered to overfit can paradoxically lead to better generalization [NKB+19, BHMM19].
[VN12] gives a large collection of unbiased estimators used in practice.

Score, Fisher information, Cramer–Rao. The score was first introduced in [Fis35] as a
potential measure for the quality of a particular statistical test. This was compared to the
“ideal score” (the derivative of the log-likelihood), that the score now denotes, indicating how
sensitive the log-likelihood function is to changes in the parameters. The Fisher information
I(θ) (the variance of the score) was introduced in [Fis22] as a measure of how informative
observations of X are about θ. More about Fisher information and its properties can be
found in [LMV+17]. The Cramér-Rao bound, discovered independently by Cramér [Cra99]
and Rao [Rao92], gives a lower bound on the variance of any possible choice of estimator as
the reciprocal of the Fisher information. Any estimator that meets this bound is known
as efficient [Fis22]. The Jefferys prior is introduced in [Jef46], defined as the square root
of the determinant of the Fisher information. This choice of prior is motivated by the fact
that it is invariant under a different choice of parameters for the model (reparameterization
equivalence) [ES10].

Bayesian estimation. Often, a collection of data is drawn from a hidden model with
unknown parameters, and the goal is to use Bayesian methods to learn those parameters.
Many such methods are covered in [GCSR95, Fra18]. Neural networks are said to be

130 CHAPTER 2. BACKGROUND

universal in the sense they can approximate any continuous function if sufficiently large
[Cyb89]. There have been many approaches to try and construct methods of deep learning
based on Bayesian methods [JLB+22]. There is some work to indicate that gradient descent
itself finds a good set of parameters in a similar fashion that a Bayesian learner would
[MVSL21, SHB+17], or that even the structure of a neural network with randomly initialized
weights can be interpreted as having an inductive bias towards simple functions [MSV+20].

Often, we desire a predictor that is well-calibrated, meaning that the probability they
assign to an event is equal to the frequency of that event occurring. [GPSW17] shows that
modern deep learning models are less well-calibrated than older models, even if they are
more accurate. [OWA+22] introduce epistemic neural networks, a network that can be
added onto an existing network to provide uncertainty estimates for the predictions. The
limitations of frequentist statistics are discussed in [Hut05b, Sec.2.3.1][Háj09b]: The naive
definition is circular (though see Cournot’s forgotten principle [Cou43]), identical events are
a mirage (the reference class problem), and most seriously the limitation to i.i.d. data.

Alternatives to probability theory. But given the generality and consistency of Bayesian
inference, it is somewhat surprising that so many alternatives sprouted in the history of AI
[Che85, Che88]: Default reasoning [Rei80], non-monotonic logic [MD80], circumscription
[McC80], certainty factors [Sho76, BS84], Dempster-Shafer theory [Dem68, Sha76], Fuzzy
logic [Zad65, Zim91], possibility theory [Zad78], imprecise probabilities [Wal91, Hut03f,
ZH05, PZTH07, Hut09h, PZTH09], robust Bayesian analysis [RIR00], and many others. See
[Fin73, Wal91, RN10] for a more detailed account of various uncertain reasoning systems.
Many reasons why classical probability theory is unsuitable for AI have been put forward:
strict numerical values are not appropriate for a qualitative reasoning system, probability
theory cannot deal with impreciseness, vagueness, or subjective beliefs, or is just impractical,
and so classical probabilities fell out of favor in the 1970s. But it turned out that all these
alternative approaches have their own problems: Either they have unclear semantics, or
they are not self-consistent, or they do not scale up, or worse. It is not that Bayesian and
Frequentist probability theory leave no wishes open, but especially the former is the most
consistent system developed so far, with solid justifications via Cox axioms [Cox46] and
Dutch book arguments [Háj09a] and others [Pre02, Car22]. So after long and sometimes
bitter fights [Che85, Che88], the debates about the merits of the different approaches to
dealing with uncertainty in AI have essentially been settled in the new millennium in favor of
machine learning systems based on classical statistics [HTF09] and increasingly (sometimes
robust) Bayesian methods [Bis06, KF10, Mur22, Mur23], finally returning to its roots in
1763 [Bay63].

Bayesian probability theory (2.4). Bayes’ Law is one of the earliest non-trivial rules
in probability and statistics [Bay63] which Laplace’s Rule [LD95] builds upon. The pleasant
philosophical text by Jaynes [Jay03] treats probability theory as a natural extension to
(Boolean) logical reasoning, with emphasis on the Bayesian approach, and discussion of
various historical paradoxes and how they could be avoided. Earman [Ear93] is another good
philosophical text on Bayes. Gelman [GCSR95] is a more practical book on Bayesian data
analysis. Berger [Ber93] is a more advanced book “in-between”. More on Bayesian inference
and a collection of different choices of model class and prior can be found in [Bol04, GvdV17].
Some concrete classes will be discussed in Chapters 3 to 5. [Bis06, Mur22, Mur23] are two
standard textbooks on Bayesian machine learning.

There is an ongoing debate between objective and subjective probability, which became
sharper in the 20th century (not only in AI). Prominent advocates of the relative frequency
or objective interpretation were Kolmogorov [Kol63], Fisher [Fis22], and von Mises [Mis28].
Hajek [Háj96, Háj09b] offers fifteen arguments against finite/hypothetical frequentism.

2.9. HISTORY AND REFERENCES 131

There are many advocates of probabilities as degrees of belief [Pop34, Ram31, Fin37, Fin74,
Cox46, Sav54, Jef83, Gol06]. See [OBD+06, O’H19] for how to elicit subjective probabilities
from experts. Objective priors are advocated in [Ber06, BBS24], und universal priors in
[Hut07e, RH11]. The property of Jeffery’s objective prior (Definition 2.4.12) leading to
reparameterization invariance is discussed more in [Pre02, KSO87, Lee12]. See [Goo71]
for a classification of 46656 varieties of Bayesians, and [Pre02, Sec.2] for an overview of
justifications for Kolmogorov axioms from the various perspectives on probability.

Carnap [Car48, Car50] tried to supplement logic with probability theory to so-called
inductive logic. This works fine for propositional logic [Jay03], but attempts to extend
this satisfactorily to predicate logic failed for long [Put63] but finally has been solved
[GS82, HLNU13b, HLNU13a, GBC+20]. The closely related reference class problem is
addressed in [Rei49, Kyb77, Kyb83, BGHK92].

[SSW+16] provides a brief overview of Bayesian optimization, a technique to optimize
a function that is expensive to evaluate. They cover both parametric and non-parametric
methods, applications, and a survey of the surrounding theory. [Rub81] introduces the idea
of Bayesian bootstrapping, constructing a distribution over an unknown parameter θ by
repeatedly esimating it via resampling from the data collected so far. The set of all sampled
parameters θ̂ gives a distribution over the true parameter θ.

[LIB+22] show that using Bayesian evidence (2.4.4) may be a poor proxy for generalization
of a model, and provide instead a conditional version of marginal likelihood that can be
used for automatic model selection or architecture search for deep learning.

Information theory and coding (2.5). This section is based on the texts [Mac03,
CT06, JJHH03, LV19], any of which would be a good reference for further reading on the
topic. The entire discipline of information theory originates from Shannon’s original paper
[Sha48], formalizing the problem of transmitting a message over a communication medium
with errors, as well as the concept of entropy and proving Theorem 2.5.22. The entropy
of English text has been estimated through experiments using both humans [Sha51] and
algorithms [Gue09, CK78] as predictors. The Kraft inequality is due to Kraft [Kra49]. The
Kullback–Leibler distance originated in a paper from the eponymous pair [KL51].

Shannon–Fano coding refers to two similar coding methods, presented by Shannon [Sha48]
and Fano [Fan68]. A similar method for coding by Huffman [Huf52] is provably optimal
given each symbol is coded individually, and the frequency distribution of symbols is known.
Better results can be obtained by using block codes such as arithmetic codes [Pas76, HV91]
which perform better on low entropy messages than Huffman coding. Golomb codes [GVV75]
are optimal assuming the symbols to compress follow a geometric distribution. Various
pre-coding transformations like run length encoding [RC67] or move-to-front [Rya80] or
Burrows-Wheeler [BW94] transforms can be applied before applying another code to further
decrease size. All of these transformations are invertible equiv lossless, and can be composed
with any compression algorithm. Dictionary coders compress by replacing a substring of the
message with an index into a lookup table. The family of Lempel-Ziv compressors (starting
with LZ77 [ZL77] and LZ78 [ZL78]) popularized this technique, extending to LZW [Wel84],
LZRW [Wil91b], and LZSS [SS82]. Another family of compressors are called context mixing
compressors. Similar to Context Tree Weighting (covered in Chapter 4), they use a mixture
of models to estimate the probability distribution from which the data was drawn, and
compressed using arithmetic coding [Sai04] with respect to that predictor. The PAQ family
[Mah05] of compressors uses this technique, by taking a weighted average of the models. This
was later improved to using a neural network to perform the mixture [Mah07]. [Kri94] also
explores methods of universal data compression via coding, as well as universal hashing. A
theory of incremental compression (incrementally finding features to compress data, storing

132 CHAPTER 2. BACKGROUND

both the features and the residual data until no more features can be found) was developed
in [FAS21], leveraging the theory of Kolmogorov complexity.

A survey of various compression techniques is given in [Mah12, SM10]. [TW19] show
how to map out the Pareto frontier for classification: the trade-off between compression
of the features versus how well the class labels can be recovered. [MDHW07] explore a
technique to segmenting data drawn from a mixture of Gaussians, and show their technique
is asymptotically optimal given an allowable amount of distortion. Different choices of
compressors provide trade-offs between compression time, compression ratio and decom-
pression time [Mah22, Nem22]. The Hutter Prize [Hut20a] offers a monetary reward for
compressing enwik9 [Mah11], a 1GB sample of text from Wikipedia smaller than the (cur-
rent as of time of writing) record of ≈112MB. Meta-learning is a broad topic, but can be
roughly distilled down to learning-to-learn. One possible approach is to train a model on
a wide variety of tasks, in the hope that this encourages the model to better generalise
to unseen tasks. The ultimate predictor, the Solomonoff prior [Sol64], is a model that
can (eventually) learn any computable function. By sampling Turing machines from the
prior, and then training a Transformer [VSP+17] on the output of the Turing machine,
[GMGH+24] shows that neural networks can attempt to learn an approximation of the
Solomonoff prior. [MHA+24] shows that Transformers can be leveraged to approximate
otherwise intractable Bayesian inference. Usually, deep learning models are trained and then
deployed, and do not learn online. However, LLMs show the ability to generalize to new
tasks after being presented with a few examples [BMR+20], known as in-context learning
[DLD+23]. There is some evidence to indicate that in-context-learning can be explained as
Transformers performing Bayesian inference online during inference [XRLM21]. A survey
of online learning methods can be found in [Ora20]. Being the currently best available
practical implementation of universal prediction, this also means that Transformers can
be leveraged for compression [IJG19, Bel21, MCKX22, VNK+23, DRD+24] via arithmetic
encoding, beating other state-of-the-art compressors like PAQ8 [KF12, Mah07] and CMIX
[Kno23].

Computability theory (2.6). This section is based on the texts [HMU06, Hut05b]. The
book by Hopcroft, Ullman and Motwani, [HMU06], is a very readable elementary introduction
to automata theory, formal languages, and computability theory. [BBJ02, Sip12] also serve
as good introductions to computability. Complexity theory refines computability theory
by taking computation time into account, covered by books ranging from easy [Sip12] to
medium [Pap94] to hard [AB09] to insane [HO02].

Turing [Tur36] introduced the concept of a Turing machine and demonstrated that the
halting problem is undecidable. Turing machines are formally equivalent to partial recursive
functions (see [Rog67, Odi89, Odi99] for an introduction), as well as Alonzo Church’s
lambda calculus [Chu36]. The halting problem corresponds to Gödel’s incompleteness
theorem [Göd31, Sho67] whose proof is based on a diagonal argument invented by Cantor
[Can74, Dau90]. [Wol02] is a substantial text that focuses on Cellular Automata (CA):
simple replacement rules that can generate complex behavior, that for some transition
rules is even Turing complete, giving another (rather unorthodox) model of computation.
After introducing CA, and providing a taxonomy of the classes of behavior they exhibit,
the author argues that many physical phenomena, such as fluid flows or patterns seen
in nature may be modelled better using CA than traditional differential equations, and
how a mathematical system consisting of axioms and rewriting rules can also be modelled
as a CA. The works [Göd31, Kle36, Tur36, Pos44, ZL70, Sch02a] show the importance of
the various computability concepts defined in Section 2.6.3. The consideration of (and
naming for) estimable and approximable functions in the context of universal priors is

2.9. HISTORY AND REFERENCES 133

from [Hut03b, Hut06b]. The introduction to the arithmetic hierarchy in parts follows
[Nie09, Lei16b]. Considering Turing machines as functions (Definition 2.7.18), they are
non-differentiable, leaving them unamenable to gradient-based optimization. [GWD14]
define a differentiable version of a Turing machine based on the LSTM [HS97] architecture.
[GWR+16] provide a differentiable architecture with read-write access to long-term memory.
A measure of intelligence generalizing Legg–Hutter intelligence (see Definition 16.7.1) for
incomputable tasks on the arithmetic hierarchy is given in [OFB24].

Kolmogorov complexity (2.7). This section is based on the corresponding sections of
the texts [LV19, Hut05b]. Other books which can serve as introductory texts to this topic
include [Cal02, DH10]. See [Hut07a, Hut08b, SH15a] for some short and light encyclopedic
introductions.

Algorithmic Information Theory. A coarse picture of the early history of algorithmic
information theory could be drawn as follows: Kolmogorov [Kol65] and Chaitin [Cha66]
suggested defining the information content of an object as the length of the shortest program
computing a representation of it [Hut08b]. Solomonoff [Sol64] independently invented the
closely related universal prior probability distribution and used it for binary sequence
prediction [Sol64, Sol78, HLV07]. Levin worked out most of the mathematical details
[ZL70, Lev74] and invented the fastest algorithm for function inversion and optimization,
save for a (huge) constant factor [Lev73b, Gag07]. Chaitin’s [Cha66, Cha75] major focus is
on the halting probability Ω=

∑
p:U(p) halts 2

−ℓ(p), the probability that a random program

(weighted by length) will cause the universal machine U to halt. These papers may be
regarded as the invention of what is now called algorithmic information theory. For a short
introduction and a list of applications, see [Hut07a, LV07]. Much work has been done on
the study of randomness itself, and how it can be leveraged for computation. [Zen11] covers
philosophical discussions of randomness and whether it truly exists or is required, results from
physics on randomness, relationships to algorithmic probability and artificial intelligence,
and links to computability theory and random algorithms. [ZP13] is a similar survey, focused
on historical approaches to computation from the early work of Babbage, Lovelace, and
Turing, through to an axiomatization of computability, examples of biological systems found
in nature that perform computation, the physics and known limits of computation, and
some essays on quantum computing.

The Assumption 2.7.8 of a short compiler is an effective version of Kolmogorov’s assump-
tion that complexities based on different “reasonable” universal “Turing” machines coincide
reasonably well [Kol65].

The Minimum Description Length (MDL) Principle [Ris78, Grü07, GR19], and the Min-
imum Message Length (MML) Principle [WB68, Wal05], are two closely related information-
theoretic approaches to statistical inference and model selection. Both principles are based
on the idea of finding the most compact representation of data, using a combination of model
complexity and the size of the message needed to describe the data given that model. The
MDL principle operates by minimizing the sum of the model’s description length and the
data’s encoded length, while the MML principle aims to minimize the total message length by
finding the most plausible model with the shortest encoding. Despite their differences, both
approaches share a common goal: to find the simplest yet accurate model that captures the
underlying structure of the data, striking a balance between overfitting and underfitting, and
yielding robust and interpretable results in a wide range of applications. General consistency
of MDL beyond i.i.d. has been proven in [PH05a, Hut09b]. For an application to kernel learn-
ing, see [HHO24]. Use of MDL with over-parameterized models is problematic [DSYW21].
The prequential MDL approach solves this problem in theory [DV99, PH05a] and in practice
[BLH23, LBH23, RTBP+23]. Standard two-part MDL is limited to parametric models,

134 CHAPTER 2. BACKGROUND

log-loss, passive prediction and induction tasks. MDL has been extended to reinforcement
learning [Hut09d, Hut09e, Hut09f, Hut09a, Ngu13, Das16] and applied to control [MKSB22].
The Loss Rank Principle (LoRP) can be regarded as an extension of MDL to arbitrary loss
functions and non-parametric models [Hut07d, TH10, HT10]. [PKC21] introduces Rissanen
Data Analysis, a method that uses the MDL principle to determine if a given capability
improves modelling a corpus of data, by observing if the Kolmogorov complexity of the data
decreases if conditioned on access to an oracle with the additional capability. Transformers
[VSP+17] have been shown to follow the MDL principle, as they can compress the training
data, even after accounting for the encoding of the model weights [BO18]. Motivated by the
MDL principle, [PJD21] explore the gains in sample efficiency in learning by using Turing
machines rather than neural networks or boolean circuits. [BCMK21] shows that MDL can
be used to derive a scoring function for Bayesian networks, and can be used to obtained
small graph structures that perform well without relying on priors or regularization that
requiring tuning. For time-series prediction, [LSHK93] uses a technique based on the MDL
principle to select the optimal number of parameters to perform prediction using a neural
network.

Properties of Kolmogorov complexity. The invariance Theorem 2.7.6 is due to [Sol64,
Kol65, Cha66], Theorems 2.7.13 and 2.7.22 are due to [Lev74], the symmetry of information
(Theorem 2.7.17) due to [ZL70, Gác74, Kol83], the other (in)equalities are elementary. The
growth and incomputability of K has interesting relations to the halting problem and (a
version of) the Busy Beaver function BB(n) :=maxx{ℓ(x) :K(x)=n} [Aar20]. grows slower
than any computable unbounded function Many conjectured but not yet proven properties
of Kolmogorov complexity can be found in [RSZ21].

Variants of Kolmogorov complexity. There are many variants of Kolmogorov complexity.
The prefix Kolmogorov complexity K we defined here [Lev74, Gác74, Cha75], the earliest
form, “plain” Kolmogorov complexity C [Kol65], process complexity [Sch73], monotone
complexity Km [Lev73a], and uniform complexity [Lov69b, Lov69a], Solomonoff’s universal
prior M=2−KM [Sol64, Sol78], Chaitin’s complexity Kc [Cha75], extension semimeasure Mc
[Cov74], predictive complexity KP [VW98], and some others. They often differ from K only
by O(logK), but otherwise have similar properties. For an introduction to the relationships
between Kolmogorov complexity and Shannon’s information theory, see [Kol65, Kol83,
ZL70, GV04, CT06]. [AM20] proves that average Kolmogorov complexity convergences with
optimal rate to Shannon Entropy for stationary and ergodic random sequences, which also
follows directly from Theorem 3.8.7 and Corollary 3.10.3 and since the (scaled) log-likelihood
converges to the entropy and is asymptotic normal.

Drawbacks of Kolmogorov complexity and remedies. The main drawback of all these
variants of Kolmogorov complexity is that they are not finitely computable [Kol65, Sol64].
They may be approximated from above (Theorem 2.7.27) [Kol65, Sol64], but no accuracy
guarantee can be given. Worse still, the best upper bound for the runtime until one has
reasonable accuracy for K(n) grows faster than any computable function in n.

This led to the development of time-bounded complexity/probability that is finitely
computable, or more general resource-bounded complexity/probability (e.g. space) [Dal73,
Dal77, FMG92, Ko86, PF97, Sch02b]. In particular, the Levin (Kt) complexity [Lev73b]
adjusts the Kolmogorov complexity by adding a logarithmic penalty in the running time of
the program. Fortnow [For04] gives a summary of time-bounded variants of Kolmogorov
complexity and their properties. Nonetheless, some attempts have been made to provide
estimates of the Kolmogorov complexity: Conte et al. [Con97] evolved short Lisp programs,
and Bloem et al. [BMd+14] give a probabilistic approximation of K. Kolmogorov complexity
captures all information, including noise, which may be undesirable. [BDRA15] proposes an
alternative measure called sophistication that formalizes a measure only of the meaningful

2.9. HISTORY AND REFERENCES 135

information present. [Web96] provides some experimental evidence against Occam’s razor,
by modifying decision trees to be more complex than necessary, and showing that they
generalize better on unseen data, violating the principle of simplicity, though the more
plausible conclusion is that discriminative learning is inferior to generative learning, rather
than a limitation of Occam’s razor.

Normalized compression distance and universal similarity metric. Li [Li 03] (based on
work by Bennett [Ben98]) uses Kolmogorov complexity to define the normalized compression
distance NCD, a universal similarity metric over strings that measures similarity based
on how much one string helps to describe the other. The NCD metric is universal in
that it minorizes all other computable distance measures. It itself is incomputable (the
definition relying on K, also incomputable) but computable approximations exist (replacing
K with the best available data compressor). This metric has applications to clustering
[CVW04, CV05], constructing phylogenetic trees [HRR06, RA11], classification of news
[JYT+23] and file types from fragments of data for computer forensics [Axe10], analysis
of viruses (both biological [PP17, MRA20, CV22] and digital [Bor16, GB03]). It has also
been generalized to a metric on multisets [CV15], and (by replacing K with number of hits
on Google) a metric on websites [CV07]. [Mah09] uses a similar expression to the NCD to
define a distance metric between different tasks to formalize the concept of transfer learning.
[YVK19] use NCD as a measure of generalization for a given learned algorithm, obtained
via deep learning.

Miscellaneous. Chaitin [Cha91] speculated on the computational power of the evolu-
tionary information gathering process and its relation to algorithmic information. Schmidt
[Sch99] argued that (time-bounded) Kolmogorov complexity helps and not prevents the
search for extraterrestrial intelligence (SETI). Vovk [VW98] described universal portfolio
selection schemes. Hutter [Hut10a] argues that a Theory of Everything needs to take into
account the Kolmogorov complexity of the location of the observer in the universe. [LP20]
prove an equivalence between the existence of one-way functions, and the complexity class of
time-bounded Kolmogorov complexity. [CJ05] show that the theorems of a given theory (e.g.
ZF set theory) cannot be significantly more complex than the theory itself. One can define
a measure of “realism”[The24] using Kolmogorov complexity, to quantify the realism of
outputs from generative models such as generative adversarial networks (GANs) [GPM+14].
[Sch22] shows that stochastic gradient descent (SGD) optimizes for low Kolmogorov com-
plexity models. A measure of the repetitiveness of a sequence has been defined based on
Kolmogorov complexity [KNP23]. A more personal account on the past, present, and future
of algorithmic randomness as foundation of induction and AI for a general audience can be
found in [Hut11].

Distances and their relation (2.8). A discussion of Pinsker’s inequality and the related
Bretagnolle-Huber inequality can be found in [Can22]. It also discusses Gibbs variational
principle, Donsker–Varadhan form, and f -divergences. The proof of Pinsker’s binary
inequality has been taken from [Wu17].

Part II

Algorithmic Prediction

136

Chapter 3

Bayesian Sequence Prediction

The only way to discover the limits of the possible is to
go beyond them into the impossible.

Arthur C. Clarke, 1917–2008

3.1 Bayes Mixture ξ . 139
3.2 Generalized Solomonoff Bound . 143
3.3 Predictive Convergence . 146
3.4 Model Misspecification . 147
3.5 Bounds on Prediction Loss . 149
3.6 Pareto-Optimality of ξ . 154
3.7 Choices of Class M and Prior wν . 155

3.7.1 Choices for Model Class M . 156
3.7.2 Choices for Prior wν . 157

3.8 Solomonoff Distribution MU . 159
3.8.1 Motivation, Derivations, Definition 159
3.8.2 Properties . 161
3.8.3 Equivalence of M and ξU . 163
3.8.4 Predictive Bounds . 164

3.9 Martingales . 165
3.10 Algorithmically Random Strings . 166
3.11 Exercises . 168
3.12 History and References . 170

138

3.1. BAYES MIXTURE ξ 139

This chapter delves into the principles of induction, emphasizing the selection of suitable
models to capture data patterns. It gives an in-depth introduction into Bayesian
and in particular universal sequence prediction. Section 3.1 introduces the Bayesian
mixture predictor ξ over arbitrary countable classes M of semimeasures ν for (infinite)
sequences, and states the key dominance property. No structural assumptions are made
on ν∈M, no i.i.d. nor ergodicity nor stationarity assumptions. Section 3.2 lifts the
various distances and their relations introduced in Section 2.8.1 to (semi)measures over
sequences to measure the deviation of ξ from the true sampling distribution µ. This is
then used in Section 3.3 to show predictive convergence of ξ to µ together with error
rates. Section 3.4 relaxes the general assumption of µ∈M to µ being close to some
µ̂∈M. Section 3.5 uses predictions to make decisions and take actions, which then
lead to some loss, depending on the action and the observed outcome. We prove strong
loss bounds for passive environments, where actions cannot affect the environment.
Section 3.6 shows that Bayes is also Pareto optimal with respect to many performance
measures, including any loss function and some of the introduced distances. So far the
treatment has been completely general. Section 3.7 explores the selection of particularly
interesting classes of environments M and priors wν . We discuss three principles for
choosing weights for ξ, with a special emphasis on the simplicity principle, quantified in
terms of Kolmogorov complexity K. We argue that the class of all (semi)computable
(semi)measures is the most appropriate for AGSI purposes. This leads to Solomonoff’s
celebrated a-priori probability ξU and prior wU

ν and prediction bound. Section 3.8
provides a more direct route to Solomonoff’s universal distribution M via uniform
random noise piped through a universal monotone Turing machine, and state the
remarkable identity of M and ξU . The last Section 3.9 gives a brief introduction to
martingales, which are needed later in some more advanced convergence proofs for
intelligent agents in reactive environments. Except for the Solomonoff section, all
results in this chapter hold for general finite alphabet.

3.1 Bayes Mixture ξ

Induction, patterns, prediction. Before diving into specific prediction strategies, it is
essential to understand the concept of induction. Induction is a reasoning process used to
make inferences or predictions based on a limited set of observations. In the context of this
book, induction helps us to estimate the hidden distribution and make predictions about
the future. The inductive approach relies on the assumption that the observed data follows
an underlying pattern, and that pattern can be extended to predict future elements. The
challenge of induction lies in selecting the appropriate model or distribution family that
can accurately capture this pattern. By considering multiple models and their respective
parameters, we can employ induction to make more informed predictions about the next
element in the sequence, even when the true distribution is unknown.

Sequence prediction. Suppose we want to predict the next term xt in a sequence given
the previous terms x1,...,xt−1. This goal can be rephrased as trying to estimate the hidden
distribution from which the sequence x1,...,xt−1 was sampled, and then making a prediction
of the next element xt using this estimated distribution. Let µ denote the true sampling
distribution (represented as a probability measure) generating the sequence. If µ itself is
known, then we can just use the predictive distribution µ(xt|x<t) to predict the probability
of xt. If we are interested in the most likely continuation, the optimal prediction for xt would
be argmaxxt

µ(xt|x<t) by definition. If we know what family of parameterized distributions
µ is sampled from, we need only learn estimates of those parameters, for which many methods
already exist (Section 2.3).

140 CHAPTER 3. BAYESIAN SEQUENCE PREDICTION

Model class M. What should we do when even the family of distributions that µ belongs
to is unknown? One approach to solving this problem is to choose some classM, general
enough that we expect it contains all the distributions that could potentially be generating
the sequence (in the hope that it contains µ), and then take a weighted mixture over
that class. The most general class we can reasonable consider is the countable set of all
computable probability distributions (Definition 3.7.1), since if µ did not belong to this
class, then by definition there is no hope of using any computable method to learn µ. For
now we keepM general but countable, and only assume that it contains, unless otherwise
stated, the true distribution µ. We focus on sequences over a finite alphabet X , though
many results have natural extensions to countable alphabet and beyond.

In Section 2.4 we considered predicting the classM={Bern(θ) :θ∈ [0,1]} of biased coins.
Before delving into the (most) general case, let us consider another easy special case:

Example 3.1.1 (Majority prediction) Consider a finite class of N deterministic (non-
i.i.d.) environments=sequencesM={ν1,...,νN}≡{x11:∞,...,xN1:∞} for binary xit∈X ={0,1},
i.e. νi(x1:n)≡ Jx1:n=xi1:nK, abbreviated as νi≡xi1:n. Let µ≡ ẋ1:∞≡xi01:∞≡νi0 ∈M be the
true sequence. Goal is to (quickly) predict ẋt from ẋ<t (or identify the true i0). Let us

predict the xpredictt := argmaxxt
|M(ẋ<txt)| that follows the majority of the sequences in

M(ẋ<t) :={x1:∞∈M :x<t= ẋ<t} that are still consistent with our observations ẋ<t so far.
If the prediction turns out to be wrong, then at least half (the majority) of the sequences
get eliminated fromM(·) in the next time step. Hence after at most log2N errors, there is
only a single sequence, namely ẋ1:∞, left over. We do not know when these errors occur,
and how long (in t) the identification of i0 takes, but the number of errors on the way is
bounded by log2N , which is often more important. �

Setting dimensions. The simple predictor and bound in the example above can easily
be extended to general finite alphabet X and countable deterministicM [Hut17] and even
to bounded multi-step prediction. To predict general stochastic sequences we need to
work harder, and is the subject of this chapter. There are a multitude of possible time-
series forecasting generalizations (roughly) from left=special to right=general for various
lines=“dimensions”:

• Alphabet : binary,* finite, countable, uncountable X .
• Deterministic* sequence x1:∞: number/IQ, computable, ...
• Stochastic process µ: (non)i.i.d, stationary, ergodic, Markov, (limit) computable
• Predictor : deterministic* (Λξ) vs stochastic (ξ).
• Environment classM: finite,* countable, uncountableM.
• Prior : uniform=indifference,* Jeffreys=Bernardo, conjugate, coding, universal
• Prediction steps: one,* bounded, unbounded, infinite horizon.
• Loss: log, 0-1=error,* bounded, unbounded.
• Guarantees: Bayesian vs frequentist vs other.
• Further/beyond: partial, inhomogeneous Xt, inductive, conditional, (re)active, ...

The * setting we analyzed in Example 3.1.1. The gray options are not considered in this book.
In this chapter we aim for the most right=general setting (with some justified exceptions),
and more specific/practical choices in later chapters. The following notation and definitions
are used throughout the book:

3.1. BAYES MIXTURE ξ 141

Definition 3.1.2 ((Semi)measures, cylinder sets, and notation) For
(semi)measures on cylinder sets Γx⊆X∞ for x∈X ∗ we use the shorthand ν(x) :=ν(Γx)
of Definition 2.2.14. The true distribution from which x1:∞ is sampled is denoted by
µ and is always a properly normalized probability measure. Note that µ(x) is not a
probability mass function on X ∗. It is the µ-probability that an infinite sequence starts
with x. M denotes some countable class of (semi)measures, ν,µ are always assumed to
be inM, while ρ denotes an arbitrary (semi)measure.

Definition 3.1.3 (Prior wν and Bayes mixture ξ) Let M be a countable set
of probability semimeasures on strings, and w(·) :M→ R be a function satisfying∑

ν∈Mwν≤1 and wν>0 for all ν. We define the Bayes mixture over M given prior
w(·), denoted ξw, as

ξw(x1:n) :=
∑
ν∈M

wνν(x1:n)

We call wν the weight associated with ν∈M. If the choice of w(·) is obvious or irrelevant,
we drop the index w and write ξ.

We forbid the case where wν =0, since if it were, the measure ν is a priori excluded
from the mixture, and we may as well exclude it fromM to begin with. Also, in line with
the Principle of Epicurus, we avoid discarding any distributions (hypotheses) until we have
evidence that rules it out.

Remark 3.1.4 (Continuous class M with prior density w(θ)) Though we do not
explore it much in this book, one can also consider an uncountable familyM of measures
νθ(·;θ) (which must be a probability kernel) parameterized by θ∈Θ, together with a prior
weight for each parameter, represented by a probability density function w(θ). Many
definitions and results generalize in some way to this case. For instance, one can define the
Bayes-mixture analogously as

ξ(x1:n) =

∫
Θ

w(θ)ν(x1:n;θ) dθ

This generalizes the Bernoulli case considered in Section 2.4. �

Proposition 3.1.5 (Bayes mixture domination) For all ν∈M and prior w∈∆′M
and x1:n∈X ∗ we have

ξw(x1:n) ≥ wνν(x1:n)

The Bayesian mixture ξ(x1:n) can be thought of as an estimate of µ(x1:n) by taking a
weighted average of each ν∈M, where wν represents the a-priori confidence that ν is the
true environment.

In lieu of using the true distribution µ for prediction, we can instead use ξ for prediction.
Even if µ is unknown, we might have some a-priori estimates on which ν∈M is more likely
to be the true µ, which can be reflected in our choice of wν in Definition 3.1.3.

To use ξ for prediction, we need to define the conditional probability distribution ξ(xt|x<t)
over the next element xt, given the sequence x<t so far.

142 CHAPTER 3. BAYESIAN SEQUENCE PREDICTION

Recall that for any semimeasure ρ, if ρ(x<t)>0 (see Section 2.8.3 if not) we can define

ρ(xt|x<t) :=
ρ(x1:t)

ρ(x<t)
and ρ(xt:k|x<t) :=

ρ(xt:k)

ρ(x<t)
for k≥ t (3.1.6)

ρ(x1:n) =

n∏
t=1

ρ(xt|x<t) and ρ(xt:n|x<t) =

n∏
k=t

ρ(xk|x<k) (3.1.7)

The last two expressions are called chain rule. The conditional Bayesian distribution
ξ(xt|x<t) has a couple of useful representations:

Theorem 3.1.8 (Conditional Bayesian mixture ξ) LetM be a class of environ-
ments with prior {wν}ν∈M as above. Then ξ(xt|x<t) is the predictive probability the
conditional Bayesian mixture ξ assigns to xt given x<t:

ξ(xt|x<t) =
∑
ν∈M

w(ν|h<t)ν(xt|x<t) =

∑
ν∈Mwνν(xt|x<t)ν(x<t)∑

ν∈Mwνν(x<t)
=

ξ(x1:t)

ξ(x<t)

w(ν|x1:t) := w(ν|x<t)
ν(xt|x<t)

ξ(xt|x<t)
= wν

ν(x1:t)

ξ(x1:t)
and w(ν|ϵ) :=wν (3.1.9)

Here wν represents the probability that we assign to the hypothesis that ν=µ before
seeing evidence x<t (the prior belief) and w(ν|x<t) is the probability that ν = µ after
observing evidence x<t (the posterior belief).

Proof. First note that we can write

w(ν|x1:t) = wν

t∏
k=1

ν(xk|x<k)

ξ(xk|x<k)
= wν

ν(x1:t)

ξ(x1:t)

by repeated application of (3.1.9) and the chain rule (3.1.7). Then,

ξ(xt|x<t)
(3.1.6)≡ ξ(x1:t)

ξ(x<t)
≡
∑

ν∈Mwνν(x1:t)

ξ(x<t)
=
∑
ν∈M

wν
ν(x1:t)

ξ(x<t)

=
∑
ν∈M

wν
ν(x<t)

ξ(x<t)
ν(xt|x<t) =

∑
ν∈M

w(ν|x<t)ν(xt|x<t)

as required. �

Assuming µ∈M, we would hope that eventually the posterior concentrates on µ, i.e.
w(µ|x<t)→1 and wν→0 for all other ν ≠µ, as the mixture ξ hopefully concentrates on µ
given sufficient experience sampled from µ giving away µ. In the Bernoulli(θ) example of
Section 2.4.3 this was indeed the case (see Figure 2.12). Unfortunately this is not (strictly)
true anymore for general classesM, sinceM may contain environments that are statistically
indistinguishable (Exercise 5). We could try to group indistinguishable environments together
and show that the total posterior of the group that contains µ tends to 1, but an elegant,
unified, general solution seems not to exist [Hut09b]. We can side-step this problem by
aiming a little lower for only predictive convergence as in Laplace rule (2.4.11).

A-priori it is not obvious that we actually can achieve convergence of ξ(xt|x<t) to µ(xt|x<t)
without making any structural assumptions on µ and/or M such as i.i.d. or Markov or
mixing or stationarity. The following elementary bounds imply a weak convergence result,
which is encouraging.

3.2. GENERALIZED SOLOMONOFF BOUND 143

Theorem 3.1.10 (Bounds on ln(µ/ξ) and Cesáro convergence) For x∈Xn,

ln
µ(x)

ξ(x)
≤ lnw−1

µ , Eµ

[
ln
µ(x)

ξ(x)

]
≥ 0, Pµ

[
ln
µ(x)

ξ(x)
≤−c

]
≤ e−c

which together implies
1

n

n∑
t=1

ln
µ(xt|x<t)

ξ(xt|x<t)
≡ 1

n
ln
µ(x1:n)

ξ(x1:n)

n→∞−→ 0 w.µ.p.1

Proof. The first upper bound follows directly from dominance Proposition 3.1.5. The Eµ[·]≥0
follows from the non-negativity of the KL-divergence Definition 2.5.12. The Pµ[·]≤ e−c

follows from Markov’s inequality:

ec Pµ

[
ln
µ(x)

ξ(x)
≤−c

]
= ec Pµ

[ξ(x)
µ(x)

≥ec
]
≤ Eµ

[ξ(x)
µ(x)

]
=
∑

x∈Xn

µ(x)
ξ(x)

µ(x)
≤ 1

The identity ≡ follows from representation (3.1.7). Now choose ε>0 and δ>0 arbitrarily
and c :=−lnδ. Then for sufficiently large n these bounds together imply

ε >
lnw−1

µ

n
≥ 1

n
ln
µ(x1:n)

ξ(x1:n)
> − c

n
> −ε w.µ.p.≥1−δ

This implies 1
n ln[µ(x1:n)/ξ(x1:n)]→0 in probability. Stronger almost sure convergence can

be shown similarly by choosing c=2lnn, then summing
∑∞

n=1Pµ[·]≤
∑

ne
−2lnn<∞, and

applying Borel–Cantelli Lemma 2.2.81. �

In the next two sections we prove much stronger bounds that imply the desired (rapid)
convergence of ξ(·|x<t) to µ(·|x<t).

3.2 Generalized Solomonoff Bound

The following instantaneous distances are various ways of measuring how close ξ(·|x<t) is to
µ(·|x<t). Instantaneous here refers to these distance measures only considering how similar
the measures µ and ξ are over the potential next symbol x′t. Note that the distance measures
depend on the history x<t observed up to that point.

Definition 3.2.1 (Instantaneous distances)

Absolute: at(x<t) :=
∑
xt∈X
|µ(xt|x<t)−ξ(xt|x<t)|

Square: st(x<t) :=
∑
xt∈X

(µ(xt|x<t)−ξ(xt|x<t))
2

Hellinger2: ht(x<t) :=
∑
xt∈X

(√
µ(xt|x<t)−

√
ξ(xt|x<t)

)2
KL divergence: dt(x<t) :=

∑
xt∈X

µ(xt|x<t)ln

(
µ(xt|x<t)

ξ(xt|x<t)

)

Each distance has different properties which are useful in different circumstances. It is
obvious that the absolute, square and Hellinger distances are non-negative, and we have

144 CHAPTER 3. BAYESIAN SEQUENCE PREDICTION

already seen that the KL divergence is non-negative (Corollary 2.5.16). Although only the
absolute distance is a metric, the KL divergence is often the most useful distance measure.

Usually, we consider instantaneous distance measures to just be functions, but we also
need to consider them as a sequence of random variables when talking about convergence
with µ-probability 1. Formally, the distance measures in Definition 3.2.1 can be considered
as a sequence of random variables over the sample space Ω=X∞, where e.g. dt is really the
tth term in the sequence d1(ϵ),d2(X1),d3(X1:2),....

Taking the µ-expected sum of the instantaneous distances over time steps t=1,...,n gives
us the total distance between µ and ξ.

Definition 3.2.2 (Total distances)

Absolute: An :=

n∑
t=1

Eµ[at(·)] =
n∑

t=1

∑
x<t∈X t−1

µ(x<t)at(x<t)

Square: Sn :=

n∑
t=1

Eµ[st(·)] =
n∑

t=1

∑
x<t∈X t−1

µ(x<t)st(x<t)

Hellinger2: Hn :=

n∑
t=1

Eµ[ht(·)] =
n∑

t=1

∑
x<t∈X t−1

µ(x<t)ht(x<t)

KL divergence: Dn :=

n∑
t=1

Eµ[dt(·)] =
n∑

t=1

∑
x<t∈X t−1

µ(x<t)dt(x<t)

We can straightforwardly lift the bounds of Corollary 2.8.8 between these different
instantaneous and total distance measures. Note the extra factor of

√
n in the An bound,

which makes it less useful.

Theorem 3.2.3 (Instantaneous and total entropy inequalities)

st(x<t)≤dt(x<t) at(x<t)≤
√

2dt(x<t) ht(x<t)≤dt(x<t)

Sn ≤ Dn An ≤
√
2nDn Hn ≤ Dn

st ≤ a2t ≤ 4ht a2t ≤ |X |st st ≤ 2ht

Proof. (1st line) We define yi=µ(xt= i|x<t) and zi=ξ(xt= i|x<t) and apply Corollary 2.8.8
for the instantaneous bounds. (2nd line) Taking

∑n
t=1Eµ on both sides gives the bounds

for Sn and Dn. For An we have to additionally apply Jensen’s inequality (Theorem 2.2.59
and Corollary 2.2.61) with concave function g(·)=√·:

1

n
An ≡

1

n

n∑
t=1

Eµ[at] ≤
1

n

n∑
t=1

Eµ[
√
2dt] ≤

1

n

n∑
t=1

√
Eµ[2dt] ≤

√
1
n

∑n
t=1Eµ[2dt] ≡

√
1
n2Dn

(3rd line) Use |yi−zi| = (
√
yi+
√
zi)|√yi−

√
zi| ≤ 2(

√
yi−
√
zi) and Hoelder’s inequality

(Exercise 1). �

An extremely useful property unique to the KL divergence is its telescoping property:
The KL of joint distributions can be expressed as a sum of KLs of predictive distributions.

3.2. GENERALIZED SOLOMONOFF BOUND 145

Lemma 3.2.4 (Telescoping property of KL) Let ν1:n ∈∆′Xn be the ν-semi-
probability of x1:n, and νt :X t−1→∆′X be the ν-semi-probability of xt given x<t, i.e.
ν1:n=

∏n
t=1νt, and similarly for the proper µ-probability, then

KL(µ1:n||ν1:n) = Eµ

[n∑
t=1

KL(µt||νt)
]
=

∑
x1:n

µ(x1:n)ln
µ(x1:n)

ν(x1:n)
=

n∑
t=1

∑
x<t

µ(x<t)

[∑
xt

µ(xt|x<t)ln
µ(xt|<t)

ν(xt|x<t)

]

The second equality is just the first with the definitions of KL and µ1:n and µt inserted.
Applying the lemma with ν=ξ implies Dn=KL(µ1:n||ξ1:n) and D∞=KL(µ||ξ) by taking
the limit n→∞.

Proof. Starting from the r.h.s. of the second equation

n∑
t=1

∑
x<t

µ(x<t)
∑
xt

µ(xt|x<t)ln
µ(xt|x<t)

ν(xt|x<t)

Replacing µ(x<t)µ(xt|x<t) with µ(x1:t), and combining the sums,

=

n∑
t=1

∑
x1:t

µ(x1:t)ln
µ(xt|x<t)

ν(xt|x<t)

Applying the sum rule µ(x1:t)=
∑

xt+1:n
µ(x1:n)

=

n∑
t=1

∑
x1:t

(∑
xt+1:n

µ(x1:n)
)
ln
µ(xt|x<t)

ν(xt|x<t)

The logarithmic term has no dependency on xt+1:n, so we can bring it into the sum, and
then combine the sums,

=

n∑
t=1

∑
x1:n

µ(x1:n)ln
µ(xt|x<t)

ν(xt|x<t)

We pull in the t-sum to the logarithm, noting that µ(x1:n) does not depend on t, and use∑
tlnxt=ln

∏
txt,

=
∑
x1:n

µ(x1:n)ln

n∏
t=1

µ(xt|x<t)

ν(xt|x<t)

Applying the chain rule (3.1.7)

=
∑
x1:n

µ(x1:n)ln
µ(x1:n)

ν(x1:n)
�

We now have everything to prove a generalized version of Solomonoff’s celebrated bound.

Theorem 3.2.5 (Generalized Solomonoff bound) Sn ≤ Dn ≤ lnw−1
µ < ∞

146 CHAPTER 3. BAYESIAN SEQUENCE PREDICTION

Proof. For Sn≤Dn, see Theorem 3.2.3. Using the telescoping Lemma 3.2.4 with ν=ξ and
rearranging Proposition 3.1.5, gives

Dn =

n∑
t=1

∑
x<t

µ(x<t)dt(x<t) =

n∑
t=1

∑
x<t

µ(x<t)
∑
xt

µ(xt|x<t)ln
µ(xt|x<t)

ξ(xt|x<t)

=
∑
x1:n

µ(x1:n)ln
µ(x1:n)

ξ(x1:n)
≤
∑
x1:n

µ(x1:n)ln(w
−1
µ) = ln(w−1

µ)

�

The same bound holds for the Hellinger distance, but in this case can be improved by
side-stepping the Dn intermediary.

Theorem 3.2.6 (Expected bounds on Hellinger sum)

∞∑
t=1

E

[(√
ξ(xt|x<t)
µ(xt|x<t)

−1
)2] (i)

≤
∞∑
t=1

E[ht]
(ii)

≤ 2ln{E[exp(12

∞∑
t=1

ht)]}
(iii)

≤ lnw−1
µ

Proof. (i) follows from simple algebraic manipulations, (ii) from Jensen’s inequality, but
(iii) is non-trivial. The full proof can be found in [HM07]. �

3.3 Predictive Convergence

We now use the bounds of the previous section to explore how ξ can be used for prediction, as
well as quantifying its performance as a predictor. Recall from Definition 2.2.64 convergence
almost surely or with probability 1 (Xt

a.s−→X). Here Xt is dt or related quantity and
X =0, while the sequence x1:∞ we wish to predict is sampled from probability measure
µ. More precisely, for stochastic sequences, the best we can hope for is to predict the true
µ-probability of xt given x<t.

Corollary 3.3.1 (Convergence of KL divergence to zero)
The KL divergence satisfies dt(x<t)→0 with µ-probability 1.

Proof. By definition of Dn and Theorem 3.2.5, we have that D∞ =
∑∞

t=1Eµ[dt(x<t)]≤
lnw−1

µ <∞, which implies dt(x<t)→0 in mean2 sum by Definition 2.2.79, which by Theo-

rem 2.2.82 implies dt(x<t)→0 with µ-probability 1. �

Additionally, Theorem 3.2.5 implies that the absolute difference between ξ(x′t|x<t) and
µ(x′t|x<t) will converge to 0 in mean2 sum and with µ-probability 1, for any choice of
(non)random sequence x′t. This is called off-sequence convergence because it is true for any
sequence x′1:∞, not just the xt sampled from µ, which will turn out to be important. The
corresponding convergence in ratio only holds on-sequence (Exercise 2).

Corollary 3.3.2 (Convergence of ξ to µ) The off-sequence difference (and the
on-sequence ratio) between ξ and µ goes to zero (one), in the sense that

lim
t→∞
|ξ(x′t|x<t)−µ(x′t|x<t)| = 0 and lim

t→∞

ξ(xt|x<t)

µ(xt|x<t)
= 1

with µ-probability 1 and in mean2 sum (referring to r.v. x<t) for any sequence of x′t.

3.4. MODEL MISSPECIFICATION 147

Proof. Let ∆t := |ξ(x′t|x<t)−µ(x′t|x<t)|. By Theorem 3.2.5 and the definition of Sn we have
for any choice of x′t∈X ,

∞ > S∞ ≡
∞∑
t=1

Eµ[
∑
x′
t

∆2
t] ≥

∞∑
t=1

Eµ[(∆t−0)2]

which implies that ∆t converges to 0 in mean2 sum by Definition 2.2.79, which by Theo-
rem 2.2.82 implies that limt→∞∆t→0 with µ-probability 1. The ratio convergence follows
similarly from Theorem 3.2.6. �

Corollary 3.3.3 (Expected number of ε-errors between ξ and µ) For any ε>0,
the µ-expected number of times that dt(x<t) exceeds ε is

Eµ

[∑∞
t=1Jdt>εK

]
≤ ε−1lnw−1

µ < ∞

Proof. Using εJdt>εK≤dt, we have

Eµ

[∞∑
t=1

Jdt>εK
]
≤ Eµ

[∞∑
t=1

dt
ε

]
≡ D∞

ε
≤ lnw−1

µ

ε
< ∞

by Theorem 3.2.5. �

Since |ξ(x′t|x<t)−µ(x′t|x<t)|2≤ st≤ dt, this implies that for any ε> 0, the µ-expected
number of times that ξ(x′t|x<t) deviates from µ(x′t|x<t) by more than ε is bounded above
by ε−2lnw−1

µ <∞, for any x′t. By a simple Markov inequality, this also implies that the
probability of having more than (ε2δ)−1ln(w−1

µ) ε-deviations is less than δ. The latter can
be significantly improved:

Theorem 3.3.4 (High-probability bound on ξ from µ deviation) For any δ>0,
with µ-probability at least 1−δ, we have

∞∑
t=1

ht ≤ lnw−1
µ +2ln 1

δ and

∞∑
t=1

dt ≤ e·(ln 6
δ)·(lnw−1

µ +ln 2
δ)

Proof. The first bound follows from Theorem 3.2.6 and a simple Markov inequality [HM07,
Sec.3]. The proof for the second bound can be found in [LHS13a, Sec.3]. �

Using
∣∣ξ(x′t|x<t)−µ(x′t|x<t)

∣∣2≤st≤2ht and again a simple Markov inequality, this implies
that the number of times ξ(x′t|x<t) deviates from µ(x′t|x<t) by more than ε is bounded by
2[lnw−1

µ +2ln1
δ]/ε

2 with probability at least 1−δ (Exercise 4).

3.4 Model Misspecification

Recall that if µ∈M, then the KL divergence Dn between µ and ξ is finite (Theorem 3.2.5).
We can in fact impose a weaker condition on µ, namely if there is a distribution µ̂∈M
which is “close” to µ in the sense that the KL divergence between µ and µ̂ is finite, then Dn

is still finite. The case µ ̸∈M is sometimes called model-misspecification, since it violates
the standard (Bayesian) assumption that µ∈M.

148 CHAPTER 3. BAYESIAN SEQUENCE PREDICTION

Theorem 3.4.1 (Bound on KL divergence for out-of-class distributions) Let
µ be an arbitrary measure (that may or not be inM). For ρ∈M, let

KLn(µ||ρ) :=
∑
x1:n

µ(x1:n)ln
µ(x1:n)

ρ(x1:n)

denote the KL divergence between ρ and µ restricted to x1:n. Then for all n,

Dn ≤ inf
ρ∈M

{
lnw−1

ρ +KLn(µ||ρ)
}

Proof. Let ρ∈M be arbitrary. Using the same technique as the proof of Theorem 3.2.5, we
can write Dn as follows.

Dn =
∑
x1:n

µ(x1:n)ln
µ(x1:n)

ξ(x1:n)

=
∑
x1:n

µ(x1:n)ln
µ(x1:n)

ρ(x1:n)

ρ(x1:n)

ξ(x1:n)

=
∑
x1:n

µ(x1:n)ln
µ(x1:n)

ρ(x1:n)
+
∑
x1:n

µ(x1:n)ln
ρ(x1:n)

ξ(x1:n)

≤ KLn(µ||ρ)+
∑
x1:n

µ(x1:n)ln
ρ(x1:n)

ξ(x1:n)

Rearranging Proposition 3.1.5 gives ρ(x1:n)/ξ(x1:n)≤w−1
ρ , so∑

x1:n

µ(x1:n)ln
ρ(x1:n)

ξ(x1:n)
≤ lnw−1

ρ

∑
x1:n

µ(x1:n) ≤ lnw−1
ρ

which gives
Dn ≤ lnw−1

ρ +KLn(µ||ρ)
Since the inequality holds for all ρ∈M, it holds for the minimizing ρ. �

Corollary 3.4.2 (Out-of-class KL bound)
If µ̂∈M satisfies KL∞(µ||µ̂)<∞, then D∞<∞, hence ξ converges to µ.

This generalizes Solomonoff’s bound (Theorem 3.2.5) even further. If we cannot guarantee
that KLn(µ||ρ) is bounded, but merely that KLn(µ||ρ)= o(n) (the KL divergence grows
sub-linearly) then we can still obtain that ξ converges to µ, but only in a weaker Cesáro
sense.

Corollary 3.4.3 (Average KL limits to zero) Let ρ be an environment satisfying
KLn(µ||ρ)=o(n). Then the average KL divergence Dn/n converges to zero.

This also implies generalized versions of Corollary 3.3.3 and Theorem 3.3.4, namely that
the relative frequency of ε-errors tends to 0 in expectation and with high probability.

Proof. Take Theorem 3.4.1 and divide through by n.

1

n
Dn ≤

lnw−1
ρ +KLn(µ||ρ)

n
=

lnw−1
ρ +o(n)

n
−→ 0 for t→∞ �

3.5. BOUNDS ON PREDICTION LOSS 149

3.5 Bounds on Prediction Loss

Often we wish to take actions based on our current estimate of how the true environment
µ works, in service of some goal. We will still focus on passive environments where the
behavior of µ does not depend on actions taken. Examples include weather prediction, or
trading stocks with a small enough amount of capital to not measurably affect the market.
We measure the value of actions using a loss function.

Definition 3.5.1 (Predictor model) A predictor model is a mapping Λ :X ∗→Y
from a finite set of observations X to a finite set of actions Y interacting with an
environment measure µ :X ∗→∆X , plus a loss function loss :X×Y→ [0,1]. On each time
step t, given history x<t, an observation xt∼µ(·|x<t) is sampled from the environment.
The predictor Λ produces action yΛt (based solely on x<t) and suffers loss loss(xt,y

Λ
t).

The time step t is incremented, and the interaction loops.

Note that the environment is a function of the observation history but not the actions
taken by the predictor. The loss is also a function only of the current observation and
current action, but could be made t and x<t-dependent, with all results of this section still
holding (Exercise 6).

The predictor chooses action y∈Y, and the environment produces observation x∈X .
The predictor receives loss loss(x,y)∈ [0,1], and the goal of the predictor is to minimize its
loss.

Remark 3.5.2 (On passive prediction vs. reactive environments) In the (re)active
setting we will maximize reward rather than minimize loss. These are equivalent presentations,
as one can treat loss as negative reward. Predictors are then called actors which follow
policies. We also call y actions here when it feels natural, despite predictors lacking agency
since actions do not affect the environment. It could also be argued that the loss is an
aspect of the environment. A substantial difference though is that next-step loss/reward
optimization is no longer optimal in reactive environments, where the environment depends
on the history of both observations xt and actions yt, and long-term planning is required.
The proper agent setting will be covered from Part III onwards. �

Example 3.5.3 (Weather prediction) Suppose we have an environment for weather
prediction. The predictor can choose to wear or to not wear a jacket. If it is cold the jacket
will be a great help, if it is warm the jacket will be a mild annoyance to carry around. We
define the actions Y={jacket,no jacket} and observations X ={warm,cold} together with
the loss matrix in the following table:

loss Warm Cold
Jacket lwj :=0.3 lcj :=0.1

No Jacket lwn :=0.0 lcn :=1.0

�

In general we assume the loss is bounded between 0 and 1. We can always apply an
affine transformation to transform the loss to lie in [0,1] without affecting the behavior of
the optimal predictor, assuming the loss is bounded, which for finite X and Y it always is.

150 CHAPTER 3. BAYESIAN SEQUENCE PREDICTION

Definition 3.5.4 (ν-expected instantaneous loss) The ν-expected instantaneous
loss when Λ predicts the t-th symbol given history x<t from environment ν is

Lossνt (Λ) := Eν [loss(·,yΛt)|x<t] =
∑
xt

ν(xt|x<t)loss(xt,y
Λ
t)

Note that Lossνt implicitly depends on x<t.

We assume by default interaction is with the true environment µ, and we write Losst(Λ):=
Lossµt (Λ). If we knew µ we would choose the Λ that minimizes Lossµt (Λ). For unknown µ, it
is natural to consider minimizing ξ-expected loss. More generally, consider the ρ-optimal
predictor Λρ:

Definition 3.5.5 (ρ-optimal predictor Λρ) Given a semimeasure ρ, we define Λρ

to be the predictor which minimizes ρ-expected loss. Formally, the action taken by
following Λρ are

y
Λρ

t := argmin
yt∈Y

∑
xt

ρ(xt|x<t)loss(xt,yt)

We would expect that if the predictor knows which environment is the true environment
µ, then it will predict at least as well as any other predictor, and indeed this is so.

Theorem 3.5.6 (Λν minimizes ν-expected loss) Let Λ be any predictor, then
the prediction scheme Λν will always achieve minimal expected loss in environment ν.
That is, for all t,

Lossνt (Λν) ≤ Lossνt (Λ)

Proof. By definition, Lossνt (Λ)=
∑

xt
ν(xt|x<t)loss(xt,y

Λ
t) is minimized by choosing yΛt =

argminyt∈Y
∑

xt
ν(xt|x<t)loss(xt,yt), which is precisely what Λν does. �

Example 3.5.7 (Shall Bayes take his jacket?) Continuing with Example 3.5.3, let us
“somewhat” unrealistically assume that the weather is i.i.d. with

θ := Pθ[xt=warm] = νθ(xt=warm|x<t)

1−θ = Pθ[xt=cold] = νθ(xt=warm|x<t)

being the probabilities of the weather being warm and cold, respectively. The θ-expected
losses for (not) taking a jacket are therefore

lj := Eθ[loss(·,jacket)|x<t] =
∑

xt∈{warm,cold}

νθ(xt|x<t)loss(xt,jacket) = θ ·lwj+(1−θ)·lcj

ln := Eθ[loss(·,no jacket)|x<t] =
∑

xt∈{warm,cold}

νθ(xt|x<t)loss(xt,no jacket) = θ ·lwn+(1−θ)·lcn

Taking a jacket minimizes θ-expected loss iff lj<ln. Solving for θ gives

yΛθ
t = jacket ⇐⇒ θ < θcritical :=

lcn−lcj
lcn−lcj+lwj−lwn

=
3

4

The general expression assumes that the denominator is positive. If it is negative, the <
has to be reversed to a >. So if the chance of warm weather is more than three-quarters,

3.5. BOUNDS ON PREDICTION LOSS 151

it’s not worth taking a jacket. Let us assume that the true probability of warm weather is
90%. In this case, the µ-optimal predictor Λµ which knows θ=θtrue :=0.9 can compute the

µ-expected losses and decides y
Λµ

t = no jacket.
For unknown µ, it is natural to consider the Bayes-optimal predictor Λξ. In order to

compute the ξ-expected loss, we have to decide on a class of environmentsM and prior wν .
LetM contain all i.i.d. environments νθ where it is warm with probability θ∈ [0,1]. Let us
assume a uniform prior density w(θ)=1. This is exactly the Bayes-Laplace model considered
in Section 2.4. The corresponding Bayes-mixture ξ predicts ‘warm’ with probability

θ̂t :=
#warm+1

t+1
= ξ(xt=warm|x<t)

where #warm is the number of warm days among x<t. We therefore have

y
Λξ

t = jacket ⇐⇒ #warm+1

t+1
<

3

4

On the first day The Reverend Thomas Bayes (when born or arriving on a foreign planet)

has by symmetry to believe it to be warm with probability θ̂1=
0+1
1+1 =

1
2 , and given his loss

function prefers a jacket (pre-emptively cries for a jacket at birth -or- better be safe than
sorry on a foreign planet). Bayes is greeted with warm weather on his first day, but he is
cautious (as you should in England and on foreign planets) so decides to keep the jacket on

day two, since θ̂2=
1+1
2+1<

3
4 . This is due to the skewed loss that taking a jacket unnecessarily

is only a minor nuisance, while leaving it at home may be fatal. Second day is nice too,
and he isn’t sure anymore whether a jacket is worthwhile, since now θ̂3=

2+1
3+1 =

3
4 and the

expected losses for jacket and no jacket are both 1
4 . But three sunny days are enough for

Bayes to take some risk and forgo his jacket, since finally θ̂4=
3+1
4+1>

3
4 .

Apart from a minor regularization, Bayes will take his jacket iff the relative frequency
of warm days is below the critical threshold of θcritical=

3
4 . Since we assumed θtrue=0.9, in

the long-run with exponentially high probability (Theorem 2.2.68), there will be more than
75% warm days, and Bayes can confidently conclude that he is not in England anymore,
and donate his jacket. �

If we do not a priori know the true environment µ, we can substitute it by the Bayesian
mixture ξ. Given ξ, we can use the Bayes-optimal predictor Λξ, which minimizes the
ξ-expected loss.

We can now see how minimizing ξ-expected loss performs against the predictor that
has access to µ, or more accurately, how Losst(Λξ) compares to optimal Losst(Λµ). Since
ξ converges to µ in the sense of Corollary 3.3.2, and Losst(Λρ) is continuous in ρ at ρ=µ
(note that it is discontinuous at ξ ̸=µ) we expect the former to converge to the latter.

Theorem 3.5.8 (Bounding loss difference by KL divergence)

0 ≤ Losst(Λξ)−Losst(Λµ) ≤ at(x<t) ≤
√
2dt(x<t)

Proof. The difference Losst(Λξ)−Losst(Λµ) being non-negative follows trivially from Theo-
rem 3.5.6. Now,

Losst(Λξ)−Losst(Λµ)

=
∑

xt
µ(xt|x<t)loss(xt,y

Λξ

t)−µ(xt|x<t)loss(xt,y
Λµ

t)

152 CHAPTER 3. BAYESIAN SEQUENCE PREDICTION

Adding Lossξt (Λµ)−Lossξt (Λξ)≥0,

≤ ∑xt
µ(xt|x<t)loss(xt,y

Λξ

t)−µ(xt|x<t)loss(xt,y
Λµ

t)

+ξ(xt|x<t)loss(xt,y
Λµ

t)−ξ(xt|x<t)loss(xt,y
Λξ

t)

=
∑

xt

(
µ(xt|x<t)−ξ(xt|x<t)

)(
loss(xt,y

Λξ

t)−loss(xt,yΛµ

t)
)

≤ ∑xt

∣∣µ(xt|x<t)−ξ(xt|x<t)
∣∣·∣∣loss(xt,yΛξ

t)−loss(xt,yΛµ

t)
∣∣

Losses are bounded between 0 and 1, so |loss(xt,yΛξ

t)−loss(xt,yΛµ

t)|≤1,

≤ ∑xt
|µ(xt|x<t)−ξ(xt|x<t)| ≡ at(x<t) ≤

√
2dt(x<t)

where in the last step we applied Theorem 3.2.3. �

Since we have already shown in Corollary 3.3.1 that dt→0 with probability 1, it follows
that Losst(Λξ)−Losst(Λµ)→0 with probability 1. However, this gives no information about
the speed of convergence, which we will now explore.

Definition 3.5.9 (Total loss) The total loss of a prediction scheme Λρ over time
steps 1 to n is defined as

Loss1:n(Λρ) :=

n∑
t=1

Eµ[Losst(Λρ)]

Unlike the instantaneous loss (which is bounded by 1) the total loss for Λµ may be
unbounded and grow linearly in n.

Example 3.5.10 (Linearly growing loss in stochastic environments) Suppose we
have an unfair coin where the probability of flipping a head is θ=0.7. The predictor needs
to guess the outcome of the coin, and receives loss 0 (resp. 1) for a correct (resp. incorrect)
guess. Even supposing the true environment was known, the predictor would always guess
heads, and receive an expected loss of 0.3 every time step. Over an infinite number of flips,
the sum of losses will diverge. �

Example 3.5.10 demonstrates that the ideal predictor Λµ may incur unbounded total
loss. Hence, we will instead bound the excess loss of Λξ over Λµ.

Theorem 3.5.11 (Merhav-Feder Bound [MF98, Sec.III.A.2])

0 ≤ Loss1:n(Λξ)−Loss1:n(Λµ) ≤ An ≤
√

2nDn

Proof. Take expectations Eµ and sum
∑n

t=1 in Theorem 3.5.8,

0≤Loss1:n(Λξ)−Loss1:n(Λµ)≡
n∑

t=1

E[Losst(Λξ)−Losst(Λµ)]≤
n∑

t=1

E[at(x<t)]=An≤
√

2nDn

where in the last inequality we used Theorem 3.2.3. �

Unfortunately this bound involves n on the right-hand side, growing as
√
n. This can be

improved as follows:

3.5. BOUNDS ON PREDICTION LOSS 153

Theorem 3.5.12 (Hellinger Loss bound)

0 ≤
√
Loss1:n(Λξ)−

√
Loss1:n(Λµ) ≤

√
2Hn ≤

√
2Dn ≤

√
2lnw−1

µ < ∞

Proof. See Appendix A of [Hut07e]. �

The right side is now independent of n and finite, but involves
√
Loss on the left side.

By simple algebraic rearrangements, this can also be written as follows:

Corollary 3.5.13 (Bounding loss difference between Λξ and Λµ)

0 ≤ Loss1:n(Λξ)−Loss1:n(Λµ) ≤ 2Hn+2
√
2HnLoss1:n(Λµ)

where we can further bound Hn≤Dn≤ lnw−1
µ <∞ as above.

Proof. Non-negativity trivially follows from Theorem 3.5.6. For the second inequality we
rewrite Theorem 3.5.12 as√

Loss1:n(Λξ) ≤
√
2Hn+

√
Loss1:n(Λµ)

Squaring both sides,

Loss1:n(Λξ) ≤ 2Hn+2
√
2HnLoss1:n(Λµ)+Loss1:n(Λµ)

Subtracting Loss1:n(Λµ) then gives the result. �

Corollary 3.5.14 (Loss bounds for infinite sequences)

(i) Loss1:∞(Λξ) is finite if and only if Loss1:∞(Λµ) is finite.

(ii) Loss1:∞(Λξ)≤2D∞≤2lnw−1
µ for deterministica µ and if ∀x∃y : loss(x,y)=0.

(iii)
Loss1:n(Λµ)

Loss1:n(Λξ)
→1 whenever Loss1:n(Λξ)

n→∞−→∞.

aµ is deterministic if there exists a sequence x1:∞ for which µ(x1:t)=1 ∀t.

Proof. (i) The first property follows from Theorem 3.5.12 which holds for n=∞ as well.

(ii) Since the environment µ is deterministic, and for every x there exists a y that makes
the loss zero, Λµ can just choose the correct action that will guarantee zero loss, and hence
Loss1:n(Λµ)=0. Substituting this into Corollary 3.5.13 and taking the limit n→∞ we then
obtain (ii).

(iii) Dividing Theorem 3.5.12 by
√
Loss1:n(Λξ) we get

0 ≤ 1−
√

Loss1:n(Λµ)

Loss1:n(Λξ)
≤
√

2lnw−1
µ

Loss1:n(Λξ)
−→ 0 for n→∞

�

All of these results are true regardless of the choice of the loss function or true environment
µ, requiring only that µ∈M.

154 CHAPTER 3. BAYESIAN SEQUENCE PREDICTION

Example 3.5.15 (deterministic env., uniform prior, binary alphabet, 0-1 loss)
Recall (the definitions in) the majority prediction Example 3.1.1 for binary X ={0,1} and
deterministic environments. We show that it coincides with the Bayes-optimal predictor
yΛξ
t with uniform prior wν =

1
N and 0-1 error loss(xt,yt)= Jxt ̸= ytK. This gives ξ(x1:n)=

1
N

∑N
i=1Jx1:n =xi1:nK= 1

N |M(x1:n)| and yΛρ
t =argminyt

ρ(1−yt|x<t)= argmaxxt
ρ(x1:t) (cf.

Example 3.5.7). In particular yΛµ
t (ẋ<t)= ẋt and y

Λξ
t =argmaxxt

|M(x1:t)| is the majority
predictor. Losst(Λ) = loss(ẋt,y

Λ
t) = Jẋt ̸= yΛt K and hence Losst(Λµ) = Jẋt ̸= ẋtK = 0 and

Loss1:n(Λξ)=
∑n

t=1Jẋt ≠ argmaxxt
|M(ẋ<txt)|K≤ log2N as shown in Example 3.1.1. One

can improve Corollary 3.5.14(ii) to match this bound more generally (Exercise 12). For
other choices of loss functions, see Example 3.5.7 and [Hut05b, Sec.3.4.3]. �

3.6 Pareto-Optimality of ξ

We have seen that Λξ is a good choice of predictor, as the loss incurred compared to the

best informed predictor Λµ (the regret) grows like O(
√
Loss1:n(Λµ)). However, this does not

demonstrate that Λξ is the best choice of predictor that is agnostic of µ. Without knowledge
of µ, we can ask if there is a better choice of predictor Λ that performs equal or better than
Λξ on all environments ν∈M, and performs strictly better on at least one environment ν.
This turns out to not be the case, implying that Λξ is so-called Pareto optimal, i.e. that
if another predictor Λ outperforms Λξ on some environment, it must necessarily perform
worse on another.

Definition 3.6.1 (Pareto Optimality of ξ) Let F(µ,ρ) be any performance measure
of ρ relative to µ. A predictor ρ is called Pareto optimal in classM with respect to F
if there is no ρ′ such that F(ν,ρ′)≤F(ν,ρ) for all ν∈M, and F(ν,ρ′)<F(ν,ρ) for at
least one ν∈M.

We have that ξ is Pareto optimal with respect to any loss Lossνt (Λ), as well as the KL
divergence (Lemma 3.2.4)

Theorem 3.6.2 (Pareto Optimality of Λξ w.r.t. Loss)
The Bayes-optimal predictor Λξ is Pareto optimal with respect to F(ν,Λ)=Lossν1:n(Λ).

Proof. Assume not. Then there exists a predictor Λ such that

∀ν.Lossν1:n(Λ)≤Lossν1:n(Λξ)

∃ν.Lossν1:n(Λ)<Lossν1:n(Λξ)

Using Definition 3.1.3 of ξ, we have

Lossξ1:n(Λ) = Eξ[
∑n

t=1loss(xt,y
Λ
t)]

=
∑

νwνEν [
∑n

t=1loss(xt,y
Λ
t)]

=
∑

νwνLoss
ν
1:n(Λ)

<
∑

νwνLoss
ν
1:n(Λξ)

=
∑

νwνEν [
∑n

t=1loss(xt,y
Λξ
t)]

= Eξ[
∑n

t=1loss(xt,y
Λξ
t)]

= Lossξ1:n(Λξ) ≤ Lossξ1:n(Λ)

3.7. CHOICES OF CLASS M AND PRIOR wν 155

where the < follows from the assumption and the ≤ from taking Eξ

∑n
t=1 in Theorem 3.5.6

with ν=ξ. This proves Lossξ1:n(Λ)<Lossξ1:n(Λ), a contradiction. �

Theorem 3.6.3 (Pareto Optimality of ξ w.r.t. KL divergence) The mixture ξ is

Pareto optimal with respect to the KL divergence KL1:n(ν||ρ) :=
∑

x1:n
ν(x1:n)ln

ν(x1:n)
ρ(x1:n)

.

Proof. Assume not. Then there exists a semimeasure ρ such that

∀ν.KL1:n(ν||ρ) ≤ KL1:n(ν||ξ)
∃ν.KL1:n(ν||ρ) < KL1:n(ν||ξ)

Then, by summing over all environments weighted by prior wν , we have

0 >
∑
ν

wν [KL1:n(ν||ρ)−KL1:n(ν||ξ)] =
∑
ν

wν

∑
x1:n

ν(x1:n)ln
ξ(x1:n)

ρ(x1:n)

=
∑
x1:n

ξ(x1:n)ln
ξ(x1:n)

ρ(x1:n)
= KL1:n(ξ||ρ)

The second-last equality follows by mixture Definition 3.1.3 of ξ. Thus the KL divergence
between ξ and ρ is negative, contradicting Corollary 2.5.16. �

A similar result can be proven for the instantaneous distances and some of the other
distances (Definition 3.2.1), and is left as Exercise 14.

Pareto optimality is a minimal requirement that any purported best predictor should
satisfy. Otherwise it is strictly dominated by another predictor, and hence, all else being
equal, should not be used. However, in practice, we may prefer a different choice of mixture
ρ that leads to a large decrease of F for many environments ν, in exchange for only a small
increase of F for a few ν. This stronger condition, called balanced Pareto optimality , is also
satisfied by ξ.

Definition 3.6.4 (Balanced Pareto Optimality) Let F(µ,ρ) be any performance
measure of ρ relative to µ. The universal a-priori distribution ξ is called balanced
Pareto optimal with respect to F and weights {wν}ν∈M if for every ρ we have∑

ν∈M
wν(F(ν,ρ)−F(ν,ξ)) ≥ 0

Balanced Pareto optimality implies that if ρ performs better than ξ on some collection
of environments L={ν∈M :F(ν,ρ)<F(ν,ξ)}, then there must be a corresponding increase
on other environments, such that the weighted sum of loss differences is non-negative.

The mixture ξ is also Balanced Pareto optimal, though we leave the proof as an exercise.
From the collection of all of the results in this chapter, we can see that the predictions

derived from ξ will approach those of µ with respect to many different measures of distance
between distributions.

3.7 Choices of Class M and Prior wν

So far we have considered general model classesM and priors wν>0 without any restriction
on the semimeasures ν∈M, exceptM being countable, and the true µ∈M being a measure.
It is time to discuss concrete choices forM and wν , in particular universal choices that are
suitable for AGSI.

156 CHAPTER 3. BAYESIAN SEQUENCE PREDICTION

3.7.1 Choices for Model Class M

The larger the chosen class forM, the weaker the assumption becomes that µ is an element
of M. However, a larger class M makes both the mixture ξ and the choice of prior w
more complex. Recall the computability concepts from Section 2.6.3 and the (semi)measure
Definition 2.2.14.

Argument for Mcomp. [Sol64] suggested choosing the class of all computable probability
measures Mcomp: On the one hand, incomputable ν are impractical and impossible to
deal with in practice. On the other hand, all known physical processes are stochastically
computable (see the strong Church-Turing thesis discussed in Section 16.6.1), hence the true
µ∈Mcomp. SoMcomp represents the largest practically relevant class.

Argument for Msol. A drawback of this class is that the corresponding mixture ξ fails
to be computable [Hut05b]. Interestingly, choosing the larger class Msol⊃Mcomp of all
lower semicomputable semimeasures makes the mixture ξ now itself lower semicomputable
[Hut05b, LV19]. The reason is that all lower semicomputable semimeasures can be effectively
enumerated, but there is no computable enumeration of all computable probability measures
due to the Halting problem [ZL70, LV19]. While this ξU is still not quite computable, it is
better than incomputable, and the closure ξU ∈Msol is another nice property.

Larger choices for M. The class choice could be stretched a bit further to encompass all
cumulatively lower semicomputable semimeasures. The corresponding mixture ξ has the same
computability property, hence is also in its class [Sch02a]. In the multi-agent setting treated in
Chapter 10, we will be forced to consider the even larger class of reflective-oracle-computable
measuresMO

r ⊃Mcomp to overcome the Grain of Truth problem.

Smaller choices for M. For practical purposes we need smaller classesM. The MDP-
AIXI Algorithm 11.1 is based on the classM of Markov Decision Processes (MDPs); the
MC-AIXI-CTW Algorithm 12.4 (Figure 12.1) is based on variable-order Markov process
(CTW). Note that in these cases, ξ is not itself (variable-order) Markov, i.e. ξ ̸∈M. The
historically first and smallest and most famous class is the Bernoulli(θ) class, considered in
Section 2.4.3 and Example 3.5.7. Mathematically these classes are uncountable so size-wise
even larger than MO

r , but this is purely for mathematical convenience. Otherwise we
could as well restrict them to rational parameters θ, making them countable subsets of
Mcomp. Another theoretically interesting small class is the class of all poly-time computable
probability distributions (of some maximum degree) of logarithmic length, for which ξ can
itself be computed in polynomial time [Vov89].

In most parts of the book we consider generic M. For AGSI purposes and below we
mostly considerMsol and sometimesMcomp. Combining the computability concepts from
Section 2.6.3 and the (semi)measure Definition 2.2.14, we can formally define:

Definition 3.7.1 (Mcomp and Msol)

• Mcomp is the set of all computable measures over infinite sequences X∞

• Msol is the set of all lower semicomputable semimeasures
(see Definitions 2.2.14 and 2.6.12)

As explained above, the extended model class Msol is chosen for technical reasons
[Lei16b], while providing an even more general class of models than only the computable
measuresMcomp.

3.7. CHOICES OF CLASS M AND PRIOR wν 157

3.7.2 Choices for Prior wν

As we’ve seen, the mixture ξ is (balanced) Pareto optimal, and will converge to µ under
many definitions of convergence, regardless of the choice of weights wν so long as wµ>0.
We first discuss some philosophical arguments for various choices of the weights, culminating
in the Solomonoff prior wν=2−K(ν), which is in a sense the ideal choice of prior.

There are three main approaches for the choice of the prior wν : The Principle of
Indifference (PoI), maximum entropy, and simplicity.

The principle of indifference is the most intuitive, essentially suggesting that wν1 =wν2

for all ν1,ν2∈M, that is, we should consider all environments to be a priori equally likely.
Without additional information about the environments, it would at first glance seem sensible
to assume that all environments are a-priori equally likely, but this approach has problems:
While PoI is possible for a finite classM, this does not work anymore whenM is infinite.
Either

∑
νwν would diverge, or each environment has a zero weight. Moreover, it seems

nonsensical to assign the same weight to two environments, when one makes strictly more
assumptions than the other. Consider the following class M= {ν1,ν2}, where in ν1 all
emeralds are green, and ν2 where all emeralds are green until the year 2050 after which
they turn blue. Both environments are supported equally well by observations (in case you
are reading this after 2050, suitably increase the date) but it seems sensible to place more
credence on ν1 over ν2.

The maximum entropy principle [Jay57a, Jay57b] is a generalization of the symmetry
principle (choosing a symmetric prior) that suggests we choose the weights according to
the entropy of ν. The idea is that the distribution with the highest entropy is the one that
makes the fewest assumptions about how the data is distributed: Environments ν with a
flatter probability distribution will have high entropy, and as such a higher a-priori weight
wν . Unfortunately this approach suffers from the same drawbacks as the symmetry principle
(failure over infinite classes). This leaves us with

The simplicity principle. Consider the following following philosophical principles
together with their scientific interpretation:

• Occam’s razor: “Entities should not be multiplied beyond necessity”:

Of all the theories available to explain the data, choose the simplest that is consistent
with the observations. This indicates we should favor simplicity over complexity, so
we should choose the “simplest” ν consistent with the data.

• Epicurus’ principle: If more than one theory is consistent with the observation, keep
all the theories.

This means that we should also make sure that as many environments ν as possible
are kept for consideration and not rule out any environment before seeing evidence.

In the emerald example, Occam tells us to choose ν1. Epicurus tells us to also keep
ν2 around, who knows. A unification of both principles is to assign non-uniform weights
to hypotheses that have different a-priori plausibility. In the emerald example, we should
choose wν1

larger than wν2
: Emeralds that don’t suddenly change color on an arbitrary

year is a simpler theory than one where they do, but Epicurus’ principle suggests that they
might do, however unlikely, so we should choose wν2 ̸=0. Of course the posterior w(ν2|x<t)
will become 0 (1) once observing a green (blue) emerald in year 2050.

Of course, the informal word “simple” is not a well-defined term. Here, we can fall back
on the definition of simplicity via Kolmogorov complexity K introduced in Section 2.7.2.

158 CHAPTER 3. BAYESIAN SEQUENCE PREDICTION

A “proof” of Occam’s razor. While Occam’s razor intuitively seems reasonable, up
to this point we have been treating it more like an axiom or a grounding principle rather
than a theorem. Here, we can present a heuristic argument of the simplicity bias based
solely on the axioms of probability theory. For any finite space of outcomes, we can choose
a uniform prior, which are both sensible both from the principle of indifference, and the
choice of distribution that maximizes entropy. But if we consider a countable outcome space,
say, N, this is not possible anymore. Necessarily any choice of distribution P={p1,p2,...}
over N must have a convergent tail sum:

∑
ipi=1<∞ implies

∑
i≥npi→0 for n→∞. So

the axioms of probability alone enforce a simplicity bias: The probability mass pi for large
i must converge to zero. Now, consider a countable model classM={ν1,ν2,...} as we do
througout most of the book. The argument above implies that any prior w onM necessarily
assigns vanishing probability to environments with large index i. Furthermore, any effective
enumeration ofMsol also necessarily has simplicity bias: For any complexity k, there exists
an ik such that K(νi)> k for all i > ik. So any prior on Msol necessarily incorporates
Occam’s razor. We could try to circumvent this bias by consideringM=B∞, assign uniform
prior density (Lebesgue measure), interpret each p1:∞∈M as a (finite) program (padded to
infinity), where each program constitutes an (e.g. sequence) model. Remarkably, we will
show in Section 3.8.1 that even this uniform prior has a simplicity bias, and indeed also
induces Solomonoff’s a-priori distribution ξU . More details can be found in [Hut10a].

Solomonoff’s optimal universal prior. Using K-complexity allows us to assign a larger
prior to simpler models/explanations in a quantitative way. As long as the machine used for
the K-complexity is universal, we will have that 2−K(ν)>0 for all ν∈M, as long asM only
contains (semi)computable models. This gives us the Solomonoff prior:

Definition 3.7.2 (Solomonoff prior) Given a (semi)computable (semi)measure
ν∈Msol, the Solomonoff prior assigns a-priori weight

wU
ν := 2−K(ν)

to it. We let ξU denote the corresponding Bayesian mixture overMsol using the weights
wν=w

U
ν .

We now show in which sense this choice is optimal. For this purpose, consider the set of
all possible (alternative) choices of lower semicomputable priors

W = {w(·) :M→R+ :
∑
ν

wν≤1 and K(w)<∞}

and let w′ ∈W be an arbitrarily chosen weight function. Recall the MDL bound (Theo-
rem 2.7.22)

K(x)
+≤ −log2P (x)+K(P)

where P is a semi-probability. Identifying P with w′ and x with (the program describing
the index of) an environment ν, we obtain

log2
[
(wU

ν)
−1
]
= K(ν)

+≤ log2

[
w′−1

ν

]
which implies that bounds for ξU that depend on ln(wU

ν)
−1 are at most an additive constant

larger than the corresponding bounds for ξw′ depending on lnw′−1
ν . This means that by

choosing the Solomonoff prior, bounds for ξU are within an additive constant the best
possible among all (other) choices of lower semicomputable priors (Exercise 22).

3.8. SOLOMONOFF DISTRIBUTION MU 159

Using this prior, we have that the total squared distance is upper bounded by the
K-complexity of the true environment (Theorem 3.2.5),

Theorem 3.7.3 (Solomonoff bound) For sequences sampled from any computable
measure µ∈Mcomp, the total expected squared error SU

∞ as per Definition 3.2.2 of the
lower semicomputable Solomonoff predictor ξU ∈Msol is bounded as

SU
∞ ≤ ln

[
(wU

µ)
−1
]
= K(µ)·ln2

Among all possible lower semicomputable priors wν , this is within an additive constant
the tightest bound.

A downside of this prior is that it is only lower semicomputable, since K is only
upper semicomputable (Theorem 2.7.26). While this prevents computing it exactly, using
K-complexity as a basis inspired other successful simplicity-based priors for real-world
implementations, similar to the universal a-priori distribution, as we will see in later
chapters. An example is the prior based on context tree code lengths (Definition 4.3.20).
Another is the implicit prior n−d/2 induced by the MDL code length 1

2 log2n for each of d
parameters in a semi-parametric class (2.7.24). See [Hut05b, Sec.3.7.2] for a generalization
of Solomonoff’s bound to continuous classes.

3.8 Solomonoff Distribution MU

The Bayesian mixture ξ provides a powerful Pareto optimal predictor (Section 3.6) that
converges asymptotically to the ground truth µ (Corollary 3.3.2), as well as having strong
bounds on the numbers of errors while doing so (Corollary 3.3.3). ξU as defined relies on a
lot of mathematical machinery: semimeasures, the existence of a computable enumeration
of them, priors, Bayesian mixtures, and the concept of K-complexity.

We now introduce another predictor, the Solomonoff distribution M , that has a much
simpler definition than ξU . Defining M will only rely on the existence of a universal Turing
machine (Definition 2.7.2). We will first motivate this new definition of M based on the
quantity of random programs of a given size that print a string. We explore the properties
of M , namely that it is a lower semicomputable semimeasure, and it is linked to the
K-complexity via the approximation M(x)≈2−K(x). We prove some rigorous bounds to
motivate this approximation. We give a direct proof that M is a universal predictor for
deterministic sequences. The Solomonoff distribution M indeed will turn out to be equal to
ξU , hence like ξU also learns to predict sequences sampled from any unknown computable
stochastic environment µ as well as a predictor with knowledge of µ.

For this section we will assume binary alphabet B as is common in algorithmic information
theory. One could generalize all statements to non-binary finite alphabets by changing
powers of 2 to powers of |X | and the binary logarithm to log|X |, but the limited added value
does not justify the notational and mental overhead.

3.8.1 Motivation, Derivations, Definition

We now give 3 closely related “derivations” of Solomonoff’s a-priori distribution M , which
are variations of piping uniform random noise through a universal Turing machine.

M from uniform prior over programs. Assume for a moment that the true environment
µ is both deterministic and computable. Let x1:∞ be the unique string µ generates (the

160 CHAPTER 3. BAYESIAN SEQUENCE PREDICTION

string x satisfying µ(xt|x<t)=1 for all t). Suppose µ can be described by a program pµ
of length ≤ l bits on a universal monotone Turing machine U , i.e. U(pµ)=x1:∞. Consider
the set of all deterministic programs p on U with ℓ(p)≤ l that produce a string with prefix
x≡ x1:t ⊏ x1:∞. At least one of these such programs is pµ, but the other programs can
generate anything else (or nothing at all) after they generate x. Consider a modified version
U ′ of U without the prefix condition. This allows us to pad all such programs so that they
have length exactly l without affecting the behavior of printing a string starting with x, since
U ′ only reads as far as the original program without padding on the time step it has output x,
though it may affect what the program does next. We let Nl(x):= |{p∈Bl :x⊑U ′(p)}| denote
the number of programs of length 2l that produce strings prefixed with x. By the principle
of Epicurus, we will assume a priori that all programs of length l consistent with generating
the string x are equally likely. We can then use Pl(x) :=Nl(x)/2

l as the probability assigned
to the string x. Consider for a moment all programs p that output a string prefixed with x.
We can partition them into three groups based on their behavior after they output x: No
more symbols are output, a following 0 is output, or a following 1 is output. Hence, we can
write:

Nl(x)= |{p∈Bl :x⊑U ′(p)}|≥|{p∈Bl :x0⊑U ′(p)}|+|{p∈Bl :x1⊑U ′(p)}|=Nl(x0)+Nl(x1)

from which it follows that Pl(x)≥Pl(x0)+Pl(x1). Together with 0≤Pl(·)≤1 by definition,
we have that Pl is a semimeasure (Definition 2.2.14). Regarding the choice for l: We desire
that our choice of hypothesis space is as large as possible, so that any (computable) string
has a non-zero weight attached. First, note that for fixed x, we have that Pl(x) is increasing
as a function of l, since

Pl+1(x) =
Nl+1(x)

2l+1
=
|{p∈Bl+1 :x⊑U ′(p)}|

2l+1

=
|{p∈Bl :x⊑U ′(p0)}|+|{p∈Bl :x⊑U ′(p1)}|

2l+1

Since U ′(p)⊑U ′(pb) for b∈B,

≥ 2|{p∈Bl :x⊑U ′(p)}|
2l+1

=
Nl(x)

2l
= Pl(x)

This, together with the fact that Pl(x)≤1 means that P1(x),P2(x),... forms a monotonically
increasing bounded sequence, which has a well-defined limit as l→∞. We can finally define
the Solomonoff distribution as

M(x) := lim
l→∞

Pl(x) (3.8.1)

In (3.8.1), we count all possible elongations of the same program, effectively counting
the same program multiple times.

M from monotone UTM. For another approach to defining M , we can focus only
on counting minimal programs1, weighted by program length. Simpler (as measured by
K-complexity) strings have shorter programs that print them, and so will be assigned a
corresponding higher weight.

Assuming large l, ℓ(p)<l and program p has 2l−ℓ(p) many extensions to length l that all
print the same string starting with x. Hence all extensions of p together yield a contribution
2l−ℓ(p)/2l = 2−ℓ(p) to M(x), independent of l. Replacing the universal Turing machine
U ′ with a universal monotone Turing machine U (Definition 2.7.1), we can count each
minimal program once with weight 2−ℓ(p). This gives the alternative form of the Solomonoff
distribution, which we use as our definition:

1A program p satisfying x⊑U ′(p) is minimal if no proper prefix q⊏p satisfies x⊑U ′(q).

3.8. SOLOMONOFF DISTRIBUTION MU 161

Definition 3.8.2 (Solmonoff distribution) Given a universal monotone Turing
machine U , the Solomonoff distribution or universal distribution is defined as

MU (x) :=
∑

p:U(p)=x∗

2−ℓ(p) (3.8.3)

The conditional Solomonoff distribution is defined in the usual way:

MU (x|y) :=
MU (yx)

MU (y)
(3.8.4)

When U is chosen to be the reference UTM U (Remark 2.7.7), we simply write
M(·) :=MU (·).

M from piping uniform noise through a monotone UTM. Furthermore, one could
also define M as the probability that U outputs a string starting with x when provided
with uniform random noise on the program tape. We can show this is equivalent: Let p be
a program with the property that U(p)=x∗. The probability that the random noise r on
the input tape has p as a prefix is 2−ℓ(p). Now we want the probability that any randomly
generated program outputs x∗. So we sum over all programs p that output x∗, weighted by
the probability of that program p being generated, which is 2−ℓ(p). Therefore the probability
is equal to ∑

p:U(p)=x∗

2−ℓ(p)

which matches (3.8.3).

Comparison to No Free Lunch. Note that a uniform distribution is also used in the
No Free Lunch (NFL) theorems [WM97] to prove the impossibility of universal learners.
These theorems prove that if the performance of an algorithm is uniformly averaged over
all possible problems, it will be no better than any other algorithm. However, such NFL
theorems require that all prediction problems be equally likely, which is not true here: By
feeding the random noise into a universal Turing machine, the output strings have a bias
towards simplicity, meaning performance on simple problems will contribute more to average
performance than performance on complex problems. Nor is it true in practice: Most real
world prediction problems contain a lot of structure that a predictor can take advantage of,
rather than drawn uniformly from the set of all prediction problems. Crucially, M makes no
domain-specific assumptions, only a universal simplicity bias, without which science would
anyway not be possible at all [RH11].

M implicitly also contains all stochastic environments. Recall that the construction
ofM made the strong assumption that the true environment was deterministic. Obviously we
would also like the predictor M to perform well also when the true environment is stochastic.
Since every stochastic semimeasure can be written as a convex combination of deterministic
semimeasures, and M is a mixture over deterministic semimeasures, it implicitly contains
the stochastic semimeasures for free as well. Indeed, we will show that M is equivalent to
ξU , hence is applicable to stochastic environments as well.

3.8.2 Properties

Unsurprisingly as M ’s definition relies on K-complexity, the Solomonoff distribution M is
incomputable [LV19]. However, it is a lower semicomputable semimeasure, an important

162 CHAPTER 3. BAYESIAN SEQUENCE PREDICTION

result, as M gives a mixture over the set of lower semicomputable semimeasures, meaning it
is contained in its own model classMsol.

Theorem 3.8.5 (M is a semimeasure)

Proof. From the first representation of M (3.8.1) we have

M(ϵ) = lim
l→∞

Nl(ϵ)

2l
= lim

l→∞

|{p∈Bl :ϵ⊑U ′(p)}|
2l

= 1

Given any program p such that U(p)=x∗, the program may afterwards return no more
output, a zero, or a one following x. We write U(p)=x⊥ to denote that U gives no more
output after reading p and outputting x (either because U(p)=x or p runs forever after
outputting x.)

M(x) =
∑

p:U(p)=x∗

2−ℓ(p)

=
∑

p:U(p)=x⊥

2−ℓ(p)+
∑

p:U(p)=x0∗

2−ℓ(p)+
∑

p:U(p)=x1∗

2−ℓ(p)

>
∑

p:U(p)=x0∗

2−ℓ(p) +
∑

p:U(p)=x1∗

2−ℓ(p)

= M(x0)+M(x1)

For any x we can always construct p such that U(p)= x⊥, which gives strict inequality
above. This also demonstrates that M is not a probability measure. �

Theorem 3.8.6 (M is lower semicomputable)

Proof. Given a string x, consider the set Px={p∈B∗ :U(p)=x∗}, all programs that print a
string starting with x. We write Px={px1 ,px2 ,...}. We can then write M as

M(x) =

∞∑
i=1

2−ℓ(px
i)

Since the sum converges, the tail of the sum converges to zero, so for any ε>0 there exists
N such that

∞∑
i=N

2−ℓ(px
i) < ε

We now describe an algorithm ϕ(x,t) that computes M(x) from below, and prove that for
fixed x, ϕ(x,t) monotonically increases with t, and that for any ε>0, there exists a T such
that ϕ(x,T)>M(x)−ε.

Take an effective enumeration P={p1,p2,...} of all programs for U . Let M̂=0, and dovetail
the computation of all programs U(p1),U(p2),... in P. As soon as any such computation of
U(pi) either reads past pi on the input tape, or outputs a string of length ℓ(x) on the output
tape, we terminate that machine and verify if U(pi)=x∗. If so, we add a contribution of

2−ℓ(pi) to the total M̂ . We run the algorithm for t many time steps, and then halt and
return the estimate M̂ .

3.8. SOLOMONOFF DISTRIBUTION MU 163

It is obvious that ϕ(x,t) grows monotonically with t, as the estimate M̂ grows monotoni-
cally. Furthermore, for every N there is some finite time step T such that the algorithm ran
the programs px1 ,p

x
2 ,...,p

x
N from Px, and added their respective contributions 2−ℓ(px

i) to the
sum, as each of the pxi , 1≤ i≤N lives somewhere in the enumeration P, and each pxi will
print a string starting with x in finite time. Hence, for ε>0 there exists a time step T such
that

ϕ(x,T) > M̂ =

N∑
i=1

2−ℓ(px
i) =

∞∑
i=1

2−ℓ(px
i)−

∞∑
i=N

2−ℓ(px
i) = M(x)−ε

as required. �

We can also get some bounds on the Solomonoff distribution in terms of the Kolmogorov
complexity, which shows their close relation. Still only Solomonoff’s M has excellent
predictive properties. Km can only predict deterministic sequences and has exponentially
worse bounds, and K cannot be used for prediction at all [Hut03g, Hut06d].

Theorem 3.8.7 (Kolmogorov–Solomonoff sandwich)

0 ≤ K(x|ℓ(x)) +≤ −log2M(x) ≤ Km(x) ≤ K(x)
+≤ ℓ(x)+2log2ℓ(x)

Proof. We cover the easy proofs first. The first inequality 0≤K(x|ℓ(x)) is trivial. The third
−log2M(x)≤Km(x) follows from M(x)≥ 2−Km(x) which can be obtained by discarding
all terms from the summation M(x)=

∑
p:U(p)=x∗2

−ℓ(p) except for the minimal program

argminp:U(p)=x∗ℓ(p). The fourth is trivial as any program p that satisfies U(p) = x also
satisfies U(p) = x∗. The fifth was proven in Theorem 2.7.11. For the second inequality,
we let P (x) :=M(x)[[ℓ(x)=n]]. Noting that P is lower semicomputable (Theorem 3.8.6),
and that

∑
x∈B∗P (x) =

∑
x∈BnM(x)≤ 1 (Lemma 2.2.15) we can apply the MDL bound

(Theorem 2.7.22) conditioned on some y (see Remark 2.7.28), which givesK(x|y)+≤−logP (x)+
K(P |y). Note that K is conditioned on y, but P is not conditioned on anything. For x
of length n we have P (x)=M(x) and for y=n we have K(P |n) +

=K(M), hence K(x|n) +≤
−logM(x)+K(M). Now M(·) is a lower semicomputable semimeasure, so there exists a
program that can computeM from below, so K(M(·)) is equal to the Kolmogorov complexity
of the index of M(·) in some enumeration of all lower semicomputable semimeasures. Hence
K(M(·))=O(1), which combined with the above gives the desired result. �

3.8.3 Equivalence of M and ξU

Both M and ξU are strong predictors using (either explicitly or implicitly) a bias towards
simplicity based on K-complexity in their construction. Indeed, they coincide up to an
irrelevant multiplicative constant. Even more remarkably, for suitable matching U , which
we henceforth assume, they coincide exactly:

Theorem 3.8.8 (Solomonoff equivalence) The Solomonoff distribution M is equal
to the Bayesian mixture ξU up to an irrelevant multiplicative constant,

∀ UTM U : M(x) ×= ξU (x) and ∃ UTM U : M(x) = ξU (x)

Proof. The details of this proof are beyond the scope of the book; a full proof of the first
statement can be found in [ZL70, Hut05b, LV19]. In [WSH11] a stronger statement that
implies the second equality is proven: Namely, the class of all Solomonoff priors and all
Bayesian mixtures is identical. This is shown by proving that for every Bayesian Mixture ξw
there exists a UTM Uw such that MUw(·)=ξw(·), and that for every Solomonoff prior MU ′

there exists a choice of weights w′ such that ξw′(·)=MU ′(·). �

164 CHAPTER 3. BAYESIAN SEQUENCE PREDICTION

3.8.4 Predictive Bounds

Let us return to the deterministic case for a moment, where µ always samples a unique
sequence x1:∞. We would expect that since M is a universal predictor, it should satisfy
M(xt|x<t)→1 as t→∞. Note that since µ is deterministic, we require only that the sequence
(M(xt|x<t))

∞
t=1 converges to 1 without having to invoke any kind of probability qualifier.

Theorem 3.8.9 (Deterministic Solomonoff Bound) For any sequence x1:∞, we
have

n∑
t=1

(1−M(xt|x<t))
2 ≤

n∑
t=1

|1−M(xt|x<t)| ≤ Km(x1:n)ln2

Furthermore, if x1:∞ is a computable sequence, then M(xt|x<t)→1.

Proof. The first inequality is obvious from a2≤a for 0≤a :=1−M≤1. Now

n∑
t=1

|1−M(xt|x<t)| ≤ −
n∑

n=1

lnM(xt|x<t) = −lnM(x1:n) ≤ Km(x1:n)ln2

The first step uses the fact that 1−a≤−ln a for 0≤a≤1. The second uses the chain rule,
and that M(ϵ)=1. The third follows by −log2M(x)≤Km(x) (Theorem 3.8.7). (The square
bound can actually be improved by factor of 2, since (1−a)2≤− 1

2 lna for 0≤a≤1.)
Finally, if we take the limit n→∞ first on the right-hand side, and then on the left-hand

side, we get
∑∞

t=1|1−M(xt|x<t)|≤Km(x1:∞)ln2. If x1:∞ is computable then Km(x1:∞) is
finite, so the terms |1−M(xt|x<t)| in the sum must tend to zero, hence M(xt|x<t)→1. �

We extend Theorem 3.8.9 to the stochastic case. Suppose that x1:∞ is sampled from
some computable measure µ, e.g. a sequence of fair i.i.d. coin flips. Of course we can do
no better than predicting according to the true probability µ, and strong prediction in the
sense of Theorem 3.8.9 is impossible. But much like ξU , the Solomonoff distribution M
dominates all semicomputable semimeasures, which implies that it will eventually learn to
predict as well as the best predictor with access to µ, with some additional overhead based
on the complexity of µ.

Corollary 3.8.10 (Solomonoff distribution domination) For all ν∈Msol,

M(x) ≥ 2−K(ν)ν(x)

Proof. Follows directly from Theorem 3.8.8 and Proposition 3.1.5. �

Theorem 3.8.11 (Predictive convergence of M) Given a computable measure µ
from which a sequence x1:∞ is sampled, we have that

SM
∞ =

∞∑
t=1

∑
x1:t∈Bt

µ(x<t)
(
M(xt|x<t)−µ(xt|x<t)

)2 ≤ K(µ)ln2 < ∞

which implies that M(x′t|x<t) convergences to µ(x
′
t|x<t) with µ-probability 1.

Proof. Note that this is the same bound as in Theorem 3.7.3, but using M instead of ξ. The
proof is also the same, using Corollary 3.8.10 in place of Proposition 3.1.5. �

3.9. MARTINGALES 165

3.9 Martingales

Sequences x1:∞ drawn from some probability measure µ as considered in this chapter are also
called stochastic processes . It is custom to view them as a sequence of (capitalized) random
variables X1,X2,X3,... as we did in Section 2.4, but in this chapter without any/i.i.d. assump-
tion on µ. A (possibly) different stochastic process Z1,Z2,Z3,... is called a supermartingale
if it is non-increasing in expectation:

Definition 3.9.1 ((Super)martingale) The stochastic process Z1,Z2,Z3,... is said
to be a martingale with respect to X1,X2,X3,... if for all t∈N, the expectation of |Zt|
is finite and the expectation of Zt given X1,...Xt−1 is Zt−1. Formally,

E[|Zt|] < ∞ and E[Zt|X1,...Xt−1] = Zt−1 for martingales

If we weaken the = to ≤, then Z1,Z2,Z3... is a supermartingale.

There are more general definitions for continuous time t∈R and for (Xt) being replaced
by a filtration. Many processes in theory and practice are martingales, and many theorems
generalize from i.i.d. processes to martingales. This makes martingales a powerful tool in
the analysis of stochastic processes.

Example 3.9.2 (Martingale ν/µ) The only (super)martingale (w.r.t. xt∼µ(·|x<t)) we
will encounter in this book is Zt :=ν(x1:t)/µ(x1:t) for the true probability measure µ and
some (semi)measure ν: Eµ[|Zt|]=

∑
x1:t

µ(x1:t)Zt=
∑

x1:t
ν(x1:t)≤1, and

Eµ[Zt|x<t] =
∑
xt

µ(xt|x<t)Zt =
∑
xt

µ(xt|x<t)
ν(xt|x<t)

µ(xt|x<t)
Zt−1 = Zt−1

∑
xt

ν(xt|x<t) ≤ Zt−1

�

The key result we exploit in the proofs of some of our later convergence theorems is
Doob’s martingale convergence theorem:

Theorem 3.9.3 (Supermartingale convergence theorem [Doo53]) Let Z1,Z2,...
be a non-negative supermartingale (w.r.t. process Xt). Then the sequence converges
almost surely to a random variable Z∞ with finite expectation.

Note that there are no assumptions at all on the process Xt and only the expectation
and non-negativity assumption on the process Zt, which is the reason why martingales are
so versatile. The proof is beyond the scope of this book and relies on Doob’s upcrossing
lemma [Wil91a, Chp.11]. Unfortunately this is a purely asymptotic result and does not come
with any convergence rates [LH14e], unless further assumptions are made. For instance,
Hoeffding’s bound (Theorem 2.2.68) remains valid for martingales of bounded difference
∀t.|Zt−Zt−1|≤1, and hence such martingales concentrate around their expectation at an
exponential rate [GS20, Sec.12.2].

Example 3.9.4 (Martingale ξ/µ) Consider supermartingale Zt :=ξ(x1:t)/µ(x1:t). Theo-
rem 3.9.3 implies that µ-almost surely Z∞<∞. From Proposition 3.1.5 we have Zt≥wµ>0,
hence Z∞>0. Together this implies

ξ(xt|x<t)

µ(xt|x<t)
=

Zt

Zt−1

t→∞−→ Z∞

Z∞
= 1 w.µ.p.1

166 CHAPTER 3. BAYESIAN SEQUENCE PREDICTION

This is weaker than Corollary 3.3.2, since convergence holds only “on-sequence”, i.e. for
xt sampled from µ, and unlike Corollary 3.3.3 and Theorem 3.3.4 no convergence rate is
provided. �

The martingale convergence theorem also implies another famous and useful convergence
result.

Theorem 3.9.5 (Merging of opinions [BD62])

sup
A

∣∣Pξ[A|x<t]−Pµ[A|x<t]
∣∣ t→∞−→ 0 w.µ.p.1

where supA ranges over all measurable events A⊆X∞.

Proof. The proof is based on martingale theory and uses dominance Pξ[A]≥wµPµ[A] for all
events A, and is beyond the scope of this book. �

The result in particular implies that for a sequence of events At, Pξ[At|x<t]→Pµ[At|x<t].
For instance, for At= {x<tx

′
t}×X∞, we recover ξ(x′t|x<t)→µ(x′t|x<t) of Corollary 3.3.2.

But the real power of Theorem 3.9.5 is for events A that non-trivially depend on the infinite
future. This becomes important for far-sighted agents in Chapter 7 and elsewhere.

The next inequality can be regarded as an improved Markov inequality, which reduces to
the latter if Zt=Z1 ∀t.

Lemma 3.9.6 (Ville’s supermartingale inequality [GS20]) For non-negative
supermartingale (Zt),

P
[
suptZt≥ 1

δ

]
≤ δE[Z1] ∀δ>0. In particular P[suptZt<∞] = 1

Proof. See [Vil39, p.84] or [GS20, Sec.12.6] or [LS20a, Thm.3.9] or [LHS13a, Lem.14]. �

3.10 Algorithmically Random Strings

A sequence of uniform coin flips will with high probability look “random”, but classical
statistics has no notion of whether any particular sequence is x1:∞ is “random”. Algorithmic
(Martin-Löf) randomness overcomes this limitation. Once can show that if some statement
holds for all Martin-Löf random sequences, then it also holds with probability 1. A limited
converse is also true. Even more, one can quantify the degree to which some x1:∞ is not
random, called randomness deficiency. Pseudo-randomness can be regarded as a polynomial-
time version of algorithmic randomness.

The most natural definition from a statistical perspective for an individual sequence
to be random is if it passes all “reasonable” randomness tests. For instance, the relative
frequency of 1s and 0s in a binary sequence should be 1/2, and more generally, the relative
frequency of any particular subsequence of length ℓ occuring in x1:∞ should be |X |−ℓ, but
there are more tests, so called Martin-Löf randomness tests, which we will not formally
define here.

Instead, we provide an equivalent definition of algorithmic randomness in terms of
Kolmogorov complexity. Theorem 2.7.13 showed that most strings are incompressible and
have close to maximal K-complexity, and these are intuitively “random”, since they lack any
regularity that could be exploited to compress them. It turns out that incompressible strings
are precisely the ones that pass all Martin-Löf randomness tests. We can generalize the notion

3.10. ALGORITHMICALLY RANDOM STRINGS 167

of random sequences w.r.t. different distributions µ. We want a sequence drawn from µ with
high probability to be a µ-algorithmically random sequence in the individual sense, and that
no constructive test can reliably distinguish the latter from the former. Such sequences are
also called µ-typical. For infinite sequence, we can (but don’t have to) draw sharp boundary
between µ-random and not µ-random sequences. The randomness for finite sequences comes
in degrees measured by the randomness deficiency dµ(x) :=log2[M(x)/µ(x)]. For uniform µ,
dµ(x)≈ℓ(x)−Km(x), i.e. dµ(x) measures by how many bits x can be compressed. Low/high
dµ(x) indicate that x is more/less µ-random.

As an example, take a slightly biased coin with head probability 0.6, and flip it 1000
times. With high probability this will produce “typical” sequences, but trying to “improve”
the sample quality by finding more likely sequences is risky (best-of-n, top-k, and nucleus
sampling, and lower temperature are popular). The most likely sequence is a 1000 heads,
which is extremely atypical. In contrast, a sequence with low randomness deficiency is
guaranteed to be typical [The24]. Small dµ(x) is achieved by highly likely sequences (large
µ(x)) that are also incompressible (high Km(x)), and 1000 heads is highly compressible, so
penalized. Only sequences with no discernible patterns apart from the bias 0.6 can have low
dµ(x).

We will not make much explicit use of these concepts, but it is comforting to know
that any talk about a particular string being (non)random is actually meaningful and
mathematically rigorous.

Definition 3.10.1 (Randomness of individual sequences) An individual sequence
x1:∞ is (called) µ-algorithmically random iff one (and hence all) of the following
equivalent conditions hold:

(i) x1:∞ passes all µ-Martin-Löf randomness tests [LV19, Def.2.4.1&2.5.4]

(ii) M(x1:n)
×≤ µ(x1:n) ∀n (Definition 3.8.2) [Hut05b, Thm.2.31]

(iii) Km(x1:n)
+
= −log2µ(x1:n) ∀n (Definition 2.7.4) [LV19, Cor.4.5.3]

(iv) K(x1:n)
+≥ −log2µ(x1:n) ∀n (Definition 2.7.3) [LV19, Thm.3.5.1]

(v) dµ(x1:∞) < ∞ (below) [LV19, Thm.4.5.7]

where dµ(x1:∞) :=supnlog2[M(x1:n)/µ(x1:n)] is the randomness deficiency of x1:∞.
For fair coin flips µ(x1:n)=2−n, the qualifier µ- is usually dropped.

Below we show that a finite (infinite) string sampled from µ is with high probability
(almost surely) µ-algorithmically random. So while there is no algorithm to compute
algorithmically random strings, they can be generated with high probability (Exercise 2.7.7.2).
Conversely, the set of µ-algorithmically random sequences has µ-probabiltity 1.

Example 3.10.2 (µ.M.L. implies w.µ.p.1 and a limited converse) Consider su-
permartingale Zt :=M(x1:t)/µ(x1:t). Definition 3.10.1 and Lemma 3.9.6 imply 2dµ(x1:∞)≡
suptZt<∞ w.µ.p.1. On the other hand, by definition, dµ(x1:∞)<∞ iff x1:∞ is µ-Martin-Löf
random. Therefore

Pµ[x1:∞ is µ-M.L.random] = Pµ[dµ(x1:∞)<∞] = 1

Hence if some statement holds for all µ.M.L.random sequences, then it holds with µ-
probability 1. This proves the top right implication in Figure 2.9. An approximate converse
also holds: If an upper-semicomputable statement holds w.µ.p.1, then it holds for sure
(Theorem 2.6.16vi). There is also a more quantiatative converse [HM07]:

f(x1:∞)
×≤ Eµ[f]·2dµ(x1:∞)+K(µ,f)

168 CHAPTER 3. BAYESIAN SEQUENCE PREDICTION

Roughly, if the µ-expected value of a function f is small and µ and f are computable by
short programs, then f(x1:∞) is small on all sequences with small randomness deficiency. It
also implies that for an enumerable event E with co-enumerable complement Ē that if Pµ[Ē]
and dµ(x1:∞) and K(µ,Ē) are all small, then x1:∞ ̸∈ Ē. Roughly: unlikely simple events do
not contain typical sequences. Theorem 2.6.16v,vii are the special cases of Eµ[f]=0 and
Pµ[Ē]=1−Pµ[E]=0 with slightly stronger conclusions. �

If we knew µ∈Msol and that x is sampled from µ, this could be used to approximately
compute the incomputable M similar to Theorem 2.7.29, since with high probability,
M(x)≈µ(x) in this case:

Corollary 3.10.3 (M(x)≈µ(x) for x∼µ) For x∼µ∈Msol, we have

log2δ
∗
< inf

n
[log2µ(x1:n)−log2M(x1:n)] ≡ −dµ(x1:∞)

≤ sup
n
[log2µ(x1:n)−log2M(x1:n)] ≤ K(µ)

where
∗
< means that the inequality holds with probability at least 1−δ.

Proof. Rearranging dominance Corollary 3.8.10 gives log2[µ(x)/M(x)]≤K(µ). Plugging in
x=x1:n and taking supn gives the last bound. The first bound follows from Ville’s inequality
for Zt=M(x<t)/µ(x<t):

P[inft(log2µ(x<t)−log2M(x<t))≥ log2δ] = P[suptZt≤ 1
δ] ≤ δE[Z1] = δ

�

Since Km(x)≈−log2M(x), this also implies Km(x)≈−log2µ(x) with high µ-probability.
More precisely, Km(x)≥−log2M(x) from Theorem 3.8.7. One can also show that Km(x)

+≤
−log2M(x) for x∼µ [LV19, Lem.4.5.6d]. More precisely, supn[Km(x1:n)+log2M(x1:n)]<∞
w.µ.p.1.

Remark 3.10.4 (Pseudo-randomness) The relation of algorithmic randomness to
(cryptographically-safe) pseudo-random number generators (CSPRNG) is as follows: A
pseudo-random sequence is deterministically generated, but no test that runs in polynomial
time can reliably distinguish it from a sequence sampled from a random source. This can
be regarded as a (practical) poly-time version of Martin-Löf randomness tests, the latter
consisting of all lower semicomputable tests. That is, no constructive test can reliably
distinguish an algorithmically random sequence from a truly random sequence. �

3.11 Exercises

1. [C20] (Relations between distances) Prove the elementary relations between the
distances at and st and ht in Theorem 3.2.3 (third line). Show that the constants in
the bounds are tight.

2. [C10] (On-sequence ratio convergence) Prove the ratio convergence ξt/µt→1
in Corollary 3.3.2. Show that unlike the difference, the ratio may fail to converge
off-sequence.

3. [C30i] (Hellinger bound) Prove the Hellinger bound Theorem 3.2.6(iii). Hint:
Prove and use

∑
i

√
piqi ≤ 1− 1

2

∑
i(
√
pi−√qi)2 ≤ exp[− 1

2

∑
i(
√
pi−√qi)2] for pi :=

µ(i|x<t) and qi :=ξ(i|x<t). Now define predictive measure ρ(i|x<t) :=
√
piqi/

∑
i

√
piqi

and lower bound the joint ρ(x1:n).

3.11. EXERCISES 169

4. [C15] (High-probability bound on ξ-µ deviation) Show that Markov inequality
applied to Theorem 3.3.4 indeed gives the claimed high-probability bound on ε-errors
for ht and a much weaker than stated bound for dt.

5. [C15] (Asymptotically indistinguishable distributions) ConsiderM={µ,ν},
where µ=Bern(12) and ν(x1:n)=

∏n
t=1ν(xt) is independent, but not identically dis-

tributed anymore. Sepcifically consider ν(xt=1)= 1
2− 1

t+2 and prior wµ=wν=
1
2 . Show

that w(µ|x<t) ̸→1 w.µ.p.1. Why does this not contradict Corollary 3.3.2?

6. [C25i] (History-dependent loss functions) Show that all results in Section 3.5
remain valid for t and even x<t-dependent losst(xt,yt;x<t). Show that formally, the
results even remain true if loss also depends on the historic actions yΛ<t, but now greedily
minimizing Losst(Λ) is no longer optimal. Give an example where a non-greedy choice
of y1 ̸=yΛµ

1 leads to a loss smaller than Loss1:n(Λµ).

7. [C25c] (Bayes-optimal prediction) Write some code to implement the Bayesian
prediction scheme Λξ and apply it to the weather environment given in Example 3.5.3.
How many iterations in expectation does it take for Λξ to recommend wearing a jacket?

8. [C20] ((Dis)continuity of Loss) Show that Losst(Λρ) in Definition 3.5.4 is contin-
uous in ρ(x′t|x<t) at ρ=µ but discontinuous at ρ ̸=µ.

9. [C12] (Linearly growing loss) Following Example 3.5.10, verify the claim by
showing that limn→∞Loss1:n=∞.

10. [C23] (Predictive difference between universal mixtures) For two distinct
mixtures ξw and ξw′ with different choices for weight functions w(·) and w′

(·), show
that the µ-expected squared distance between these two mixtures is upper bounded
by 2(lnw−1

µ +lnw′
µ
−1

) [Hut05b].

11. [C12i] (Zero loss for informed predictor) Under what conditions on µ can the
true predictor Λµ achieve 0 loss?

12. [C25i] (Weighted majority predictor and bound) Work out the details in Exam-
ples 3.1.1 and 3.5.15 and generalize the expressions (one at a time, and then jointly) to
non-binary alphabet X , general (non-uniform) prior wν , general 0≤ loss(x,y)≤1 with
∀x∃y : loss(x,y)=0, and thus improve Corollary 3.5.14(ii) from 2lnw−1

µ to log2w
−1
µ .

13. [C15] (Laplace rule) LetM={νθ :θ∈[0,1]} with i.i.d. νθ(xt=1|x<t)=θ=1−νθ(xt=
0|x<t). Show that ξ and its conditional generates the Laplace rule introduced in
Section 2.4.3.

14. [C22] (Instantaneous Pareto-optimality of ξ) Prove that Bayes-mixture ξ is
Pareto optimal (Definition 3.6.1) with respect to any instantaneous Lossνt (Λ) and
instantaneous KL divergence KLt(ν||ρ) :=

∑
xt
ν(xt|x<t)ln[ν(xt|x<t)/ρ(xt|x<t)] under

some mild extra assumption.

15. [C30] ((Non-)Pareto-optimality of ξ w.r.t. other distances) Prove that ξ
is Pareto optimal (Definition 3.6.1) with respect to some but not all other distance
measures in Definition 3.2.1. Find a performance measure F(ρ,ξ) w.r.t. which ξ is not
Pareto-optimal. Show that any Pareto-optimal predictor w.r.t. to the square distance
is necessarily a Bayes-mixture. On the other hand, construct a Pareto-optimal Λρ

w.r.t. some loss(x,y) such that ρ is not a Bayesian mixture ξ over M, though the

actions y
Λρ

t =y
Λξ

t necessarily coincide, which is all that counts.

170 CHAPTER 3. BAYESIAN SEQUENCE PREDICTION

16. [C15] (Balanced Pareto optimality) Show that the mixture ξ is Balanced Pareto
optimal (Definition 3.6.4), and that Balanced Pareto optimality implies Pareto opti-
mality (Definition 3.6.1).

17. [C40s]Predictive MDL bounds Instead of the mixture distribution ξ=
∑

νwνν, consider
the maximum a posteriori estimator ϱ(x) :=max{wνν(x) : ν∈M} or equivalently the
two-part minimum description length (MDL) estimator ϱ :=argminν∈M{log2ν(x)−1+
log2w

−1
ν }, where as before,M is a countable set of (semi)measures and

∑
ν∈Mwν≤

1. Show that
∑∞

t=1Eµ[
∑

x′
t
(µ(x′t|x<t)−ϱnorm(x′t|x<t))

2]
×≤ w−1

µ where ϱ(xt|x<t) =

ϱ(x1:t)/ϱ(x<t) and ϱnorm(xt|x<t) :=ϱ(x1:t)/
∑

x′
t
ϱ(x<tx

′
t). Show that MDL converges

in mean2 sum but convergence is exponentially worse than for ξ [Hut05b].

18. [C30oi] (High-probability predictive bounds) Show that P[
∑n

t=1(µ(xt|x<t)−
ξ(xt|x<t))

2≥ 1
ε lnw

−1
µ]≤ε and P[

∑n
t=1(Losst(Λξ)−Losst(Λµ))

2≥ 2
ε lnw

−1
µ]≤ε where P

denotes µ-probability. Is it possible to prove similar high probability bounds for the
ratio Losst(Λξ)/Losst(Λµ)? [Hut05b]

19. [C35o] ((Non-)monotonicity of instantaneous distance) We have shown that∑∞
t=1Eµ[st]<∞. If st(x<t) were monotone decreasing in expectation (Eµ[st+1]≤

Eµ[st]) this would imply that Eµ[st(x<t)] tents to zero faster than 1/t, i.e. Eµ[st]=
o(1/t). Show (or refute) this monotonicity property for some class M of measures.
Provide necessary and/or sufficient conditions onM such that E[st]=o(1/t) [Hut05b].

20. [C30] (Non-computable (semi)measures) List some reasons why we might (not)
want to restrict ourselves to a classM of (semi)computable (semi)measures. Derive
some non-computable (semi)measures that are of interest.

21. [C30] (Incomputablility of Mcomp) Prove thatMcomp is not computably enu-
merable and that its mixture is not computable, and indeed not even semicomputable,
but is approximable. Prove thatMsol is computably enumerable, and its mixture ξU
is lower semicomputable but not computable (estimable). See Theorem 2.6.14 for the
relevant computability concepts.

22. [C15] (Choice of prior for Msol does not matter) Prove that for any choice
of weights wν , we have ξ(x) :=

∑
ν∈Msol

wνν(x)
×≥wU

ν ν(x), i.e. bar a multiplicative
constant, the choice of prior actually does not matter. How large is the hidden
multiplicative constant? What special property ofMsol is exploited which otherM
lack? Does there exist a UTM U ′ for which ξU ′ =ξ?

3.12 History and References

Universal Bayesian sequence prediction. Solomonoff induction combines algorithmic
information theory with Bayesian reasoning. It has excellent theoretical properties, and
represents a platonic ideal for inductive reasoning. For more on Solomonoff induction,
universal sequence prediction, and its Bayesian framing, see [HLV07, Hut17] for short and
light encyclopedic introductions, [Hut09b, Sec.2] for some further insights, [RH11] for a long
and gentle philosophical introduction, and [Hut06c, Hut07e] for a mathematical in-depth
treatment with many further results not covered in this book. The optimality of Solomonoff
induction is covered in [Hut03e], and general loss bounds are given in [Hut03a, Hut01c].
Research on Solomonoff induction was revived by [Hut01d, Hut01a] with the extension to

3.12. HISTORY AND REFERENCES 171

non-binary alphabet and 0-1 loss bounds. Extensions to general continuous parametric
classesM can be found in [CB90, Hut03e, LH14a].

The convergence of Bayesian predictors is explored in [Rya19b], showing that optimal
minimax asymptotic average performance can be achieved. Given some unknown function
f and samples (x,y) from it, [Han21] demonstrates the existance of universal learning
algorithms that, assuming it is in principle possible to learn f , can always asymptotically
learn f . Large language models perform in-context-learning [BMR+20] (learning patterns
during inference from presented examples), which [XRLM21] frames as a kind of Bayesian
inference. Simplicity bias (in terms of K-complexity) may be sufficient for prediction (at
least asymptotically), as [DKH22] demonstrates a method to “forecast without data”, to
predict the shape of time series data. For a reference text on stationary time series, see
[Rya19a], a short book on time-series clustering and prediction, inference and hypothesis
testing, motivated by many real world examples.

More specific results on Solomonoff induction. Solomonoff’s bound is generalized in
[CH05, CHS07] to a future bound in terms of K(µ|x<t) if x<t has already been observed,
which can be significantly smaller than K(µ). [Leg06] indicates that any powerful predictor
is necessarily itself also complex. In the context of the Black raven paradox, [LH15e] observes
that Solomonoff induction violates Nicod’s criterion, but concludes that the fault lies with
the latter. Solomonoff induction is unified with decision theory to give the AIXI agent
[Hut00, Hut07f, Hut05b], covered in Chapter 7. In [LH15d], the computability (Section 2.6.3)
of various versions of Solomonoff’s prior are categorized by where they live in the arithmetic
hierarchy. In [LHS13a], tight probability bounds on the cumulative error of Bayesian sequence
prediction were derived. [WSH11] compares and contrasts different choices for Solomonoff’s
M and the prior wν for sequence prediction. [Hut03b, Hut06b] explores alternative choices
of priors that are computable. [LHG11] demonstrates that Solomonoff induction may fail
for incomputable sequences that are “partially” computable (e.g. the halting sequence
ω1:∞= JTi(ϵ)haltsK∞i=1 interleaved with zeros). A computable predictor should be able to
at least predict the zeros correctly. Using a normalized version of Solomonoff induction
fixes this. [HM04, HM07, LH13, LH15a, Mil22] give some negative results regarding the
convergence of the universal (semi)measures on Martin-Löf random sequences, and construct
semimeasures that are not Bayesian mixtures that do converge on all Martin-Löf random
sequences, resolving open problem [Hut03c]. See [Hut09g] for a large number of (mostly still)
open problems for universal induction. As Theorem 3.7.3 among others show, K-complexity
is a good measure of the difficulty of a sequence prediction problem. [AEH14] attempts to
similarly measure the difficulty of (open-box) optimization problems in terms of algorithmic
information. While Solomonoff induction may be incomputable, [Fra15] provides a toy
benchmark for universal induction by enumerating all 2 and 3-state Turing machines and
the outputs they produce. For a given string, a search is performed over all programs to try
and compress the given string (i.e. recover the machine that generated it), exploring low
entropy programs first, which mostly recover the minimal machine for each string. See also
papers from the Ray Solomonoff 85th memorial conference [Dow13].

Non-Bayesian/Non-Solomonoff sequence prediction. The Minimum Description
Length (MDL) principle, a predictor optimizing for a model that can compress the data plus
the model as much as possible, is described in Section 2.7.4 and [Hut09b, PH04a, PH05a].
The motivation is as follows: The better the compression, the more regularity in the data is
detected, the better the predictions for future data. For continuously parameterized i.i.d.
model classes, the MDL method has comparable performance to Bayes [Grü07], and for
general non-i.i.d. sequence prediction considered in this chapter, MDL is also asymptotically
consistent [Hut09b] but the speed of convergence can be exponentially worse [PH04b, PH06a,

172 CHAPTER 3. BAYESIAN SEQUENCE PREDICTION

Hut03g, Hut06d]. Convergence (rates) of MDL for classification and regression are shown in
[PH05c].

Prediction with expert advice [HP04, HP05] is an alternative to Bayesian sequence
prediction with comparable bounds [Hut04] tuned to a particular loss function. [RH07,
RH08b, Rya20] explores under which conditions there exist mixture predictors that predict
all other measures for ultra-general classes. [GBC+20] introduces a computable algorithm
that assigns probabilities to every logical statement in a given formal language, and refines
those probabilities over time, learning to predict the validity of a statement before a formal
proof/disproof is found. [VHOB15] shows how to do exact Bayesian online learning and
inference efficiently over the class of monotone conjunctions from positive examples using the
generalized distributive law, and then extends this heuristically to handle negative examples
and k-CNF Boolean functions.

Practical approximations and extensions. Chapters 4 and 5 introduce model classes
smaller thanMcomp for which ξ can be computed very efficiently. Chapter 7 covers extensions
and applications of Bayesian inference to sequential decision making in reactive environments
and reinforcement learning. [SH10] explores finding a compact representation of the current
history for the purposes of prediction. [Hut18] investiges how any offline data compression
algorithm that has random access to the whole sequence x1:n can be converted into an
online predictor for xt given x<t with virtually no regret. The paper also provides the first
non-circular derivation of the famous Good–Turing estimator. A requirement of Solomonoff
induction is a countable hypothesis class. This was extended by [Lu24] who shows a necessary
and sufficient condition for inductive inference to be possible, which allows for induction
over (some) uncountable hypothesis classes. Naively approximating Solomonoff’s M by
running vast amounts of programs for extremely long as per Definition 3.8.2 is practically
unfeasible. [GMGH+24] approaches this problem by training neural networks to mimic
Solomonoff induction. Artificial training data is generated by sampling from an approximate
Solomonoff distribution. Predictive models can be transformed into lossless compressors and
vice versa. [DRD+24] demonstrates that the impressive predictive capabilities of recent large
language models indeed makes them strong lossless compressors, even for images despite
primarily being trained on text. The time-bounded Levin complexity [Lev73b] is a variant
of Kolmogorov complexity that is computable. Using this, Schmidhuber [Sch02b] defines a
computable version of Solomonoff’s universal prior called the Speed prior. Filan et al. [FLH16]
gives a variant of Schmidhuber’s speed prior that can be computed in doubly-exponential
time, and can be used to predict polytime-computable sequences.

Foundational texts for Bayesian inference and applications Various techniques
of Bayesian inference using probabilistic models to infer causal relationships from patterns
in data are explored in detail by [GKT08]. Methods for aggregating decision strategies for
sequence prediction, including logarithmic bounds of the regret of the aggregated strategy,
are thoroughly described by [Vov01]. Presented in [GCS+13] is a comprehensive introduction
to Bayesian inference from first principles, covering probability basics, parameterized models,
efficient sampling methods, Markov chain simulation, and both linear and non-parametric
regression approaches. The Bayesian perspective on machine learning, including belief
networks, graphical models, and data-based learning methods, is extensively covered by
[Bar12]. A thorough examination of probabilistic pattern recognition methods can be found
in [DGL96], which discusses kernel and nearest neighbor methods, Bayes error distance
measures, error estimation, and key probability theory inequalities. The fundamental
aspects of reasoning under uncertainty are addressed by [Hal03], covering probability theory,
Bayesian updating, networks, multi-agent system modeling, and specialized logics.

3.12. HISTORY AND REFERENCES 173

Bayesian inference beyond sequence prediction. For a broader and more in-depth
introduction to Bayesian statistics, see [Bol04, Pre02, Lee12, Jay03, GCSR95]. [GvdV17]
provides an introduction to non-parametric Bayesian inference, which allows for a more
general class of priors than parametric Bayesian inference, such as Poisson–Dirichlet pro-
cesses [BH10], and non-parametric Bayesian density estimation using infinite recursive tree
subdivisions [Hut09c, Hut05a]. [GR03] motivates the desire for non-parametric Bayesian
methods, introduces the Dirichlet process, consistency theorems and density estimation,
and methods for dealing with infinite-dimensional spaces. [LC19] gives a non-parametric
Bayesian prediction method that is computationally efficient, as well as having asymptotic
convergence guarantees. An exact and efficient Bayesian regression algorithm for piecewise
constant functions of unknown segment number, boundary locations, and levels has been
derived in [Hut07c, Hut07b] and applied to genomic LOH and copy number data from
SNP-microarrays [RHBK10, RH09, RHBK09b, RHBK09a]. Bayesian credible intervals and
sets are discussed in [Hut08a]. Predictive Hypothesis Identification (PHI) justifies, reconciles,
and blends (a reparametrization invariant variation of) MAP, ML, MDL, and moment
estimation, and can genuinely deal with nested hypotheses. A Bayesian solution to the
problem of incomplete (also called missing) data has been developed in [HZ03]. Analytic
expressions for the Bayesian posterior of mutual information have been derived in [Hut02a],
extended to incomplete data in [ZH02], and applied to selecting features in the naive Bayes
classifier in [HZ05]. [KG11] gives a formalization showing when it is possible for someone to
persuade a rational Bayesian actor to change their beliefs. [Kha18] gives a series of learning
algorithms based on Bayesian principles, and compares them to typical learning algorithms
like stochastic gradient descent [RM51] or Adam [KB14]. [KW13] shows methods to perform
Bayesian inference efficiently even with large datasets and intractable posterior distributions.
[Hoa20] philosophically explores the concepts of Bayesian reasoning, providing a series of
puzzles or apparent paradoxes where Bayesian reasoning leads to counter-intuitive but
none-the-less correct conclusions, critiques of frequentist methods, the origins of Bayesian
reasoning, Solomonoff induction and how Bayesian reasoning appears in games or may be
evolutionarily selected for.

Chapter 4

The Context Tree Weighting
Algorithm

All models are wrong, but some are useful.

George E. P. Box, 1919–2013

4.1 Krichevsky–Trofimov (KT) Estimator 175
4.2 Context . 179

4.2.1 Prediction with Context . 180
4.2.2 k-Markov Environment . 181
4.2.3 k-Markov Experiments . 182

4.3 Variable Length Context . 184
4.3.1 Prediction Suffix Trees . 185
4.3.2 Model Class . 186
4.3.3 Suffix Set Encoding . 190
4.3.4 Updating Prediction Suffix Trees 195
4.3.5 PST Experiments . 198

4.4 Mixing Distributions . 198
4.5 Context Tree Weighting . 199

4.5.1 The CTW Algorithm . 200
4.5.2 CTW Properties . 203
4.5.3 CTW-PST-KT Redundancies . 207
4.5.4 CTW Experiments . 208
4.5.5 Optimizations . 209

4.6 Exercises . 212
4.7 History and References . 213

174

4.1. KRICHEVSKY–TROFIMOV (KT) ESTIMATOR 175

We discussed in Chapter 3 how Bayesian sequence prediction can be used to learn the
dynamics of an unknown environment. In this chapter, we will present a prediction
algorithm which has both strong theoretical and practical properties.

There are many algorithms for the prediction of sequences, but there are few that
have both strong theoretical results while also being useful in practice. Context Tree
Weighting (CTW) [WST95] is one such algorithm. The CTW method provides a
Bayesian mixture over the class of environment distributions that depend only on at
most the previous D observations. Remarkably, even though the model class contains

O(22
D

) distributions, updating the weights for the mixture ξ can be done in O(D)
time, a double exponential speedup over naively computing the Bayesian mixture in
Theorem 4.5.11. For most of this chapter, we will assume that sequences are over the
binary alphabet B, though most of the results generalize to any finite alphabet.

We first introduce the KT-estimator, a predictor built in the same way as Laplace’s
rule (Section 2.4.3), but with a different choice of prior. We extend the KT-estimator
to a version that can predict sequences that violate the i.i.d. assumption; where the
distribution over future elements depends on a bounded segment of the past (called the
context). We explore predictors that allow for variable context, and finally introduce
the CTW method, which learns how much context in the past is required, and how
the future depends upon it. We prove strong predictive bounds for both the KT-
estimator and the CTW method, as well as some experimental results to demonstrate
the predictive power of these methods.

For clarity, we will denote the bits in a sequence as 0 and 1, and use 0 and 1 to refer to
the natural numbers zero and one respectively.

4.1 Krichevsky–Trofimov (KT) Estimator

Given a binary sequence x1:t generated by some source, we have discussed many ways to
predict the next element of the sequence. One simple estimate used was the generalized
Laplace rule in Section 2.4.3. Given a Bern(θ) process (where θ parameterizes the probability
of sampling a one) the probability that a specific sequence with a zeros and b ones is
sampled is θb(1−θ)a. For unknown θ, we can choose Jeffery’s prior w(θ)=π−1[θ(1−θ)]−1/2

(Definition 2.4.12) and write the marginal probability for any sequence x1:n by integrating
out θ.

PKT(x1:n) ≡ PKT(a,b) =

∫ 1

0

P (x1:n|θ)w(θ) dθ =

∫ 1

0

(1−θ)aθb 1

π
√
θ(1−θ)

dθ

This gives us the KT estimator.

Definition 4.1.1 (KT estimator [WST95]) The Krichevski-Trofimov (KT) esti-
mator PKT(x1:n)≡PKT(a,b) for sequence x1:n∈{0,1}n with b :=x1+...+xn=:n−a is
defined as

PKT(a,b) :=
1

π

∫ 1

0

1√
θ(1−θ)

θb(1−θ)a dθ =
1

π

Γ(a+ 1
2)Γ(b+

1
2)

Γ(a+b+1)
=

1

π
B(a+ 1

2 ,b+
1
2)

where B(α,β) :=
∫ 1

0
θα−1(1−θ)β−1dθ is the Beta function (2.4.7) and Γ is the gamma

function (2.4.8).

176 CHAPTER 4. THE CONTEXT TREE WEIGHTING ALGORITHM

For this definition, we dropped the x1:t and simply wrote PKT(a,b) as the order of the
bits in the sequence is irrelevant due to the i.i.d. assumption; only the counts of 0’s (a) and
1’s (b) in x1:t matter.

Although the KT estimator looks daunting in its current form, one can easily show that
it satisfies the following recursive relation.

Lemma 4.1.2 (Recursive KT estimator [WST95]) The KT estimator has the
following recurrence relation, where a (b) is the number of 0s (1s) in x1:t:

PKT(0,0)=1, PKT(a+1,b)= a+1/2
a+b+1 ·PKT(a,b), PKT(a,b+1)= b+1/2

a+b+1 ·PKT(a,b)

Alternatively PKT(x1:t)=PKT(xt|x<t)PKT(x<t) with PKT(ϵ)=1

where PKT(1|x1:t)= b+1/2
a+b+1 and PKT(0|x1:t)=1−PKT(1|x1:t)= a+1/2

a+b+1

Proof. First, note that PKT(0,0)=
1
π

Γ(1/2)Γ(1/2)
Γ(1) = 1

π

√
π
√
π

1 =1. Then, for the recursive case,

using the property that Γ(z+1)=zΓ(z),

PKT(a+1,b) =
1

π

Γ(a+1+ 1
2)Γ(b+

1
2)

Γ(a+b+2)
=

a+ 1
2

a+b+1

1

π

Γ(a+ 1
2)Γ(b+

1
2)

Γ(a+b+1)
=

a+ 1
2

a+b+1
PKT(a,b)

The (a,b+1) case follows by symmetry. �

Using this estimator, if we wanted to compute the joint probability of a sequence of
binary symbols, we can recover it from the predictive probabilities as

PKT(x1:t) :=

t∏
i=1

PKT((xi|x<i))

We can recursively compute PKT(a,b) for several values of a and b (Figure 4.1). Note
that PKT is symmetric, PKT(a,b)=PKT(b,a).

a\b 0 1 2 3 4 ...

0 1 1/2 3/8 5/16 35/128 ...
1 1/2 1/8 1/16 5/128 7/256 ...
2 3/8 1/16 3/128 3/256 7/1024 ...
3 5/16 5/128 3/256 5/1024 5/2048 ...
...

...
...

...
...

...
. . .

Figure 4.1: A table of PKT(a,b) for various values of a,b (Definition 4.3.25).

Example 4.1.3 (PKT(1|101111)= 11
14

) Given the sequence 101111, we have that a=1
and b=5. The KT estimator predicts the probability of the next element in the sequence as
being 1 as

PKT(1|101111) =
b+ 1

2

a+b+1
=

5+ 1
2

1+5+1
=

11

14 �

Remark 4.1.4 (KT on non-i.i.d.-sequences) The KT estimator cannot distinguish
the sequences 01010101... and 00110011..., and in fact does not perform any better than
random guessing, even though the pattern is simple enough that we can quickly learn to

4.1. KRICHEVSKY–TROFIMOV (KT) ESTIMATOR 177

predict the next bit perfectly. Using only the frequency of each bit as information to learn
from means to the KT estimator that these sequences look the same as any other sequence
drawn from a Bern(12) process. This should not be surprising, since the two sequences were
generated by a 1-Markov and 2-Markov process (see Definition 4.2.6) respectively, rather
than sampled i.i.d. �

Lemma 4.1.5 (Lower bound for KT estimator) For a+b≥1 we have the following
inequality,

PKT(a,b) ≥
1

2

1√
a+b

(
a

a+b

)a(
b

a+b

)b

Proof. Proof omitted, see [WST95, App.II]. �

We can easily recover from the recursive definition of the KT estimator a bound on the
instantaneous convergence rate:

Theorem 4.1.6 (Instantaneous KT-convergence rate) Assuming a sequence x1:∞
is drawn from Bern(θ), the KT estimator converges almost surely to θ, and indeed
exponentially fast, in the sense that PKT(xt=1|x<)→θ w.p.1, and for all ε>0,

P(|PKT(xt+1=1|x1:t)−θ|≥ε) ≤ 15e−2ε2t (4.1.7)

Proof. First note that from Lemma 4.1.2 we can write

PKT(xt+1=1|x1:t) =
bt+

1
2

t+1
(4.1.8)

where bt are the number of 1’s contained in x1:t. Now, we can write the difference between
the probability estimate given by the KT estimator, and the frequency estimate bt/t (see
Remark 2.2.66) as

∆t :=

∣∣∣∣bt+ 1
2

t+1
− bt
t

∣∣∣∣ = ∣∣∣∣ 1
2 t−bt
(t+1)t

∣∣∣∣ ≤ 1
2 t

t(t+1)
≤ 1

2t

where we have exploited 0≤bt≤ t in the second step. Next, the triangle inequality gives∣∣∣∣bt+ 1
2

t+1
−θ
∣∣∣∣ ≤ ∆t+

∣∣∣∣btt −θ
∣∣∣∣ which implies

P

(∣∣∣∣bt+ 1
2

t+1
−θ
∣∣∣∣≥ε) ≤ P

(∣∣∣∣btt −θ
∣∣∣∣+∆t≥ε

)
≤ P

(∣∣∣∣btt −θ
∣∣∣∣≥ε− 1

2t

)
≤ 2e−2(ε− 1

2t)
2t

(4.1.9)

The last inequality is Hoeffding’s bound (Theorem 2.2.68). For ε≥1, the l.h.s. of (4.1.7)
is 0, so the bound is trivially satisfied. For ε≤1, we have (ε− 1

2t)
2t= ε2t−ε+ 1

4t ≥ ε2t−1.
Plugging this and (4.1.8) into (4.1.9) together with 2e2≤15 gives the bound in the theorem.
Almost sure convergence now follows from Lemma 2.2.81. �

Borrowing from information theory, we can measure the performance of an estimator
using the concept of redundancy . Given a true distribution µ, we can encode a sequence x1:n
using, on average, −log2µ(x1:n) bits per symbol via arithmetic coding µ (Section 2.5.6).

178 CHAPTER 4. THE CONTEXT TREE WEIGHTING ALGORITHM

Now, if µ is unknown and must be learned, we approximate µ by Pc, the coding
distribution. We can then measure how good the approximation is by how many extra bits
on average are required to encode a sequence.

For this we use the redundancy, which is the difference between the logarithm of the true
distribution and the logarithm of the predictor.

Definition 4.1.10 (Redundancy) Let ρ and ρ̂ be distributions, and let x1:n be a
binary sequence. We define the individual cumulative redundancy of ρ̂ on x1:n with
respect to ρ as

rρ̂,ρ(x1:n) := log2
1

ρ̂(x1:n)
−log2

1

ρ(x1:n)
≡ log2ρ(x1:n)−log2ρ̂(x1:n)

When ρ=µ, the true distribution, we simply write rρ̂(x1:n).

For brevity, we write rPKT
as rKT. Now, assuming the data is sampled from a Bern(θ)

process, then µ(x1:n)=(1−θ)aθb, where a is the number of zeros in x1:n, and b the number
of ones. Since only the number of ones and zeros is relevant, we can write the individual
cumulative redundancy of the KT estimator as

rKT,θ(x1:n) ≡ rKT,θ(a,b) = log2
1

PKT(x1:n)
−log2

1

(1−θ)aθb = log2
(1−θ)aθb
PKT(a,b)

Lemma 4.1.11 (KT estimator redundancy [WST95]) For the KT estimator
the parameter redundancy can be uniformly bounded, that is, for all a+b≥1 and all
θ∈ [0,1] we have

rKT,θ(a,b) ≡ log2
(1−θ)aθb
PKT(a,b)

≤ 1

2
log2(a+b)+1

Note that unlike the instantaneous convergence for i.i.d. sequences in Theorem 4.1.6, the
cumulative redundancy bound holds for any sequence.

Proof. First, we take the derivative of log2(1−θ)aθb=alog2(1−θ)+blog2(θ) with respect to
θ,

d

dθ
log2(1−θ)aθb =

1

ln2

(
b

θ
− a

1−θ

)
set it to zero, and solve for θ, obtaining θ= b

a+b . This, together with monotonicity of log2
and the double derivative being negative

d2

dθ2
log2(1−θ)aθb =

1

ln2

(
− a

(1−θ)2−
b

θ2

)
< 0

gives that (1−θ)aθb is maximized for when θ= b
a+b , the MLE estimate, so

(1−θ)aθb ≤
(
1− b

a+b

)a(
b

a+b

)b

=

(
a

a+b

)a(
b

a+b

)b

This fact, together with Lemma 4.1.5 gives

log2
(1−θ)aθb
PKT(a,b)

≤ log2
(1−θ)aθb

1
2

1√
a+b

(
a

a+b

)a(
b

a+b

)b ≤ log2
1

1
2

1√
a+b

=
1

2
log2(a+b)+1

�

4.2. CONTEXT 179

4.2 Context

When making predictions for real-world sequences, we do not only rely on the frequency of
symbols in the sequence, but (unlike the KT estimator) we also tend to use the order in
which they appear as extra information to help with our prediction. To see what will occur
next, the most important information is often the most recent (especially if the process that
generates the sequence changes over time, in which case old information can often now be
out of date). This recent information is called the context .

Example 4.2.1 (Context in language) In language, context is extremely important
when trying to figure out the next symbol (letter) in a sequence (word). Suppose we were
given the letters DE, and we had to guess the next letter in the word. Using no context,
the best we could hope for is to use the frequency estimates of the letters in English, of
which E and T would be the most frequent (Figure 4.2). But both would be a poor choice,
as there are only a few common words containing DEE1, and most words containing DET2

are uncommon. The frequency estimate would also assign very low probability to letters
like D and R, as their general frequency estimates are low. However, an estimate taking
into account the context would assign high probabilities P(R|DE) and P(D|DE) (Figure 4.3),
accounting for the many words (at least in this dataset!) that contain the trigrams DER3 or
DED.4

�

Figure 4.2: Frequency distribution of the
letters used in English, based the Project
Gutenberg dataset [Lah14].

Figure 4.3: Conditional distribution of the
next letter following "DE", based the Project
Gutenberg dataset [Lah14].

Example 4.2.2 (KT on non-i.i.d.-sequences) Let’s say we are given the sequence
x1:2t=(01)t (that is, an alternating sequence of 0’s and 1’s of length 2t), and we are trying
to estimate x2t+1. Using our KT estimator on this context to estimate the likelihood of 0 or
1 as the next symbol, we get

PKT(0|x1:2n) =
n+ 1

2

2n+1
=

1

2
,

which is no better than a uniform guess. The KT estimator has learned nothing from the
context, whereas a good predictor will eventually learn that it needs only to look at the

1indeed, deep, deed, deer, deem
2determined,details,detective,detain,...
3understand, considered, wonderful, orders, ...
4decided, landed, deduce, dedicate, ...

180 CHAPTER 4. THE CONTEXT TREE WEIGHTING ALGORITHM

most recently received symbol to be able to get the prediction correct with certainty. In
defense of the KT estimator, this is an unfair example since the KT estimator assumes the
sequence is i.i.d. when it makes its prediction, and the sequence 010101... is drawn from a
non-i.i.d. process. �

4.2.1 Prediction with Context

Definition 4.2.3 (Markov) A probability distribution P:B∗→∆B is Markov if it
satisfies P(xt|x<t)=P(xt|xt−1) for all t. That is, the distribution for the next symbol
can only depend on the most recently observed symbol and also not the time step t on
which the symbol was received (which means Markov distributions are also stationary,
since the distribution is fixed and cannot vary as a function of time).

Remark 4.2.4 (Markov deterministic sequences) As an abuse of terminology, we
informally say that sequence ω=x1:∞ is Markov if the “obvious” deterministic distribution
µω that generates ω is Markov.5 That is, the previous bit xt−1 is sufficient information
to derive xt. We often omit the source when it is obvious. For example, the sequence
x1:∞=01010101... has the obvious associated (deterministic) distribution

P(0 |ϵ) = 1

P(xt |xt−1) = Jxt ̸=xt−1K

and is thus Markov.
Note that all sequences generated by an i.i.d. process are also Markov, as a Markov

process can ignore the context of the last symbol. Together with the above example, this
makes a Markov model strictly more powerful than an i.i.d. model. �

As we’ve seen, the KT estimator is useful only for sequences where the frequency of the
symbols is enough for prediction. A formal way to incorporate the notion of context into
our idea of prediction is to assume the underlying environment that produces the sequence
is Markov6, and try to learn the best Markov model that fits the data.

We take the concept of Markov models and combine it with our KT estimator by instead
of looking for the occurrence of a single symbol in the sequence, we consider how often
each symbol follows each other symbol. Phrased another way, we count the occurrence of
adjacent pairs of symbols, also called digraph. In Example 4.2.1 we were using the statistics
associated with trigraphs ADE,ADJ,ADV,ADT to estimate the continuation of AD... In the
binary case, this is counting the occurrence of the digraphs 00, 01, 10, 11, then depending
on the most recent symbol in our sequence we can see how often it is followed by 0 or 1.
The source generating the sequence in Example 4.2.2 is Markov, as we can see that the
probability of the next symbol depends only on the previous symbol and nothing before
that.

Example 4.2.5 (KT on 1-Markov sequences) Expanding on Example 4.2.2, instead of
looking at the number of zeros and ones, we instead count the occurrence of the digraphs
00,01,10,11 and use a KT estimator over these pairs, using the most recent symbol. Given
the start of the sequence, 010101, we see three 01’s, two 10’s, zero 00’s and zero 11. Since
the most recently seen symbol was a 1, we are interested in the statistics related to the

5Technically every sequence can be sampled from the trivial Bern(1
2

) distribution, but we do not mean to
imply that every sequence is Markov.

6also called the Markov assumption

4.2. CONTEXT 181

digraphs 10 and 11. Since 11 has never been seen before, and 10 has been seen twice, we
should have a higher probability assigned to the next character being 0 rather than 1. By
letting a1 represent the count of 10 digraphs (a1=2), and b1 the count of 11 (b1=0) we can
use the KT estimator as before to estimate the probability of the next symbol being 1

P1(x7=1|x1:6=010101) =
b1+

1
2

a1+b1+1
=

0+ 1
2

2+0+1
=

1

6

vs. that of the next symbol being a 0 is

P1(x7=0|x1:6=010101) =
a1+

1
2

a1+b1+1
=

2+ 1
2

2+0+1
=

5

6

so the estimator is relatively confident that the next symbol will be a 0. If we condition
on the sequence (01)n, then there would be n−1 counts of 10 and none of 11, so in this
instance the KT estimator would give

P1(x2n+1 = 0|x2n=(01)n) =
n−1+ 1

2

n−1+0+1
= 1− 1

2n

which as expected, converges to 1 as n→∞. �

4.2.2 k-Markov Environment

Sometimes we are interested in environments that make use of more context than just the
most recent symbol. We refer to such environments as being k-Markov.

Definition 4.2.6 (k-Markov) A probability distribution P:B∗→∆B is k-Markov, or
a kth-order Markov model, if P(xt|x<t)=P(xt|xt−k:t−1) for all t. That is, the probability
distribution for the next symbol can only depend on the k most recently observed
symbols and also not the time step t on which the symbol was received.

Remark 4.2.7 ((k-)Markov) Often, we abuse the term Markov to mean k-Markov for
some finite k, and say 1-Markov when we want to be explicit about the next symbol
depending only on the most recent symbol. Strictly from the definition, a k-Markov process
is also an m-Markov process for all m≥k. The smaller the k, the stronger the condition of
being k-Markov. As a result, we will usually refer to a process as being k-Markov for the
smallest such possible k. �

We define the following shorthands: as(x) (resp. bs(x)) is the number of occurrences of
the substring s0 (resp. s1) in the string x. We call as(x) and bs(x) the KT counts of x. For
example, in Example 4.2.5, given the sequence x1:6=010101 we have that

a0(x1:6) = 0, b0(x1:6) = 3, a1(x1:6) = 2, b1(x1:6) = 0

Formally: as(x<t) := |{i<t :xi−ℓ(s):i=s0}| and bs(x<t) := |{i<t :xi−ℓ(s):i=s1}|

We write as and bs if x is clear from context. We can then use the KT estimator to construct
an estimator for k-Markov processes, and approximate the probability of 0 or 1 after seeing
s. This is done exactly as before, but by replacing a with as and b with bs.

Pk(0|x1:n) =
as+

1
2

as+bs+1
and Pk(1|x1:n) =

bs+
1
2

as+bs+1
= 1−Pk(0|x1:n−1)

182 CHAPTER 4. THE CONTEXT TREE WEIGHTING ALGORITHM

where the context s=xn−k+1:n is the most recent k bits, giving us a k-Markov probability
estimate based on the KT estimator. Note that for Pk to be well-defined, we require ℓ(x)≥k.
To predict using Pk in practice, we can either wait until a sufficiently long context has been
accumulated before making predictions, or pad the start of the sequence with zeros to create
a dummy context, or use whatever context xmax{n−k+1,1}:n is currently available.

Example 4.2.8 (KT on k-Markov sequence for k = 0,1,2) We will compare the
k-Markov KT estimator for some example sequences. The first is x1:3n=(010)n, generated
by the obvious deterministic distribution. The values of as and bs for k≤2 and s∈B≤2 are

s ϵ 0 1 00 01 10 11

as 2n n n 0 n−1 n 0
bs n n−1 0 n−1 0 0 0

We can then compute the estimated probability over the next bit x3n+1 = 0 that each
k-Markov KT estimator provides.

P0(0|(010)n) =
aϵ+

1
2

aϵ+bϵ+1
=

2n+ 1
2

3n+1
→ 2

3

P1(0|(010)n) =
a0+

1
2

a0+b0+1
=

n+ 1
2

2n
→ 1

2

P2(0|(010)n) =
a10+

1
2

a10+b10+1
=

n+ 1
2

n
→ 1

The sequence is generated by a 2-Markov distribution, so it is not surprising that P2 quickly
learns the pattern that the last 2 bits uniquely describe the next bit, by the rules 00→1,
01→0, 10→0 (where x→y means given context x, predict y) and the probability assigned
to 0 following (010)n converges to 1, with the error scaling as O(1/n) after reading n bits.
A third of the bits are 1, so the 0-Markov KT estimator gives the probability of a 0 as ≈ 2

3 ,
regardless of the context. This is the same answer the naive KT estimator (Lemma 4.1.2)
would give. Curiously, for predicting 0 given (010)n, the 1-Markov estimate is actually
worse than the naive 0-Markov (i.i.d.) estimate. The reason being that P1 (falsely) assumes
that the true distribution is 1-Markov, and since the digraphs 01 and 00 appear essentially
equally often (n and n−1 times respectively after seeing 3n bits), when P1 is given only one
bit xt−1=0 of context, it estimates it would be equally likely that the context is the last bit
of the digraph xt−1:t=10 or xt−1:t=00.

However, the 1-Markov model does learn that 1 will always be followed by 0, and so if
the context were x1:3n+2=(010)n10, it would correctly estimate the probability of x3n+3=0

to be 1 as n→∞:

P1(0|(010)n01) =
a1+

1
2

a1+b1+1
=

3n+ 1
2

3n+1
= 1− 1

2(3n+1)
→ 1

�

4.2.3 k-Markov Experiments

It should not come as a surprise that a k-Markov estimator can also learn any m-Markov
distribution for m≤k. However, we do not always want to choose k as large as possible, as
this may lead to slower convergence.

Example 4.2.9 (KT estimator for a 2-Markov process) Consider the 2-Markov process
µ1 in Figure 4.4:

4.2. CONTEXT 183

00 01

10 11

1−α,0
α,1

1−α,1
α,0

α,0

α,0
1−α,1

1−α,1

Figure 4.4: µ1, A 2-Markov process parameterized by α∈ [0,1]. The notation p,x on each
edge represents sampling bit x with probability p, and then transitioning to the new state the
edge points to.

Figure 4.5: Prediction accuracy (left) and instantaneous KL divergence (right) averaged
over 100 trials for k-Markov KT estimators, for 0≤k≤5, and the optimal predictor, on
environment µ1 (Figure 4.4) with α=0.8.

Each state is identified with the two bits in the context. This Markov chain is similar
to the one in Example 4.2.8, but parameterized by α∈ [0,1], which dictates how noisy the
Markov chain is. The behavior of this Markov chain can be described as attempting to
generate the sequence (100)n, but when each bit is sampled, with probability 1−α the wrong
bit is generated, and the context is updated appropriately. For α=1 this degenerates back
to the same (deterministic) distribution in Example 4.2.8. So as long as α≥0.5, the optimal
deterministic predictor (the predictor that is aware of the dynamics of the Markov process)
uses a 2-bit context, and uses the following rules to predict:

00→1 01→0 10→0 11→0 (4.2.10)

This optimal predictor will predict the new bit correctly with probability α.

We choose α=0.8, and we sample a 1000-bit sequence from the above Markov distribution,
and compare the fraction of bits predicted correctly by the k-Markov estimator to the optimal
predictor described above, on the same sequence, for 0≤k≤5 (Figure 4.5).

Clearly, for k=0 and k=1, there is insufficient context to learn the pattern and predict
well. Interestingly, we see that k=0 again outperforms k=1, for similar reasons as described
in Example 4.2.8. We see that any k≥2 is sufficient context to learn the distribution, but
the larger the k, the longer it takes the KT estimator to learn the transition probabilities.

184 CHAPTER 4. THE CONTEXT TREE WEIGHTING ALGORITHM

We can also compare the models more directly by measuring the instantaneous KL
divergence between the true distribution µ and a predictor µ̂

KLt(µ||µ̂) := Ex1:t∼µ

[
ln
µ(xt|x<t)

µ̂(xt|x<t)

]
(4.2.11)

= Ex<t∼µ

[
µ(1|x<t)ln

µ(1|x<t)

µ̂(1|x<t)
+µ(0|x<t)ln

µ(0|x<t)

µ̂(0|x<t)

]
which we approximate by sampling a family of sequences x1<t,x

2
<t,...,x

N
<t from µ and taking

the average (Figure 4.5)

KLt(µ||µ̂) ≈
1

N

N∑
i=1

[
µ(1|xi<t)ln

µ(1|xi<t)

µ̂(1|xi<t)
+µ(0|xi<t)ln

µ(0|xi<t)

µ̂(0|xi<t)

]
�

Remark 4.2.12 (Problem of k-Markov for large k) The reason why m-Markov KT
estimators are slower to converge to a k-Markov model for m>k is that the estimator
is keeping count of additional context that is irrelevant. For example, the 3-Markov KT
estimator in Example 4.2.9 will keep track of counts a010 and a110, whereas the 2-Markov
estimator will only keep track of a10=a110+a010. For a deterministic distribution (like in
Example 4.2.8) this will not slow things down; since for a 2-Markov model, the context 10
uniquely determines the next bit, and so one of a110 or a010 would be zero, and the 3-Markov
model would learn just as fast as the 2-Markov model. But for a stochastic distribution
(like the one above), the 3-Markov model makes a (futile) distinction between 010 and 110,
leading to smaller counts7 for a010 and a110 as compared to a10, which means slower learning.

More generally, a k-Markov estimator has 2k many parameters to learn, so the sample
size per parameter is O(n/2k). The same number of samples spread over more parameters
means less data for each parameter to learn from, which slows learning. �

So, we’ve seen that if k is chosen too small, the k-Markov KT estimator may never learn
to predict optimally regardless of how many bits are provided, but if k is too large, then the
estimator will be slow to learn. Obviously, if the environment is known to be k-Markov, but
the transition probabilities are unknown, then we can just choose a k-Markov KT predictor.
But how do we choose k if all that is known (or assumed) is that the environment is k-Markov
for some value of k? We will solve this by first generalizing k-Markov KT predictors to suffix
sets, which improves upon the former in an important way: It allows for variable length
contexts.

We can then take the Bayesian approach by considering a mixture over suffix sets,
weighting the results with a simplicity-type prior that places greater weight on less complex
suffix sets. This ensures that we will never accidentally choose a model class too simple
such that the true environment is not contained within, but it also guarantees that learning
simple environments (i.i.d. and 1-Markov) is not overburdened by a large set of parameters.

4.3 Variable Length Context

A k-Markov estimator always considers the last k bits when making a decision, even if it would
be faster to neglect additional context. For instance, recall in Example 4.2.8, the optimal
predictor (4.2.10) uses two bits of context, following the rules 00→1 01→0 10→0 11→0.
If the previous bit was a 0, we need to also look at the second most recent bit to decide what

7In the worst case, if 110 and 010 are present with approximately equal frequency, then the counts will
be about half of a10.

4.3. VARIABLE LENGTH CONTEXT 185

to do (as the most recent bit alone cannot distinguish whether to apply rule 00→1 or 10→0),
but if the last bit was a 1, we can always predict 0 without considering the second-to-last
bit. Essentially, the optimal predictor could instead use the following simplified set of rules
00→1 10→0 1→0.

Of course, a predictor would in general not know the dynamics of the environment, and
would need to learn when this simplification can be performed.

4.3.1 Prediction Suffix Trees

Prediction Suffix Trees can be used to represent a predictor that uses a variable length
context depending on the situation. The tree is traversed following the context (in reverse
order from most recent sample first) from the root node till a leaf node is found. The
statistics associated with that leaf node are then used to predict the next symbol.

Example 4.3.1 (Context tree) Suppose we are trying to guess if the next word in a
sentence is cup or cop, and the context provided so far is from the, then we likely require
more context, as there are full sentences (run from the cop or drink from the cup)
where either word would be a sensible continuation. However, if instead the context was
wash the, then we can be almost certain that the next word will be cup rather than cop,
without requiring additional context. We can represent these associations based on variable
length contexts as a tree (Figure 4.6). �

�
�

�

@
@
@

ue
ue ue

�
�

�

@
@
@

ue
ue ue

cup/cop

from the

drink run

wash the

Figure 4.6: The context tree associated with the contexts "run from the cop" and "drink

from the cup" (Example 4.3.1).

We formally define variable order Markov sources by using a suffix set (of depth D), a
collection of strings S such that every finite sequence (of length at least D) has a unique
suffix in S. As we will see, every suffix set corresponds uniquely with a suffix tree.

Definition 4.3.2 (Suffix) A string x is a suffix of another string y if there exists a
string z such that y=zx.

For example, 10 is a suffix of 0010, and ing is a suffix of writing.

Definition 4.3.3 (Suffix set) A suffix set S is a finite set of binarya strings that is
complete and proper .b S is proper if no member of S is a suffix of another member of
S, and complete if every semi-infinite (to the left) sequence ...xt−1xt has a suffix that
belongs to S.

acan be generalized to any finite alphabet
b[WST95] defines a suffix set as any set of binary strings, but since we are only interested in

complete and proper suffix sets, we add these properties to the definition.

186 CHAPTER 4. THE CONTEXT TREE WEIGHTING ALGORITHM

Proposition 4.3.4 (Uniqueness of suffix) Given a suffix set S, every semi-infinite
sequence ω has a unique suffix in S.

Proof. Existence follows directly from the definition of completeness. The suffix must also
be unique, as if there existed two suffixes s and s′ of ω in S, then one of s or s′ would
necessarily be a suffix of the other, which would violate the properness condition on S. �

Example 4.3.5 (Proper and complete suffix set) Consider the suffix set S =
{0,11,101,001}. Let’s say we want to verify that S is proper and complete. Since no
member of S is a suffix of another member of S, we know that S is a proper suffix set. To
show the suffix set is complete, we will consider all possible binary sequences of length three
and show that there is a member of S which is a suffix for each of them.

000,010,100,110 has a suffix of 0

011,111 has a suffix of 11

101 has a suffix of 101

001 has a suffix of 001.

Clearly all semi-infinite sequences must have an element of B3 as a suffix, which together
with transitivity of suffixness gives us our result. �

Definition 4.3.6 (Suffix tree) A suffix tree is a finite binary tree.a We can define it
recursively

Tree = Leaf | Node Tree Tree

Given a non-leaf suffix tree Ψ, we refer to the two subtrees as Ψ.left and Ψ.right
respectively.

aThis generalizes to |Σ|-ary trees for suffix sets S over finite alphabets Σ.

Each suffix set S uniquely corresponds with a suffix tree ΨS . To build a suffix tree ΨS
from a suffix set S we start with a single root node, and for each string s∈S, we read the
string s in reverse order, from right-to-left. For each zero (one) we read from s, we
add a right (left) child to the current node, and then walk down to this node. We can think
of each leaf node being associated with the corresponding string s that generated it, and the
string s is implicitly stored in the structure of ΨS .

The reason why we read the string in reverse is due to the most recent bit xn being the
last one in the string x1:n, and we read the context from most recent to least recent.

Conversely, given a suffix tree ΨS , we can recover the suffix set S. For each leaf node in
ΨS , find the path from the root node to the leaf, and record left steps as 1, right steps as 0.
Once the leaf is reached, reverse the recorded path to recover the string s from which that
leaf was generated.

4.3.2 Model Class

We can recursively define the set of all possible suffix sets CD up to a maximal depth D. This
will be useful later on as our choice of model class from which we assume the environment
resides in, and the class to take a Bayesian mixture over.

4.3. VARIABLE LENGTH CONTEXT 187

Definition 4.3.7 (Model class) The model class of depth D (denoted CD) is the set
of all complete and proper suffix sets with strings of maximal length D and is given by
the recurrence

CD :=

{
{{ϵ}} if D=0

{{ϵ}}∪{S1{0}∪S2{1} :S1,S2∈CD−1} if D>0

where for two sets of strings A and B, we define the concatenation of sets as AB :=
{ab :a∈A,b∈B}.

Example 4.3.8 (Set of context trees CD of depth 0, 1, and 2) For small D we can
calculate CD by hand.

C0 = {{ϵ}}
C1 = {{ϵ},{0,1}}
C2 = {{ϵ},{0,1},{00,10,1},{0,01,11},{00,01,10,11}}

�

Since any suffix set is required to be finite, there always exists a depth D such that no
suffix in S has length larger than D. We usually specify S with respect to a model class CD.
Note that CD contains all possible suffix sets with strings of length bounded by D, rather
than strings of exactly length D. As the following corollary shows, this implies that a model
class of greater depth is a superset of all shallower model classes.

Proposition 4.3.9 (Model class inclusions) We have the following inclusions

C0 ⊆ C1 ⊆ C2 ⊆ ...

Proof. The statement to prove is that Cd ⊆ Cd+1 for all d= 0,1,2,..., and we proceed by
induction. The base case C0⊆C1 follows immediately by Definition 4.3.7. For the step case,
let us assume that Cd−1⊆Cd, and prove that Cd⊆Cd+1. Let S∈Cd. It is trivial that {ϵ} is
contained in each CD for all D by definition, so assume that S ≠{ϵ}. So there must exist
S1,S2∈Cd−1 such that S=S1{0}∪S2{1}. By the inductive hypothesis we have S1,S2∈Cd,
and hence S=S1{0}∪S2{1}∈Cd+1, by definition of Cd+1. �

Lemma 4.3.10 (Model class CD is double exponential in size) The size of the
model class CD grows double-exponentially with depth D. More precisely, for D≥1,

22
D−1 ≤ |CD| ≤ 22

D−1

Proof. From the recursive Definition 4.3.7 of CD we get |CD|=1+|CD−1|2 and |C0|=1 hence
|C1|=2. We prove the bounds by induction over D. They are obviously satisfied for D=1.
For the induction step we have

|CD| = 1+|CD−1|2 ≤ 1+(22
D−1−1)2 = 1+22(2

D−1−1) ≤ 22
D−1

≥ 1+(22
D−2

)2 = 1+22
D−1 ≥ 22

D−1

�

188 CHAPTER 4. THE CONTEXT TREE WEIGHTING ALGORITHM

Definition 4.3.11 (Prediction Suffix Tree (PST)) Given a suffix set S and a
parameter vector ΘS , a prediction suffix tree ΨS,ΘS is a binary tree defined as

PST = Leaf θ | Node PST PST.

Each leaf in a PST stores a parameter θs∈ΘS , where s is the reverse of the path from
the root node to that leaf, encoding left as 1 and right as 0.

The motivation behind Definition 4.3.11 is to keep track of long context when it is
required, and only short context when it is not. This reduces the number of redundant
parameters, which speeds learning (see Remark 4.2.12).

As with suffix trees, we denote the subtrees of a PST Ψ as Ψ.left and Ψ.right.
PSTs are constructed from a suffix set S in the same way as suffix trees are, with the

addition of associating leaves s with parameters θs∈ΘS (see Algorithm 4.1).
We associate with every suffix s∈S a parameter θs ∈ [0,1], which corresponds to the

likelihood of the next symbol being 1 given that the previous symbols had suffix s. Then given
any sequence ...xn−1xn there always exists a suffix s∈S of ...xn−1xn (due to completeness)
and is unique since our suffix set is proper. The set of the parameters is called the parameter
vector ΘS ={θs|s∈S}, and we let ΘS(x1:t) denote the corresponding parameter θs where s
is a suffix of x1:t.

Definition 4.3.12 (Suffix Function) Given a suffix set S, we can define the suffix
function βS :B∞→B∗ that maps semi-infinite sequences onto their unique suffix in S.

Note that the suffix that βS maps onto is determined solely from the last D bits of the
input, where D :=maxs∈Sℓ(s). Note that βS(x1:t) may be undefined if t <D. To avoid
this, we always assume that t≥D (if using CTW for compression, the first D bits can be
transmitted separately uncompressed, as often t≫D.)

Given a PST, we can also recover (S,ΘS) by reading off every leaf node to recover a
parameter θs, and then finding the path back up the tree from that leaf node back to the
root (recording characters backwards: right is 0, left is 1) to find s.

Algorithm 4.1 Initializing PST ΨS,ΘS from S and ΘS

Input: Suffix set S
Input: Parameter vector ΘS
Output: PST ΨS,ΘS

1: Initialize Ψ as an empty binary tree
2: for s∈S do
3: m :=ℓ(s)
4: p :=Ψ ▷ Set current node as root node
5: for t=m down to 1 do ▷ Read s right-to-left
6: if st=1 then
7: Add left child to p
8: p :=p.left ▷ Walk down the left node
9: else

10: Add right child to p
11: p :=p.right ▷ Walk down the right node

12: Store θs in p ▷ Store θs in the leaf node reached by path s
return Ψ

4.3. VARIABLE LENGTH CONTEXT 189

Definition 4.3.13 (PST probability) The conditional probability of the next symbol
being a 1 as predicted by a PST represented by a suffix set S and parameter vector
ΘS is defined as

PS,ΘS (xt=1|x1:t−1) := θβS(x1:t−1) ≡ θβS(xt−D:t−1)

We often abbreviate this as PS where the choice of ΘS is clear from context.

Example 4.3.14 (Prediction suffix tree) Let’s say that we are given a PST ΨS,Θ with
S={11,01,110,010,00} and corresponding parameters θ11=0.1, θ01=0.2, θ110=0.3, θ010=
0.4, θ00=0.5. The corresponding PST is illustrated in Figure 4.7.

θ11=0.1 θ01=0.2

θ110=0.3 θ010=0.4

θ00=0.5

Figure 4.7: The PST for S={11,01,110,010,00} and ΘS={0.1,0.2,0.3,0.4,0.5} described
in Example 4.3.14.

We can use this tree for predicting the next bit in a sequence, given the sequence so
far. Consider the sequence 0101101. We compute βS(0101101) = 01, and then use the
corresponding parameter θ01 as the probability that the next bit is a 1. We write

PS,ΘS (xt=1|x<t=0101101) = θ01 = 0.2.

For predicting the next k bits, we can rewrite this using the standard rules of probability as

PS,ΘS (xt:t+k−1|x<t) =

k−1∏
i=0

PS(xt+i|x<t+i) (4.3.15)

that is, we predict the next bit xt using x<t as context, and then we predict xt+1 using
x<t+1 as the new context, and so on, taking the product of all the probabilities at the end.
For example, we would compute PS(xt:t+2=011|x<t=010) as

PS(xt:t+2=011|x<t=010)

= PS(xt=0|x<t=010)PS(xt+1=1|x<t+1=0100)PS(xt+2=1|x<t+2=01001)

= (1−θ010)θ00θ01
= (1−0.4)×0.5×0.2 = 0.06

If the context given is too short, we pad with zeros per Definition 4.3.12. For example, we
would compute PS(x2:3=11|x1=1) as

PS(x2:3=11|x1=1)

≡ PS(x2:3=11|x−∞:1= ...0001)

= PS(x2=1|x−∞:1= ...0001)PS(x3=1|x−∞:2= ...00011)

= PS(x2=1|x0:1=01)PS(x3=1|x1:2=11)

= θ01θ11 = 0.1×0.2 = 0.02 �

190 CHAPTER 4. THE CONTEXT TREE WEIGHTING ALGORITHM

We can also express the block PST probability as a product over all strings in the suffix
set, which will be useful later on for theoretical results.

Lemma 4.3.16 (Alternative PST probability) Given a PST ΨS,ΘS , a sequence
x1:n and the KT counts as and bs, we can express the PST probability as

PS,ΘS (x1:n) =
∏
s∈S

θbss (1−θs)as

Proof. Firstly, we can break up the joint into the product of conditionals

PS,ΘS (x1:n) =

n∏
i=1

PS,ΘS (xi|x<i)

=
(n∏

i=1
xi=0

(1−θβS(x<i))
)(n∏

i=1
xi=1

θβS(x<i)

)

=
∏
s∈S

((n∏
i=1
xi=0

βS(x<i)=s

(1−θs)
)(n∏

i=1
xi=1

βS(x<i)=s

θs

))

=
∏
s∈S

(1−θs)asθbss

since as is the number of times a 0 follows context s, and we are taking the product of
(1−θs) with itself this many times. The same argument follows for bs. �

4.3.3 Suffix Set Encoding

A convenient way to come up with a prior over suffix sets S is by choosing 2−ℓ(E(S)), where
E is a encoding of suffix sets to binary strings. A naive approach would be to just prefix
code (Section 2.1.2) each element of S and concatenate the result, but this is wasteful as
not all possible sets of strings are suffix sets. We want our choice of encoding to make use
of the property that suffix sets are both complete and proper. It turns out that we can
encode suffix sets S by instead encoding the structure of the corresponding suffix tree ΨS ,
from which S can be recovered. Since the model class CD used for learning is fixed, we can
furthermore assume the maximal depth D is known by the decoder.

Definition 4.3.17 (Suffix set encoding) Given model class CD, the encoding ED of
a suffix tree ΨS (or suffix set S∈CD) is defined as

ED(S) ≡ ED(ΨS) :=

ϵ if D=0

0 if Ψ is a leaf node

1ED−1(ΨS .left)ED−1(ΨS .right) otherwise

That is, leaf nodes are encoded as 0, and internal nodes are encoded as 1, followed by the
encodings of the left and right children respectively. Finally, we define ED(S) :=E(ΨS).

This encoding records the structure of the tree, sufficient to recover S (assuming D is
given). It is not obvious at first glance that this code is uniquely decodable as it assigns
surprisingly short codes to some trees, as shown (Figure 4.8).

4.3. VARIABLE LENGTH CONTEXT 191

Figure 4.8: The encodings ED(ΨS) (Definition 4.3.17) of various suffix trees ΨS , for depths
D∈{1,2,3}.

The trick is that the decoder is also aware of the maximum depth of any suffix D, which
conveys additional information, together with the assumption of complete and proper ensures
that every node is either a leaf node or both children are non-empty. This means that for
nodes at depth D−1, there are only two types, leaf nodes (encoded as 0) or non-leaf nodes
where both children are leaves (encoded as 1). There is no need to encode the children of
penultimate nodes, as knowledge of D is sufficient to derive that both children must be leaf
nodes.

For this reason, given a fixed tree Ψ, the encoding ED(Ψ) may vary as a function of
D. Consider the tree associated with the suffix set S0 :={1,10,00}. For D=2, this tree is
encoded as 101, as this indicates that the root node is not a leaf, its left child is a leaf, and
the right child is not a leaf (and therefore must have exactly two leaves as children, as the
depth of the tree is 2.) For D≥3 the encoding 101 is not sufficient, since we do not have
enough information to deduce if the children of the right child of the root node are leaves
or not. Using E2 to encode the suffix sets S0 = {1,10,00} and S1 := {1,10,100,000} gives
E(S0)=E(S1)=101, which is ambiguous.

By instead using E3, the structure of the leaves for both trees is respected, given encodings
E3(S0)=10100 and E3(S1)=10101 respectively.

We now wish to prove that the encoding ED(S) is uniquely decodable, but we first require
a lemma.

Lemma 4.3.18 (Prefix Code Concatenation) If C ⊆ B∗ is a prefix-free set,
x1,x2,y1,y2∈C and x1y1⊑x2y2, then x1=x2 and y1=y2.

Proof. Assume x1 ̸=x2. Note that since x1 and x2 are members of a prefix-free set, neither
can be a prefix of the other. If ℓ(x2)≥ℓ(x1) then x1⊑x2, a contradiction. If ℓ(x2)≤ℓ(x1)
then x2⊑x1, also a contradiction. So ℓ(x1)=ℓ(x2), together with x1y1⊑x2y2 implies the
first ℓ(x1) bits of strings x1y1 and x2y2 match, so x1=x2. Assuming y1 ̸=y2 and repeating
the above argument leads to the same contradiction, and hence we have y1=y2. �

192 CHAPTER 4. THE CONTEXT TREE WEIGHTING ALGORITHM

Theorem 4.3.19 (ED :CD→B∗ is a prefix code, hence uniquely decodable)

Proof. We prove by induction on depth D. For D=0, C0={{ϵ}}, and so E0 is trivially a
prefix code as there is only one suffix set to encode. Assume that ED :CD→B∗ is a prefix code,
and let Ψ1,Ψ2 be two suffix trees associated with suffix sets S1,S2∈CD+1 with the property
that ED+1(Ψ1)⊑ED+1(Ψ2). We wish to prove that Ψ1=Ψ2. Since D+1 ̸=0, neither encoding
can be empty. Suppose Ψ1 is a leaf, then ED+1(Ψ1)=0, and since ED+1(Ψ1)⊑ED+1(Ψ2),
then ED+1(Ψ2) must also start with a zero, which implies ED+1(Ψ2)=0 and hence Ψ2 is
also a leaf, which implies Ψ1=Ψ2. Suppose Ψ1 is not a leaf. Then Ψ2 also cannot be a leaf,
since its encoding ED+1(Ψ2) has to start with 1. So,

ED+1(Ψ1) ⊑ ED+1(Ψ2)

1ED(Ψ1.left)ED(Ψ1.right) ⊑ 1ED(Ψ2.left)ED(Ψ2.right)

ED(Ψ1.left)ED(Ψ1.right) ⊑ ED(Ψ2.left)ED(Ψ2.right)

By assumption, ED is a prefix code, so together with Lemma 4.3.18 we have that
ED(Ψ1.left) = ED(Ψ2.left) and ED(Ψ1.right) = ED(Ψ2.right). Now ED must also be
injective (otherwise there would be two strings x ̸=y such that C(x)=C(y), which would
contradict the prefix property), so we have Ψ1.left=Ψ2.left and Ψ1.right=Ψ2.right.
Hence Ψ1=Ψ2, as required. �

The length of the encoding for a suffix set S∈CD gives us the model cost ΓD(S), a simple
measure of how complex the model the tree represents.

Definition 4.3.20 (Model cost) The model cost of a suffix set S (or suffix tree ΨS)
with respect to the model class CD and encoding ED is defined as

ΓD(ΨS) ≡ ΓD(S) := |S|−1+|{s∈S :ℓ(s)<D}|

Intuitively, the model cost ΓD(ΨS) is the size of the suffix set, plus the number of non-leaf
nodes in the tree (leaf nodes are cheap to code). We now prove that the equation for the
model cost defined above is precisely the length of the encoding given by ED.

Lemma 4.3.21 (Recursive definition of model cost [WST95]) For any V,W∈CD
we have

ΓD+1(V{0}∪W{1}) = ΓD(V)+ΓD(W)+1

Intuitively, the code length of a tree is the code length of the left child, plus the code length
of the right child, plus one more bit to indicate it is not the empty tree (see Definition 4.3.17).

Proof.
ΓD+1(V{0}∪W{1})
= |V{0}∪W{1}|−1+|{s∈V{0}∪W{1} :ℓ(s)<D+1}|

Note that V{0} and W{1} are disjoint.

= |V{0}|+|W{1}|−1+|{s∈V{0} :ℓ(s)<D+1}|+|{s∈W{1} :ℓ(s)<D+1}|
Concatenating a set with a singleton does not affect the number of elements.

= |V|+|W|−1+|{s∈V{0} :ℓ(s)<D+1}|+|{s∈W{1} :ℓ(s)<D+1}|

4.3. VARIABLE LENGTH CONTEXT 193

All elements in V{0} (W{1}) are one larger than the respective elements in V (W).

= |V|+|W|−1+|{s∈V :ℓ(s)<D}|+|{s∈W :ℓ(s)<D}|
= |V|−1+|{s∈V :ℓ(s)<D}|+|W|−1+|{s∈W :ℓ(s)<D}|+1

= ΓD(V)+ΓD(W)+1 �

Theorem 4.3.22 (Model cost in closed form [WST95]) Let D≥0, and let S∈CD.
The model cost ΓD(S) is equal to the length of the encoding given by ED,

ΓD(S) = ℓ(ED(S))

Proof. We will actually prove a stronger statement, namely that ΓD′(S)= ℓ(ED′) for all
D′≥D. Since every suffix set S can be represented as a suffix tree ΨS , we will prove by
induction over ΨS , letting D denote the smallest number for which S∈CD. First, consider
the case where ΨS is a leaf (S={ϵ}), with depth D=0.

ΓD′({ϵ}) := |{ϵ}|−1+|{s∈{ϵ} :ℓ(s)<D′}| = |{s∈{ϵ} :ℓ(s)<D′}| = JD′>0K

Compare this with the length of the encoding ℓ(ED′({ϵ})). IfD′=0, then ℓ(E0(Ψ{ϵ}))=ℓ(ϵ)=0.
If D′≥0, then ℓ(ED′(Ψ{ϵ}))=ℓ(0)=1, so ℓ(ED′(Ψ{ϵ}))=JD′>0K, as above.

For the induction step, assume the statement is true for two suffix sets SL and SR, with
respective suffix trees ΨSL

(of depth DL) and ΨSR
(of depth DR). That is, we assume

ΓD′(SL) = ℓ(ED′(ΨSL
)) and ΓD′(SR) = ℓ(ED′(ΨSR

))

for allD′
L≥DL, D

′
R≥DR as our inductive hypotheses. Consider the tree ΨS :=Node ΨSL

ΨSR

constructed from ΨSL
and ΨSR

, with depth D :=max{DL,DR}+1. We can recover the
suffix set S from the suffix tree ΨS . The strings in S represent paths from the leaf nodes up
to the root node, so the last bit in the string corresponds to the last step up to the root
node (1 for traversing from the left child, 0 for the right). Therefore, a path from any leaf
node to the root of Ψ can be written as either

• a path from the leaf to the root node of ΨSL
, followed by a 1, or

• a path from the leaf to the root node of ΨSR
, followed by a 0.

This means we can write S as a disjoint partition, S = SL{1}∪SR{0}. Let D′ ≥D be
arbitrary. Then,

ℓ(ED′(ΨS)) = ℓ(1ED′−1(ΨSL
)ED′−1(ΨSR

))

= 1+ℓ(ED′−1(ΨSL
))+ℓ(ED′−1(ΨSR

))

= 1+ΓD′−1(SL)+ΓD′−1(SR)
Appealing to Lemma 4.3.21,

= ΓD′(SL{1}∪SR{0}) = ΓD′(S)

as required. �

Corollary 4.3.23 (Alternative prepresentation of model cost) The model cost
ΓD(S) equals the number of nodes of depth less than D in the suffix tree ΨS .

194 CHAPTER 4. THE CONTEXT TREE WEIGHTING ALGORITHM

Proof. Let #Node<D(ΨS) be the number of nodes of depth less than D in ΨS . The
degenerate case ΓD({ϵ})= JD>0K=#Node<D(Ψϵ) trivially follows from Theorem 4.3.22.
Any non-empty tree of depth at most D can be decomposed as ΨS := Node ΨSL

ΨSR

(Definition 4.3.6) with trees ΨSL
and ΨSR

of depth at most D−1. Hence

#Node<D(ΨS) = 1 + #Node<D−1(ΨS) + #Node<D−1(ΨS)

which is the same recursion as in Lemma 4.3.21, hence ΓD(S)=#Node<D(ΨS). �

We usually assume that the value of D′ used to encode is as small as possible while
ensuring that S∈CD′ , by letting D′ :=maxs∈Sℓ(s)=D. In this case, encodings assign shorter
codewords to deep and narrow trees over shallow and broad trees (compare the encodings
of S1 := {1,10,100,000} versus that of S2 := {11,10,01,00}). Both have the same number
of suffixes, but the former is deeper and narrower (as unbalanced as a suffix tree of that
depth can be) whereas the latter is broader and shallower (being a perfectly balanced tree).
Consequently, S1 has an encoding of 10101 (5 bits) versus the encoding of S2, 1100100 (7
bits). Phrased another way, the encoding assigns longer codewords to trees that have many
leaf nodes at the maximum depth D.

Example 4.3.24 (Model cost for a suffix set/tree) We can compute the model cost
for the suffix sets

S1 = {1,10,100,000}
S2 = {11,10,01,00}
S3 = {111,011,101,011,10,100,000}

given the appropriately sized model class C3,C2,C3 respectively.

Γ3(S1) = |S1|−1+|{s∈S1 :ℓ(s)<3}|
= |{1,10,100,000}|−1+|{1,10}|
= 4−1+2 = 5

Γ2(S2) = |S2|−1+|{s∈S2 :ℓ(s)<2}|
= |{11,10,01,00}|−1+|∅|
= 4−1+0 = 3

Γ3(S3) = |S3|−1+|{s∈S3 :ℓ(s)<3}|
= |{111,011,101,011,10,100,000}|−1+|{10}|
= 7−1+1 = 7

which matches the length of the codewords for the respective trees in Figure 4.8.
Note that Γ3(S1)>Γ2(S2) even though S1 has the same number of elements that S2

does. This is due to the model cost adding a penalty term equal to the number of leaf nodes
that are not at the maximal depth. In this sense, the model cost signals that balanced
trees are simpler than unbalanced trees, and consequently have a lower assigned cost. If
we took a set with the same number of elements as S3 but with a highly unbalanced tree,
e.g S4={1,10,100,1000,10000,100000,000000}, then we would have to choose D=6, and
consequently, Γ6(S4)=7−1+5=11>7=Γ3(S3).

Note that these extra bits for specifying leaf nodes that are not at the maximum depth
are only incurred when the depth increases from the minimum depth. So if D=maxs∈Sℓ(s),
then ΓD(S)<ΓD+1(S), but ΓD+1(S)=ΓD′(S) for all D′≥D+1. �

4.3. VARIABLE LENGTH CONTEXT 195

θ1,a1,b1

θ10,a10,b10 θ00,a00,b00

Figure 4.9: The PST ΨSgood
for learning the environment µ1 described in Example 4.2.9.

The model cost ΓD(S) can be used as a measure of simplicity or complexity of a source.
This in turn will let us weigh models based on their simplicity when we take a Bayesian
mixture of models later.

4.3.4 Updating Prediction Suffix Trees

The k-Markov models that we saw earlier keep track of all the statistics for every context of
length k. A prediction suffix tree instead uses a suffix set to enumerate only those contexts
that are useful to keep track of for prediction, ignoring redundant counts for when the
context does not matter.

By choosing S =Bk, we indicate that all contexts of length k are useful, a predictor
based on a PST degenerates to a k-Markov model, so in this sense, PST’s are more general,
allowing for variable length context rather than fixed length.

For example, consider the Markov distribution in Example 4.2.9 (assuming α=0.9).
Technically this is a 2-Markov model, but a more subtle analysis would find that the length
of the required context varies. If the last bit is 0, then we need additionally the second-to-last
bit to distinguish if the context is 00 (and the distribution is likely to sample a 1) or the
context is 10 (and a 0 is more likely). If the previous bit is a 1, then it is likely the next
bit will be 0. There is no reason to record statistics separately for contexts 10 and 00, and
to do so would slow learning. So, by choosing a suffix set Sgood that accurately represents
the variable context of the distribution, the statistics associated with contexts for which a
distinction need not be made (10 and 00) can now be combined, speeding up learning (see
Section 4.3.4).

Assuming the suffix set Sgood is known, but the true parameters ΘSgood
are not, we can

make predictions using the best currently known estimate Θ̂Sgood
and (4.3.15) and update the

parameters according to the conditional KT estimator (Lemma 4.1.2) by reading the context
x right-to-left, traversing the tree down to the appropriate leaf node (which corresponds to
s=βS(x)), and updating the statistics (as,bs,θs) as appropriate.

When the tree is first initialized, we set as=0,bs=0,θs=PKT(1 |ϵ)= 1
2 for all s∈S, in

accordance with Lemma 4.1.2. (Recall that each parameter θs is associated with the current
best estimate of P (1|...s) using a KT estimator (Definition 4.3.13)). For Example 4.2.9, we
could instead use the suffix set Sgood={1,10,00}, where the parameters ΘSgood

are unknown
and learned from experience, and each leaf node associated with suffix s records the KT
estimator counts as,bs.

For Algorithm 4.2, let Ψ denote a PST, where each leaf node stores the variables a, b,
θ. We assume that the context is at least as long as the tree is deep, so the return value is
always well-defined.

Now that we have a way to predict given a parameter vector ΘS , we can define a special
case of the PST probability PS,KT, where instead of fixing a particular ΘS , it is instead
learned using Algorithm 4.3.

196 CHAPTER 4. THE CONTEXT TREE WEIGHTING ALGORITHM

Algorithm 4.2 Suffix Tree Prediction

Input: Prediction Suffix Tree ΨS,ΘS

Input: Context string x1:t
Output: θβS (x1:t)

1: for i= t down to 1 do
2: if Ψ is a leaf node then return Ψ.θ ▷ Return the parameter θβS(x1:t)

3: if xi = 1 then Ψ:=Ψ.left ▷ Walk down the left path
4: else Ψ:=Ψ.right ▷ Walk down the right path

Algorithm 4.3 Suffix Tree Update

Input: PST ΨS,ΘS , updated on x1:t
Input: Context string x1:t ▷ Assuming that t≥D
Input: Next Bit x=xt+1

Effect: θβS(x1:t) in ΘS updated on xt+1 with context x1:t.
1: for i= t down to 1 do
2: if Ψ is a leaf node then break
3: if xi = 1 then Ψ:=Ψ.left ▷ Walk down the left path
4: else Ψ:=Ψ.right ▷ Walk down the right path

5: if x=1 then Ψ.b :=Ψ.b+1 ▷ Update count bs of number of ones
6: else Ψ.a :=Ψ.a+1 ▷ Update count as of number of zeros

7: Ψ.θ :=(Ψ.b+ 1
2)/(Ψ.a+Ψ.b+1) ▷ Update the estimated probability PS,ΘS

Definition 4.3.25 (PST-KT probability) In analogy to Lemma 4.3.16, we define
the PST-KT probability PS,KT as

PS,KT(x1:n) =
∏
s∈S

PKT(as,bs)

where as,bs are the context counts in x1:n.

This definition alone is useful for theoretical results, but not for computing it in practice.
As it turns out, we can write the PST-KT probability as a product of conditional PST
probabilities (Definition 4.3.13) where the parameter vector ΘS is not known in advance,
but learned dynamically using Algorithm 4.3.

In other words, PS,KT is the PST probability of a string x1:n written as product of
conditionals, where for each bit xi, we use the best current estimate of the parameter vector
Θ̂i−1

S is obtained via the KT estimator and the context x<i.

Lemma 4.3.26 (KT probability in terms of learned parameters) Assuming

Algorithm 4.3 is run on sequence x1:n, then we can relate the parameters θ̂is and the
KT probability as follows.

PS,KT(x1:n) =

n∏
i=1
xi=1

θ̂isi

n∏
i=1
xi=0

(1−θ̂isi) where si :=βS(x<i)

Proof. We proceed via proof by induction. The equality is vacuously true for n=0. Assume

4.3. VARIABLE LENGTH CONTEXT 197

it is true for any sequence x<n. Then consider a sequence x1:n. Assume that xn=1 (the
proof is analogous for xn=0) and s :=sn.

n∏
i=1
xi=1

θ̂si

n∏
i=1
xi=0

(1−θ̂si) = θ̂ns

n−1∏
i=1
xi=1

θ̂si

n−1∏
i=1
xi=0

(1−θ̂si) = θ̂nsPS,KT(x<n)

Now in Algorithm 4.3, the tree is traversed following context s, and the corresponding
parameter θs is updated to reflect the new KT-counts

θ̂ns =
bs(x1:n)+

1
2

as(x1:n)+bs(x1:n)+1

By Lemma 4.1.2, θ̂ns =PS,KT(xn|x<n), and hence

θ̂nsPS,KT(x<n) = PS,KT(xn|x<n)PS,KT(x<n) = PS,KT(x1:n)

as required. �

Lemma 4.3.27 (Alternative PST-KT probability) Given a suffix tree ΨS and a
sequence x1:n, we can express the PST-KT probability as

PS,KT(x1:n) =

n∏
i=1

PS,Θ̂i
S
(xi|x<i)

where PS,Θ̂i
S
is the conditional PST probability (Definition 4.3.13), and Θ̂i

S is a family

of parameter vector estimates where

Θ̂i
S =

{
(12 ,

1
2 ,...,

1
2) if i=1

SuffixTreeUpdate(ΨS,Θ̂i−1
S
,x<i,xi) if i>1

that is, each successive parameter vector Θ̂i
S is obtained by calling Algorithm 4.3 with

the previous one, and is initialized with 1
2 for each parameter.

Proof. We take the product, and split it over each context and bit.

n∏
i=1

PS,Θ̂i
S
(xi|x<i) =

∏
s∈S

n∏
i=1

βS(x<i)=s

PS,Θ̂i
S
(xi|s)

=
∏
s∈S

(n∏
i=1

βS(x<i)=s
xi=1

PS,Θ̂i
S
(1|s)

)(n∏
i=1

βS(x<i)=s
xi=0

PS,Θ̂i
S
(0|s)

)

=
∏
s∈S

n∏
i=1

βS(x<i)=s
xi=1

θ̂s

n∏
i=1

βS(x<i)=s
xi=0

(1−θ̂s) =
∏
s∈S

PKT(as,bs)

as required, where we applied Lemma 4.3.26 in the last step. �

198 CHAPTER 4. THE CONTEXT TREE WEIGHTING ALGORITHM

Figure 4.10: Prediction accuracy (left) and instantaneous KL divergence (right) averaged
over 1000 trials on environment µ1 (α=0.8, Figure 4.4) for k-Markov KT estimators with
2≤k≤4, and PSTs with Sgood and Sbad (Section 4.3.5) as choice of suffix sets.

4.3.5 PST Experiments

Building on Section 4.2.3, we repeat the same experiment, but now also include the per-
formance of the PST predictor with known S ≡ Sgood = {1,10,00} (Section 4.3.4) using
Algorithm 4.2 for prediction, but with unknown ΘS and Algorithm 4.3 to improve the
current estimate of ΘS after observing the true value of each bit. For comparison, we also
measure the performance of a suffix tree with suffix set Sbad={11,01,0}, which represents
the wrong choice of suffix set (falsely assuming that a previous bit of 0 is sufficient to predict
the next bit, whereas a previous bit of 1 requires additional context) (see Figure 4.10).

As expected, Sbad performs poorly (as it assumes the wrong model for the environment).
Both k=2, k=3 and Sgood can learn the environment, and the extra side information that
S1 possesses of the variable length context allows it to learn that 0 almost always follows 1
faster than the k=2 or the k=3 predictor.

In the most extreme example, we could consider an environment where the context varies
drastically, consider the sequence (0n1)∗, generated by the obvious deterministic distribution.
The best choice of suffix tree would be S={10m :0≤m<n}∪{0n}, which requires updating
only n parameters, but for the k-Markov estimator to learn this distribution would require
k=n+1, and correspondingly 2n+1 many parameters to update, which is wasteful of both
memory and time.

Obviously, most of the time we do not even know for what k the environment is k-Markov,
let alone the exact specifications of what context can be discarded and when (the information
in S). Since suffix trees are much more general than k-Markov KT estimators, and we have
a measure of the complexity of a suffix tree, we finally have all the parts needed to define a
Bayesian mixture over Markov models that can be efficiently updated.

4.4 Mixing Distributions

Eventually we would like to form a Bayesian mixture over all possible choices of suffix set,
and then learn which of the suffix sets describes the variable order Markov model used by
the environment.

Example 4.4.1 (Redundancy of mixing two distributions) To motivate this, first
consider the simple case of mixing two distributions together. Suppose that µ̂1 is a good

4.5. CONTEXT TREE WEIGHTING 199

estimated distribution for sequences sampled from µ1 in terms of the redundancy (Defini-
tion 4.1.10) between them, and µ̂2 is a good distribution for µ2, then a weighted distribution
(here, just the average)

µ̂w(x1:t) := 1
2 µ̂1(x1:t)+

1
2 µ̂2(x1:t)

has low redundancy with respect to both µ1 and µ2. Indeed, for i∈{,2}, let

rµ̂i,µi := −log2
1

µ̂i(x1:n)
−log2

1

µi(x1:n)

be the redundancies between each µi and its corresponding approximation µ̂i. Now, we
compute the redundancy rµ̂w,µi

between µ̂w and µi:

rµ̂w,µi
(x1:n) = log2

1

µ̂w(x1:t)
−log2

1

µi(x1:t)

= log2
2

µ̂1(x1:t)+µ̂2(x1:t)
−log2

1

µi(x1:t)

≤ log2
2

µ̂i(x1:t)
−log2

1

µi(x1:t)

= log2 2+log2
1

µ̂i(x1:t)
−log2

1

µi(x1:t)

= 1+rµ̂i,µi

which means using µ̂w as an approximation to µi is no worse than µ̂i apart from an overhead
of only one extra bit of redundancy. The intuition is that the mixture µ̂w is at least as good
at prediction as both constituent distributions, plus one more bit of overhead to specify
which approximation is the best. �

One could also choose an uneven mixture, µ̂w,α(x1:t) = αµ̂1(x1:t)+(1−α)µ̂2(x1:t) for
some α∈ [0,1], if the environment is expected more likely to be µ1 than µ2. This reduces the
overhead penalty for one environment, in exchange for a larger penalty for the other.

4.5 Context Tree Weighting

Let us now consider the case where we are predicting a sequence and the only information
we have about the environment µ is that the sequence is Markov (so there exists some suffix
set S and parameter vector ΘS such that µ=PS,ΘS).

We will make the (weak) assumption that we know an upper bound D for the maximum
length of the context required to make optimal predictions. Under this assumption, µ is at
most D-Markov, but we do not know what the smallest value of k is such that µ is k-Markov.

Following what we mentioned before, one approach for unknown environments is to
consider a mixture over all the tree sources in CD, and for each of those suffix sets, learn the
parameter vectors using the KT estimator as before.

We fix the depth D. Recall from Section 3.1 that we can define the Bayes mixture over
M, denoted ξ, as

ξ(x1:n) :=
∑
S∈CD

wSPS,ΘS (x1:n)

200 CHAPTER 4. THE CONTEXT TREE WEIGHTING ALGORITHM

which can also be written as a conditional Bayesian mixture for prediction

ξ(xt|x<t) :=
∑
S∈CD

wS(x<t)PS,ΘS (xt|x<t)

where wS(x1:t) :=

{
wS(x<t)

PS,ΘS (xt|x<t)

ξ(xt|x<t)
for x1:t ̸=ϵ

wS for x1:t=ϵ

Naively, computing this would require summing over the entire model class CD, giving

a complexity of O(22
D

) (Lemma 4.3.10). With an appropriate collection of weights wS :=
2−ΓD(S), this mixture can be computed in time O(n·D). Indeed, we can even do this while
learning ΘS using a KT estimator (Theorem 4.5.8), meaning our new model will learn both
the structure S and the parameters ΘS describing the true environment.

4.5.1 The CTW Algorithm

We do this by using context tree weighting (CTW), a variant of PSTs where each node in the
tree (not just the leaves) store statistics (as,bs) corresponding to the context s associated
with this node. By updating each node along the path for a particular context, and defining
the probabilities of the tree in a recursive fashion, the CTW method gives a simple and
efficient way to compute the Bayesian mixture over all PSTs in the model class CD.

Definition 4.5.1 (Context tree) Given a depth D, a context tree TD is a perfecta

binary tree where each node is associated with a binary string s (with ℓ(s) ≤D)
representing the path to that node from the root node (paths are encoded in the same
way as a PST).

Each node stores the KT estimator counts (as,bs), the KT probability PKT(as,bs)
b

(Definition 4.1.1) and the weighted probability Pw(s), defined recursively as

Pw(s) :=

{
1
2PKT(as,bs)+

1
2Pw(0s)Pw(1s) for ℓ(s)<D

PKT(as,bs) for ℓ(s)=D
(4.5.2)

Each internal node s∈TD with ℓ(s)<D has two child nodes: the left child associated
with 1s and the right with 0s, for which the respective counts (a1s,b1s) and (a0s,b0s)
satisfy

as = a1s+a0s

bs = b1s+b0s

aAll internal nodes have two children, and all leaf nodes are at the same depth.
bStrictly speaking, we do not need to store PKT as we can compute it from (as,bs) directly, but it

is more efficient to store the current value of PKT(as,bs) and update it using Lemma 4.1.2 whenever
as or bs is incremented.

(We will define the probability PCTW
D (x1:n) assigned to sequence x1:n by a CTW tree of

depth D momentarily).
What is the intuition behind Definition 4.5.1? Suppose we are trying to predict the

next term xt+1 in a sequence x1:t, assuming that the sequence is sampled from an unknown
k-Markov distribution with k≤D. We store the statistics in a binary tree TD of depth
D, where at each node s we store the KT-counts as and bs. The tree TD is then used to
estimate probabilities of the next bit in a sequence based on the previous D bits of context.
If s is a leaf node (that is, at depth D), then we are assuming that in the original sequence,

4.5. CONTEXT TREE WEIGHTING 201

if we take a subsequence of only those bits that directly follow context s, this subsequence is
generated i.i.d. (as was done in Example 4.2.5). Hence, the KT estimator PKT will provide
a good estimate, and so we define the probability associated with that node as the KT
estimator

Pw(s) :=PKT(as,bs) if s is a leaf.

Assume we already have good estimators Pw(0s) and Pw(1s) for contexts 0s and 1s respec-
tively. Let s be a non-leaf node (a context of length <D), and let is1,i

s
2,... be a sequence

of indexes such that xi−ℓ(s)−1:i−1=s (that is, the indexes i such that xi directly follows s).
Then the subsequence xisj of those bits directly following s are either:

• generated i.i.d. (namely if the extra context beyond s is irrelevant), in which case
PKT(as,bs) would be a good estimator, or

• not generated i.i.d, in which case we could instead partition the subsequence xisj
into two subsubsequences xi0sj and xi1sj , the bits directly following contexts 0s and 1s

respectively. We then use the (assumed) good estimators Pw(0s) for xi0sj and Pw(1s)

for xi1sj , and then write the probability of the original subsequence xisj as the product

Pw(0s)Pw(1s).

We do not know which case applies for the subsequence xisj , but as a compromise we can
take a Bayesian mixture over both choices as was done in Section 4.4, we get

Pw(s) :=
1
2PKT(as,bs)+

1
2Pw(0s)Pw(1s) if s is a non-leaf node

which gives a good predictor regardless which case is true.
Defining the weighted probability Pw in this recursive fashion means that the probability

of each node s is the average of the KT estimator PKT(as,bs), and the product Pw(0s)Pw(1s)
of the weighted probabilities of the children.

For Algorithm 4.4, each node s in the context tree TD contains 4 variables {a,b,PKT,Pw}
corresponding to the KT estimator counts as and bs, the KT probability PKT(as,bs), and
the weighted probability Pw(s) respectively. Since TD is a perfect tree of depth D, s is never
null, hence Lines 11–13 can be ignored (for now). They are an optimization discussed in
Section 4.5.5.

Remark 4.5.3 (Space and time complexity of CTW Update algorithm) Algo-
rithm 4.4 takes a context x1:t, and using the last D bits to define the context s=xt−D+1:t,
the algorithm traverses the tree from the root node ϵ down to the leaf node corresponding
to context s. Along the way, the algorithm visits all nodes corresponding to some suffix s′

of s, and updates the counts as′ ,bs′ and the KT probability PKT(as′ ,bs′) for node s
′. Then,

once the leaf node s is reached, the algorithm walks back up the tree to the root node ϵ,
updating the weighted probability Pw(s

′) for each node s′ along the path from s to the root
node ϵ, using the values of Pw(0s

′) and Pw(1s
′) and PKT(a

′
s,b

′
s) that were generated before

visiting this node.
Hence, each update to (4.5.2) only takes O(D) operations when implemented efficiently

in this manner.
The CTW tree contains O(2D) many nodes, which is too expensive. In practice, only

nodes with non-zero counts (as > 0 or bs > 0) need to be created, so the tree can grow
dynamically as new contexts are observed, reducing the space complexity to worse case
O(tD). In practice, the space used is much better than the O(tD) bound, as, if the sequence
the CTW model is learning from is highly regular, most nodes would never be visited (see
Section 4.5.5 for details). �

202 CHAPTER 4. THE CONTEXT TREE WEIGHTING ALGORITHM

Algorithm 4.4 CTW Update (Online Tree)

Require: Context Tree TD
Input: Context string x1:t ▷ Assuming that t≥D
Input: Next Bit xt+1

Effect: Tree s≡TD updated per Remark 4.5.3 ▷ Keep track of the current node
1: for i= t down to t−D do ▷ Loop backwards through the D most recent bits
2: if xt+1 = 1 then

3: s.PKT := s.b+1/2
s.a+s.b+1s.PKT ▷ Update PKT(as,bs)

4: s.b :=s.b+1 ▷ Increment bs
5: else
6: s.PKT := s.a+1/2

s.a+s.b+1s.PKT ▷ Update PKT(as,bs)
7: s.a :=s.a+1 ▷ Increment as
8: if i>t−D then
9: if xi = 1 then s :=s.left ▷ Walk down the left path

10: if xi = 0 then s :=s.right ▷ Walk down the right path

11: if s=null then ▷ New node encountered, grow tree
12: p.a=p.b=0, p.PKT=p.Pw=1 p.left=p.right=null ▷ Create a new node p
13: p.parent :=s.; s :=p

14: s.w :=s.PKT ▷ Update Pw(s) for leaf
15: for i=1 to D do
16: s :=s.parent ▷ Walk back up the tree
17: s.w := 1

2s.PKT+
1
2 (s.left.Pw)(s.right.Pw) ▷ Update Pw(s) for non-leaf

At long last, we can define the probability a CTW tree assigns to a sequence.

Definition 4.5.4 (CTW probability) Given a depth D and a sequence x1:n, we
define the CTW probability PCTW

D (x1:n):=Pw(ϵ) as the probability associated with the
root node of TD, after running CTWUpdate(TD,x<i,xi) (Algorithm 4.4) for i=1,2,...,t.

Note that, unlike PSTs, the probability associated with CTWs is a block probability
rather than a conditional probability. To recover a conditional probability for prediction, we
define

PCTW
D (1|x<n) :=

PCTW
D (x<n1)

PCTW
D (x<n)

(4.5.5)

In practice, (assuming the tree TD has already been updated on x1:n) this requires recording
the value of Pw(ϵ), updating the CTW as if 1 were observed given the so-far-observed
context x<n, recording the new value of Pw(ϵ) after the update, and dividing the latter by
the former (Algorithm 4.5).

Since we do not know ahead of time what the actual next bit will be, we want to discard
the changes made to TD after prediction, so the CTW update can be done on a copy of TD
instead. In practice, duplicating the entire tree is expensive, so we can instead perform the
update on the original tree, and then revert the changes afterwards (see Section 4.5.5).

Example 4.5.6 (CTW update) We give an example of the CTW Algorithm 4.4 updating
a context tree T2 of depth D=2 (Figure 4.11). For all nodes s∈T2, we initialize the counts
(as,bs):=(0,0), PKT(as,bs):=PKT(0,0)=

1
2 and Pw :=1 (4.5.2), giving us the freshly initialized

context tree (Figure 4.11a). Suppose the sequence is x1:4=1001. We set aside x1:2=10 as

4.5. CONTEXT TREE WEIGHTING 203

Algorithm 4.5 CTW Prediction

Input: Context Tree TD
Input: Context string x1:t
Output: Probability PCTW

D (1|x1:t)
1: old:=TD.Pw ▷ old :=PCTW

D (x1:t)
2: Make a copy T ′

D of TD
3: CTWUpdate(T ′

D,x1:t,1) ▷ Update tree assuming xt+1=1

4: new :=T ′
d .Pw ▷ new :=PCTW

D (x1:t1)

5: return new/old ▷ PCTW
D (1|x1:t)= PCTW

D (x1:t1)

PCTW
D (x1:t)

the context, and then update the tree with the new bit x3=0 (Figure 4.11b). We follow
the path down the tree that corresponds to context 10, and since x3 is zero, we increment
the zero counts along the way (so aϵ,a0,a10 are incremented) as well as recomputing PKT

for those nodes using the new counts. Once we reach a leaf node, we walk back up the tree
from the leaf to the root node, updating the weighted probabilities Pw along the way using
(4.5.2).

Then, the new context is x1:3=100 (of which only x2:3=00 will be used) and the bit to
update the counts is x4=1 (Figure 4.11c). We repeat the above until the sequence is fully
consumed.

�

4.5.2 CTW Properties

Remark 4.5.7 (CTW is a Bayesian mixture over all prediction suffix trees) We
explore the definition of the CTW probability for small D to provide intuition to the Bayesian
mixture it defines. The output distribution of the CTW is the weighted probability Pw(ϵ)
associated with the root node with a mixture of KT estimators of varying depth. For
D=0, CTW reverts to the basic KT estimator, Pw(ϵ)=PKT(aϵ,bϵ)≡PKT(a,b). Writing
k(s)≡PKT(as,bs) and k(S)=

∏
s∈SPKT(as,bs) and w(s)≡Pw(as,bs) for brevity, setting D=1

gives the corresponding CTW probability

Pw(ϵ) = 1
2k(ϵ)+

1
2w(0)w(1) = 1

2k(ϵ)+
1
2k(0)k(1)

which is a mixture between the frequency estimate, and the product of estimates using the
previous bit. We can obtained the closed form for D=2 with some effort,

Pw(ϵ)

= 1
2k(ϵ)+

1
2w(0)w(1)

= 1
2k(ϵ)+

1
8 (k(0)+w(00)w(10))(k(1)+w(01)w(11))

= 1
2k(ϵ)+

1
8 (k(0)k(1)+k(0)w(01)w(11)+k(1)w(00)w(10)+w(00)w(10)w(01)w(11))

= 1
2k(ϵ)+

1
8

(
k({0,1})+k({0,01,11})+k({1,00,10})+k({00,10,01,11})

)
= 1

2 □ + 1
8

(
∧ + ∧

∧ + ∧
∧ + ∧

∧∧
)

Note that each term in the expression corresponds to one of the five trees for D=2 in
Figure 4.8. The empty tree (□) has code 0 and associated model cost 1, and so is assigned
weight 2−1. The other four trees ∧ , ∧∧ , ∧∧ ,

∧
∧∧ have codes 100,110,101,111, and so each get

weight 2−3. Writing out Pw(ϵ) explicitly for D=3 becomes rather monotonous due to the

204 CHAPTER 4. THE CONTEXT TREE WEIGHTING ALGORITHM

(aϵ,bϵ)=(0,0)
PKT=1
Pw=1

(a1,b1)=(0,0)
PKT=1
Pw=1

(a11,b11)=(0,0)
PKT=1
Pw=1

(a01,b01)=(0,0)
PKT=1
Pw=1

(a0,b0)=(0,0)
PKT=1
Pw=1

(a10,b10)=(0,0)
PKT=1
Pw=1

(a00,b00)=(0,0)
PKT=1
Pw=1

(a) A newly initialized context tree T2 of depth D=2.

(aϵ,bϵ)=(1,0)
PKT=1/2
Pw=1/2

(a1,b1)=(0,0)
PKT=1
Pw=1

(a11,b11)=(0,0)
PKT=1
Pw=1

(a01,b01)=(0,0)
PKT=1
Pw=1

(a0,b0)=(1,0)
PKT=1/2
Pw=1/2

(a10,b10)=(1,0)
PKT=1/2
Pw=1/2

(a00,b00)=(0,0)
PKT=1
Pw=1

(b) The context tree T2 after having processed bit x3=0 given context x1:2=10.

(aϵ,bϵ)=(1,1)
PKT=1/8
Pw=5/32

(a1,b1)=(0,0)
PKT=1
Pw=1

(a11,b11)=(0,0)
PKT=1
Pw=1

(a01,b01)=(0,0)
PKT=1
Pw=1

(a0,b0)=(1,1)
PKT=1/8
Pw=3/16

(a10,b10)=(1,0)
PKT=1/2
Pw=1/2

(a00,b00)=(0,1)
PKT=1/2
Pw=1/2

(c) The context tree T2 after having processed bit x4=1 given context x1:3=100.

Figure 4.11: The result of running Algorithm 4.4 on context tree T2 (Example 4.5.6) for
various choices of next bit xt+1 and context x1:t. Modified nodes highlighted.

4.5. CONTEXT TREE WEIGHTING 205

large number of possible trees in CD scaling as O(22
D

), but we will soon prove the following
in the general case: The CTW tree provides a Bayesian mixture over the set of all suffix
sets S∈CD, where the weight wS :=2−ΓD(S) for each suffix set is based on the model cost
ΓD(S) (Definition 4.3.20). �

First, we require a theorem regarding the weighted probabilities Pw.

Theorem 4.5.8 (Context Tree Weighting) Given a context tree TD updated on
x1:n and a node s∈TD, the weighted probabilities Pw(s) satisfy

Pw(s) =
∑

S∈CD−d

2−ΓD−d(S)
∏
s′∈S

PKT(as′s,bs′s)

where d=ℓ(s) and the counts as and bs are with reference to x1:n.

Proof. We prove by reverse induction on ℓ(s). For leaf nodes with ℓ(s)=D we have∑
S∈CD−D

2−ΓD−D(S)
∏
s′∈S

PKT(as′s,bs′s)

=
∑

S∈{{ϵ}}

2−Γ0(S)
∏
s′∈S

PKT(as′s,bs′s)

= 2−Γ0({ϵ})PKT(as,bs) = PKT(as,bs) = Pw(s)

Now, assume the statement to be true for a node ℓ(s)=d with 0<d≤D, and prove it holds
for ℓ(s)=d−1. By (4.5.2), noting that ℓ(s)=d−1<D, we rewrite Pw(s) as

Pw(s) = 1
2PKT(as,bs)+

1
2Pw(0s)Pw(1s)

Focus on the second term for the moment, and apply the inductive hypothesis, noting that
ℓ(0s)=ℓ(1s)=d.

1
2Pw(0s)Pw(1s)

=
1

2

(∑
V∈CD−d

2−ΓD−d(V)
∏
v∈V

PKT(av0s,bv0s)
)(∑

W∈CD−d

2−ΓD−d(W)
∏

w∈W
PKT(aw1s,bw1s)

)
=

∑
V,W∈CD−d

2−ΓD−d(V)−ΓD−d(W)−1
(∏
v∈V

PKT(av0s,bv0s)
)(∏

w∈W
PKT(aw1s,bw1s)

)
We rewrite the product to be over V{0}={v0 :v∈V} and W{1} respectively.

=
∑

V,W∈CD−d

2−ΓD−d(V)−ΓD−d(W)−1
(∏
v∈V{0}

PKT(avs,bvs)
)(∏

w∈W{1}

PKT(aws,bws)
)

By appealing to Lemma 4.3.21 and merging the two products,

=
∑

V,W∈CD−d

2−ΓD−d+1(V{0}∪W{1})
(∏

u∈V{0}∪W{1}

PKT(aus,bus)
)

By CD−d+1={{ϵ}}∪{V{0}∪W{1} :V,W∈CD−d} (Definition 4.3.7)

=
∑

S∈CD−d+1,S̸={ϵ}

2−ΓD−d+1(S)
(∏
s′∈S

PKT(as′s,bs′s)
)

206 CHAPTER 4. THE CONTEXT TREE WEIGHTING ALGORITHM

We can now add back in the 1
2PKT(as,bs) term, noting that ΓD−d+1({ϵ})=1

1
2PKT(as,bs)+

1
2Pw(0s)Pw(1s)

= 2−ΓD−d+1({ϵ})
(∏
s′∈S

PKT(as′s,bs′s)
)
+

∑
S∈CD−d+1,S≠{ϵ}

2−ΓD−d+1(S)
(∏
s′∈S

PKT(as′s,bs′s)
)

=
∑

S∈CD−(d−1)

2−ΓD−(d−1)(S)
∏
s′∈S

PKT(as′s,bs′s)

�

Using Theorem 4.5.8 we can now demonstrate how the CTW model implements a
Bayesian mixture of suffix sets. By fixing a value of D and corresponding model class CD,
we can define a prior on models S∈CD as follows:

wS := 2−ΓD(S) (4.5.9)

Lemma 4.5.10 (PST prior normalized) The prior wS=2−ΓD(S) is a valid proba-
bility distribution over CD, in the sense that wS≥0 and

∑
S∈CD

wS=1.

Note that this implies that {ED(S) :S∈CD} is a complete (prefix) code.

Proof. Clearly 2−ΓD(S)≥0. To prove
∑

S∈CD
2−ΓD(S)=1, we proceed by induction on D.

First, note that by Definition 4.3.20

ΓD({ϵ}) = |{ϵ}|−1+|{s∈{ϵ} :ℓ(s)<D}| = JD>0K

For D=0, we have ∑
S∈C0

2−ΓD(S) = 2−ΓD({ϵ}) = 1

Now, assuming that
∑

S∈CD
2−ΓD(S)=1, we prove

∑
S∈CD+1

2−ΓD+1(S)=1.∑
S∈CD+1

2−ΓD+1(S) = 2−ΓD+1({ϵ})+
∑

S∈CD+1,S≠{ϵ}

2−ΓD+1(S) = 1
2+

∑
V,W∈CD

2−ΓD+1(V{0}∪W{1})

Appealing to Lemma 4.3.21,

= 1
2+

∑
V,W∈CD

2−ΓD(V)−ΓD(W)−1 = 1
2+

1
2

∑
V∈CD

2−ΓD(V) ·
∑

W∈CD

2−ΓD(W) = 1
2+

1
2×1×1 = 1

�

We can now finally state the main result, that the CTW method does indeed give a
Bayesian mixture over suffix sets.

Theorem 4.5.11 (Bayesian mixture over suffix sets) The weighted probability
PCTW
D (x1:n) of a context tree TD associated with the root node Pw(ϵ) satisfies

PCTW
D (x1:n) =

∑
S∈CD

wSPS,KT(x1:n)

where wS=2−ΓD(S) is the prior on suffix sets S∈CD.

4.5. CONTEXT TREE WEIGHTING 207

Proof. Recall that PCTW
D (x1:n) (Definition 4.5.4) is defined as the root node for a CTW tree

TD having been updated via Algorithm 4.4 on sequence x1:n. A special case of Theorem 4.5.8
(choosing s=ϵ, associated with the root node of the CTW tree) gives

PCTW
D (x1:n) ≡ Pw(ϵ) =

∑
S∈CD

2−ΓD(S)
∏
s∈S

PKT(as,bs) =
∑
S∈CD

wSPS,KT(x1:n)

The last equality follows from Definition 4.3.25 of PS,KT and wS=2−ΓD(S). �

This means that if we want to compute the mixture over all suffix sets of length at most
D, we instead compute the weighted probability Pw. Naively computing the mixture PCTW

D

by summing over all environments in CD would require O(22
D

) time, however using (4.5.2)
we are able to compute it in O(D) time, a double exponential speedup!

4.5.3 CTW-PST-KT Redundancies

We also inherit some convergence properties from the corresponding results for the KT
estimator:

Theorem 4.5.12 (PST-KT redundancy) Given any source S∈CD and parameter
vector ΘS :={θs :θs∈ [0,1]}s∈S , the redundancy of the PST-KT estimator for x1:n∈Bn

is bounded above by

log2PS,ΘS
(x1:n)−log2PS,KT(x1:n) ≤ |S|γ

(
n

|S|

)
where γ(t) :=

{
1
2 log2(t)+1 if t≥1

t if t≤1

Proof.

log2PS,ΘS
(x1:n)−log2PS,KT(x1:n)

(a)
= log2

∏
s∈Sθ

bs
s (1−θs)as∏

s∈SPKT(as,bs)

(b)
=
∑
s∈S

log2
θbss (1−θs)as

PKT(as,bs)

(c)≡
∑
s∈S

rKTθs(as,bs)
(d)

≤
∑
s∈S

γ(as+bs)
(e)

≤ |S|γ
(∑
s∈S

as+bs
|S|

)
(f)
= |S|γ

(n

|S|
)

(a) follows from Lemma 4.3.16 and Definition 4.3.25, (b) from log
∏

=
∑

log, (c) is just the
definition of rKT, (d) from Lemma 4.1.11 for terms with as+bs≥1, and from rKT,θs(0,0)=
0=γ(0) if as+bs=0, (e) from γ(t) being concave and an inverse version of Jensen’s inequality
Corollary 2.2.61, (f) is due to as+bs being all bits following context s. Since S is a suffix
set, every bit in x1:n follows a unique context s∈S, so ∑s∈Sas+bs=n. �

Let us first consider the redundancy of the CTW estimator PCTW
D relative to a PST-KT

estimator.

Lemma 4.5.13 (CTW-KT redundancy) Let S∈CD, and x1:n be a binary sequence.
Then the redundancy between the CTW estimator and the PST-KT estimator can be
bound by the model cost.

log2PS,KT(x1:n)−log2PCTW
D (x1:n) ≤ ΓD(S)

208 CHAPTER 4. THE CONTEXT TREE WEIGHTING ALGORITHM

Proof. We take the CTW mixture, and discard all terms except those associated with the
particular suffix set S to obtain a lower bound.

log2P
CTW
D (x1:n) = log2

∑
S∈CD

2−ΓD(S)
∏
s∈S

PKT(as,bs)

≥ log22
−ΓD(S)

∏
s∈S

PKT(as,bs)

= −ΓD(S)+log2PS,KT(x1:n)

from which the result follows. �

The final measure of the performance of the CTW estimator is given by the redundancy
between PCTW

D and the true underlying environment µ, assumed to be a variable-order
Markov model PS,ΘS for some suffix set S∈CD and associated parameter vector ΘS .

Corollary 4.5.14 (PST-CTW redundancy) Given any source S∈CD and parameter
vector ΘS := {θs : θs ∈ [0,1]}s∈S , the redundancy of the weighted coding distribution
CTW for n≥1 is upper bounded by

log2PS,ΘS
(x1:n)−log2PCTW

D (x1:n) ≤ 1
2 |S|log2n+ΓD(S)+|S|

Proof. Immediate by adding Theorem 4.5.12 and Lemma 4.5.13 together and using γ(n/|S|)≤
γ(n)= 1

2 log2n+1. �

This upper bound can be viewed as the sum of the coding lengths of the tree and the
coding length 1

2 log2n bits for each parameter. The best possible expected redundancy for an
estimator is given by the asymptotic Rissanen lower bound 1

2 log2n+O(1) [Ris86, Eq 3.7] per
parameter. Since ΓD(S)+|S| is constant, the CTW algorithm (asymptotically for n→∞)
achieves the Rissanen lower bound.

4.5.4 CTW Experiments

Continuing with Section 4.3.5, we now include a CTW model of depth 2 and 3, and repeat
the same experiment vs. the PST predictor with known S (Section 4.3.4) and a 2-Markov
estimator (Figure 4.12).

The performance of all models is similar. The best (as measured by the instantaneous
KL divergence) is the PST model with known suffix set, then the two CTW models, and
worst is the 2-Markov estimator. The 2-Markov estimator performs up to about 50 bits
better or so, but is eventually outpaced by the CTW models. The prediction accuracy is
a cumulative measure, which is why the 2-Markov estimator appears to always have high
prediction accuracy.

The PST model already knows precisely what context to keep track of, and needs only
to estimate the parameters. The CTW model with D=2 quickly learns the underlying
true environment from its model class, exploiting the variable order context to make more
efficient use of data. The CTW D=3 model also learns this, albeit slower than D=2, since
the larger model class implies a lower a-priori weight on Sgood. Worst is the 2-Markov
model, which can never learn to exploit the variable-order context, and wastefully keeps
track of redundant parameters, (eventually) slowing learning.

4.5. CONTEXT TREE WEIGHTING 209

Figure 4.12: Prediction accuracy and instantaneous KL divergence averaged over 10’000
trials on environment µ1 (α= 0.8, Figure 4.4) for 2-Markov KT estimators, PST with
Sgood={1,10,00} (Section 4.3.4), and CTW models for D=2 and D=3 (Section 4.5.4).

4.5.5 Optimizations

The above description of the CTW algorithm (Section 4.5.1) is complete, but in practice there
are a few optimizations that can be made for both computational efficiency and numerical
stability. None change the behavior of the underlying algorithm. These optimizations are
implemented separately for the sake of clarity, but none are mutually exclusive, and all of
them can (and should!) be implemented together.

Log probabilities. The first problem derives from the use of block probabilities rather
than conditional probabilities. The CTW probability is a mixture over all probabilities PS,KT

weighted by the complexity of S. In the long term, given a sequence x1:n sampled from a
particular Markov model characterized by the PST ΨS,ΘS , the mixture model PCTW

D (x1:n)
will converge to PS,KT(x1:n) as n→∞. The problem arises as PS,KT(x1:n) vanishes quickly
with respect to the number of bits x1:n observed so far. This presents a problem when
using the standard (IEEE 754-2008) format for a 64-bit floating point number: the smallest
positive number that can be represented is ≈10−308, which PS,KT(x1:n) can drop below for
even modest n (only a few hundred bits is often sufficient). Hence, computing PCTW

D (x1:n)
for even moderately sized n will quickly underflow to zero. One solution to this is instead of
storing probabilities, to store log probabilities, and rewrite all the update rules appropriately.

We can rewrite the update rules for the KT estimator PKT (Lemma 4.1.2) as follows,
giving us the log-KT estimator

log2PKT(0,0) = 0

log2PKT(a+1,b) = log2(a+
1
2)−log2(a+b+1)+log2PKT(a,b)

log2PKT(a,b+1) = log2(b+
1
2)−log2(a+b+1)+log2PKT(a,b)

Unfortunately, the CTW update rules (4.5.2) are not so easy to rewrite using log
probabilities, as there is an addition term log2

(
1
2PKT(as,bs)+

1
2Pw(0s)Pw(1s)

)
. The addition

of log-probabilities can be written as follows

log2(x+y) = log2(2
log2x+2log2y) (4.5.15)

but this presents the same numerical issues as before, if either log2x or log2y are less than
≈−1024, the above expression will underflow to zero, causing numerical errors. We can

210 CHAPTER 4. THE CONTEXT TREE WEIGHTING ALGORITHM

improve on this by defining the log-sum operator

a⊕b := max{a,b}+log2(1+2min{a,b}−max{a,b}) (4.5.16)

which avoids numerical underflow (one can verify that (4.5.15) and (4.5.16) are algebraically
equivalent). Using (4.5.16), we can rewrite (4.5.2) as

log2Pw(s) =

{
[log2PKT(as,bs)⊕

(
log2Pw(0s)+log2Pw(1s)

)
]−1 for 0≤ℓ(s)<D

log2PKT(as,bs) for ℓ(s)=D

We can then rewrite Algorithm 4.5 with log probabilities instead. For prediction, we need to
take the difference rather than the ratio of the CTW probability before and after updating
on the new bit, and then exponentiate the result to convert it back to a probability in the
range [0,1].

Online context tree initialization. The fact that the context tree can be updated in

O(D) time despite the model class CD containing O(22
D

) elements is what gives the CTW
method its power. However, the context tree TD itself contains O(2D) many nodes. For
even moderately sized depths D this can be intractable in the memory required.

In practice, we would expect n≪2D, and since at most nD distinct nodes will ever be
used, most nodes in the tree will never be visited. The upper bound of nD may be very
slack, as even less nodes are used if the sequence is generated by a simple distribution but
makes use of a large context, or a context that is highly variable. Consider the sequence
(0l1l)∗ sampled from the obvious deterministic distribution. We require a context of at least
size D= l to uniquely determine the next bit, but there are only 2l different contexts that
would ever be observed, so a vast majority of the tree is wasted space.

A solution is to initialize the context tree with only the root node, and add nodes to the
tree only when the KT counts associated with that node would be modified. The rest of the
tree can be thought of as unexplored null nodes (for which memory is not yet allocated).
The KT counts for null nodes are always (as,bs)=(0,0). For null nodes s with ℓ(s)=D, we
set Pw(s)=PKT(0,0)=1. For any internal null node, both children are also null, so by using
(4.5.2) and Pw(0s)=Pw(1s)=1 we have

Pw(s)=
1

2
PKT(as,bs)+

1

2
Pw(0s)Pw(1s)=

1

2
×1+ 1

2
×1×1=1

so regardless of its depth through the tree, all null nodes s satisfy Pw(s)= 1. If a node
requires the value of Pw(xs) for one of its children to update the value Pw(s), and the child
node xs is null, we can just assume Pw(xs)=1. This gives us a modified version of (4.5.2):

Pw(s)=

1 s is null
1
2PKT(as,bs)+

1
2Pw(0s)Pw(1s) ℓ(s)<D

PKT(as,bs) ℓ(s)=D.

The only step remaining is to modify Algorithm 4.4 such that whenever we have walked
down to a null node, to then initialize it as a node with the default statistics, and add two
null children. Indeed, the necessary Lines 11–13 have already been added, which are now
effective, since TD is no longer a perfect tree.

We can repeat Example 4.5.6 by starting off with a single root node (Figure 4.13a)
and only adding nodes when the corresponding statistics need to be stored, as shown in
Figures 4.13b to 4.13c.

4.5. CONTEXT TREE WEIGHTING 211

(aϵ,bϵ)=(0,0)
PKT=1
Pw=1

null null

(a) A newly initialized context tree T2 of depth D=2.

(aϵ,bϵ)=(1,0)
PKT=1/2
Pw=1/2

null
(a0,b0)=(1,0)
PKT=1/2
Pw=1/2

(a10,b10)=(1,0)
PKT=1/2
Pw=1/2

null

(b) The context tree T2 after having processed bit x3=0 given context x1:2=10.

(aϵ,bϵ)=(1,1)
PKT=1/8
Pw=5/32

null
(a0,b0)=(1,1)
PKT=1/8
Pw=3/16

(a10,b10)=(1,0)
PKT=1/2
Pw=1/2

(a00,b00)=(0,1)
PKT=1/2
Pw=1/2

(c) The context tree T2 after having processed bit x4=1 given context x1:3=100.

Figure 4.13: The result of running CTW update (Algorithm 4.4) with the online context
tree initialization optimization (Section 4.5.5) on context tree T2 (Example 4.5.6) for various
choices of bit xt+1 and context x1:t. Modified nodes highlighted.

212 CHAPTER 4. THE CONTEXT TREE WEIGHTING ALGORITHM

Reverting changes after prediction. In Algorithm 4.5, we update a copy of the context
tree as if a 1 were observed to generate the conditional distribution PCTW

D (1|x1:n), but for
large D this is an expensive operation. A more efficient solution is to make the updates to
the original tree, and revert the changes afterwards, which involves doing the opposite of
an update: Decrementing the appropriate counts as,bs, and reverting the changes made to
probabilities PKT and Pw, see Algorithm 4.6.

Algorithm 4.6 CTW Revert

Require: Updated Context Tree TD modified by Algorithm 4.4
Input: Context string x1:t ▷ Assuming that t≥D
Input: Bit to revert x=xt+1

Effect: Undoes the effect Algorithm 4.4 had on TD
1: s :=TD ▷ Keep track of the current node
2: for i= t down to t−D+1 do ▷ Loop backwards through the D most recent bits
3: if x = 1 then
4: s.b :=s.b−1 ▷ Decrement bs
5: s.θ := s.a+s.b+1

s.b+
1
2

×s.θ ▷ Revert PKT(as,bs)

6: else
7: s.a :=s.a−1 ▷ Decrement as
8: s.θ := s.a+s.b+1

s.a+
1
2

×s.θ ▷ Revert PKT(as,bs)

9: if xi = 1 then
10: s :=s.left ▷ Walk down the left path
11: else
12: s :=s.right ▷ Walk down the right path

13: s.w :=s.θ ▷ Revert Pw(s) for leaf node s
14: for i=1 to D do
15: s :=s.parent ▷ Walk back up the tree
16: s.w := 1

2s.θ+
1
2 ·s.left.w×s.right.w ▷ Revert Pw(s) for non-leaf node s

4.6 Exercises

1. [C32m] (Lower bound for KT estimator) Prove the KT lower bound Lemma 4.1.5.

2. [C10] (Explicit expression for PKT(n,n)) Show that PKT(n,n)=(2n)!/(4nn!)2.

3. [C16] (Predictive k-Markov convergence) Given a k-Markov environment µ,
and a sequence x1:∞ drawn from µ, prove that the m-Markov predictor Pm converges
to µ, for any m≥k. That is, Pm(xt|x<t)−µ(xt|xt−k:t)→0 for t→∞ w.µ.p.1. Hint:
Factor the sequence into subsequences for each context, and then apply Theorem 4.1.6.

4. [C30m] (Can higher order Markov models be worse cofinitely?) As we saw
in Example 4.2.8, it is possible to choose a sequence such that a 1-Markov model will
give worse predictions than a 0-Markov model infinitely often. That is, for the sequence
x1:∞=(010)∞ we had that P0(xn|x<n)−P1(xn|x<n) does not converge to 0. Can we
make the stronger claim for cofinitely (all but finitely) many time steps? That is, does
there exist a sequence x1:∞ such that lim infn→∞(Pk(xn|x<n)−Pm(xn|x<n))>0 for
some k<m?

4.7. HISTORY AND REFERENCES 213

5. [C10] (Infinite suffix sets) Come up with a countably-infinite sized suffix set which
is proper and complete.

6. [C15] (Computation time of CTW) Prove the computation time for (4.5.2) is
O(D).

7. [C15] (Redundancy of weighted mixture) Repeat the redundancy bound cal-
culation in Example 4.4.1, but for the weighted mixtures µ̂w,α(x1:t)=αµ̂1(x1:t)+(1−
α)µ̂2(x1:t) for some α∈ [0,1], and the more general mixture µ̂w,θ(x1:t)=

∑
iθiµ̂i(x1:t)

for weights θ=(θ1,...,θn) satisfying θi≥0 and
∑

iθi=1.

8. [C30ic] (CTW can predict you) Implement the CTW algorithm, and try feeding
in “random” bits generated by you. You may find that it can reliably predict the next
bit >60% of the time, depending on how unpredictably you can act!

9. [C35c] (Multi-alphabet CTW) Derive and implement a multi-alphabet version of
CTW. Hint: see [PS99].

10. [C32c] (CTW with compressed context) Suppose you have a fixed context
compressor which is able to reduce the length of the context by at least half. How
does this effect the redundancy of CTW? Implement this fixed context compressor
version of CTW and compare with the original CTW.

4.7 History and References

The Context Tree Weighting algorithm was first briefly introduced in [WST93] where an upper
bound on the redundancy was provided. The explanation of the algorithm and its bounds
were greatly expanded on in [WST95], and as it contains most of the information on the CTW
algorithm [WST95] is often referred to as the original CTW paper. A concise description of
CTW and the important properties it possesses are provided in [WST97], where the original
authors present the content from a mini-course on the CTW algorithm. One of the key
components of the CTW algorithm is the KT estimator. Originally introduced in [KT81], the
KT estimator is an efficient estimator for memoryless sources with (asymptotically) optimal
redundancy bounds for such sources. [SSH12] discusses a windowed version of KT used within
CTW for non-stationary environments. After its inception, there was much work following
the CTW algorithm, expanding it in various ways, and removing some of its limitations.
One such generalization was to consider arbitrary alphabets beyond binary [TSW93]. It was
shown that the algorithm is still able to achieve optimal redundancy for arbitrary alphabets,
however, in practice the best choice of alphabet is often unknown. One approach is to
binarize the alphabet, i.e. to inject A into Bk for k=⌈log2|A|⌉ [VH18]. Another alternative
to using multi-alphabet KT for the non-binary alphabet case is the near-optimal Sparse
Adaptive Dirichlet (SAD) estimator [Hut13a, VH12] approaching the slow but Bayes-optimal
mixture over all sub-alphabets [TSW93]. The SAD estimator was further expanded upon
in [Bel15] to K-distinct reservoir sampling, which is more computationally and memory
efficient than CTW and other tree-based algorithms. A downside of the original CTW
algorithm is that the depth D must be chosen in advance and cannot be updated online. This
downside was overcome in [Wil98] where the finite depth was removed, but at an increase in
computation time that made the extension impractical. With D infinite or logarithmically
growing with n, CTW is asymptotically optimal even on piecewise stationary sources if the
number of pieces is small, despite only being designed for stationary sources [VCH18]. Not

214 CHAPTER 4. THE CONTEXT TREE WEIGHTING ALGORITHM

all data sources have the binary suffix tree structure assumed by the CTW algorithm. In
[WST96], four new model classes are presented for which context weighting algorithms are
provided. More details on prediction suffix trees can be found in [Ris83, Ron96].

Context tree weighting has been applied beyond prediction to active agents in [VNHS10]
using action-conditional prediction suffix trees (see Chapter 12). More recently, CTW
has been expanded for the interaction case for partially observable data in [MW17]. The
resulting algorithm D2-CTW is less sensitive to aliasing and noise. The CTW algorithm
uses node-based pruning to maintain its mixture; but an alternative approach is to use
edge-based pruning [PS99], which results in a larger model class being considered. CTW
was compared to other prediction algorithms in a practical study in [BEY04] and shown
to outperform Lempel-Ziv (Original [ZL78] and improved [NYEYM03]) and Prediction by
Partial Match [CW84] and Probabilistic Suffix Trees [Ron96].

Very recently, [GDR+23, GMGH+24] trained a Transformer (also LSTMs) on data
sampled from the CTW, PTW (Section 5.3), and even Solomonoff’s distribution. Remarkably,
the trained Transformer is able to nearly perfectly mimic CTW and PTW in-context. Since
CTW and PTW are Bayes-optimal learners of variable-order Markov processes and piecewise
i.i.d. processes respectively, so is the trained Transformer in-context without any further
weight updates.

The more recent variations and extensions of CTW will be covered in Chapter 5. They
include adaptive CTW for non-stationary sources [OHSS12], Partition Tree Weighting (PTW)
for piecewise stationary sources [VWBG13], and Context Tree Switching (CTS) [VNHB12].

Chapter 5

Variations on CTW

If you can’t program it, you haven’t understood it.

David Deutsch, 2011

5.1 Adaptive CTW . 216
5.2 Context Tree Switching . 217
5.3 Partition Tree Weighting . 222
5.4 Forget-Me-Not Process . 231
5.5 Context Tree Maximization . 232
5.6 Exercises . 232
5.7 History and References . 233

We have seen in Chapter 4 that Context Tree Weighting (CTW) is an efficient method
for computing a Bayesian mixture PCTW

D (Definition 4.5.4) over a class M of variable-
order Markov sources. If the true distribution µ is k-Markov, CTW will learn to predict
well. In this chapter, we will weaken the assumption that µ is k-Markov and expand
on the CTW algorithm on several fronts. First, we will look at altering the choice of
the KT estimator using a variant of CTW called Adaptive CTW [OHSS12] suitable for
non-stationary sources. Next, we will go over a modified form of CTW called Context
Tree Switching (CTS) that allows the use of several distributions for prediction, which
the model can switch between. Weighted combinations of these distributions can be
used to increase the size of the model class for CTW, with minimal impact to the
redundancy and time/space complexity [VNHB12]. Lastly, we will discuss a distinct
but similar approach to prediction called Partition Tree Weighting (PTW) for piecewise
stationary sources with change points which weighs over partitions instead of contexts
[VWBG13].

215

216 CHAPTER 5. VARIATIONS ON CTW

5.1 Adaptive CTW

The CTW method operates under the assumption that the true distribution is k-Markov
meaning that the distribution over xt only depends on previous terms xt−k,xt−k+1,...,xt−1

and not on the current time step t. This makes the KT estimator an appropriate choice as
it takes into account all statistics observed and assigns equal weight to both old and recent
samples.

For non-stationary sources, the KT estimator is a poor choice. As more samples are
collected, the contribution from new symbols becomes smaller compared to older samples,
making it difficult to detect changes or shifts in the distribution over time. To address this
limitation and adapt the CTW method for non-stationary sources, we need to replace the KT
estimator with a new estimator that places more weight on recent data, while maintaining
the computational efficiency of the CTW method. The approach of adaptive CTW [OHSS12]
is to use a discounted KT estimator that assigns higher weight to more recent data, similar
to how rewards are discounted in reinforcement learning (see Section 6.4). For the standard
KT estimator (Lemma 4.1.2), the counts a and b are incremented whenever a zero or one is
observed, respectively. Let at and bt be the counts after observing the sequence x1:t. We
can express the new counts at+1 and bt+1 as

at+1=Jxt+1=0K+at
bt+1=Jxt+1=1K+bt

The discounted KT estimator modifies this by introducing a discount γ that controls how
quickly the counts decay. The larger the γ, the faster the decay. The increments are still
made based on the value of xt+1, after which the counts are scaled by (1−γ). The updated
rules for the discounted KT estimator are:

at+1=(1−γ)(Jxt+1=0K+at)
bt+1=(1−γ)(Jxt+1=1K+bt)

If γ=0, this reduces to the standard KT estimator. We want to emphasize that γ need not be
a constant, but can be parameterized. We will now go over several different parameterizations
of γ and their motivations.

Constant. We could choose γ to be constant, giving a fixed discount rate. While this
is easy to implement, this introduces an additional free parameter γ that must be chosen.
Choosing a constant for γ essentially gives a geometric discount, making it hard to strike
a balance between having essentially no discount for small sequence lengths, and for large
sequence lengths the initial terms have practically zero contribution.

Sequence-length. We could choose the discount γt to depend on the length of the sequence
observed so far (or equivalently by the current time step) by letting γt = ct−α for some
c,α∈ [0,1). As long as α>0, the effective horizon (Definition 6.4.2) will increase over time.
With α=0, this reduces to the constant discount rate. A downside of this approach is that
if two identical contexts are observed at two distant time steps, the weighting between the
updates will drastically differ even though no other observations of that context were made.

Context visit. To address the downside with sequence length, we can incorporate the
number of times a particular context has been observed before. This can be done in three
different ways. Here, we write γs,t to indicate the discount is now a function of both the
current node s in the context tree, and the current time step t.

5.2. CONTEXT TREE SWITCHING 217

1. Partial-context visit. Use the same discount as sequence-length discounting, but
use the number of times a node associated with context s has been visited up to time t,
denoted ks(t), which gives the discount γs,t=cks(t)

−α. A downside of this approach is
that nodes with shorter contexts will be visited more often (the root node ϵ is visited
on every time step, whereas many leaf nodes may be seldom visited, if at all). This
can lead to an uneven discount that weights more on short contexts.

2. Full-context visit. Consider leaf nodes and internal nodes separately. The tree is
traversed from root to leaf, the discount for leaf nodes is updated in the same way as
partial-context visits, γs,t=cks(t)

−α, and the same result is propagated back up the
tree for the internal nodes. For every node s′ along the path from the root ϵ to leaf s,
we use the same discount γs′,t=γs,t=cks(t)

−α as for the leaf.

3. Leaf-context visit. Discount leaf nodes as before γs,t=cks(t)
−α, but also walks back

up to the root node, updating the counts directly for each non-leaf node to be the sum
of its children, i.e. as=a0s+a1s and bs= b0s+b1s. No discount is explicitly applied
to internal nodes, but only implicitly through accumulation of counts propagated up
from leaf nodes.

Through experimentation [OHSS12], it was found that partial-context visit Adaptive
CTW with c=0.1 and α=0.33 outperforms classical CTW on data compression benchmarks.
Adaptive CTW offers a simple and computationally efficient method to improve the choice
of base model of the KT estimator.

5.2 Context Tree Switching

The Context Tree Switching (CTS) algorithm [VNHB12] is an extension of the CTW algo-
rithm to a larger model class without losing much in terms of redundancy and computation
time. CTW works well assuming the dynamics of the true environment never change.
However, this is a strong assumption, especially for tasks such as data compression where
there might be an abrupt change in the data source from which data is drawn (e.g. the
boundary between image and text data in the same file.)

Example 5.2.1 (Piecwise 1-Markov source) Consider the sequences (11)∞ and (01)∞,
which can be regarded as “sampled” from the deterministic 0-Markov distribution µ0(xt=
1|x<t)=1 and 1-Markov distribution µ1(xt=1|x<t)≡µ1(1|xt−1)=Jxt−1=0K for t>1 and
µ1(x1=1)=0 respectively. Now consider the alternating sequence

ẋ1:∞ = (01)100(11)100(01)100(11)100...

which is still deterministic, but can be considered a non-stationary 1-Markov process
µ(xt|x<t)=µit(xt|x<t) for it=J⌊ t−1

200 ⌋≡0 mod 2K. As such, we would expect that using a
new CTW tree (with D=1) every 200 time steps would work well on this sequence, the first
and third would learn the rules 0→1 and 1→0 while the second and fourth would learn to
always predict 1 regardless of context. However, we would expect a single CTW model with
D=1 for the entire sequence to perform poorly: All the time spent collecting statistics in the
first half of the sequence would actively harm learning for the second half of the sequence.

We can observe this via experiment: We use the above sequence, and train four indepen-
dent CTW models of depth 1, switching them out every 200 time steps. We also use a depth
1, 2 and 200 CTW model for the entire sequence, noting that depth 2 should be (almost)
sufficient to learn the non-stationary sequence, as the rules 01→0,10→1,11→1 describe

218 CHAPTER 5. VARIATIONS ON CTW

the sequence entirely, apart from the boundaries in between sequences where we see the
substrings 011 and 110, i.e. the process is “nearly” 2-Markov. This phenomenon holds much
more generally [VCH18]. Depth 200 can (eventually) learn the boundary conditions too. We
measure the instantaneous KL divergence (4.2.11), noting that since the true environment
is deterministic, only one sequence x1:t can ever be possibly observed, so the expectation
collapses to KL(µ||ξCTW)=−lnξCTW (ẋt|ẋ<t).

Figure 5.1: Instantaneous KL divergence for CTW models (D=1,D=2,D=100), vs.
switching model using four CTW D=1 models (data smoothed for clarity). Environment
detailed in Example 5.2.1. The large solid regions are due to the KL divergence rapidly
changing back and forth on even and odd time steps.

As seen in Figure 5.1, the switch model quickly learns each block of the sequence, briefly
spiking as each new CTW model relearns a block. To no surprise, a single CTW model with
D=1 is inadequate for learning the sequence. The CTW D=2 model initially performs as
well as the switch model, but the second time it encounters the block (11)100, the statistics
collected from previous blocks hamper learning, and a freshly deployed CTW model with
D=1 (switch) is able to outperform it. We would expect the CTW model with D=200 to
eventually learn the sequence perfectly, but this would require a much longer sequence (as
the model is receiving statistics regarding the location of the boundaries only once every
200 bits). This motivates the switching method, though for this toy example, the number
of models chosen and when to switch them out was hardcoded. In practice, this must be
determined from the data itself. �

As previously discussed, the mixture ξ will eventually converge to the best model in the
classM, but for CTW to ensure the true environment is inM, this may sometimes require
an extremely large choice of depth (and therefore a lot more bits from the environment
which with to update the parameters).

5.2. CONTEXT TREE SWITCHING 219

Motivated by Example 5.2.1, we could instead choose the goal of trying to find the
best sequence of models to learn the true environment, to allow for the possibility that the
environment itself may change over time. This is the core idea behind CTS. What remains
is to define a method analogous to CTW that can switch between models efficiently.

First we need to define a distribution over model sequences.

Definition 5.2.2 (Switch distribution [VNHB12]) Given a non-empty model
class M= {ρ1,ρ2,...,ρ|M|}, the switch distribution with respect to model class M is
defined as a weighted sum over all length n sequences i1:n∈{1,2,...,|M|}n

τα(x1:n) :=
∑

i1:n∈{1,2,...,|M|}n

w(i1:n)

n∏
k=1

ρik(xk|x<k)

where the weight w is recursively defined as

w(i1:n) :=

1 if n=0
1

|M| if n=1

w(i<n)·(1−αn) if in= in−1

w(i<n)· αn
|M|−1 if in ̸= in−1

(5.2.3)

with switch rates αn∈ [0,1].

The choice of weight w (or prior) implies that on each time step t, the probability of
switching to a new model (chosen uniformly at random) is αt. The first model is also chosen
uniformly at random.

Trying to compute τα naively would be intractable as the summation is over a set of size
O(|M|n). However, it is possible to efficiently compute τα in O(n|M|) time and O(|M|)
space with Algorithm 5.1.

Algorithm 5.1 Switch distribution τα(x1:n) [VNHB12, BMS+20]

Require: A finite non-empty mode classM={ρ1,ρ2,...,ρ|M|}
Require: A weight vector (w1,...,w|M|)∈R|M|, with wi=1/|M| for 1≤ i≤|M|
Require: A sequence of switching rates (α2,...,αn)∈Rn−1

Input: An input sequence x1:n
Output: Switch distribution τα(x1:n)=

∏n
t−1τ(xt|x<t)

1: for t=1 to n do
2: τ(xt|x<t) :=

∑|M|
i=1wiρi(xt|x<t) ▷ Compute the conditional mixture

3: wi :=
αt+1

|M|−1+
(
(1−αt+1)− αt+1

|M|−1

)wiρi(xt|x<t)
τ(xt|x<t)

∀i ▷ Update the weights

return τ(x1:n)

Context Tree Switching (CTS) combines this switch distribution with CTW. Let xs1:n
denote the subsequence of x1:n of elements that follow the substring s. For example, let
x=01011010. Then x01 are the elements in 01011010 that follow 01 (highlighted in red),
giving x01=010. We can formally define xs1:n as xs1:n := (xi1 ,...,xij) where ik =min{i : i>
ik−1∧xi−1−ℓ(s):i−1=s} with i0 :=0.

In previous experiments (Sections 4.3.5 and 4.5.4) we saw how choosing a context s
for the environment in question longer than necessary can hamper learning, as we have
redundant parameters to learn. For a k-Markov environment with k≤D, CTW chooses a

220 CHAPTER 5. VARIATIONS ON CTW

mixture of all depth ≤D PSTs as estimator, weighted by complexity. Recall (4.5.2), which
gives the recursive definition of the probability Pw(s) associated with node s in a context
tree.

Pw(s) :=

{
1
2PKT(as,bs)+

1
2Pw(0s)Pw(1s) ℓ(s)<D

PKT(as,bs) ℓ(s)=D

CTS generalizes this approach by providing a weighted mixture over all sequences of depth
≤D PST models, allowing the best choice of model to change as the environment does.

Definition 5.2.4 (Context Tree Switching) The Context Tree Switching probability
PCTS
s,D of x1:n, with depth D>0 and context s is defined as

PCTS
s,D (x1:n)

=
∑

i1:ns∈Bns

w(i1:ns
)

ns∏
k=1

{
PKT((x

s
1:n)k |(xs1:n)<k) if ik=0

PCTS
0s,D−1

(
xts(k) |x<ts(k)

)
PCTS
1s,D−1

(
xts(k) |x<ts(k)

)
if ik=1

where ns= ℓ(x
s
1:n), (x

s
1:n)1:k is the first k bits of xs1:n, ts(k)=min{t|ℓ(xs1:t)=k}, and

PCTS
s,D (y |x) :=PCTS

s,D (xy)/PCTS
s,D (y). For the base cases we have PCTS

s,0 (x1:n)=PKT(x
s
1:n)

and PCTS
s,D (ϵ)=1. The top-level mixture PCTS

ϵ,D (x1:n) will be simply denoted PCTS
D (x1:n).

Let us explore the above expression for a moment: We are taking a weighted sum over
all binary sequences of length ns, weighted by the switching prior w (5.2.3). The product
can be understood as an application of chain rule, but on each step the sequence dictates
whether the KT estimator should be applied (ik=0), or the recursive CTS mixture (ik=1).

We will now describe how in practice PCTS
D (x1:n) can be computed efficiently. CTS

works much like the CTW method by using a perfect binary tree of depth D, for which each
node s in the tree stores the following values: PKT(as,bs), the base KT estimator associated
with that node (along with the usual KT counts as and bs); αs and βs, used like the weights
w in switching; and PCTS

s , used like the τ in the generic switch distribution (Algorithm 5.1).
Each internal node is initialized with αs(ϵ)=βs(ϵ)=

1
2 and each leaf node is initialized with

αs(ϵ)=1 and βs(ϵ)=0. Then when a new symbol xn occurs, given a history x<n, the path
of the tree reflecting the context x<n is traversed and updated according to Algorithm 5.2.

Clearly the update takes time O(D), which is asymptotically the same time taken as
CTW. Additionally the space requirements asymptotically match those of CTW. The space
requirement looks like 2D, but as with CTW, at most O(n|D|) nodes need to be created
and stored explicitly.

The CTS method leverages multiple context tree models to efficiently encode data
sequences. It adaptively selects the best context tree model for different parts of the input
sequence, resulting in improved compression and prediction performance.

In the theorem below, we consider binary sequence x1:n which we informally imagine
being sampled from a binary prediction suffix tree (S,ΘS), though the formal statement in
the theorem does not rely on this assumption and holds for all sequences x1:n. S is a set of
contexts belonging to a class CD, and ΘS is a parameter vector associated with each context
s∈S. Each parameter θs∈ [0,1] represents the probability of observing a certain symbol (0
or 1) given the context s.

The function d(S) denotes the maximum length of any context s∈S, which provides a
measure of the complexity of the suffix tree model. In the CTS method, the objective is to
find a balance between the complexity of the model and the ability to accurately represent
the data sequence x1:n.

5.2. CONTEXT TREE SWITCHING 221

Algorithm 5.2 Context Tree Switching update [VNHB12, BVT14]

Require: New symbol xn
Require: History x<n

Input: Current context tree TD={as,bs,αs,P
s
KT,βs :s∈BD}

Output: Updated context tree TD
1: for d=0 to D do
2: Let s=xn−d:n−1 be the current context
3: Update estimator as and bs and Ps

KT with KT-updating
4: x′ :=xn−ℓ(s)−1

5: if s is leaf node then
6: αs(x1:n) :=αs(x<n)P

s
KT

7: PCTS
s,D (x1:n) :=αs(x1:n)

8: else
9: PCTS

s,D (x1:n) :=αs(x<n)P
s
KT+βs(x<n)P

CTS
x′s,D(xn |x<n)

10: αs(x1:n) :=
1

n+1P
CTS
s,D (x1:n)+

n−1
n+1αs(x<n)P

s
KT

11: βs(x1:n) :=
1

n+1P
CTS
s,D (x1:n)+βs(x<n)P

CTS
x′s,D(xn |x<n)

The theorem states an upper bound on the redundancy of the CTS coding distribution.
Redundancy is a measure of the difference between the optimal coding length (if the true
underlying model were known) and the coding length achieved using the CTS method. A
lower redundancy indicates better compression performance.

The bound is expressed in terms of the following quantities:

• ΓD(S) represents the complexity of suffix set/tree S
• (d(S)+1)log2(n) accounts for the maximum context length in the model and the input
sequence length.

• 1
2 |S|log2(n/|S|) considers the trade-off between the number of contexts in the model
and the input sequence length.

• |S| represents the total number of contexts in the model.

The theorem essentially tells us that the redundancy of using the CTS coding distribution
is upper bounded by a combination of model complexity, context length, and sequence
length. This insight can be helpful when designing and analyzing CTS variations for data
compression and prediction tasks.

Theorem 5.2.5 (PST-CTS redundancy [VNHB12]) Given a data sequence
x1:n∈Bn and Prediction Suffix Tree (PST) (S,ΘS) with S∈CD and parameter vector
ΘS : {θs ∈ [0,1]}s∈S , letting d(S) := maxs∈Sℓ(s), then the redundancy of using the
Context Tree Switching (CTS) coding distribution compared to coding with respect to
the PST is upper bounded by

log2PS,ΘS (x1:n)−log2PCTS
D (x1:n) ≤ ΓD(S)+(d(S)+1)log2(n)+

|S|
2
log2

(
n

|S|

)
+|S|

Proof. Let S be the set of contexts that index the internal nodes of S. By observing the
elements in the sum from Definition 5.2.4 we can conclude

PCTS
s,D (x1:n) ≥

ws(11:ns

)PCTS
0s,D−1(x1:n)P

CTS
1s,D−1(x1:n) if s /∈S

ws(01:ns
)PKT(x

s
1:n) if s∈S and D>0

PKT(x
s
1:n) if D=0

222 CHAPTER 5. VARIATIONS ON CTW

for any s∈S∪S. Now define S ′ := {s∈S : ℓ(s)<D}. By repeatedly applying the above
equation starting from PCTS

D (x1:n)=PCTS
ϵ,D (x1:n) and continuing until no more CTS terms

remain, we can conclude

PCTS
D ≥

(∏
s∈S

ws(11:ns)
)(∏

s∈S′

ws(01:ns)
)(∏

s∈S
PKT(x

s
1:n)
)

=
(d(S)∏
k=0

∏
s∈S′∪S:ℓ(s)=k

ws(11:ns)
)(∏

s∈S
PKT(x

s
1:n)
)

≥
(
2−ΓD(S)

d(S)∏
k=0

∏
s∈S′∪S:ℓ(s)=k

ws(11:ns)

ws(11:min{ns,1})

)(∏
s∈S

PKT(x
s
1:n)
)

≥
(
2−ΓD(S)

d(S)∏
k=0

n∏
t=2

t−1
t

)(∏
s∈S

PKT(x
s
1:n)
)

= 2−ΓD(S)n−(d(S)+1)
(∏
s∈S

PKT(x
s
1:n)
)

The first equality comes from the fact that ws(11:n)=ws(01:n) and rearranging. The second
inequality follows from the fact that |S∪S ′|=ΓD(S), ws(1)=1/2 and either ws(11:ns

)=
ws(ϵ)= 1 if ns =0 or ws(11:ns

)= 1/2×... if ns> 0. The third inequality comes from the
observation that the context associated with each symbol in x1:n matches at most one
context s∈S∪S ′ of each specific length 0≤k≤d(S). The last equality is a result of the
telescoping product. Then taking the −log2 of both sides we get

−log2(PCTS
D (x1:n)) ≤ ΓD(S)+(d(S)+1)log2(n)−log2

(∏
s∈S

PKT(x
s
1:n)
)

Then combining with Theorem 4.5.12 we get

log2PS,ΘS (x1:n)−log2PCTS
D (x1:n) ≤ ΓD(S)+(d(S)+1)log2(n)+

|S|
2
log2

n

|S|+|S| �

We can compare this with the redundancy bound proven for the CTW method (Corol-
lary 4.5.14)

log2PS,ΘS
(x1:t)−log2PCTW

D (x1:n) ≤
|S|
2
log2

n

|S|+ΓD(S)+|S|

We have a slightly looser redundancy bound by an additional additive term (d(S)+1)log2n,
growing logarithmically with the length of x1:n, and linearly with the depth of the PST
that models the true environment. This is a small penalty to pay, in exchange for CTS
having a larger model class that allows for switching between Markov models in CD, whereas
CTW can in a sense consider only a fixed model in CD that is the most similar to the true
environment.

5.3 Partition Tree Weighting

Partition Tree Weighting (PTW) [VWBG13] is an approach similar to Context Tree Weight-
ing that is made for dealing with distributions that change as a function of time, which we

5.3. PARTITION TREE WEIGHTING 223

model as piecewise stationary. A piecewise stationary distribution is defined by partitioning
time into contiguous blocks (called segments), and assigning a stationary distribution to each
segment. Since both the segment boundaries and the underlying distributions are unknown,
PTW uses a Bayesian mixture which weights over choices of partitions. Piecewise stationary
sources will often occur in practice: For example, the weather follows a different distribution
in summer as opposed to winter. We can model these breaks as temporal partitions, a type of
partition where the only allowable subsets are integer intervalsinteger interval, a contiguous
set of integers of the form {x∈Z :a≤x≤b}. The true distribution is then formed from a set
of stationary distributions, one for each time interval.

Definition 5.3.1 (Segment) A segment is a tuple (a,b)∈N+×N+ with a≤b. Each
segment (a,b) represents a contiguous set of naturals {a,a+1,...,b}. Two segments (a,b)
and (c,d) overlap if there exists i∈N+ such that a≤ i≤b and c≤ i≤d.

As an abuse of notation, we will often treat segments as the sets they represent, and lift
set operations to segments. For example, we will write (a,b)⊆(c,d) iff c≤a≤b≤d.

Definition 5.3.2 (Temporal partition) A temporal partition P of a set of time
indices S={1,2,...,n} or S=N+ is a partition of S into non-overlapping segments. We
denote only those segments contained in {a,a+1,...,b} as Pa:b :={(c,d)∈P : a≤c≤d≤b}.
Finally, let Tn denote the set of all possible temporal partitions of S={1,2,...,n}.

One can think of a temporal partition as a schedule, breaking up a set of discrete
timesteps {1,...,n} into contiguous blocks of time, such that every timestep is contained
within exactly one segment. We will often drop “temporal” and simply say partition if it is
clear from context that we do not mean a generic partition.

Definition 5.3.3 (Refinement) Let P be a temporal partition over a set of time
indices S. Let C(P) :={a : (a,b)∈P}\{1} be the set of all boundary points where an
existing segment ends, and a new segment starts in P . We define a refinement P ′ of P
as a temporal partition such that C(P)⊆C(P ′).

That is, a refinement is a partition such that whenever there is a boundary between
segments in the original partition, there is also a boundary in the refinement at the same
index. The refinement may have additional boundaries. Any refinement P ′ over the same
index set S as P can always be obtained by taking the existing partition P , and (optionally)
subdividing the existing segments in P into smaller subsegments, which become the segments
in P ′. It can be thought of as a more finely grained schedule that respects the boundaries
between segments in the original schedule.

Example 5.3.4 (Partition refinement) Given the set of time indices S={1,...,10}, one
possible temporal partition is P={(1,3),(4,6),(7,7),(8,10)}, and one such refinement P ′ of P
is P ′={(1,2),(3,3),(4,6),(7,7),(8,8),(9,10)}.

1 2 3 4 5 6 7 8 9 10

P
P ′

�

We can now formally define our reference class of environments, which we will call
piecewise stationary sources.

224 CHAPTER 5. VARIATIONS ON CTW

Definition 5.3.5 (Piecewise (stationary) source) We call ρ a piecewise stationary
source if there exist probability measures {ρ1,ρ2,...} and a temporal partition Pρ=
{(a1,b1),(a2,b2),...} over N+ such that for all n∈N+ and all x1:n∈Bn we have

ρ(x1:n)=
∏

(a,b)∈Pρ
1:n

ρfρ(a)(xa:b)

where fρ(i) returns the index j of the segment (aj ,bj)∈Pρ such that aj≤ i≤bj . This
function is well-defined due to every timestep being in one and only one segment
in a temporal partition. We abbreviate fρ as f when the corresponding piecewise
distribution ρ is obvious.

When deriving bounds for the PTW predictor we have in mind that the true environment
µ is composed of many stationary distributions in this way, each is assigned to a particular
segment of time. When the symbol xi is sampled from the true environment µ, xi is
distributed according to µf(i). Formally, we make no assumptions on the true source µ, but
it is helpful to imagine that µ is piecewise stationary, or even piecewise i.i.d., since these are
the sources PTW aims at predicting/compressing well.

Remark 5.3.6 (Encoding binary partitions as trees) The set of all possible temporal
partitions Tn is computationally awkward to work with. Instead, we will consider a restricted
set of partitions that have a clear correspondence with binary trees, which we call binary
temporal partitions, denoted BD. If we imagine a complete binary tree of depth D with
leaves numbered 1 through 2D, then for some fixed suffix set≡tree S∈CD, we will associate
each leaf s∈S with the interval spanned by the 2D−ℓ(s) leaves at level D if we were to
expand node s to level D. Then the partition P associated with S is the union of those
intervals, and BD is the set of all such partitions. See Figure 5.2 for an illustration of all
partitions P∈B2. �

{(1,2),(3,3),(4,4)} {(1,1),(2,2),(3,4)} {(1,2),(3,4)} {(1,1),(2,2),(3,3),(4,4)}

Figure 5.2: A collection of binary partitions in B2 (Definition 5.3.7) and their corresponding
partition trees. All partitions except for {(1,4)} (empty tree) are shown. Note that the
temporal partitions {(1,3),(4,4)} and {(1,1),(2,4)} and {(1,1),(2,3),(4,4)} are not binary
partitions.

5.3. PARTITION TREE WEIGHTING 225

Definition 5.3.7 (Set of all binary temporal partitions BD)

BD = {P(S) :S∈CD}
where partition P(S) := {Is :s∈S}
where interval Is := (2D−ℓ(s)b(rev(s))+1, 2D−ℓ(s)(b(rev(s))+1)+1)

where b(rev(s))=
∑ℓ(s)

i=12
i−1si interprets reversed s as a natural number (see Proposi-

tion 2.1.1).

BD can also be defined directly without reference to context trees CD. Proving their
equivalence is left as an exercise.

Definition 5.3.8 (Set of all binary temporal partitions BD)

B0 := {{(1,1)}}
BD+1 := {{(1,2D+1)}} ∪ {P∪(P ′+2D) :P,P ′∈BD}

where P+x :={(a+x,b+x) : (a,b)∈P} shifts all intervals by x.

While using only binary temporal partitions excludes many temporal partitions (including
possibly the partition associated with the true unknown environment µ), this is an acceptable
trade-off, as binary partitions can be exploited to derive a fast update rule for PTW, and
in some formal sense, for any temporal partition P, we can find a binary partition P ′ such
that P ′ is “close” to P. This means very little extra overhead to the cost in bits for coding,
even though the PTW method can only learn binary partitions. The idea is construct the
coarsest=smallest binary refinement of P recursively breaking S into smaller segments until
C(P ′)⊇C(P) while maintaining P ′∈BD. This binary refinement always exists and is unique
(Exercise 5) and is denoted by B(P).

Lemma 5.3.9 (Binary temporal partitions are “close” to temporal partitions)
For all n∈N+ and for any temporal partition P∈Tn, there exists a binary temporal
partition P ′∈BD such that P ′ is a refinement of P and

|P ′| ≤ D(|P|−1)+1 ≤ D|P|

where D :=⌈log2n⌉, and the last inequality holds only for n≥2.

Proof. First we expand the index set S = {1,...,n} associated with P to the next power
of 2, S′={1,...,2D} with D := ⌈log2n⌉, and start with the trivial partition P ′

1 :={(1,2D)}.
Then, repeat the following process: while P ′

r is not a refinement of P, make a new set
P ′
r+1 := {}. For all segments (a,b)∈P ′

r, if there exists index i∈C(P) such that a< i≤ b,
we bisect the segment (a,b) into two subsegments (a,a+b−1

2) and (a+b+1
2 ,b), and add both

subsegments to P ′
r+1. If there does not exist such an index, add (a,b) to P ′

r+1. Then,
increment r← r+1 and loop again. We repeat this process until P ′

r is a refinement of P
as illustrated in Figure 5.3. It is easy to see that the process terminates with r≤D+1
(Exercise 4), and that for all k≤D, |P ′

k+1|≤|P ′
k|+|C(P)|. Since |C(P)|= |P|−1 and |P ′

1|=1,

we get |P ′|≤|P ′
D+1|≤D(|P|−1)+1≤D|P| for D≥1. �

226 CHAPTER 5. VARIATIONS ON CTW

Remark 5.3.10 ([VWBG13] Recovering trees from binary refinement) Given any
binary partition P ′, we can easily construct the tree corresponding to it by observing the
trace of the algorithm described in Lemma 5.3.9 in reverse order of execution: The interval
corresponding to the entire set of time indices is the root node, and the children of each node
correspond to the two intervals obtained by splitting a parent interval in half. The leaves of
the tree correspond to the intervals in the binary partition (a,b)∈P ′ after the algorithm has
terminated (see Figure 5.3). Note that as shown, the intervals in the new partition P ′ may
not necessarily be covered by the intervals in P ′, even though P ′ is a refinement of P, as
refinement requires only that the boundary points in P are also boundary points in P ′. �

P
P ′
1

P ′
2

P ′
3

P ′
4

P ′
5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 5.3: Visualization of the stages of computing the binary refinement of the temporal
partition P={(1,3),(4,6),(7,13),(14,15)} over S={1,...,15} with n=15 and d=4. The result-
ing binary refinement is B(P)={(1,2),(3,3),(4,4),(5,6),(7,8),(9,12),(13,13),(14,14),(15,16)},
see Lemma 5.3.9.

1,16

1,8

1,4

1,2 3,4

3,3 4,4

5,8

5,6 7,8

9,16

9,12 13,16

13,14

13,13 14,14

15,16

Figure 5.4: The binary partition tree corresponding to the binary refinement B(P) =
{(1,2),(3,3),(4,4),(5,6),(7,8),(9,12),(13,13),(14,14),(15,16)} from Figure 5.3. Leaf nodes cor-
respond to the intervals in B(P), and internal nodes correspond to intervals bisected during
the binary refinement process.

We now define the PTW method and the priors used for the weighting. Like CTW,
we are mixing over a set of trees, however instead of all partitions we mix over binary
temporal partitions BD, allowing us to easily define a measure of complexity based on the
corresponding partition tree (Remark 5.3.6) by using the same penalty as the CTW model
cost (Definition 4.3.20). We leave the base model ρ undefined for the moment; possible
choices include the KT estimator or the CTW method.

5.3. PARTITION TREE WEIGHTING 227

Definition 5.3.11 (Partition Tree Weighting (PTW)) Let ρ be some base model.
The Partition Tree Weighting probability PPTW

D of string x1:n with depth D is defined
as

PPTW
D (x1:n) :=

∑
P∈BD

2−ΓD(P)
∏

(a,b)∈P

ρ(xa:b)

where ΓD(P) is the number of nodes in the tree associated with partition P (Re-
mark 5.3.6) that have depth less than D.

Note from (Corollary 4.3.23) that ΓD(P) is precisely the same function as the model
cost used for prediction suffix trees (Definition 4.3.20), which we already know is a sound
prior (Lemma 4.5.10).

Much like the CTW method, computing PPTW
D naively would take O(22

D

) time. The
PTW method shares a similar recurrence relation to the CTW method (4.5.2) that allows
PPTW
D to be efficiently computed.

Theorem 5.3.12 (Recursive definition of PTW probability) For any depth D
and sequence x1:n such that n≤2D, we have that

PPTW
D (x1:n) = 1

2ρ(x1:n)+
1
2P

PTW
D−1 (x1:k)P

PTW
D−1 (xk+1:n)

where k=2D−1.

Proof. This follows a proof similar to Theorem 4.5.8. See [VWBG13, App.A]. �

By using Theorem 5.3.12, the PTW probability can be recursively computed in O(nD)
time and O(nD) space by storing the context tree in memory. The following algorithm
improves this to O(D) memory (a critical improvement as many choices of base models
are memory intensive) by exploiting the regular access pattern of the data structure. The
algorithm works incrementally over the data sequence. For each bit, the context tree is
traversed depth first, then iterated back up to update the weights, much like the CTW
algorithm (Algorithm 4.4).

Algorithm 5.3 Partition Tree Weighting PPTW
D (x1:n) [VWBG13]

Require: A tree depth parameter D
Require: A base probabilistic model ρ
Input: A data sequence x1:n of length n≤2D

Output: PPTW
D (x1:n)

1: for 0≤j≤D do
2: bj :=1,wj :=1,rj :=1

3: for t=1 to n do
4: i :=MSCBD(t)
5: bi :=wi+1

6: for j= i+1 to D do
7: rj := t

8: wD :=ρ(xrD:t)
9: for i=D−1 to 0 do

10: wi :=
1
2ρ(xri:t)+

1
2wi+1bi

return w0

228 CHAPTER 5. VARIATIONS ON CTW

In Algorithm 5.3, MSCBD(t) (most significant changed context bit) is defined as the
lowest index1 i where the D-bit binary representations b0b1b2...bD−1 of t−1 and t−2 differ,
with MSCBD(1) :=0 for all D. For example, for d=5, to compute MSCBD(7) we compare
the binary representation of 6 (00110) and 5 (00101) to find they differ at index 3, so
MSCBD(7)=3.

The above algorithm can be modified to run incrementally, allowing for computation
of PPTW

D (x1:n) given PPTW
D (x<n) in O(D) time, by only running the inner loop. One of

the downsides of PTW is that the depth D must satisfy n≤2D by the definition of binary
temporal partitions. To make the running time as fast as possible, we choose D=⌈log2n⌉,
giving O(nlogn) time and O(logn) space. This also means that the PTW method cannot be
used on an arbitrarily long string, and that the maximum length of the string to predict
x1:n must be known in advance, though extensions to D growing with n are possible.

Moving on from the computational aspects, we are interested in how well the PTW
algorithm predicts. As usual, we will use redundancy as a measure of how good the PTW
model is relative to any piecewise stationary distribution. First, we require a few preliminary
results.

Theorem 5.3.13 (Upper bound on PWT log-probability) For all n∈N+, let
D=⌈log2n⌉. Then for all sequences x1:n and for all binary partitions P ′∈BD, we have

−log2PPTW
D (x1:n) ≤ ΓD(P ′)−

∑
(c,d)∈P′

log2ρ(xc:d)

Proof. This follows straight from Definition 5.3.11 by dropping the
∑

P∈BD
and taking the

negative logarithm on both sides. �

Lemma 5.3.14 (Chain rule for piecewise stationarity sources) For all n∈N+,
let ρ be a piecewise stationary source. Let (a,b) be a segment in Pρ with associated
stationary source ρf(a). Then, for all sequences xa:b, we have

ρ(xa:b)=
∏

(c,d)∈Pρ
a:b

ρf(a)(xc:d|xa:c−1)

Proof.

ρ(xa:b)
(a)
=

b∏
i=a

ρ(xi|xa:i−1)
(b)
=

∏
(c,d)∈Pρ

a:b

d∏
i=c

ρ(xi|xa:i−1)
(c)
=

∏
(c,d)∈Pρ

a:b

ρf(a)(xc:d|xa:c−1)

Both (a) and (c) are the chain rule. (b) follows from splitting the product over each segment
in Pρ

a:b, which by definition is a partition of {a,a+1,...,b}. �

Lemma 5.3.15 (Properties of redundancy bound function) Let g : [0,∞)→R+

be a non-negative, monotonically non-decreasing concave function with g(0)=0. Let
b>0, and define hb(a) :=ag(b/a). Then, h is non-decreasing for a>0.

1Note the zero-indexing here, unlike the rest of the book.

5.3. PARTITION TREE WEIGHTING 229

Proof. A corollary of the first-order convexity condition (Lemma 2.2.58) is that for concave
functions,

g(x) ≤ g(y)+g′(y)(x−y) for all x,y > 0

Set y=b/a and x=0. Then

h′b(a) = g(ba)− b
ag

′(ba) = g(ba)+g
′(ba)(0− b

a)≥g(0) = 0

and so hb is non-decreasing. �

We will also assume the following bound on the redundancy between the base model ρ
and the true source µ.

Assumption 5.3.16 (Bounded redundancy) There exists a function g satisfying
the premises of Lemma 5.3.15 such that for a base model ρ with temporal partition Pρ,
and binary refinement B(Pρ), we have for all segments (a,b)∈Pρ and all sequences
xc:d with a≤c≤d≤b, that

log2µf(a)(xc:d|xa:c−1)−log2ρ(xc:d) ≤ g(d−c+1)

We will show later that the assumption is satisfied for piecewise i.i.d. sources µ and
KT-estimator ρ with g(x)=log2(x+1).

Theorem 5.3.17 (PTW redundancy) Let µ be piecewise stationary with temporal
partition Pµ={(a1,b1),(a2,b2),...} and stationary sources {µ1,µ2,...}. Assume the base
model ρ satisfies Assumption 5.3.16. Then for all sequences x1:n,

log2µ(x1:n)−log2PPTW
D (x1:n) ≤ ΓD(B(Pµ))+D|Pµ| g

(
2n

D|Pµ|
)

≤ D|Pµ|
(
2+g

(
2n

D|Pµ|
))

where D=⌈log2n⌉ and n≥2.

Proof. From Lemma 5.3.9 we can construct the binary refinement P ′ := B(Pµ) of Pµ,
satisfying |P ′|≤D|Pµ|. Then,

log2µ(x1:n)−log2PPTW
D (x1:n)

(a)

≤ log2µ(x1:n)+ΓD(P ′)−
∑

(c,d)∈P′

log2ρ(xc:d)

(b)
= ΓD(P ′)+

∑
(a,b)∈Pµ

log2µf(a)(xa:b)−
∑

(c,d)∈P′

log2ρ(xc:d)

(c)
= ΓD(P ′)+

∑
(a,b)∈Pµ

∑
(c,d)∈P′

a:b

log2µf(a)(xc:d|xa:c−1)−
∑

(c,d)∈P′

log2ρ(xc:d)

(d)
= ΓD(P ′)+

∑
(a,b)∈Pµ

∑
(c,d)∈P′

a:b

log2µf(a)(xc:d|xa:c−1)−
∑

(a,b)∈Pµ

∑
(c,d)∈P′

a:b

log2ρ(xc:d)

= ΓD(P ′)+
∑

(a,b)∈Pµ

∑
(c,d)∈P′

a:b

[
log2µf(a)(xc:d|xa:c−1)−log2ρ(xc:d)

]
(e)

≤ ΓD(P ′)+
∑

(a,b)∈Pµ

∑
(c,d)∈P′

a:b

g(d−c+1)
(f)
= ΓD(P ′)+

∑
(c,d)∈P′

g(d−c+1)

230 CHAPTER 5. VARIATIONS ON CTW

= ΓD(P ′)+|P ′| 1

|P ′|
∑

(c,d)∈P′

g(d−c+1)
(g)

≤ ΓD(P ′)+|P ′|g
(1

|P ′|
∑

(c,d)∈P′

(d−c+1)
)

(h)
= ΓD(P ′)+|P ′|g

(
2D

|P′|

)
(i)
= ΓD(P ′)+h2D (|P ′|)

(j)

≤ ΓD(P ′)+h2D (D|Pµ|)

(k)
= ΓD(P ′)+D|Pµ|g

(
2D

D|Pµ|

) (l)

≤ ΓD(P ′)+D|Pµ|g
(

2n
D|Pµ|

)
(m)

≤ 2D|Pµ|+D|Pµ|g
(

2n
D|Pµ|

)
= D|Pµ|

(
2+g

(
2n

D|Pµ|

))
(a) is Theorem 5.3.13. (b) is Definition 5.3.5 of piecewise stationarity. (c) is the chain
rule for piecewise stationary sources (Lemma 5.3.14). (d,f) P ′ is a refinement of Pµ,
hence P ′

(a,b) partitions (a,b) for (a,b) ∈ Pµ, hence we can write P ′ as a disjoint union
P ′=

⋃· (a,b)∈PµP ′
a:b, and thereby distribute the sum. (e) is redundancy Assumption 5.3.16.

(g) is Jensen’s inequality of averages (Corollary 2.2.61), together with concavity of g.
(h) Clearly, d−c+1 is the length of the segment (c,d), and since P ′ is a partition of
{1,...,2D},∑(c,d)∈P′(d−c+1)=2D. (i,k) is the definition of hb(·), which is (j) non-decreasing

(Lemma 5.3.15). (l) is due to 2D=2⌈log2n⌉≤2log2n+1≤2n. (m) At least half of the nodes of
a binary tree are leaves, and the number of leaf nodes is the same as the number of segments
in a partition, so for any D we have ΓD(P ′)≤2|P ′|≤2D|Pµ|.

�

PTW redundancy for piecewise i.i.d. We now consider a concrete example of the
PTW redundancy assuming that µ is piecewise i.i.d (i.e. that each stationary source µi is
i.i.d) and for the base model ρ we use the KT estimator. So for each i, µi is a Bernoulli
source with parameter θi, and for every segment (a,b)∈Pµ and all sequences xc:d with
a≤c≤d≤b we have

µf(a)(xc:d|xa:c−1) ≡ µf(a)(xc:d) = θkf(a)(1−θf(a))m−k (Example 2.3.2)

ρ(xc:d) ≡ PKT(xc:d) =
1

π

Γ(k+ 1
2)Γ(m−k+ 1

2)

Γ(m+1)
(Definition 4.1.1)

where k is the number of 1’s in xc:d, and m :=d−c+1 is the length of xc:d. We already have
a bound (a) on the redundancy of the KT estimator (Lemma 4.1.11) relative to an i.i.d
source,

log2µf(a)(xc:d|xa:c−1)−log2PKT(xc:d)

(a)

≤ 1
2 log2(m)+1

(b)

≤ log2(m+1) = log2((d−c+1)+1) = g(d−c+1)

where g(x) :=log2(x+1), noting that g satisfies all the premises of Lemma 5.3.15, and (b)
can be derived from some simple algebra. This bound is tight, noting that the KT bound
is tight [WST95], and (b) is tight, as equality holds for m=1. The corresponding PTW
redundancy bound (Theorem 5.3.17) becomes

log2µ(x1:n)−log2PPTW
D (x1:n) ≤ D|Pµ|

(
2+log2

(
2n

D|Pµ|+1
))

= D|Pµ|(log2n)2+O(|Pµ|logn)

with D= ⌈log2n⌉. This does not asymptotically meet the Rissanen bound of 1
2 log2n per

parameter [Ris84], but only within an extra factor 2log2n. The extra log2n is due to

5.4. FORGET-ME-NOT PROCESS 231

subdividing segments into up-to log2n sub-segments, increasing the number of parameters
by a factor of log2n. The factor 2 is from the asymptotically loose bound (b) above. The
2D|Pµ| accounts for encoding the segment boundaries of B(Pµ).

This demonstrates that PTW is a computationally efficient algorithm with strong
theoretical guarantees in the case where the truth is a piecewise stationary distribution, more
general than the k-Markov distributions considered by the CTW method, but with much
worse redundancy due to the larger model class considered, which requires modelling not
only the unknown parameters of the stationary sources, but also the unknown boundaries
between them (the set of all possible binary partitions of a sequence, forming a set doubly
exponential in size).

5.4 Forget-Me-Not Process

The following explanation has been taken from [WSB+20, Sec.4]. Generalizing stationary
algorithms to non-stationary environments is a key challenge in continual learning. The
Forget-me-not (FMN) process is a probabilistic meta-algorithm tailored towards non-i.i.d.,
piecewise stationary, repeating sources. This meta-algorithm takes as input a single base
measure ρ on target strings and extends the Partition Tree Weighting algorithm to incorporate
a memory of up to k previous model states in a data structure known as a model pool.
It efficiently applies Bayesian model averaging over a set of postulated segmentations of
time (task boundaries) and a growing set M of stored base model states ρ(·|s) for some
subsequences of x1:n, while providing a mechanism to either learn a new local solution or
adapt/recall previous learned solutions.

The FMN algorithm is derived and described in [MVK+16]. It computes the probability
p′=FMNd(x1:n)∈ [0,1] of a string of binary targets x1:n∈{0,1}n of length n, e.g. xt could
be a binary class label. For this, it hierarchically Bayes-mixes an exponentially large self-
generated class of models from a base measure ρ in O(knlogn) time and O(klogn) space,
roughly as follows: For n=2d and for j=0,...,d, it breaks up string x1:n into 2j strings,
each of length 2d−j , which conceptually can be thought of in terms of a complete binary
tree of depth d. For each substring xa:b, associated to each node of the tree will be a
probability ξ(xa:b) obtained from a Bayesian mixture of all models in the model poolMa

at time a. Taking any (variable depth) subtree (which induces a particular segmentation
of time), concatenating the strings at its leaves gives back x1:n, therefore the product of
their associated mixture probabilities gives a probability for x1:n. Doing and averaging this
(see [MVK+16]) for all possible O(2n) subtrees, which can be done incrementally in time
O(klogn) per string element, gives FMNd(x1:n|ρ).

The models in the model pool are generated from an arbitrary adaptive base measure ρ
by conditioning it on past substrings xa:b. For example, ρ could be a Beta-Bernoulli model
whose weights are updated using Bayesian inference, or something more sophisticated. At
time t,Mt contains at most k “versions” of ρ, withM1 :=ρ. For t=2,...,n, whenever a string
xa:b with b= t is encountered, then the model ρ∗∈Ma assigning the highest probability to
the node’s string xa:b is either added to the model pool, i.e.Mt+1=Mt∪{ρ∗(·|xa:b)}, or
ignored based on a Bayesian hypothesis test criterion given in [MVK+16].

232 CHAPTER 5. VARIATIONS ON CTW

5.5 Context Tree Maximization

Instead of a Bayesian mixture over all prediction suffix trees as CTW does, Context Tree
Maximization (CTM) selects the Maximum A Posteriori (MAP) tree:

PCTM
D (x1:n) = max

S∈CD

{2−ΓD(S)PS,KT (x1:n)}

which is identical to Theorem 4.5.11, just with the sum replaced by a maximum. (Here
m is not a variable, but a name for the maximizing probability.) Taking minus the loga-
rithm minS{−log2PS,KT (x1:n)+ΓD(S)}, we can interpret this also as an application of the
Minimum Description Length (MDL) principle (Definition 2.7.23).

To compute this maximum naively we would need to consider all trees in CD, which
would take time O(22

D

) as there are that many trees of depth D. However, much like CTW
there is an efficient method, called Context Tree Maximization [WTS00, NSH12], which can
compute this in O(nD) time. This is done through the following recurrence relation of the
maximizing probability

PCTM
D,s (x1:n) :=

{
1
2max{PKT(as,bs), P

CTM
D,0s (x1:n)P

CTM
D,1s (x1:n)} if ℓ(s)<D

PKT(as,bs) if ℓ(s)=D

and maximizing suffix set

SCTM
D,s (x1:n) :={
SCTM
D,0s (x1:n)×{0} ∪ SCTM

D,1s (x1:n)×{1} if PKT(as,bs)<PCTM
D,0s P

CTM
D,1s and ℓ(s)<D

{ϵ} otherwise

One can show that SCTM
D,ϵ and PCTM

D,ϵ are indeed the MAP tree and CTM distribution:

Theorem 5.5.1 (Context Tree Maximization) For any sequence x1:n ∈Bn, we
have

PCTM
D,ϵ (x1:n) = max

S∈CD

{2−ΓD(S)PS,KT (x1:n)}

SCTM
D,ϵ (x1:n) = argmax

S∈CD

{2−ΓD(S)PS,KT (x1:n)}

5.6 Exercises

1. [C10] (Obtaining refinements by subdivision) Given a temporal partition of P
over S={1,...,n}, prove any refinement P ′ of P over S can always be constructed by
(optionally) subdividing the existing segments in P into smaller subsegments.

2. [C10] (Bijecting CD and BD) Show that the construction in Definition 5.3.7 is a
bijection between CD and BD. Show that 2−ΓD(P) is a valid prior, that is, prove that∑

P∈CD
ΓD(P)=1 for all D∈N0.

3. [C15] (Binary temporal partitions BD) Prove that the sets of all binary temporal
partitions BD defined in Definition 5.3.7 and Definition 5.3.8 are indeed the same.

4. [C12] (Termination of binary refinement) Prove that the binary refinement
algorithm in Lemma 5.3.9 terminates in a finite number of steps. Can you obtain any
bounds on the run time? What properties of the input partition P affect the run time?

5.7. HISTORY AND REFERENCES 233

5. [C15] (Minimal binary refinements are unique) Prove that for any given index
set S={1,...,n}, and any temporal partition P on S, there exists a unique minimal
binary temporal partition P ′, such that P is a refinement of P ′, and it is precisely
the binary temporal partition that is the generated by the algorithm described in
Lemma 5.3.9. Here, minimal refers to the number of segments in the partition being
as few as possible.

6. [C19] (Improved Binary partition bound) In Lemma 5.3.9 we proved that
|P|′ ≤ d(|P|−1)+1 by making use of the recursive inequality P ′

r+1 ≤ |C(P)|+ |P ′
r|.

Prove the tighter recursive inequality |P ′
r+1| ≤ |P ′

r|+min{|C(P)|,|P ′
r|}, and find a

corresponding tighter bound, together with conditions on P and d, if any.

7. [C25] (PTW decomposition) Prove Theorem 5.3.12.

8. [C20] (Context Tree Maximization) Prove Theorem 5.5.1.

9. [C30ic] (CTW variants with different base models) While the Krichevsky–
Trofimov (KT) estimator is commonly used as a base model, the Context Tree Weighting
(CTW) variants can operate with any base model. Implement a selection of the variants
(Adaptive CTW, PTW, CTS, FMN, and CTM) in this chapter, using other variants
(or even CTW itself) as the base model. Analyze their performance relative to using
the KT estimator as the base model and identify which combinations yield the best
results.

10. [C35] (Redundancy bounds for CTW variations) Based on the combinations
used in the previous exercise, deduce new redundancy bounds specifically tailored to
these combinations.

11. [C20] (Chaining base models) Explain why we cannot indefinitely chain predictors
as base models. For instance, CTS with a PTW base model, further supported by a
CTW base model, and another CTS base model, and so forth.

12. [C30c] (Chaining base models) From the previous exercise, validate your statement
with a theoretical analysis of the gains/losses incurred each time this chaining process is
executed. Further corroborate this claim with practical demonstrations by conducting
experiments with this chaining procedure.

13. [C35] (Multi-alphabet CTW variants) Formulate a multi-alphabet version of
Adaptive CTW, PTW, CTS, FMN, and CTM. Hint: Use Section 4.6 and [PS99] as
guiding references.

5.7 History and References

See Section 4.7.

Part III

A Family of Universal Agents

234

Chapter 6

Agency

There is nothing that can be said by mathematical sym-
bols and relations which cannot also be said by words.
The converse, however, is false. Much that can be and
is said by words cannot be put into equations, because
it is nonsense.

Clifford Ambrose Truesdell, 1919–2000

6.1 Policy and Environment . 237
6.2 Assigning Rewards . 240
6.3 (PO)MDP vs. History RL . 241
6.4 Time Discounting . 243
6.5 Time Consistency . 244
6.6 Value Functions . 246
6.7 Q-Value . 249
6.8 Exercises . 251
6.9 History and References . 253

Up until this point we have been discussing how to predict well. Such predictors, or
passive agents, cannot affect the distribution over future symbols, and already have all
information provided for prediction. For an artificial intelligence to be able to have an
impact on its environment it needs to have agency. We desire a framework that can be
used to model active agents, or simply agents, something that can interact with the
environment, and for which the behavior of the environment depends not only on past
events, but also on what the agent chooses to do. In this chapter we will go over how we
formalize what an agent is, the environment it interacts with, and how to measure the
performance of an agent in these environments, in terms of an aggregate sum of scalar
rewards doled out by the environment. We explore how naively summing rewards can
lead to undefined measures of success, and how this motivates time discounting (valuing
the present more than the future). We show how the “goodness” of each situation the
agent might find itself in can be defined via the value function, which can represented

236

6.1. POLICY AND ENVIRONMENT 237

in a recursive way via the Bellman equation. Finally, we prove some properties about
the value function.

Though we pursue a history-based approach, we still recommend the reader familiarize
themselves with the standard presentation of reinforcement learning as a Markov
decision process, as described in [SB18, Chp.3].

6.1 Policy and Environment

We first discuss the cybernetic model , which is commonly used in the domain of Reinforcement
Learning (RL) as a formal framework about which we can reason. The cybernetic model
comprises of two parts, the agent who observes what happens around it and makes decisions,
and the environment , the world with which the agent interacts. The cybernetic model
operates in discrete time, with the agent and environment taking turns. At time t the agent
receives a percept et−1 from the environment, and responds in turn with an action at. The
environment receives the action, and issues a new percept et, and so on. Both percepts
issued from the environment and actions taken by the agent may depend on the history (the
sequence of action-percept interactions) before that action/percept was generated. Both the
agent and environment are permitted to be stochastic.

Definition 6.1.1 (Stochastic function) A stochastic function, or probability kernel ,
or conditional distribution f from A to a countable set B, denoted f :A→∆B, is a
function from A to the set of all probability distributions on B, denoted ∆B :={p∈
[0,1]B :

∑
b∈Bpb ≤ 1}. We define p(b|a) := f(a)b, the probability that the stochastic

function p returns b given a as input. If x is sampled from a conditional distribution
p(·|a), we write x∼p(·|a).

Action, percept, observation, reward, history spaces. Formally, we define A to be
a set of actions from which the agent can choose, O to be the set of possible observations,
and R to be the set of possible rewards. The percept e that the environment generates is
an observation-reward pair (o,r). The set of all percepts is denoted as E :=O×R. Unless
otherwise stated we make the following global assumptions:

Assumption 6.1.2 (Finite action, observation, and reward spaces) We assume
that the action, observation, and reward spaces A,O,R (and therefore E) are finite. For
simplicity we also assume that the rewards are bounded between 0 and 1.

The requirement rk∈ [0,1] is often relaxed when presenting examples. For finite R, the
rewards are bounded, and can always be rescaled to be contained in [0,1] via an affine
transformation. This does not affect the optimal policy for that environment, though see
Exercise 15.5 for a caveat.

Remark 6.1.3 (Infinite spaces) Many considerations and statements could be generalized
to infinite spaces, but from an AI perspective this does not lead to interesting additional
insights, and only unnecessarily complicates the mathematical development. For countable
spaces, max becomes sup and argmax has to be replaced by ε-optimal, and

∑
now needs

convergence and exchangeability checks. Uncountable spaces usually come with some
topology and σ-algebra, then some continuity and measurability assumptions are made,
which allow to cover the space with countably many ε-balls and lift results from countable
to uncountable spaces.

∑
becomes

∫
. �

238 CHAPTER 6. AGENCY

A history is a finite sequence of action-percept pairs. We define the set of all histories to
be H :=(A×E)∗. The agent chooses an action using a policy , which is a stochastic function
from histories to actions, π :H→∆A. An environment is a stochastic function from history
plus last agent’s action a percept, ν :H×A→∆E (or ∆′E for chronological semimeasures).

We will use h<t :=h1:t−1 to represent the history up to time t−1, that is,
h<t := a1e1a2e2...at−1et−1 = a1o1r1a2o2r2...at−1ot−1rt−1

We will also sometimes use

a1:t = a1a2...at and e1:t = e1e2...et = o1r1...otrt = or1:t

Definition 6.1.4 (Cybernetic model) We say an agent interacts with an environ-
ment in cycles t=1,2,.... In each cycle, the agent takes an action at∼π(·|h<t) sampled
from its policy given the history h<t as input. This action at is given to the environment,
which generates a percept et∼µ(·|h<tat) sampled from the environment distribution µ
given the history h<t and the action at. The percept et is passed to the agent, and the
next cycle t+1 begins. See Figure 6.1. The percept et≡(ot,rt)≡otrt≡ort consists of a
regular observation ot and a real-valued reward rt.

Figure 6.1: An illustration of the cybernetic model (Definition 6.1.4). The percept et−1

was generated from the last cycle. In the current cycle t, the agent takes action at, and the
environment reacts in turn with percept et. Both agent and environment have access to the
past sequence of actions and percepts.

Agent-environment interaction. We usually denote the true underlying environment
function by µ, and use ν to denote an arbitrary environment distribution. Usually µ is
unknown to the agent π, and must be learned via interaction. Jointly ν and π create the
history:

Definition 6.1.5 (Agent-environment measure νπ) The interaction between an
environment ν and the policy π induces a probability measure νπ :H→ [0,1] on histories
(Technically it is a measure on cylinder sets, see Definition 2.2.14). Conditioning on
past history h<t, we have:

νπ(ht:m|h<t) :=

m∏
k=t

π(ak|h<k)ν(ek|h<kak)

6.1. POLICY AND ENVIRONMENT 239

Remark 6.1.6 (Lifting sequence prediction to interacting agents) Many definitions
and results to follow will mirror those in the sequence prediction setting. Definition 6.1.5
is just the chain rule ρ(x1:n)=

∏n
t=1ρ(xt|x<t) for X =A×E and further factorizing akek

and ρ into π and ν (Alternatively we could view h1:m as a sequence of length 2m over A
alternating with E .) For one-step prediction and fixed π, all concepts and results for ξ,
essentially transfer to ξπ (e.g. Lemma 7.2.4). When comparing different policies of farsighted
agents, matters become much more intricate. �

We also use Pπ
ν [Q|h<t] to denote the probability of some predicateQ on histories occurring,

where the future histories ht:m given past histories h<t are sampled from νπ(ht:m|h<t).
Similarly we define the (conditional) expectation Eπ

ν to be the expectation with respect to
the (conditional) probability measure Pπ

ν induced by νπ.

Definition 6.1.7 (Probability measure Pπ
ν and expectation Eπ

ν) Let Pπ
ν [Q|h<t]

denote the probability of some measurable predicate or event Q⊆(A×E)∞, where the
future histories ht:m given past histories h<t are sampled from νπ(ht:m|h<t). Similarly
(conditional) expectation Eπ

ν [f |h<t] of some measurable function f : (A×E)∞→R∪
{±∞} is the expectation with respect to the (conditional) probability measure induced
by νπ. For events Qm=Q′

m×(A×E)∞ with Q′
m⊆(A×E)m and functions fm :(A×E)m→

R, explicit expressions are

Pπ
ν [Qm|h<t] =

∑
ht:m:h1:m∈Q′

m

νπ(ht:m|h<t) and Eπ
ν [fm|h<t] =

∑
ht:m

νπ(ht:m|h<t)f(h1:m)

We have Pπ
ν [h1:m|h<t]=ν

π(ht:m|h<t) by definition, which proves the explicit expressions.
The existence and uniqueness of the (conditional) measure Pπ

ν for all events Q then follows
from the Carathéodory Extension Theorem 2.2.9.

The policy and the environment interact with each other and create a history as choices
made by the policy affect what future percepts (observation,rewards) the environment will
generate. This setup is called history-based reinforcement learning or general reinforcement
learning . We consider the scenario where the dynamics of the environment are unknown to
the agent, and the agent must learn the underlying stochastic function µ that governs the
environment, while also trying to perform well, that is, take actions to cause the environment
to return large rewards.

Exploration-exploitation tradeoff. For the agent to learn µ it must sometimes take
suboptimal actions which may not immediately maximize the expected reward based on
the agent’s current belief about the environment it interacts with, but will allow the agent
to have more confidence about which environment it is in. For the agent to perform well
in the environment means to maximize the (expected future) reward. These are often
conflicting goals. The problem of how to compromise between the two is often referred to as
the exploration (improving the current belief about what environment the agent is in) vs.
exploitation (maximizing reward based on what environment the agent currently believes it
is in) problem. An agent that explores too much will act suboptimally (it will always be
trying to improve its confidence in what the environment is rather than seek higher reward),
and so will an agent that exploits too much (as it does not fully understand the dynamics of
the environment, it will not know how to actually act optimally).

240 CHAPTER 6. AGENCY

6.2 Assigning Rewards

We also need to define what it means for an agent to perform well. Later in Chapter 15 we
will discuss different ways the agent might measure performance using utility functions, but
for now we will focus solely on agents with the goal to maximize the expected value of the
sum of all future rewards.

Assumption 6.2.1 (Reward Hypothesis) “all of what we mean by goals and
purposes can be well thought of as maximization of the expected value of the cumulative
sum of a received scalar signal (called reward).” [SB18]

For example, given an agent playing games of chess, the set of actions available are legal
chess moves, the percept is the current state of the board, and the environment takes the
current state of the board, and returns a new board where the opposing pieces have made a
legal move (essentially hiding the opponent player in the environment). The environment’s
moves could be chosen by an already existing chess bot, or by self-play (the color of the
pieces are swapped, and the agent also chooses actions for the opponent). The rewards for
this environment could be 1 if the previous action taken by the agent checkmated the enemy
king, -1 if the new board generated by the environment places the agent’s king in checkmate,
and 0 otherwise. This reward scheme aligns with the correct behavior we want the agent to
perform: to maximize the expected future reward sum, the agent should take actions that
lead to a higher confidence of being able to win the game, and avoid actions that would lead
to a loss. But the rewards here are sparse, in that the agent receives rewards very rarely,
only when the game terminates, and so it may take a very large number of interaction cycles
for the agent to learn to play chess well.

One could imagine the difficulty of trying to learn to play chess by being sat down in
front of a board, not knowing the rules or strategy of the game (or even what the goal of the
game is!) and then randomly playing moves. The only feedback is a scolding if you lose (or
play an illegal move), and praise if you win. One would not be surprised that even learning
the rules of the game this way would be difficult, let alone becoming proficient at the game,
though see [Hut05b, Sec.6.3.5] for a strong counter-argument.

One potential solution to this is to shape the reward function to offer some small rewards
for observations that we expect to be correlated strongly with achieving the goal. For
example: capturing pieces, avoiding having your pieces captured, friendly pieces having a
large degree of freedom of where to move, controlling the center of the board, and pinning
enemy pieces are all strategies that positively correlate with winning.

Bostrom calls these sub-goals instrumental goals , goals that often correlate with success
and can be used as a (often crude) proxy in service of the terminal goal or final goal . In this
case, the terminal goal for an agent playing chess is to win the game; all else is secondary, it
does not matter to the agent how much material or territory control is lost if a checkmate
can be secured.

Shaping the reward can speed up learning, but can also potentially lead to a situation
where the agent learns to “game” the shaped reward, by exploiting the rewards for actions
that correlate with the goal, rather than trying to achieve the goal itself. For example, if
there was too large a reward associated with territorial control, the agent might try to move
pieces to lock down a large portion of the board and play too defensively, rather than making
moves with the objective of winning the game. This is called reward misspecification. (see
Chapter 15 and [LMK+17] for more.)

There is also the problem of how to teach the agent the rules of the game. The framework
presented here requires the agent to always select an action from a fixed action space A,

6.3. (PO)MDP VS. HISTORY RL 241

but in chess the set of legal actions can vary from move to move. This presents a dilemma:
We would want the agent to be able to learn how to play chess from interaction with the
environment alone, rather than hardcoding the rules of the environment into the agent,
since the latter would make the agent specific to a particular environment, and subvert the
purpose of universal artificial intelligence. On the other hand, with a fixed action space A
containing all legal chess moves as a subset, many of those moves would be illegal, depending
on the current state of the board. One solution to this could be to allow illegal moves to be
part of the game, and whenever an illegal move is made, a reward at least as bad as a loss
is issued to the agent. For games of a fixed length, the penalty from an illegal move can
take a while to learn from, as it may be hard for the agent to distinguish illegal moves from
legal but suboptimal moves. A better approach is to terminate the game immediately upon
playing an illegal move, and issue a penalty. When the agent first begins interaction with
the environment, it will likely take many illegal actions (and receive the associated penalty)
until it stumbles across a legal move, and receive no penalty. In this way, the agent can
quickly learn what moves are legal, and implicitly learn the rules of chess.

It is important that the reward of making an illegal move is at least as bad as a loss;
otherwise the agent could escape a doomed position by making an illegal move.1

6.3 (PO)MDP vs. History RL

Markov Decision Process (MDP). Our setup is quite different from the traditional
MDP (Markov Decision Process) setup where the environment is assumed to be Markov,
that is, the environment µ has the property that it only depends on the last observation
produced and action taken.

µ(et|h<tat) = µ(et|ot−1at)

In the MDP framework, the observations are usually called states denoted st, but we keep
ot to ensure consistency with the more general history-based framework. Hence for MDPs,
µ :O×A→∆E . Since the past history is irrelevant to the behavior of the environment, the
optimal action will also not depend on it, so it suffices to consider Markov policies.

π(at|h<t) = π(at|ot−1)

To clarify, the optimal agent π∗ for any Markov environment is Markov, but the behavior of
an agent that learns to optimize a policy out of the set of all Markov policies (like Q-learning)
is itself non-Markov, as the Q-value estimates are constructed from past experiences. In
the MDP framework, the policy may receive the same observation in multiple different time
steps, placing it essentially in the same situation as a past interaction: a Markov policy is
agnostic of how much time has passed, or what the history was up till this point (though the
optimization process that chose this policy may be aware of the history so far). Most work
and major results in RL takes place in the MDP framework [SB18]. The Markov assumption
also means that the value function depends only on the current observation (state), the
choice of policy, and the MDP dynamics. In the finite MDP case, the same state is visited
repeatedly, which makes it easier to devise learning algorithms.

Given a Markov environment µ, the classic presentation of the value function V π is
defined as the expected sum of geometrically discounted future rewards, given a discount

1For a similar reason, the penalty for humans cheating in a game is usually higher than that of a loss, as
otherwise cheating would be a rational action from an otherwise lost position.

242 CHAPTER 6. AGENCY

factor γ∈ [0,1) (more on discounting in Section 6.4):

V π
µ,γ(ot−1) := Eπ

µ

[∞∑
k=0

γkrt+k

∣∣∣∣∣ot−1

]
=
∑
at

π(at|ot−1)
∑
otrt

µ(otrt|ot−1,at)
(
rt+γV

π
µ,γ(ot)

)
where the second expression is the familiar recursive Bellman equation. More details can be
found in Chapter 14, which shows how to reduce the history-based framework to the MDP
setting, remarkably even if the Markov property is not satisfied.

Partially Observable Markov Decision Process (POMDP). A more general class
of environments are Partially Observable Markov Decision Processes (POMDPs), where the
environment is still Markov, conditioned on the current state, but the agent only receives
an observation based on the state but not the state itself. Many states may lead to the
same observation, so the agent needs to infer what state the environment is likely to be in
based on its observations so far, and act accordingly. Such environments might include an
agent trying to navigate a maze, where the observation is the nearby walls, and the state
is the true location of the agent. The walls adjacent to the agent give it some information
about its location, but not enough to uniquely determine its location. The Cheese Maze in
Figure 12.6 has 11 states=locations mapped to only 5 different observations.

History-based RL. In history RL, any observation arbitrarily far into the past may be
potentially relevant for deciding the best action to take now. As a result, no situation ever
repeats exactly in history-based RL, which renders most existing RL algorithms unsuitable.
We have chosen this history-based setup because general agents need to be able to handle
such general environments. Indeed, this is the most general RL setup, with both the MDP
and the POMDP frameworks being special cases of it. Figure 7.1 details a taxonomy of
many RL environments, all of which are special cases of the history-based RL framework.

We note that environments ν are chronological , in the sense that percepts received at
time t depend only on histories taken at time ≤t. In the way we have defined semimeasures,
they are chronological by definition, but in other presentations [Lei16b] authors may write
ν(e1:t||a1:t) to denote the probability that ν assigns to e1:t conditioned on a1:t, while
respecting the chronological requirement that the probability assigned to a percept et cannot
depend on actions taken after time step t, that is, future actions cannot affect past percepts.
Chronological policies are defined in the same way:

Definition 6.3.1 (Chronological semimeasures) Chronological environ-
ments/policies are semimeasures ν/π of history h1:t ≡ a1e1...atet that for all t
satisfy

ν(e1:t||a1:t) =

t∏
i=1

ν(ei|h<iai) and π(a1:t||e<t) =

t∏
i=1

π(ai|h<i)

Note that on the other hand, any joint semimeasure ρ :H→ [0,1] over actions and percepts
without any restrictions can be decomposed as ρ(h1:t)=

ν(e1:t||a1:t)π(a1:t||e<t) = νπ(h1:t) (6.3.2)

We call a policy deterministic if it only takes on values of 0 or 1. If a policy is deterministic,
we abuse notation and define π(h<t):=at where at is the unique action such that π(at|h<t)=1
(implicitly assuming the type of a deterministic policy to be π :H→A). Deterministic
environments are defined in the same fashion, and similarly we write ν(h<tat)=et if et is
the unique percept that ν assigns probability 1 given history h<t.

6.4. TIME DISCOUNTING 243

6.4 Time Discounting

All else being equal, humans prefer to receive rewards now rather than later. If we believe
that humans are rational agents, we may expect the same to hold for artificial agents. We
have discussed how an agent receives reward from the environment, so if we want an agent
which maximizes the expected sum of all future rewards, then over an infinite number of time
steps our agent may receive infinite reward. However, an agent could perform suboptimal
actions (actions which are not optimal at that history/time step) on each time step with
e.g. only half the optimal reward per time step, which over infinite time steps is still infinite
reward. Alternatively, the agent could procrastinate on its task for a few thousand years,
and then play optimally thereafter, and also receive infinite reward. To the agent, each of
these strategies are equally valuable, as they all lead to infinite reward, even though we
would obviously not prefer the agent to procrastinate or choose actions that receive “less”
reward. Indefinite procrastination can even happen for finite total reward (Figure 6.3).

One approach to fix this problem is to give the agent a finite lifespan, called a horizon.
The agent will then maximize reward only over its finite lifespan. This approach may however
make the agent short-sighted (if the horizon is short) or may not be suitable for continuing
tasks, or when the lifespan is not known a priori. Another approach is to discount the
reward over time, that is, make rewards later worth less than rewards now. We do this by
multiplying rewards with a discount function.

Definition 6.4.1 (Discount function) A discount function is a function γ :N+×N+→
R with γ(k,t)≥0 and ∀t : ∑∞

k=1γ(k,t)<∞. t represents the current present time step
during interaction, while k≥t represents the future time step the agent reasons about at
time t. The corresponding discount normalization factor is defined as Γt :=

∑∞
k=tγ(k,t)

(Figure 6.2). Often, γ will have no dependency on t, in which case we write γk :=γ(k,t)
and Γt=

∑∞
k=tγk<∞.

For example, an agent at current time step t=3 would discount a reward r7 four time
steps further into the future (k=7) using the discount γ(7,3). Discount functions that do
depend on t can be time inconsistent , see Section 6.5.

The choice of discount function determines an effective horizon, that is, how far into the
future the agent considers rewards when choosing actions.

Definition 6.4.2 (Effective horizon) The ε-effective horizon Ht(ε) at time t is the
minimum number of time steps k into the future such that the discount factor Γt+k is
less than an ε fraction of the discount normalization factor Γt at the present:

Ht(ε) := min
k

{
k

∣∣∣∣Γt+k

Γt
≤ε
}

The ε-effective horizon is useful for talking about how quickly the discount function γ(·)
discounts rewards. The effective horizon, defined as Ht(1/2), can be thought of as a kind of
tipping point, the earliest point in time from which all the potential reward from time step
t+Ht(1/2) onwards is valued less than half of all the potential reward from the present time
step t.

Discount function examples. Those familiar with the traditional presentation of RL
using MDPs [SB18, Chp.3] will likely be aware of the commonly used geometric discount
function γk=γ

k for some γ∈ [0,1). One interpretation of this discount is that it is like the

244 CHAPTER 6. AGENCY

Figure 6.2: A graphical representation of the discount function γt and normalizer Γt′

(Definition 6.4.1) at time t= t′.

agent having a probability 1−γ of dying2 at each time step. The geometric discount is also
mathematically elegant, having the property that Γk+1=γΓk, which is convenient for MDP
RL. Another choice of discounting is finite lifetime, where the agent does not care about
the reward after a certain point m, that is, γk= Jk≤mK. This is equivalent to the agent
having a finite lifespan of m. This is effectively the case in RL with episodic environments,
where the interaction with the environment resets to some initial configuration after at most
every m time steps. Each episode is independent of the others from the perspective of the
environment, but the agent may learn from previous episodes, e.g. different games of chess
against new opponents. While finite lifetime discounting can be motivated in circumstances
where the lifetime of the agent is known (some games end after a fixed number of turns),
or by a physical argument (perhaps the agent is deployed with a fixed expiry date until
it is replaced, or on a more extreme scale, there is fixed time until the heat death of the
universe), it is useless for asymptotic analysis, as past the point k>m all policies are optimal
(or perhaps more accurately, the choice of policy beyond time step m is irrelevant). Similar
to finite lifetime discounting is moving-horizon discounting , where the agent does not care
about rewards beyond a finite fixed horizon m, but the horizon itself moves with the current
time step t, that is, γ(k,t)=Jt≤k≤ t+mK.

6.5 Time Consistency

It seems sensible that once the best course of action by which an agent will maximize
expected future discounted rewards has been determined, this plan should not change once
the future becomes the present (barring cases where the agent has more information than
when the plan was made). Discounts that satisfy this property are called time-consistent
discounts.

2Here, death could be represented as the agent forever receiving the percept (odead,0) for some dummy
observation odead that would never otherwise be observed. For more on how death for RL agents can be
defined, see Chapter 15.

6.5. TIME CONSISTENCY 245

Theorem 6.5.1 (Time-consistent discounts) A discount function γ(·,·) is time-
consistent if it has no dependence on the present time step t. That is, γ(k,t)=γk for
some function γ :N+→R.

Example 6.5.2 ((Un)healthy dinner) Humans are often time-inconsistent (children
usually plan over shorter timescales than adults), and the discount may even vary on
timescales as short as a few hours. For example, a person might convince themselves early in
the day to make something healthy for dinner that night. This will incur negative rewards
that evening due to the effort involved in making dinner, but greater rewards in the long
term due to health benefits. Later that evening, they might shift to a more myopic discount,
give up on making dinner and order take-out instead, which gives large rewards immediately
(take-out is delicious!) but less rewards in the long term, due to it being less healthy and
costing more money than homemade dinner. �

Both geometric and finite lifetime discounting are time consistent, but constant horizon
discounting γ(k,t)=Jt≤k≤ t+mK is not. This can lead to undesirable behavior where the
agent will forever delay current rewards in the hope to receive more reward later. In doing
so, no reward is ever received. Consider the environment νdelay in Figure 6.3 [LH14c].

S

...

...

0 0 0

1/2

0

2/3

0 0

3/4 4/5

Figure 6.3: An environment νdelay where the agent can choose between moving up to receive
the associated reward, or moving right to obtain more reward later. A reward-maximizing
agent with undiscounted infinite horizon or finite moving horizon will delay reward forever
and thus receive zero total reward.

Example 6.5.3 (Immortal and time-inconsistent agents) An agent interacting with
νdelay starts at the state marked S. Given a moving horizon of m=2, the agent sees that
it could move up for reward 1/2, or move right and then up for reward 2/3, which are the
only rewards reachable in two time steps. Assuming the agent is following a policy that
maximizes the value function, the agent concludes the best action is to move right. But
when it does, the horizon moves, and now it considers moving up for 2/3, or right and up
for 3/4. The agent will proceed with this line of reasoning forever, always delaying potential
reward now for more reward later. As a result, the agent always moves to the right, and
receives reward zero forever. So the choice of a moving horizon means the agent follows the
worst possible policy for this environment. This remains true for any moving horizon m≥2
and infinite horizon.

Contrast this with (any) finite lifetime m, where the agent will walk m−1 steps to the
right and then up to receive an expected discounted reward sum of m

m+1 . Similarly with
geometric discounting for some γ∈ [0,1), the agent will choose to walk k∗−1 steps right, and
then on time step k∗, walk up, where k∗=argmaxk≥1{γk−1 k

k+1}<∞. �

Table 6.4 contains a comparison of several choices of discount function. Based on
experiments from psychology where humans are given the choice of some money now or
more money later, humans tend to discount hyperbolically [FLO02] using the discount

246 CHAPTER 6. AGENCY

Table 6.4: A table of various discounts γk, together with their effective horizons Hk(ε) :=
min{t :Γk+t≤εΓk}, and normalization factors Γk :=

∑∞
i=kγi, where k is planning time and t

is current time. All are time-consistent except ‘moving horizon’.

Discount Param. γk Hk(ε) Γk

geometric γ∈ [0,1) γk
⌈
logε
logγ

⌉
γk

1−γ

finite life m∈N0 Jk≤mK ⌈(1−ε)(m−k+1)⌉ max{m−k+1,0}
moving
horizon m,t∈N0

γ(k,t)=

Jt≤k≤ t+mK
⌈(1−ε)(t+m−k+1)⌉

0 k>t+m
t+m−k+1 t≤k≤ t+m
m+1 k<t

power δ>0 1
k1+δ ≈

(
1

ε1/δ
−1
)
k ∝ k 1

δkδ

harmonic δ>0 1
k(lnk)1+δ ≈kε−1/δ ≈ 1

δ(lnk)δ

universal - 2−K(k) increases faster than
any comp. function

decreases slower than
any computable function

no discount - 1 ∞ ∞

γ(k,t)=(k−t+c)−1, but this is undesirable, since this leads to time-inconsistent policies.
Also, the sum

∑∞
i=kγi diverges, so this choice of discount does not solve the infinite reward

problem, though replacing exponent −1 by −1−δ for some small δ solves the latter problem.
The universal discount and its monotone variant γk=mini≤k2

−K(i) are the “best” in the
sense that they lead to the most far-sighted agent while ensuring that Γk does not diverge
to infinity. Obviously, being dependent on the Kolmogorov complexity K results in an
incomputable discount factor.

6.6 Value Functions

Now that we have defined what an agent and its policy is, environments and how the agents
discount future reward, we can finally define the value function for an agent. The value
function is defined as the γ-discounted expected future reward sum the agent receives from
the environment given the interaction history.

Definition 6.6.1 (Value function) The value V π,m
ν,γ :H→R of a policy π in an

environment ν for discount function γt given a history h<t∈H and horizon m≥ t is
defined as

V π,m
ν,γ (h<t) :=

1

Γt
Eπ

ν

[
m∑
k=t

γkrk |h<t

]
=

1

Γt

∑
ht:m

νπ(ht:m|h<t)

m∑
k=t

γkrk

If t>m or Γt=0 we define V π,m
ν,γ (h<t) := 0. We will often drop the discount γ and

write V π,m
ν,γ as V π,m

ν , since usually the discount function is fixed. The optimal value is
defined as

V ∗,m
ν (h<t) := sup

π
V π,m
ν (h<t)

The set of optimal policies with respect to that value and a representative are defined
as

Π∗,m
ν (h<t) := argmax

π
V π,m
ν (h<t) and π∗,m

ν (·|h<t) ∈ Π∗,m
ν (h<t)

6.6. VALUE FUNCTIONS 247

We drop the history argument when it is the empty history: V π,m
ν :=V π,m

ν (ϵ). We also
define all quantities for the limit m→∞, which exists if ν is a measure, since then V m

increases with m, and drop superscript m in this case, e.g. V π
ν :=V π,∞

ν :=limm→∞V
π,m
ν ,

etc.

Note that the m-truncated value can be recovered from the m=∞ value by truncating
the discount function: V π,m

ν,γ (h<t)=V
π,∞
ν,γ′ (h<t), where γ

′
k :=γkJk≤mK.

Remark 6.6.2 (Time-consistency) We can now formally define the notion of time-
consistency discussed in Section 6.4. First, technically in Definition 6.6.1 we should have
written π∗,m

ν,h<t
∈Π∗,m

ν (h<t), with π
∗,m
ν,h<t

being arbitrary or undefined on histories that do not

start with h<t. Due to this we may as well only consider π∗,m
ν,h<t

(·|h<k) for k≥ t, and hence

can drop the redundant index h<t and write π∗,m
ν,t (·|h<k).

Time-consistency is the fact that an initially optimal policy π∗,m
ν,ϵ ∈Π∗,m

ν (ϵ) remains
optimal later, i.e. π∗,m

ν,ϵ (·|h<t)∈Π∗,m
ν (h<t). Written differently,

{π(·|h<t) :π∈Π∗,m
ν (h<t)} = {π(·|h<t) :π∈Π∗,m

ν (ϵ)}

and indeed more generally Π∗,m
ν (h<k)⊇Π∗,m

ν (h<t) for k≥ t. Hence we may drop index t
from π∗,m

ν,t altogether, which we did. If we generalize γk to γ(k,t), this can be violated, i.e.
an optimal policy at t may be not be optimal at k anymore, as demonstrated in Section 6.4.

�

Lemma 6.6.3 (Explicit Value function) More explicit representations of the value
functions V π,m

ν,γ and V ∗,m
ν,γ are as follows:

V π,m
ν,γ (h<t) =

1

Γt

∑
at

∑
et

...
∑
am

∑
em

(
m∏
k=t

π(ak|h<k)ν(ek|h<kak)

)(
m∑
k=t

γkrk

)

=
1

Γt

∑
at∈A

π(at|h<t)
∑
et∈E

ν(et|h<tat) ...
∑

am∈A
π(am|h<m)

∑
em∈E

ν(em|h<mam)

m∑
k=t

γkrk

V ∗,m
ν (h<t) =

1

Γt
max
at∈A

∑
et∈E

... max
am∈A

∑
em∈E

m∏
k=t

ν(ek|h<kak)

m∑
k=t

γkrk

Proof. Exercise to the reader. �

Example 6.6.4 (Gridworld) Gridworlds are a common Markov environment for RL. The
example depicted in Figure 6.5 is a modified version of an example from [RN10]. Here,
A={→,↑,↓,←}, O is all the cells in the grid, and R={0,−1,1}. From each cell, the agent
can move in one of the four cardinal directions (unless it would run into the wall, denoted
by the black cell), or fall off the grid, in which case nothing happens. The percept received
from the environment is an (observation, reward) pair, where the observation is the next
cell the agent would move into, and the reward is always zero, unless the agent moves into
the cells marked with the rewards +1 or −1 respectively. In this case, the agent receives the
appropriate reward, followed by dummy observations forever with zero reward (essentially
encoding that the interaction has finished).

In this environment, the optimal policy is obvious (Figure 6.5b) as the agent should
follow the shortest path from its current cell to the +1 cell avoiding the −1 cell.

248 CHAPTER 6. AGENCY

Suppose now that the environment was stochastic, and when the agent attempts to move
in a direction, 70% of the time it is successful and moves in the given direction, and 30% of
the time it accidentally slips (with equal probability) in one of the other three directions
it wanted to move in. If the agent would walk outside the grid or walk into the wall, its
location is unchanged. The reward for walking into cells other than the +1 and −1 cells is
now a penalty ε, for some small ε<0 (with the idea being to incentivize the agent to reach
the goal as quickly as possible). The optimal policy is now dependent on how large ε is.
For ε=−0.02 (Figure 6.5a) the agent will act cautiously, and walk around the long way to
avoid accidentally falling into the −1 cell. With a harsher penalty ε=−0.1, the agent is
incentivized to risk walking past the −1 cell to move to the +1 cell (Figure 6.5b), acting the
same as the deterministic agent did, but now with the danger that it might “slip” into the
−1 cell by taking a shortcut. For an extreme value ε=−2, (Figure 6.5c) life for the agent is
so unbearable that it will move towards any terminal cell in as few steps as possible. If we
flip this and give the agent a positive reward ε=0.01 (Figure 6.5d) on every time step, the
agent will avoid the terminal cells entirely, hiding behind the wall on the other side of the
grid to drag out the episode for as long as possible and thereby maximize the return. �

+1

−1

(a) ε=−0.01

+1

−1

(b) ε=−0.1

+1

−1

(c) ε=−2

+1

−1

(d) ε=0.01

Figure 6.5: Optimal policies for the gridworld environment in Example 6.6.4, for various
choices of penalty ε.

Example 6.6.5 (Rock-paper-scissors) Consider the game of rock-paper-scissors. The
environment is an opponent with an unknown distribution on how it chooses rock, paper
or scissors. The observation and action spaces are O=A= {rock,paper,scissors}, and
R= {−1,0,1}, with −1 for a loss, 0 for a draw, and 1 for a win. The agent receives the
opponent’s previous choice of action as an observation, and the environment does not
condition on the most recent action taken, so neither the agent nor the environment is aware
of each other’s actions during this turn, so they can’t cheat and always choose the correct
response.

On the face of it, this looks like a boring game, as the best policy would be to randomly
choose each action with 1/3 probability. If the environment is also generating each move
with probability 1/3 then this is optimal,3 but if the environment generates percepts with a
bias (perhaps it chooses rock more often than other options), then a better strategy would
be to try and learn what the environment is biased towards, and act accordingly.

If the environment is also an adversarial player who is trying to model the agent and
predict what move it will make, the agent will need to be one step ahead, learn this property
of the environment, and then outsmart it by playing the right moves. Such adversarial
games are better studied in the field of game theory , see Section 10.2. �

Policies can be stochastic or deterministic. It might seem that at first glance, stochastic
policies would be stronger than deterministic policies alone (given deterministic policies are

3In fact, any strategy is optimal against a uniformly random opponent (including “always play rock”).

6.7. Q-VALUE 249

a subset of stochastic). As we will see soon, deterministic policies are sufficient for choosing
actions optimally.

Remark 6.6.6 (Infinitely far-sighted agents may act poorly) Optimal policies always
exist if m is finite, since in this case there are only finitely many policies and the supπ in
Definition 6.6.1 reduces to a maxπ. One can show that for m→∞, optimal policies continue
to exist due to our assumption Γk<∞ [LH14c]. For Γk=∞, this may not be true anymore:

Consider again the environment νdelay in Figure 6.3. We choose an infinite horizon m=∞
and no discount. The behavior of the policy is irrelevant once the agent has moved up as
no more reward can be obtained, so we can consider the space of possible policies to be
those that take n≥0 steps to the right, and then a step upwards (note that n can be infinite,
which describes the case where the policy always steps to the right). Let πn denote the
policy that takes n steps to the right, and then a step upwards. Then V πn

νdelay
= n+1

n+2 for n<∞,

and V π∞
νdelay

=0. So there is no optimal policy, as for any finite n we have V πn
νdelay

<V
πn+1
νdelay and

π∞ is the worst policy of all, with V π∞
νdelay

=0< 1
2 =V

π0
νdelay

. �

As a consequence of the linearity of the expected value (Theorem 2.2.46)v, we have that
the value function is linear in the environment, in the sense that if an environment ν can be
written as a weighted average of environments νi, then the value function for ν can also be
written as a (posterior) weighted average of value the functions for νi. Similarly, one can also
show that the value function is linear in the policy, and the optimal value function is convex
in the environment. The precise formulation and proof are provided later in Theorem 7.2.5.

Lemma 6.6.7 (Linearity/convexity of V - informal)
V π,m
ν (h<t) is linear in ν and π, and V ∗,m

ν (h<t) is convex in ν.

Example 6.6.8 (Optimal value V ∗
ν is not linear in ν) To demonstrate that the optimal

value function is not linear, consider a coin flip prediction problem, with A=O=R={0,1},
and two environments ν0 and ν1, representing a two-headed and two-tailed coin respectively.
The agent gets reward 1 for guessing the outcome of the coin flip correctly, and 0 for not:

ν0(et|h<tat) =

1 (at,ot,rt)=(0,0,1)

1 (at,ot,rt)=(1,0,0),

0 otherwise

ν1(et|h<tat) =

1 (at,ot,rt)=(0,1,0)

1 (at,ot,rt)=(1,1,1)

0 otherwise

Now consider ν := 1
2ν0+

1
2ν1, the environment that flips a fair coin, and rewards 1 for a

correct guess. With no discounting and a horizon m= 1, any strategy in ν is optimal
as no policy can guess the outcome of a fair coin better than any other, so we find that
V ∗,m
ν (h<t)=

1
2 . But since νi are deterministic, the optimal strategy is to always predict i, so

V ∗,m
ν1

(h<t)=V
∗,m
ν2

(h<t)=1, which gives

1
2V

∗,m
ν1

(h<t)+
1
2V

∗,m
ν2

(h<t) = 1 > 1
2 = V ∗,m

ν (h<t)

hence V ∗,m
ν is not linear in ν for m=1. This remains true for m>1. �

6.7 Q-Value

The value function (Definition 6.6.1) can be extended to an action-value or Q-value function
of taking an action at given a history h<t:

250 CHAPTER 6. AGENCY

Definition 6.7.1 (Q-value) The Q-value Qπ,m
ν,γ : H×A→ R of a policy π in an

environment ν, given a history h<t∈H, action at, horizon m≥t, and discount function
γt, is defined as

Qπ,m
ν,γ (h<t,at) :=

1

Γt
Eπ

ν

[
m∑
k=t

γkrk

∣∣∣∣∣h<tat

]
=

1

Γt

∑
et

ν(et|h<tat)
∑

ht+1:m

νπ(ht+1:m|h1:t)
m∑
k=t

γkrk

If t >m or Γt =0 we define Qπ,m
ν,γ (h<t,at) := 0 As with the value function, we often

drop γ and define Qπ
ν (h<t,at) :=limm→∞Q

π,m
ν (h<t,at). The optimal Q-value function

is defined as
Q∗,m

ν (htat) := sup
π
Qπ,m

ν (htat) = Q
π∗,m
ν ,m

ν,γ (htat)

We can write the Q-value function in terms of the value function and vice versa:

Theorem 6.7.2 (Bellman equations) If policy π and environment ν are (proper)
probability measures, then

Qπ,m
ν,γ (h<t,at) =

1

Γt

∑
et

ν(et|h<tat)
[
γtrt+Γt+1V

π,m
ν,γ (h1:t)

]
(6.7.3)

V π,m
ν,γ (h<t) =

∑
at

π(at|h<t)Q
π,m
ν,γ (h<t,at) (6.7.4)

Note that the recursion ends once t≥m since then V π,m
ν,γ (h1:t)=0. Inserting (6.7.3)

into (6.7.4) (or vice versa) we get the Bellman equations purely in terms of (Q-)values.
Both equations hold for all policies including optimal policies π∗,m

ν for which (6.7.4)
reduces to

V ∗,m
ν,γ (h<t) = max

at

Q∗,m
ν,γ (h<t,at) (6.7.5)

Sum representations of the Q-value function analogous to Lemma 6.6.3 are also possible.
The recursions remain true for m→∞. For deterministic policies π, (6.7.4) reduces to
V π,m
ν,γ (h<t)=Qπ,m

ν,γ (h<t,π(h<t)). (6.7.5) also shows that among the set of optimal policy
there is always a deterministic one: We can choose any deterministic π such that π(h<t)=at
for any at that maximizes Q∗,m

ν,γ (h<t,at).

Proof sketch. (i) Plugging the explicit representation

V π,m
ν,γ (h1:t) =

1

Γt+1

∑
ht+1:m

νπ(ht+1:m|h1:t)
m∑

k=t+1

γkrk

from Definition 6.6.1 into the r.h.s. of (6.7.3) and rearranging terms and exploiting∑
ht+1:m

νπ(ht+1:m|h1:t)=1 we get Definition 6.7.1.

(ii) Inserting the sum representation of Q from Definition 6.7.1 into (6.7.4) and using the
definition of νπ leads to the sum representation of V from Definition 6.6.1.
(iii) Let At := argmaxat

Q∗,m
ν,γ (h<t,at) be the set of Q∗-maximizing actions. Clearly∑

at
π(at|h<t)Q

∗,m
ν,γ (h<t,at) is maximized w.r.t. π iff π(at|h<t) = 0 for at ̸∈ At iff

π(at|h<t)=π
∗,m
ν (at|h<t) for some π∗,m

ν ∈Π∗,m
ν (h<t). For such π, the expression reduces to

maxat
Q∗,m

ν,γ (h<t,at). �

6.8. EXERCISES 251

Lemma 6.7.6 (Contraction property of (Q-)Values) For t≤m

sup
h<t

∣∣V π,∞
ν (h<t)−V π,m

ν (h<t)
∣∣ ≤ sup

h<tat

∣∣Qπ,∞
ν (h<t,at)−Qπ,m

ν (h<t,at)
∣∣

≤ Γt+1

Γt
sup
h1:t

∣∣V π,∞
ν (h1:t)−V π,m

ν (h1:t)
∣∣ ≤ ... ≤ Γm+1

Γt

If ν is a semimeasure this remains true iff V,Q are defined via the recursion in The-
orem 6.7.2. The bounds also remain true if all π are replaced by ∗, i.e. the optimal
policies π∗

ν and π∗,m
ν .

Proof. Immediate from recursive characterization (Theorem 6.7.2) of V and Q by cancelling
the γtrt term and pulling in the supremum.

Counter-example for semimeasures ν if Definition 6.6.1 and Definition 6.7.1 are used:
Let ν be a proper measure on h<m always giving reward 1, and ν(h<t)≡0 for t>m. Then
for all t≤m we have V π,m

ν (h<t)=1 but V π,∞
ν (h<t)=0. �

Computing optimal values and policies. Given an exact model of the environment,
µ, and history h<t so far, the optimal action to take is an action at which maximizes
Q∗,m

µ (h<t,at). Therefore to find this optimal action we need to evaluate the expectation in
Definition 6.7.1. Assuming µ can be computed in time O(1), computing this expectation
naively via the sum representation in Definition 6.7.1 takes O((m−t)·(|O|·|A|·|R|)m−t)
time. This makes the computation intractable for all but the smallest observation O, action
A, and reward spaces R and horizons m (such as done in Chapter 11).

Finding the optimal action by maximizing Q∗,m
µ (h<tat) with respect to at in this form

is circular, since Q∗,m relies on an optimal policy π∗ in its definition and if we have an
optimal policy, we can just query an optimal action directly. Computing Q∗,m=maxπQπ,m

by exhaustively searching the space of all (deterministic) policies is completely infeasible,
since there are infinitely many (over |A||A×E|m−1

deterministic) policies. The theoretical
remedy is to compute the last expression in Lemma 6.6.3, leading to the following expression
for the optimal action:

at := argmax
at∈A

∑
et∈E

max
at+1∈A

∑
et+1∈E

... max
am∈A

∑
em∈E

m∏
k=t

ν(ek|h<kak)

m∑
k=t

γkrk (6.7.7)

This expression is called expectimax tree or algorithm (see Figure 12.2), and can be computed
in time O(m|A×E|m−t+1) times the time it takes to compute ν.

On the other hand, the recursive Bellman expressions often build the basis for more
efficient and practical MDP RL algorithms, which learn the optimal Q-value function directly
via techniques such as Q-learning [SB18]. From an approximation of the Q∗ values, an
approximately optimal policy can be recreated by π∗,m(h<t)=argmaxat

Q∗,m(h<tat).

6.8 Exercises

1. [C03] (All policies are optimal) Give an example of an environment where all
policies are optimal.

2. [C15] (History-based RL generalizes POMDPs) In Section 6.3, we claimed
POMDPs are a specific instances of history-based RL. Prove this claim. In particular,
given the policy and environment both have access to the entire interaction history,
how can we construct the environment so that it has access to the true underlying
state, but the policy does not?

252 CHAPTER 6. AGENCY

3. [C20] (Conditional νπ vs chronological ν) Show that conditional νπ(e1:m|a1:m):=
νπ(h1:m)/

∑
a1:m

νπ(h1:m) (Definition 6.1.5) is different from chronological ν(e1:m||a1:m)
(Definition 6.3.1), and elaborate in which ways, and why this is important. For
instance, show that

∑
em
ν(e1:m||a1:m) = ν(e<m||a<m) is independent of am, while∑

em
νπ(e1:m|a1:m) ̸=νπ(e<m|a<m) depends on am.

4. [C10] (Problematic discount functions) Give some examples of undesirable
behavior that can result from using: no discount, negative discount, monotonically
increasing discount.

5. [C20] (Effective horizon and discount normalizer) Derive the expressions for
Ht(ϵ) and Γt in Table 6.4.

6. [C10] (Deferred reward) Show that in Example 6.5.3 with geometric discounting
γ, the agent will choose to walk k∗−1 steps right, and then on time step k∗, walk up,
where k∗=argmaxk≥1{γk−1 k

k+1}<∞.

7. [C15] (Equivalence of (Q-)Value definitions) Prove the equivalence of the
expectation and sum representations of the (Q-)value functions in Definition 6.6.1
and Definition 6.7.1.

8. [C15i] (Explicit Value function) Derive the explicit representations of the value
function in Lemma 6.6.3.

9. [C15] (Explicit Q-Value function) Derive explicit representations of the Q-value
function analogous to Lemma 6.6.3.

10. [C20] (Bellman equations for finite horizon) Complete the proof details for
Theorem 6.7.2.

11. [C18] (Bellman equations for m→∞) Show that the Bellman (optimality)
equations Theorem 6.7.2 also hold for m→∞.

12. [C20] (Linearity/convexity of V) Formulate the claims in Lemma 6.6.7 precisely
and prove them. Hint: This exercise becomes easier after having read Section 7.2. Use
the posterior w(ν|h<t) (Definition 7.2.2) and possibly Definition 6.3.1.

13. [C20i] (Existence of optimal policy and optimal actions) Prove that for finite
action sets A and bounded reward space R and Γt<∞, an optimal policy and optimal
actions for m→∞ indeed exist. Show that these conditions are necessary [de 09].

14. [C25i] (εt-optimal policies and actions for infinite A) Show that εt-optimal
policies and actions always exists, even for countable action spaces A, for any choice
of εt, e.g. constant εt=ε or (arbitrarily fast) decreasing εt→0.

15. [C15] (Time-consistency of optimal policies) Prove that if π ∈ Π∗(ϵ) then
π∈Π∗(h<t) (on histories which π can generate).

16. [C22] (Reward-summable environmnents) In place of a discount function, one
can assume that the sum of the rewards outputted by the environment ν is finite. Show
that this is a strict generalization of having a discount function. That is, all discount
functions are contained in this setup, as well as setups which cannot be described by
using discount functions.

6.9. HISTORY AND REFERENCES 253

6.9 History and References

This chapter is based on material from [Hut05b] and [Lei16b, Chp.4].

Overview of reinforcement learning. The reinforcement learning (RL) book by Sutton
and Barto [SB18] requires no background knowledge, and describes from scratch the field of
RL. It covers bandit problems and various methods of attack for MDPs: exact solutions,
tabular learning and approximate methods, though more state-of-the-art approaches using
deep learning are not covered. For those interested in deep RL, we recommend the first half
of [SB18] first for background, and then [FHI+18, Pla22, DDZ20]. Clean implementations of
several popular deep RL algorithms (DQN [MKS+13], SAC [HZAL18], PPO [SWD+17], etc.)
can be found in [HDYB21]. Tougher and more rigorous books by Bertsekas (and Tsitsiklis)
[BT96, Ber19, Ber20] provide all convergence proofs that Sutton and Barto gloss over. In-
depth surveys of RL can be found in [KLM96, Sze10, GMPT15, MBPJ20]. Additional useful
resources in the study of RL include the following books [KV86, WvO12, AJKS22, Mey22,
Ber24]. Many algorithms in RL are improved or generalized versions of classic algorithms
like value iteration [Bel57], SARSA [RN94], Q-learning [WD92], and Temporal Difference
Learning [Sut88, Chp.6]. For tabular methods in RL, these methods have strong guarantees
of convergence to an optimal policy. [LCC+21] proves that Q-learning is sub-optimal for
non-trivial action spaces in the sense it does not meet the minimax bounds provided in
[GAMK13], and gives lower bounds on the number of time steps required for the Q-values
to converge within ε of the optimal Q-values. See below and Section 14.6 for more RL ideas
and algorithms mostly those not (yet) covered in (m)any books.

Partially Observable Markov Decision Processes (POMDPs). POMDPs are a
generalization of MDPs where the agent does not have full information about the state
of the environment. They were first introduced by [Åst65], and explored in great depth
in [KLC98]. [SV10] introduces a Monte-Carlo algorithm for POMDPs, requiring only a
black-box simulator of the environment, and using Monte-Carlo Tree Search (MCTS) [Cou06]
to plan.

Rewards. The reward hypothesis Assumption 6.2.1 is the core assumption on which RL
relies. This hypothesis cannot be proven either way (goals and purposes are not formally
defined terms), though there is much work both in support of [SSPS21], and some in
opposition to [VSK+22], and discussing the reward hypothesis [Ale21, BMAD22]. Many
problems often have multiple goals to simultaneously fulfil, and often these goals can be in
conflict. For example, a self-driving car needs to balance minimizing time to the destination,
against passenger safety and the road rules, against cost of fuel, etc. It is not immediately
clear how to aggregate these competing goals as a scalar reward, especially if the relative
trade-off between the goals is not fixed (some passengers might be in a rush, others might
be sightseeing and want to take things slow). Any transformation of these competing goals
into a single scalar reward implies some extra domain knowledge of how to trade one goal
versus another. Such problems are in the domain of Multi-Objective Reinforcement Learning
(MORL) [HRB+22]; a survey can be found in [RVWD13]. Learning is often more difficult in
environments with sparse rewards. Imitation learning [CHN22] or shaping the reward can
help, but usually requires extra domain knowledge [Mat94]. Ideally, the reward should be
shaped in such a way as to leave the optimal policy unchanged, but easier for the agent to
find [NHR99]. For environments where the agent is trying to achieve a goal state, [TZXS19]
describes a shaped reward based on a measure of distance from a goal, while avoiding getting
trapped in local optima. A proxy goal can also be chosen, often a goal that encourages
the agent to seek new and novel experiences. In Section 9.3 we cover Orseau’s [OLH13]
Knowledge-Seeking Agent (KSA), which tries to gather information about the environment

254 CHAPTER 6. AGENCY

it is in. Burda [BESK18] mentions that KSAs can perform well on complex environments,
but can also focus their attention on sources of noise.

Multi-agent RL. Some environments contain an opponent to play against (such as chess).
Often, self-play is used, where the agent also plays the role of its own opponent. This was
used to great success to train an agent to play backgammon [Tes94, Tes95] and Go [SHM+16].
A survey of self-play RL can be found in [DZ21]. To encode two agents playing against each
other in our agent-environment framework, each agent considers the other to be part of
the environment with which it interacts. This setup will be covered in Chapters 10 and 11.
Multi-Agent Reinforcement Learning (MARL) covers many agents interacting together in an
environment, often with adversarial rewards to incentivize competition, or aligned rewards
to incentivize cooperation [HKT19, ACS24]. [LPH+19] introduces Malthusian RL, where
the size of a particular population of agents grows or shrinks with the reward it receives.

Illegal actions. Commonly used methods to deal with illegal moves in games include
issuing a larger penalty than the penalty for losing a game [WPH22] or having the illegal
action have no effect [H+02]. For stochastic policies, we can resample until a legal move is
obtained (for black box policies) or zero the probabilities for illegal moves and renormalize
[SHM+16]. The former two methods do not require leaking information about the environ-
ment to the agent (playing an illegal move is seen from the agent’s perspective as either an
action that makes the player immediately lose with a very bad score, or as a no-op given the
current interaction history), whereas the latter method of tampering with the distribution
over actions requires domain knowledge of the environment.

Time-discounting. Time discounting is a trick used to ensure the reward sum is finite,
and often justified based on an argument appealing to the finite lifetime of an agent [Soz98],
or that in practice most humans choose immediate gratification over a marginally larger
reward later. On the other hand, humans often forgo immediate gratification for sufficiently
larger rewards later. The famous “marshmallow test” [ME70] provided one of the earliest
studies into how children discount rewards, offering them one marshmallow now, with the
offer to provide two if the child could resist eating the first for a period of time.

[LH11c] introduced the generalized discount Definition 6.4.1 which can depend on the
age of the agent. A complete characterization of when it is time-(in)consistent can be found
in [LH14c]. They also show the existence of a rational policy for an agent that knows its
discount function is time-inconsistent.

However, most of the time in RL, the agent is immortal, and does not have the option
to “invest” their reward. Schwartz explores an undiscounted method of measuring the
performance of a policy similarly to a Cesáro sum [Sch93]. [LH07c, Sec.3] avoids pre-
commitment of any particular discounting by letting the environment decide how to discount.
Pitis justifies a set of axioms that a discount should satisfy, and derives a form of discounting
that can be state-dependent, generalizing the typical fixed discount methods [Pit19]. Low
discount factors can speed up convergence [BT96], but lead to poor performance. Van Seijen
[VSFT19] hypothesizes that this is due to the size of the action-gap (the difference in value
between the best and second-best actions), and proposes a method to make the action-gaps
more homogeneous by applying updates in logarithmic space. RL can serve as an idealized
setting to study how discounting can lead to (sub)optimal/(un)healthy behavior [SVS+14].

One can show that (past) undiscounted truncated values are asymptotically equivalent
to (future) untruncated discounted values provided the effective horizon increases unbound-
edly [Hut06a]. Truncated Value Learning (TVL) mimics discounting by learning multiple
undiscounted truncated value functions [ASDH24]. It simultaneously learns values for all
(summable) discount functions.

Chapter 7

Universal Artificial Intelligence

A sign of intelligence is an awareness of one’s own
ignorance.

Niccolò Machiavelli, 1469–1527

7.1 Acting Optimally in Known Environments 256
7.2 Bayesian Mixture of Environments . 257
7.3 Acting Optimally in Unknown Environments 260
7.4 Universal Optimal Agent AIXI . 265
7.5 Exercises . 267
7.6 History and References . 268

In the previous chapter we have formulated the general (also called history-based)
Reinforcement Learning (RL) problem wherein an agent interacting with an environment
needs to maximize the expected future reward from the environment. In this chapter
we will discuss solutions to the general RL problem. The solutions we will go over are
each based on what information (if any) about the environment the agent is initially
given. The first solution, known as AIµ, is the optimal agent when the agent has
full knowledge of the probability distribution µ that describes the behavior of the
environment it is interacting with. We note that knowledge of µ does not render the
problem trivial.

The second and more interesting case is when the agent only knows the class of
environments M to which the true distribution µ belongs. The agent must then take
actions both to attempt to act well in the environment it believes itself to be in, as well
as take “exploratory” actions. Exploratory actions may not lead to good performance
immediately, but help the agent to work out what environment it is in, which will
hopefully result in better performance later.

In this case, we define AIXI, an agent that constructs an estimate ξ of the true
environment µ using Bayes’ Law, updating on experience received via interaction. AIXI

255

256 CHAPTER 7. UNIVERSAL ARTIFICIAL INTELLIGENCE

then chooses actions with policy π∗
ξ . We will show that (under some conditions), the

performance of AIXI converges to that of AIµ.

7.1 Acting Optimally in Known Environments

When an agent is interacting with an environment to achieve its goals, which are often
characterized as maximizing the value function, there are two (usually) distinct components
of the problem the agent needs to overcome: modelling the environment and planning in
the model. When the agent is given the complete information about the environment it is
interacting with, the modelling of the environment problem is “solved”1. This just leaves
the planning in the “model” (which is the true environment) component of the problem.
Definition 6.6.1 applied to ν replaced by the true environment µ and m→∞ gives us our
first definition of an informed optimal agent that has access to µ, and chooses actions to
maximize its value function:

Definition 7.1.1 (Policy of AIµ) Given the true environment µ and some discount
function γ(), informed agent AIµ selects an optimal policy

π∗
µ ∈ argmax

π
V π
µ ≡ argmax

π
lim

m→∞
V π,m
µ,γ (ϵ)

The agent can make decisions that maximize its expected total reward in environment µ
by taking the action which maximizes the Q-value Q∗

µ(h<t):

Proposition 7.1.2 (Action of AIµ) The action at of AIµ at time t given history
h<t can be computed via

at = aAIµ
t := argmax

at

Q∗
µ(h<t,at)

= argmax
at∈A

lim
m→∞

∑
et∈E

max
at+1∈A

∑
et+1∈E

... max
am∈A

∑
em∈E

m∏
k=t

µ(ek|h<kak)

m∑
k=t

γkrk

Proof. This follows immediately from Lemma 6.6.3 and Definition 6.7.1. �

To directly compute aAIµ
t requires computing the expectimax tree truncated to an

effective horizon m=Ht(ε)<∞ (for more details, see Sections 6.7 and 12.1).

However, in practice, this is computationally expensive, and various techniques like
pruning or approximation methods are used to make it more tractable. Various methods
used in the past for approximation of the true Q-value include only unrolling the expectimax
calculation for a short moving horizon, using a reasonable estimate Q̂ designed by humans
to estimate the Q-value (often called a heuristic) [RN10], or using a neural network to learn

Q̂ from experience [MKS+15]. The expectimax can also be approximated using Monte Carlo
Tree Search, where several rollouts are performed (the “game” is played out to the end with
a cheap proxy for the policy of the agent), and the obtained discounted sum of rewards is
averaged as an approximation for the expectation [SHM+16]. We will explore this method
further in Section 12.2.2.

1It could be the case that when the agent is given the true environment, computing the true environment
is hard/intractable, but we will not consider this case.

7.2. BAYESIAN MIXTURE OF ENVIRONMENTS 257

7.2 Bayesian Mixture of Environments

In practice, the environment an agent interacts with is not fully known. The classical RL
solution to this problem is to make some (strong) assumption about the environment, and
then devise some (heuristic) algorithm to learn the environment from the agent-environment
interaction. The Bayesian solution to this problem is to consider a class of environments
M large enough to be confident it contains the true environment µ, devise a prior wν to
ν∈M, take a Bayesian mixture ξ over all environments inM, and use (known) ξ instead of
(unknown) µ. In the same spirit and with the same reasoning, following Section 3.7.1 and
[Lei16b], for the choice ofM, we will (later) mainly concern ourselves with the classesMsol

andMcomp and universal Bayesian mixture ξU , which suitably generalizes Definition 3.7.1.

Definition 7.2.1 (Chronological Bayes mixture ξ) LetM be a countable class of
chronological semimeasures (see Definition 6.3.1), and w :M→R be a prior satisfying∑

ν∈Mwν≤1 and wν>0 for all ν∈M. We define the chronological Bayes mixture ξ
overM given prior w(·) as

ξ(e1:t||a1:t) :=
∑
ν∈M

wνν(e1:t||a1:t)

A dual notion of mixtures over policy classes is considered in Section 9.5. In this chapter
we consider all (chronological) policies π :H→∆A without any restriction. At first it may be
appealing to choose Π to be as large as possible to ensure we include the best policy. However,
we are trying to construct a physically plausible agent, and since there are uncountably2

many policies to choose from, we would want to restrict ourselves to a countable subset.
For this we will mainly consider the class of approximable or limit-computable policies
(Definition 2.6.13). An important part of this is to show whether or not an optimal policy is
approximable; this is discussed in Section 13.1. In practice we have to restrict the policy
space Π even further to tractable policies.

Alternatively, we can define a predictive Bayes mixture as a posterior mixture over
(predictive) environments:

Definition 7.2.2 (Bayesian mixture ξ over environments) LetM be a class of
environments with prior {wν}ν∈M. We define ξ(et|h<tat) as the (predictive) probability
the Bayesian mixture environment ξ assigns to percept et conditioned on history h<t

and action at recursively as:

ξ(et|h<tat) :=
∑

ν∈Mw(ν|h<t)ν(et|h<tat)

=
ξ(e1:t||a1:t)
ξ(e<t||a<t)

=

∑
ν∈Mwνν(et|h<tat)ν(e<t||a<t)∑

ν∈Mwνν(e<t||a<t)
, where

w(ν|h1:t) := w(ν|h<t)
ν(et|h<tat)

ξ(et|h<tat)
= wν

ν(e1:t||a1:t)
ξ(e1:t||a1:t)

and w(ν|ϵ) :=wν

Definition 7.2.2 is the same as Theorem 3.1.8, but for a mixture of environments where
the agent can act, rather than passive environments where the “agent” tries to predict the
sequence.

2Assuming there are at least two actions to choose from, even ignoring the history and considering only
the set of all probability distributions on A is already as large as the continuum.

258 CHAPTER 7. UNIVERSAL ARTIFICIAL INTELLIGENCE

Proof. The proof for the equivalence of Definitions 7.2.1 and 7.2.2, that ξ satisfies Defini-
tion 6.3.1, and the other identities, can be obtained by replacing x1:t with e1:t and extra
conditioning all probabilities on a1:t (similarly <t) in the proof of Theorem 3.1.8. �

Example 7.2.3 (Mixture environment) We consider again a coin flip prediction problem,
with A=O= {H,T} and R= {0,1} and the class of environments M= {νHH ,νHT ,νTT },
representing an environment that flips a two-headed coin, a fair coin, and a two-tailed
coin respectively. Each environment gives 1 reward to the agent if it correctly predicts the
outcome of the coin (that is, if at= ot). We choose the uniform prior wν =1/3. Initially
the Bayesian mixture predicts that the likelihood of the environment generating H (and
returning a reward of 1 assuming the action was H) is 1/2:

ξ(e1=(H,1)|h<1=ϵ,a1=H) =
∑

ν∈Mwνν(e1=(H,1)|a1=H)

= 1
3νHH(e1=(H,1)|a1=H)+ 1

3νHT (e1=(H,1)|a1=H)+ 1
3νTT (e1=(H,1)|a1=H)

= 1
3×1+ 1

3× 1
2+

1
3×0 = 1

2

In fact, it can be shown that ξ=νHT when the mixture is given an empty history. Now,
suppose that the agent decides to take action a1=H, and guessed correctly, so the environ-
ment returns (o1,r1)=(H,1). This gives a history so far of h1=(a1,e1)=(H,(H,1)). We can
now follow the recursive update rules in Definition 7.2.2 to see which environment the agent
now believes it is interacting with:

wνHH
(h1) = wνHH

νHH(e1=(H,1)|a1=H)

ξ(e1=(H,1)|a1=H)
=

1

3

1
1/2

=
2

3

wνHT
(h1) = wνHT

νHT (e1=(H,1)|a1=H)

ξ(e1=(H,1)|a1=H)
=

1

3

1/2
1/2

=
1

3

wνTT
(h1) = wνTT

νTT (e1=(H,1)|a1=H)

ξ(e1=(H,1)|a1=H)
=

1

3

0
1/2

= 0

So, the agent believes with confidence 2/3 that µ= νHH , and with confidence 1/3 that
µ=νHT . It believes it to be impossible that µ=νTT , which makes sense, since it has observed
the environment returning an observation of a H. We can now ask about the dynamics of
ξ(e2|h1a2),

ξ(e2|h1a2) =
∑

ν∈Mw(ν|h1)ν(e2|h1a2)= 2
3νHH(e2|h1a2)+ 1

3νHT (e2|h1a2)

We can also use ξ to compute the probability that the next observation received will be H,
for the two choices of action a2.

ξ(o2=H|h1H) =
∑

r∈{0,1}
2
3νHH((H,r)|h1H)+ 1

2νHT ((H,r)|h1H)

= 2
3νHH((H,1)|h1H)+ 1

2νHT ((H,1)|h1H) = 2
3×1+ 1

3× 1
2 = 5

6

ξ(o2=H|h1T) =
∑

r∈{0,1}
2
3νHH((H,r)|h1T)+ 1

2νHT ((H,r)|h1T)
= 2

3νHH((H,0)|h1T)+ 1
2νHT ((H,0)|h1T) = 2

3×1+ 1
3× 1

2 = 5
6

In both cases, ξ predicts the next observation will be H, regardless of the action taken,
consistent with the fact that this is a passive environment where we are only making
predictions. We note that ξ ̸∈M, which is not surprising given the very limiting model class
chosen. �

The following elementary linearity and convexity results are used frequently later

7.2. BAYESIAN MIXTURE OF ENVIRONMENTS 259

Lemma 7.2.4 (Linearity of posterior ξπ mixture) For events A⊆(A×E)∞ and
functions f : (A×E)∞→R,

Pπ
ξ [A|h<t] =

∑
ν∈M

w(ν|h<t)P
π
ν [A|h<t] and Eπ

ξ [f |h<t] =
∑
ν∈M

w(ν|h<t)E
π
ν [f |h<t]

Linearity with the same weights w(ν|h<t) remains true if we further condition on at.
A particular instantiation is

ξπ(h1:m) =

m∏
t=1

π(at|h<t)ν(et|h<tat) =
∑
ν∈M

wνν
π(h1:m) ≥ wµµ

π(h1:m) ∀µπ∈M

Proof. We first show prior linearity, i.e. for t=1, h<1= ϵ and w(ν|ϵ)=wν . Using (6.3.2)
twice and Definition 7.2.1,

Pπ
ξ [h1:m] ≡ ξπ(h1:m) ≡ ξ(e1:m||a1:m)π(a1:m||e<m)

=
∑
ν

wνν(e1:m||a1:m)π(a1:m||e<m) =
∑
ν

wνν
π(h1:m) =

∑
ν

wνP
π
ν [h1:m]

for any h1:m. By taking suitable limits, this implies that equality holds for all events A.
Now posterior linearity follows from

Pπ
ξ [A|h<t] ≡

Pπ
ξ [A∩h<t]

Pπ
ξ [h<t]

=

∑
νwνP

π
ν [A∩h<t]

ξπ(h<t)
≡
∑
ν

wν
νπ(h<t)

ξπ(h<t)
Pπ
ν [A|h<t]

=
∑
ν

wν
ν(e<t||a<t)

ξ(e<t||a<t)
Pπ
ν [A|h<t] =

∑
ν

w(ν|h<t)P
π
ν [A|h<t]

where ≡ is the definition of conditional probability, the first equality follows from prior
linearity, the second equality follows from (6.3.2) and the last equality from Definition 7.2.2.
The linearity if further conditioning on at and of Eπ can be proven similarly or by extension.
The last equality is the special case of A=h1:m (strictly speaking A={h1:m}×(A×E)∞)
and t=1 and w(ν|ϵ)=wν . �

Theorem 7.2.5 (Linearity/convexity of V)
V π
ν (h<t) is linear in ν and V ∗

ν (h<t) is convex in ν:

V π
ξ (h<t) =

∑
ν∈M

w(ν|h<t)V
π
ν (h<t) and V ∗

ξ (h<t) ≤
∑
ν∈M

w(ν|h<t)V
∗
ν (h<t)

The same holds for the Q-values Qπ
ν (h<tat) with the same weights w(ν|h<t).

Duals of Theorem 7.2.5 for mixtures over policies π exist, but we do not need them
(V ζ

ν (h<t)=
∑

π∈Πω(π|h<t)V
π
ν (h<t), see Definition 9.5.1).

Proof. Applying Lemma 7.2.4 with f=
∑∞

k=tγkrk implies linearity of V π (Definition 6.6.1).
Applying the version of Lemma 7.2.4 conditioned on h<tat implies linearity of Qπ (Defini-
tion 6.7.1). Applying linearity of V π to π=π∗

ξ we get

V ∗
ξ (h<t) ≡ V

π∗
ξ

ξ (h<t) =
∑

νw(ν|h<t)V
π∗
ξ

ν (h<t) ≤
∑

νw(ν|h<t)V
∗
ν (h<t) �

260 CHAPTER 7. UNIVERSAL ARTIFICIAL INTELLIGENCE

The reason for the inequality is that on the r.h.s. the optimal policy π∗
µ is tailored for

µ, while on the l.h.s. a single policy must perform well in ξ, i.e. in all environments ν∈M
simultaneously.

In the limit as t→∞, we would expect that ξ→µ in the predictive sense analogous
to Corollary 3.3.2, there are two complication though: we need multi-step and off-policy
convergence. For prediction, greedily minimizing the one-step loss was optimal, and hence
convergence of one-step prediction sufficed. The agent case depends on farsighted prediction.
We can multiply one-step predictive probabilities and lift Solomonoff’s bound (Theorem 3.2.5)
to m-step predictions for fixed look-ahead m<∞ [Hut05b, Sec.3.7.1], but discounted values
require infinite look-ahead [Hut05b, Thm.5.3.6]. Luckily convergence still holds but without
any guarantee on the convergence rate anymore, by lifting Theorem 3.9.5 to the agent case:

Theorem 7.2.6 (Merging of opinions [BD62])

sup
A

∣∣Pπ
ξ [A|h<t]−Pπ

µ[A|h<t]
∣∣ t→∞−→ 0 µπa.s.

sup
A

∣∣Pπ
ξ [A|h<tat]−Pπ

µ[A|h<tat]
∣∣ t→∞−→ 0 µπa.s.

where supA ranges over all measurable events A⊆(A×E)∞, and Pπ
ν [A|h<t]=Eπ

ν [11A|h<t].

The proof is left as an exercise. The result in particular implies that for a sequence
of events At, P

π
ξ [At|h<tat]→Pπ

µ[At|h<tat]. For instance, for At = {h1:t}×(A×E)∞, this
becomes ξπ(et|h<tat)→µπ(et|h<tat), and for At= {h1:t+m}×(A×E)∞ we get multi-step
convergence. A serious limitation still is that the historic actions need to be sampled from
the same policy π for ξ and for µ, which complicates convergence analysis for (Bayesian)
agents significantly.

7.3 Acting Optimally in Unknown Environments

Since ξ→µ for t→∞ in the sense of Theorem 7.2.6, it is plausible to conjecture that the
value function Vξ converges to Vµ, regardless of the policy chosen. Even if the agent always
guessed the wrong answer, it would still obtain evidence to indicate which environment it
was in, even if it received little reward for doing so.

Indeed, for the value functions, we have on-policy convergence. This means that for any
policy π and true environment µ, if the history is sampled from µπ, then for t→∞, the
value function V π

ξ (h<t) of that history converges to V π
µ (h<t) almost surely. That is, the

probability that µπ generates a history such that V π
ξ (h<t) does not converge to V π

µ (h<t) is
zero:

Theorem 7.3.1 (On-policy value convergence of Bayes) For any environment
µ∈M and any policy π,

V π
ξ (h<t)−V π

µ (h<t)−→0 for t→∞ µπ-almost surely

Proof sketch. Instantiating the general inequality∣∣EQ[f]−EP [f]
∣∣ ≤ sup|f |·sup

A

∣∣Q[A]−P [A]
∣∣

7.3. ACTING OPTIMALLY IN UNKNOWN ENVIRONMENTS 261

with f =
∑∞

k=tγkrk/Γt and P =Pπ
µ(·|h<t) and Q=Pπ

ξ (·|h<t), using Definition 6.6.1, this
becomes∣∣V π

ξ (h<t)−V π
µ (h<t)

∣∣ ≤ sup|f |·sup
A

∣∣Pπ
ξ [A|h<t]−Pπ

µ[A|h<t]
∣∣ t→∞−→ 0 µπa.s.

The convergence follows from sup|f |≤ sup|R|≤1 and Theorem 7.2.6. Convergence rates
similar to but weaker than those in Section 3.5 can also be obtained [Hut05b, Thm.5.36].

�

We are interested in measuring the performance of the agent against V ∗
µ , the optimal

value function when the environment µ is known, and the best policy π∗
µ is chosen for

µ. Since the environment µ is unknown, the best (Bayes-optimal) policy the agent could
choose is π∗

ξ , which maximizes V π
ξ , since ξ represents the agent’s best estimate of the true

environment µ based on both the prior wν and the experience collected so far via interaction
with the environment. In analogy to Definition 7.1.1 we define

Definition 7.3.2 (Bayes-optimal agent AIξ) π∗
ξ :∈ argmaxπV

π
ξ

Representation Proposition 7.1.2 holds as well with µ replaced by ξ. Theorem 7.3.1 is
comforting, but does not give us a result about the convergence of two different policies.
What we really want to know is whether V π∗

ξ
µ (h<t) converges to V

∗
µ (h<t), since this represents

the convergence of the true µ-value of the Bayes-optimal policy π∗
ξ , (the policy the agent

would have to use in the face of unknown µ), to the true value of the optimal policy π∗
µ. In

the control-theory literature, this property is called self-optimizing:

Definition 7.3.3 (Self-optimzing policies) A policy π̃ is called self-optimizing for
a class of environmentsM and historic policy π if

∀ν∈M : V ∗
ν (h<t)−V π̃

ν (h<t)
t→∞−→ 0 with νπ probability 1

Note that while all perceptions e1:∞ are sampled from ν, the historic actions a<t are
arbitrary and can come from any (other) policy π.

The remainder of this section is devoted to establishing necessary and sufficient conditions
for π∗

ξ to be self-optimizing. To do so we need two lemmas. ForM={ν1,ν2,...}, the tail sum∑
j≥iwνj

<ε for sufficiently large i. The same can be shown for the posterior w(ν|h<t) with
high probability. The following lemma strengthen this:

Lemma 7.3.4 (Convergence of mixture tails) M={ν1,ν2,...} be a countable set
of chronological semimeasures with prior wν . Then for every chronological measure µ,
we have

∀ε>0 ∀δ>0 ∃i ∀t :
∑
j≥i

wνj

νj(e<t||a<t)

µ(e<t||a<t)
< ε with µ prob. ≥1−δ

Proof. We abbreviate ν<t := ν(e<t||a<t) and note that the actions a1:∞ play no role, i.e.
we could as well prove the lemma for the predictive case and then lift it to the agent case,
similar to Definition 7.2.2.

Choose ε>0 and δ>0 arbitrarily. We define the tail mixture ρ<t :=
∑

j≥iwνj
νj,<t, which

is itself a chronological semimeasure. Applying Ville’s inequality [Vil39, p.84] P[suptXt≥
ε]≤ 1

εE[X1] (an improved Markov inequality, see [LS20a, Thm.3.9] or [LHS13a, Lem.14] for

262 CHAPTER 7. UNIVERSAL ARTIFICIAL INTELLIGENCE

an elementary proof) to the non-negative supermartingale Xt :=ρ<t/µ<t (Exercise 4), and
noting that X1=ρ(ϵ)/µ(ϵ)=

∑
j≥iwνj =:w≥i, for sufficiently large i we get

Pµ

[
sup
t

ρ<t

µ<t
≥ε
]
≤ w≥i

ε
≤ δ

Since
∑

νwν≤1, we have w≥i→0 for i→∞, so w≥i≤εδ for sufficiently large i. Conversely,
this implies ∀t :ρ<t/µ<t<ε w.µ.p.≥1−δ, which proves the lemma. �

The next lemma establishes convergence of posterior Bayesian mixtures of uniformly
bounded functions δ→0.

Lemma 7.3.5 (Convergence of posterior averages [Lat23])
For any policy π and any uniformly bounded 0≤δν,t(h<t)≤1 ∀ν,t,h<t,

If δν,t(h<t) → 0 for t→∞ w.νπ.p.1 for all ν∈M

then
∑
ν∈M

wν
ν(e<t||a<t)

µ(e<t||a<t)
δν,t(h<t)

t→∞−→ 0 w.µπ.p.1

and equivalently
∑
ν∈M

w(ν|h<t)δν,t(h<t)
t→∞−→ 0 w.µπ.p.1.

Proof. The proof idea is as follows: Consider a single ν-term from the sum: First, ν/µ→c<∞
w.µ.p.1. For histories h1:∞ for which c=0, we are done. By assumption δν,t→0 w.ν.p.1. For
c>0, the predictive distributions µ and ν convergence to each other, hence convergence also
holds w.µ.p.1. Finally, we exchange limits with

∑
νwν . The formal proof is unfortunately

somewhat technical.
(i) Definitions: We drop the superscript π from w.µπ.p.1 and Pπ and Eπ etc. Historic

actions a<t are implicitly assumed to be sampled from π. Xt :=Xν,t :=ν(e<t||a<t)/µ(e<t||a<t)
is a µ-supermartingale (Exercise 4), hence the limit limt→∞Xt exists and is finite w.µ.p.1.
Let F :={h1:∞ : δν,t ̸→0} and W :={h1:∞ : limtXt≥ε}.

(ii) Single ν term: By assumption, Pν [F] = 0, and by construction, Pν [A]/Pµ[A]≥ ε
for any A ⊆W , hence Pµ[F ∩W] ≤ 1

εPν [F ∩W] = 0, that is, δν,t11W → 0 w.µ.p.1. This
implies lim supt→∞ Xtδν,t11W =0 w.µ.p.1, since Xt is bounded w.µ.p.1. On the other hand,
lim suptXt≤ε for h1:∞∈W c and δν,t≤rmax≤1 implies lim supt→∞Xtδν,t11W c≤ε. Adding
both gives

lim sup
t→∞

Xtδν,t ≤ ε w.µ.p.1 (7.3.6)

(iii) Sum over ν: Since (7.3.6) holds for every ν, it also holds for a finite weighted sum:

lim sup
t→∞

∑
j<i

wνj
Xνj ,tδνj ,t =

∑
j<i

wνj
lim sup
t→∞

Xνj ,tδνj ,t ≤
∑
j<i

wνj
ε ≤ ε w.µ.p.1

By Lemma 7.3.5 there exists an i for which

lim sup
t→∞

∑
j≥i

wνjXνj ,tδνj ,t ≤ sup
t

∑
j≥i

wνjXνj ,t < ε w.µ.p.≥1−δ

Adding both together we get

lim sup
t→∞

∑
ν∈M

wνXν,tδν,t < 2ε w.µ.p.≥1−δ

7.3. ACTING OPTIMALLY IN UNKNOWN ENVIRONMENTS 263

Since δ was arbitrary, the result also holds w.µ.p.1. Since ε was arbitrary, this establishes
the first implications of the lemma.

(iv) Equivalence: As for the second implication, by posterior Definition 7.2.2 and Xt,∑
ν∈M

wνXν,tδν,t = Xξ,t

∑
ν∈M

w(ν|h<t)δν,t

As already established, Xξ,t→ c<∞ w.µ.p.1. Furthermore Xξ,t≥wµ>0. Hence w.µ.p.1,∑
νwνXν,tδν,t→0 iff

∑
νw(ν|h<t)δν,t→0. �

Theorem 7.3.7 (Self-optimizing [Hut05b]) LetM be a countable class of envi-
ronments and π be any historic policy. If there exists a self-optimizing π̃ forM in the
sense of Definition 7.3.3, then the Bayes-optimal policy π∗

ξ is self-optimizing forM.

This is an important and central result of the book. Obviously, if there does not exist
any self-optimizing policy π̃, we cannot expect π∗

ξ to be self-optimizing. In this sense, the
sufficient condition in the theorem is also necessary, i.e. the assumptions are as weak as
possible. The strength of this result compared to asymptotic optimality results later in
Chapter 8 is that it is off-policy, i.e. π∗

ξ is self-optimizing even if the agent followed π ̸=π∗
ξ in

the past.

Proof. For each environment ν∈M, we define

δν,t(h<t) := V ∗
ν (h<t)−V π̃

ν (h<t)

Since rewards are bounded by 1 and V ∗
ν (h<t) is a weighted average of rewards, we have

0≤V π̃
ν (h<t)≤V ∗

ν (h<t)≤rmax=1, which implies 0≤δν,t≤1. Additionally we have,

0 ≤ w(µ|h<t)
[
V ∗
µ (h<t)−V

π∗
ξ

µ (h<t)
]

≤ ∑ν∈Mw(ν|h<t)
[
V ∗
ν (h<t)−V

π∗
ξ

ν (h<t)
]

≤ ∑ν∈Mw(ν|h<t)
[
V ∗
ν (h<t)−V π̃

ν (h<t)
]

=
∑

ν∈Mw(ν|h<t)δν,t(h<t)

The first inequality comes from the fact that the optimal value function for µ will be greater
than or equal to the value function for µ under any other policy. The second inequality is a
result of adding non-negative terms. The third inequality comes from∑

ν∈M
w(ν|h<t)V

π∗
ξ

ν (h<t) = V
π∗
ξ

ξ (h<t) = V ∗
ξ (h<t) ≥ V π̃

ξ (h<t) =
∑
ν∈M

w(ν|h<t)V
π̃
ν (h<t)

Dividing the above inequality by w(µ|h<t) we get,

0 ≤ V ∗
µ (h<t)−V

π∗
ξ

µ (h<t) ≤
1

w(µ|h<t)

∑
ν∈M
w(ν|h<t)δν,t(h<t) =

1

wµ

∑
ν∈M
wν

ν(e<t||a<t)

µ(e<t||a<t)
δν,t(h<t)

which by Lemma 7.3.5 converges to 0 for t→∞ w.µπ.p.1. �

Figure 7.1 relates various important environment classes M and whether they admit
self-optimizing policies or not. Ergodic nth-order MDPs are a large class that admit
self-optimizing policies, hence π∗

ξ is self-optimizing for them. Unfortunately, without any
form of ergodicity assumption, self-optimizing fails due to traps, such as the Heaven-Hell
Example 8.1.3. Therefore, the class of all (semi)computable chronological environments does
not admit self-optimizing policies.

264 CHAPTER 7. UNIVERSAL ARTIFICIAL INTELLIGENCE3.6 Conclusion

Figure 3.1: Taxonomy of environments. Downward arrows indicate that the
class below is a special case of the class above. Dotted horizontal
lines indicate that two classes of environments are reducible to each
other. The greyed area contains the classes of environments that
admit self-optimising agents, that is, the environments in which a
universal agent will learn to behave optimally.

69

Figure 7.1: Taxonomy of environments. Downward arrows indicate that the class below
is a special case of the class above. Dotted horizontal lines indicate that two classes of
environments are reducible to each other. The grayed area contains the classes of environments
that admit self-optimizing agents, that is, the environments in which a universal agent will
learn to behave optimally [Leg08]. Sequence prediction is covered in Chapter 3, Markov
chains are covered in Chapters 4 and 5, and (ergodic) (nth-order) MDPs are covered in
Chapters 11, 12 and 14, See [Hut05b, Leg08] for a discussion of the other classes and proofs.

7.4. UNIVERSAL OPTIMAL AGENT AIXI 265

7.4 Universal Optimal Agent AIXI

So far we considered general environment classesM and general priors wν . We can combine
our choice of prior and class of environments from Section 3.7, motivated again by Occam’s
razor and Epicurus’ principle of multiple explanations, with the notion of a Bayesian agent to
arrive at the universal Bayesian agent AIXI. AIξ of the previous section is like AIµ but it does
not know the true environment, so we replaced µ with ξ, the Bayesian mixture environment
overM with some prior wν , left unspecified. We define AIXI to be the universal Bayesian
agent with the class of all lower-semicomputable chronological semimeasuresM=Msol and
using the universal prior wν=w

U
ν :=2−K(ν) and mixture distribution ξ=ξU .

Definition 7.4.1 (Universal optimal agent AIXI) AIXI is the Bayes-optimal agent
for the universal mixture ξU () :=

∑
ν∈Msol

wU
ν ν(), with universal prior wU

ν :=2−K(ν):

πAIXI := π∗
ξU = argmax

π
V π
ξU

AIXI is the most “intelligent” environment-independent agent possible because it opti-
mally learns and acts in a wide range of environments, adapts to different situations, and
uses a mixture of environments based on the principle of Occam’s razor. AIXI learns the
environment it is in by updating its beliefs over time. As it interacts with an environment, it
gathers more information and refines its understanding, allowing it to make better-informed
decisions.

Theorem 7.4.2 (Expectimax Bayesian form of AIXI) For finite lifetime m and
no discounting, i.e. γk=Jk≤mK, given interaction history h<t, the action of AIXI at
time t has the explicit expectimax expression

at = π∗
ξU (h<t) = argmax

at

∑
et

max
at+1

∑
et+1

...max
am

∑
em

[
m∑
i=t

ri

]∑
ν∈Msol

wU
ν (h<t)

m∏
k=t

ν(ek|h<kak)

where wU
ν (h<t) is the posterior (see Definition 7.2.2) for universal prior wU

ν (ϵ):=2−K(ν),

Proof. The explicit expression for action at = π∗
ν(h<t) of AIν has been given in (6.7.7).

Replacing ν by ξ gives us AIξ. The product can be written as

m∏
k=t

ξ(ek|h<kak) =
ξ(e1:m||a1:m)

ξ(e<t||a<t)
=

∑
νwνν(e1:m||a1:m)

ξ(e<t||a<t)
(7.4.3)

=
∑
ν∈M

wν
ν(e<t||a<t)

ξ(e<t||a<t)

m∏
k=t

ν(ek|h<kak) =
∑
ν∈M

w(ν|α<t)

m∏
k=t

ν(ek|h<kak)

where we used Definitions 7.2.1 and 7.2.2 a couple of times. AIXI is simply the special case
forMsol and w

U
ν and ξU , which proves the theorem. �

There is yet another (arguably most elegant) formulation of AIXI which we stated in
Section III. We define it formally here and show its equivalence to Theorem 7.4.2. It is based
on the following variant of monotone Turing machine:

266 CHAPTER 7. UNIVERSAL ARTIFICIAL INTELLIGENCE

Definition 7.4.4 (Chronological Turing machine) A (monotone) Turing machine
T is called a chronological Turing machine if, when fed a program p transforms an
input data stream a1:m to an output data stream e1:m such that for all k≤m, it must
print each “percept” ek on the output tape prior to reading the next “action” ak+1

from the input tape. Formally p′, ak, ok, rk, ek≡okrk are all understood to be encoded
prefix-free so that they can be uniquely decoded from a1:m and e1:m. Notationally we
define:

T (p′a1:m)→e1:m is true iff T (p′a1:k)=e1:k for all k≤m

Theorem 7.4.5 (Expectimax Solomonoff form of AIXI) The action of undis-
counted horizon-m AIXI at time t given interaction history h<t is:

a∗t = π∗
M (h<t) = argmax

at

∑
et

...max
am

∑
em

[rt+...rm]M(e1:m||a1:m)

where M(e1:m||a1:m) :=
∑

p:U(p′a1:m)→e1:m

2−ℓ(p)

is a chronological version (see Definition 6.3.1) of Solomonoff’s distribution (3.8.3), and
U is a chronological Universal Turing machine (Definition 7.4.4).

Proof. The inner sum of Theorem 7.4.2 can be written as

∑
ν∈M

w(ν|h<t)

m∏
k=t

ν(ek|h<kak) =
ξ(e1:m||a1:m)

ξ(e<t||a<t)
(7.4.6)

where ξ(e1:m||a1:m) :=
∑
ν∈M

wνν(e1:m||a1:m) (7.4.7)

and ν(e1:m||a1:m) :=

m∏
k=1

ν(ek|h<kak) (7.4.8)

Compare (7.4.7) with the posterior version (7.4.3). The double-bar denotes that µ and
ξ are chronological semimeasures (Definition 6.3.1). Since the denominator ξ(e<t||a<t)
in (7.4.6) does not depend on any quantities after time t−1, we can pull it out of the
expectimax expression in Theorem 7.4.2. Since it does not affect the at=argmaxat

..., we can
ignore it entirely and consider only the numerator ξ(e1:m||a1:m) instead. M(e1:m||a1:m) is a
chronological version of Solomonoff’s distribution (3.8.3), and is a chronological semimeasure
as well. Note that this is crucially different from conventional conditioning M(e1:m|a1:m)
(3.8.4). For the universal choice of weights wU

ν := wν = 2−K(ν), i.e. ξU , analogous to
Theorem 3.8.8, one can show that

M(e1:m||a1:m) ×= ξU (e1:m||a1:m) (7.4.9)

Hence, within two irrelevant multiplicative factors (the denominator ξU (e<t||a<t) and the
universal constant hidden in ×=), the l.h.s. of (7.4.6) equals M(e1:m||a1:m), hence the latter
can replace the former in Theorem 7.4.2. �

7.5. EXERCISES 267

Theorem 7.4.10 (AIXI cannot act poorly in good environments) If µ∈M is
deterministic and there exists an ε>0 such that for some h1:∞ we have V ∗

µ (h<t)>ε ∀t,
then

V ∗
ξ (h<t) ̸→ 0 for t→∞

This is true in particular for the history h1:∞ deterministically generated from (deter-
ministic) µ and (deterministic) π∗

ξ .

Proof. Using convexity of V ∗ (Theorem 7.2.5) and Definition 7.2.2 we have

V ∗
ξ (h<t) ≥

∑
ν∈M

w(ν|h<t)V
∗
ν (h<t) ≥ wµ

∏t−1
k=1µ(ek|h<kak)∏t−1
k=1ξ(ek|h<kak)

V ∗
µ (h<t) > εwµ

since
∏t−1

k=1µ(ek|h<kak)=1 as µ is deterministic and ξ(ek|h<kak)≤1 and V ∗
µ (h<t)>ε. �

7.5 Exercises

1. [C15] (Predictive Bayes and posterior) Prove the equalities Definition 7.2.2 by
lifting the proof of Theorem 3.1.8.

2. [C15] (Blackwell&Dubin for agents) Use Blackwell&Dubin’s Theorem 3.9.5 to
prove the agent version Theorem 7.2.6.

3. [C21i] (On-policy value convergence of Bayes) Complete the proof of Theo-
rem 7.3.1.

4. [C15i] (Supermartingale νπ/µπ) This exercise extends Definition 3.9.1 and Ex-
ample 3.9.2 to the agent case: Random variables Xt=Xt(h1:∞) are said to form a
supermartingale if E[Xt|h<t]≤Xt−1. Show that Xt :=ν(e1:t||a1:t)/µ(e1:t||a1:t) in the
proof of Lemma 7.3.5 is a µπ-supermartingale. Show that Xt converges to a finite
constant w.µ.p.1.

5. [C30u] (Turing machine representing ν ∈Msol) Show that for every lower-
semicomputable chronological semimeasure ν there exists a Turing machine T of length
ℓ(T)=K(ν)+O(1) that computes it, i.e. ν(h1:t)=

∑
q:T (q,a1:t)→e1:t

2−ℓ(q) [Hut05b].

6. [C20u] (Convergence of infinite mixtures) Let δ(t) =
∑

ν∈Mwνδν(t) and∑
ν∈Mwν ≤ 1 Show that the boundedness assumption 0≤ δν(t)≤ c is necessary for

δν(t)→ 0 as t→∞ to imply existence and/or convergence of δ(t)→ 0. Show that
δν(t)=O(f(t)) ∀ν∈M does not necessarily imply δ(t)=O(f(t)) ifM is infinite, even
for bounded δν .

7. [C30ui] (Belief contamination) Consider an environmental classM that admits
self-optimizing policies. We want to study the effect of additionally believing in some
ρ /∈M with some small probability α. The new belief prior is ξ′ :=(1−α)ξ+αρ. Show
that a belief α in ρ much smaller than the belief in the wµ in the true environment
µ∈M only causes a small corruption of the self-optimizing property. More precisely,
show lim supt→∞[V ∗

µ (h<t)−V π∗
ξ′

µ]≤ α
(1−α)wµ

[Hut05b].

268 CHAPTER 7. UNIVERSAL ARTIFICIAL INTELLIGENCE

8. [C40o] (Countable observation and action spaces) How does AIXI perform
when the set of observations O and the set of actions A are countably infinite? Is it
still self-optimizing?

9. [C35] (AIXI for sequence prediction) How does AIXI perform on the sequence
prediction problem? When the set of environments consist of sequence prediction
environments, how well does AIXI do? [Hut05b, Sec.6.2]

10. [C10] (Replacing posterior with prior in AIXI) Show that replacing the posterior
w(ν|h<t) with the prior wν in Theorem 7.4.2 leaves the optimal action unaffected. Show
that the “constant” ξ(e<t||a<t) (7.4.6) can indeed be dropped from Theorem 7.4.2.

11. [C20] (Universal chronological Turing machine) Show that there exists a
universal chronological Turing machine (see Definition 7.4.4).

12. [C20] (Chronological semimeasures) Show that ν(e1:m||a1:m) (7.4.8) and
ξ(e1:m||a1:m) (7.4.7) and M(e1:m||a1:m) (Theorem 7.4.5) are all chronological semimea-
sures.

13. [C20] (Existence of universal chronological semimeasures) Show that there
exists a universal chronological semimeasure (see Definition 6.3.1) in the sense of
dominating all other semicomputable chronological semimeasures, analogous to Propo-
sition 3.1.5 [Hut05b, Sec.5.10].

14. [C15] (Discrete (reverse) Fatou lemma) Prove
∑

ν lim inftcν,t≤ lim inft
∑

νcν,t
for cν,t≥0 by elementary means without using Theorem 2.2.46i. Use this to prove
lim supt

∑
νaν,t≤

∑
ν lim suptaν,t if

∑
νmax{0,suptaν,t}<∞.

15. [C30] (Chronological M ×=ξU) Show that M(e1:m||a1:m) ×=ξU (e1:m||a1:m) (7.4.9)
analogous to Theorem 3.8.8.

16. [C20] (M is a universal chronological semimeasure) Show thatM(e1:m||a1:m) is
a universal chronological semimeasure (see Definition 6.3.1) in the sense of dominating
all other semicomputable chronological semimeasures, analogous to Proposition 3.1.5.

17. [C40o] (Model-free AIXI) Derive a model-free version of AIXI in the same way
Q-learning is a model-free RL algorithm for MDPs.

18. [C33] (Uncertainty about the past) AIXI models uncertainty over its future with
M . What if AIXI was also uncertain about its past? How would AIXI resolve this
uncertainty and what would this AIXI look like?

19. [C25] (Performance of AIXI if µ ̸∈M) How well does AIXI perform on environ-
ments not inM? Hint: Make an assumption about how close the environment is to
an environment inM, possibly similar to Section 3.4.

7.6 History and References

Universal artificial intelligence began with [Hut00], which defined the agent AIXI,
included arguments as to why AIXI is the most intelligent agent possible, shows how AIXI
solved several interesting environment classes, provided a computable approximation of AIXI,
and introduced an intelligence order relation [Hut00] which led to the universal intelligence

7.6. HISTORY AND REFERENCES 269

measure Υ (Definition 16.7.1). This tech report was extended in [Hut03d] and summarized in
[Hut01e, Hut01f, Hut13b]. Shortly afterwards this work was extended further into the book
[Hut05b], which contained all the previously mentioned results. Study into the meaning
of intelligence as well as how it has been and should be defined, measured, and tested
was conducted in [LH05, LH06, LH07a, LH07c, LH07b]. This work included additional
arguments for why AIXI should be considered the most intelligent agent. Universal artificial
intelligence and how it can be used as a top-down approach to the problem of building
artificial general intelligence was described in [Hut07f]. Many of the open problems in UAI
were presented in [Hut09g], some of which have since been solved. The axiomatic approach
[SH11a, SH11b] demonstrated how rational behavior of an agent naturally leads to AIXI.
The advances that have been made in the field of UAI since its inception as well as some
possible future directions are discussed in [Hut12b]. The latest survey [EH18b] gives a
succinct description of the UAI field and much of the work that has taken place in this
field. Figure 7.1 shows a variety of environment classes for which self-optimizing policies
(don’t) exist. The proofs can be found in [Hut05b, LH04]. [RH06, RH08a] develops more
general criteria that enable (upper) self-optimizingness, based on the introduced notions of
recoverable, strongly explorable, and (worst-case) value-stable environments.

Bayesian reinforcement learning. UAI is a form of history-based universal Bayesian
RL, though the latter is mostly studied within the MDP frameworks; see [GMPT15] for a
survey. [GBVB13] shows how Bayesian inference can be used to reduce the complexity of
learning an environment by factorizing the observation space. This was tested empirically on
Atari 2600 games [BNVB13]. In [SHL97], an agent is defined to find an optimal policy for
the maximum a posteriori (MAP) estimate of the true environment. [Str00] takes a similar
approach, solving for the environment with the highest likelihood. [RK17] takes a Bayesian
approach to bandits, a subset of MDPs. [OB10b] allows for the agent to model external
interventions to its behavior.

Partial observability. Most RL is formulated within the MDP framework, but in reality
an agent often receives only limited information about the environment, and some information
about the state is hidden from view. Such environments are called Partially Observable
Markov Decision Processes (POMDPs), to which approaches based on Bayesian inference
have also been developed. [PVHR06] gives an analytic solution to a Bayesian model-based
approach to POMDPs, as well as an algorithm, BEETLE, for MDPs. They extend BEETLE
to POMDPs in [PV08]. [RCdP07] considered the space of all probability distributions over
states, called the belief space, and approximate this via a finite-dimensional subspace to obtain
ε-optimal solutions. Both of [RCdP07, PV08] factor the domain of beliefs using mixtures
of products of Dirichlet distributions. [WLBS05] uses “sparse sampling” to approximate
Bayes-optimal decision making. POTMMCP [SKH23] is an online MCTS-based planning
method for type-based reasoning in large POMDPs suitable for large planning horizon,
which comes with theoretical convergence guarantees and good practical performance in
a multi-agent setup. A heuristic market-based RL algorithm by [Bau99, Bau06] has been
evaluated in POMDP environments in [KHS01b], where reward is money which is conserved
and scarce, and agents have to pay for services and compute, and receive from other agents
for useful solutions provided.

Causality. This book does not explicitly consider causality, which may be surprising.
The actions and precepts in history h1:∞=a1e1a2e2... have a clear temporal order and the
chronology condition in Definition 6.3.1 ensures that actions and percepts only depend on
past and not future actions and percepts. That is all we need. There are of course intricate
research questions that require a deeper understanding and more explicit treatment of
causality [Pea00, PGJ16, PM18, PJS17] within Universal AI [OKD+21, EHKK21, CVH21,

270 CHAPTER 7. UNIVERSAL ARTIFICIAL INTELLIGENCE

EKH19, EH18a, ELH15] and beyond [HH22]. For instance, [MWV+21] considers the difficult
credit assignment problem of determining an action’s influence on future rewards from a
counterfactual point of view.

Chapter 8

Optimality of Universal Agents

Perfection is achieved, not when there is nothing more
to add, but when there is nothing left to take away.

Antoine de Saint-Exupéry, 1900–1940

8.1 Definitions of Optimality . 272
8.1.1 ν-Optimality . 272
8.1.2 Asymptotic Optimality . 273
8.1.3 Bayesian Optimality . 274
8.1.4 Regret Minimization . 275
8.1.5 Pareto Optimality . 279

8.2 Bad Priors . 280
8.2.1 Dogmatic Prior . 280
8.2.2 Indifference Prior . 281
8.2.3 Bad Priors, Bad Agents . 282

8.3 Problems with Optimality Criteria . 282
8.4 Exercises . 284
8.5 History and References . 285

To construct an optimal agent, it is necessary to define what is meant by optimal.
Throughout this chapter, we will discuss many notions of optimality in the literature.
In Section 8.1 we will give the definition of each optimality criterion, and describe
why it is useful and some of the problems it may have. Next, in Section 8.2, we show
how the behavior of a Bayesian agent may be undesirable under some choices of prior.
We also give reasons why these priors will not be used too often (or at all). Lastly,
in Section 8.3 we explore some potential problems with these optimality criteria, and
under what circumstances there exist policies that are optimal with respect to these
criteria.

271

272 CHAPTER 8. OPTIMALITY OF UNIVERSAL AGENTS

8.1 Definitions of Optimality

In this section we describe a variety of optimality criteria which a-priori look sensible. We
discuss their relative (dis)advantages, and whether AIXI or any other agent can actually
attain them. An agent that maximizes the value for the environment µ it interacts with is
called µ-optimal. Achieving this would be ideal, but is too strong a requirement for a general
agent. An ε-optimal agent is allowed to have up to ε less than maximal value, but even this
is too strong. Weaker still is the requirement that an agent only be optimal “in the limit”.
For an asymptotically optimal agent we require that the future value approaches optimality
only with increasing experience. This notion comes in stronger and weaker flavors: almost
sure, in expectation, in Cesàro average, which some agents can indeed achieve. Unfortunately,
asymptotically we are all dead, so these notions are somewhat weak. A Bayes-optimal
agent maximizes its value averaged over all considered environments, which is possibly the
most reasonable criterion. Unfortunately Bayes-optimal agents may not be asymptotically
optimal. Regret is a relative notion of performance, comparing the lifetime performance
of an agent from start to death to an agent that is informed about the true environment
in advance. Regret is a much stronger notion of optimality than asymptotic optimality.
Agents with finite regret are also asymptotically optimal, but the converse is only true if
the agent can recover from mistakes (a form of ergodicity assumption). Pareto optimality
is a very weak notion of optimality. An agent violating it can hardly be regarded optimal
in any interesting sense. In the context of Universal AI, this notion turns out to be even
vacuous. A stronger/refined balanced version of Pareto optimality turns to be equivalent to
Bayes-optimality.

8.1.1 ν-Optimality

Environment-based optimality, or ν-optimality for some environment ν, states that a policy
is optimal if it achieves the maximum value for all possible histories. The value (total
expected reward) of an agent π in environment ν has been formally defined Section 6.6.

Definition 8.1.1 (Optimal policy) A policy π is optimal in an environment ν
(ν-optimal) iff for all histories, π attains the optimal value: V π

ν (h) = V ∗
ν (h) for all

h ∈ (A×E)∗. The action a is an optimal action iff a ∈ argmaxa′π∗
ν(a

′|h) for some
ν-optimal policy π∗

ν .

This notion of optimality has been introduced in Chapter 6. If we know in advance the
true environment ν the agent faces, we can choose ν=µ. The resulting µ-optimal agent AIµ
with policy π∗

ν maximizes the expected reward over its lifetime. As such it is a very natural
optimality criterion. The dependence on the lifetime or discount γ could be eliminated in
theory by choosing a universal discount γt=2−K(t) with infinite horizon (see Table 6.4).
The assumption that the value is a sum of expected and non-negative rewards is rather
mild [Hut05b, 8.5.1]. The assumption that µ is known may only be met in simple artificial
settings, such as chess games, but is completely unrealistic for AGI purposes. This was
the reason for introducing AIXI, but AIXI is not µ-optimal; it is ξ-optimal, and has to
learn the true environment µ (see Chapter 7 and Section 8.1.3). µ-optimality for the true
environments is a too narrow/strict definition of optimality for AGI purposes.

One idea to solve these problems is to relax the notion of ν-optimality to the slightly
weaker ε-optimality version.

8.1. DEFINITIONS OF OPTIMALITY 273

Definition 8.1.2 (ε-optimal policy) A policy π is ε-optimal in an environment ν iff
V ∗
ν (h<t)−V π

ν (h<t)<ε for all histories h<t∈H.

Unfortunately even this weakened property of ε-optimality may be too strong a property
for an agent to have, since it still requires certain prior knowledge of the environment ν:

Example 8.1.3 (Heaven-Hell) Let ν1 be an environment (Figure 8.1) with two actions:
left and right. If the left action is taken, then the agent will receive the lowest allowed
reward (0) forever (hell), and if the right action is taken, the agent will receive the highest
allowed reward (1) forever (heaven). The policy π∗

ν1
that takes a1 =right is ν1-optimal.

Let ν2 be identical to ν1 except that the rewards for left and right are switched. So in ν2,
the policy π∗

ν1
will receive the lowest reward forever, and hence π∗

ν1
is not ν2-optimal. Of

course, π∗
ν2

is ν2-optimal, but this is not ν1-optimal. The point is that no policy can be
ν1-optimal and ν2-optimal. The best compromise is a random policy π̃(ϵ)= 1

2 , which achieves
V π̃
νi
= 1

2 <1=V ∗
νi
, that is, for ε< 1

2 no policy can be ε-optimal in ν1 and ν2 simultaneously.

�

hell start heaven

a=left

r=0

a=right

r=1

r=0 r=1

Figure 8.1: An instance ν1 of the Heaven-Hell environment. The other instance ν2 is
identical up to swapping all zero rewards for ones, and vice versa. The action taken in the
heaven or hell states is irrelevant.

8.1.2 Asymptotic Optimality

At an abstract level, an agent is asymptotically optimal if it eventually (asymptotically) does
well (optimal). Mathematically this means that the value of the agent’s policy converges to
the value of the optimal agent. Importantly, the value must converge for all environments
µ∈M [LLOH17].

Definition 8.1.4 (Asymptotic optimality) A policy π is asymptotically optimal
in an environment classM iff for all µ∈M, the difference between the optimal value
function V ∗

µ (h<t) and the value function under the policy π, V π
µ (h<t), converges to

zero as t→∞, i.e.,

V ∗
µ (h<t)−V π

µ (h<t) → 0 for t→∞ a.s.|i.p.=i.m.|Cesàro

on histories drawn from µπ.

Note that (the almost sure version of) asymptotic optimality is a special on-policy
instantiation of self-optimizingness Definition 7.3.3, where the future policy π̃ matches the
historic policy π. Note that the histories h<t are distributed according to µπ. This is
natural for V π

µ (h<t), but even V
∗
µ (h<t) is the value of the optimal agent in µ but given the

µπ-expected history h<t.
When convergence is almost sure (a.s.), then it is called strong asymptotic optimality.

When convergence is in mean or in probability (i.p), it is called asymptotic optimality in

274 CHAPTER 8. OPTIMALITY OF UNIVERSAL AGENTS

mean or in probability, respectively. When convergence is in Cesàro average, it is called
weak asymptotic optimality. Since we preserve the logical implications from probability (Fig-
ure 2.9), strong asymptotic optimality implies asymptotic optimality in mean, in probability,
and also weak asymptotic optimality.

The first asymptotic optimality we will define is weak asymptotic optimality. Essentially
an agent is weakly asymptotically optimal if its value function converges to the optimal
value function on average, also known as convergence in Cesàro mean. This means that the
agent may make an infinite number of errors during the interaction with the environment,
so long as the average number of errors is not too high, then the agent will still be weakly
asymptotically optimal.

Definition 8.1.5 (Weak asymptotic optimality) A policy π is weakly asymptoti-
cally optimal in an environment classM iff for all µ∈M,

Pπ
µ

(
lim
n→∞

1

n

n∑
t=1

[
V ∗
µ (h<t)−V π

µ (h<t)
]
=0

)
= 1

Next we consider asymptotic optimality in probability/mean. Convergence in probability
and convergence in mean are separate concepts, however, since the difference in value
functions, V ∗

µ (h<t)−V π
µ (h<t), is always bounded (by 1) and non negative (from the definition

of the V ∗
µ), asymptotic optimality in probability and asymptotic optimality in mean are

equivalent. A policy is asymptotically optimal in mean if the µπ-expected difference in value
functions V ∗

µ (h<t)−V π
µ (h<t) goes to 0 as t goes to infinity.

Definition 8.1.6 (Asymptotic optimality in probability/mean) A policy π is
asymptotically optimal in probability (or mean) in an environment classM iff for all
µ∈M,

lim
t→∞

Eπ
µ

[
V ∗
µ (h<t)−V π

µ (h<t)
]
= 0

Lastly we have strong asymptotic optimality, a notion that will turn out to be exceedingly
hard and in some cases impossible to achieve.

Definition 8.1.7 (Strong asymptotic optimality) A policy π is strongly asymp-
totically optimal in an environment classM iff for all µ∈M,

Pπ
µ

(
lim
t→∞

(V ∗
µ (h<t)−V π

µ (h<t))=0
)
= 1

As mentioned, the definition of strong asymptotic optimality is an on-policy version of
self-optimizingness. If in Theorem 7.3.7 we choose as historic policy the Bayes-optimal policy
π=π∗

ξ itself, then the conclusion of Theorem 7.3.7 is that π∗
ξ is strongly asymptotically

optimal.

8.1.3 Bayesian Optimality

Considered by many to be the most reasonable definition of optimality, Bayesian optimality
is much like one would expect, optimal in a Bayesian sense with respect to a mixture over a
class of environments.

8.1. DEFINITIONS OF OPTIMALITY 275

Definition 8.1.8 (Bayesian optimality) A policy π is Bayes-optimal with respect
to prior {wν} over environment classM if for all histories h<t∈H,

V π
ξw(h<t) = V ∗

ξw(h<t)

where ξw is the Bayesian mixture overM with prior {wν} (Definitions 7.2.1 and 7.2.2).

Important instances of Bayesian optimality are as follows: the agent AIXI is a Bayes-
optimal agent in the classMsol with the prior wν=2−K(ν); additionally, any agent which
maximizes Legg–Hutter intelligence (Definition 16.7.1) is also Bayes-optimal.

When deciding on an optimality criterion it is important to be very clear about what
kind of behavior we want the resulting optimal agents to have, and at what timescale.
We have discussed asymptotic optimality criteria, which will eventually perform well, but
possibly not before the heat-death of the universe. In Section 8.1.4 we will discuss regret
minimization which works well in the short term, but may have undesirable asymptotic
behavior. Bayes-optimality can have the best (compromise) of both worlds. We have shown
in Theorems 7.3.1 and 7.3.7 that under certain conditions, Bayes-optimal agents will perform
well asymptotically, and under the right choice of prior, Bayes-optimal agents can perform
well in the short term.

Bayes-optimality is equivalent to ξw-optimality, a special case of ν-optimality. The
dependency on w andM cannot easily be avoided: If we were to weaken Bayes-optimality to
merely require the existence of a (w,M) such that V π

ξw
(·)=V ∗

ξw
(·), then every policy would

be Bayes-optimal, as we can simply choose a trivial environment νeasy where any policy is
optimal (e.g. an environment that always issues reward 1 regardless of action taken), and set
M={νeasy} (similar to the proof of Theorem 8.1.19). In the other direction, strengthening
to every choice of (w,M) also fails for a similar reason: Given any policy π, one can construct
an adversarial environment νπ that issues reward 0 for action argmaxat

π(at|h<t) and 1 for
all other actions. Therefore, there cannot exist any Bayes-optimal policies, so the definition
is useless. Bayes-optimality is only possible relative to some (w,M) and only interesting
for “interesting” choices ofM and w, with (2−K(ν),Msol) being the most interesting choice
from an AGI perspective.

Relying on a prior and model class can be a downside in the sense that the optimality
criterion depends (possibly heavily) on the choice of the prior, that is, under different priors
the optimal agent may behave quite differently. In Section 8.2, we will show that there exist
priors which can cause a Bayes-optimal agent to act in undesirable ways. On the other hand,
there are good classes and priors for which Bayes-optimal policies are self-optimizing (see
Figure 7.1). The most promising is the universal prior 2−KU (ν) described earlier based on a
natural universal Turing machine. This pushes the problem to finding a good natural Turing
machine to be discussed later.

8.1.4 Regret Minimization

In hindsight it is sometimes easy to look back and see what would have been the best
course of action. Indeed there are many circumstances where optimal choices only become
known after the fact. The mathematical form of this notion is called regret [JOA10]. The
regret of an agent π is the difference between the performance of the optimal agent and the
performance of π. Formally:

276 CHAPTER 8. OPTIMALITY OF UNIVERSAL AGENTS

Definition 8.1.9 (Regret [Lei16b]) The regret of a policy π in an environment µ
with horizon m is

Regretm(π,µ) := sup
π′

Eπ′

µ

[m∑
t=1

rt

]
−Eπ

µ

[m∑
t=1

rt

]
= m

[
sup
π′
V π′,m
µ,γ=1(ϵ)−V π,m

µ,γ=1(ϵ)
]

Additionally we say a policy π has sublinear regret if Regretm(π,µ) = o(m).

Note that since we are considering the finite horizon value unnormalized function mV π,m
µ

without discounting γk=Jk≤mK, the regret may be at most mrmax=m. While regret is a
performance measure of the agent, sublinear regret is a notion of optimality of the agent.
Essentially, an agent has sublinear regret if it does not take actions which are too suboptimal
too often. Although it seems desirable to have an agent trying to perform as close as it can
to the optimal agent, there are some downsides to regret minimization, the largest being
how it makes the agent not care about the long term as it only cares about the value up to
horizon m, almost the exact opposite problem to asymptotic optimality.

Example 8.1.10 (Regret is stronger than asymptotic optimality) Consider an agent
π in an environment µ taking the least rewarding action for m steps, then performs the
µ-optimal action on every time step afterward. If we used regret with horizon m to measure
the performance of this agent, we would say this agent is as far from optimal as can be.
However, since it takes the µ-optimal actions after a finite time, we know it is asymptotically
optimal. �

This duality between regret minimization and asymptotic optimality has sparked some
research into seeing how one can combine these two into one criterion. For the following
theorem, we need to make some extra assumptions on the choice of discount function.

Assumption 8.1.11 (Extra discount function assumptions) Let the discount
function γ be such that

• γt>0 for all t

• γt is decreasing in t

• limt→∞Ht(ε)/t=0 for all ε>0.

where Ht(ε) is the effective horizon (Definition 6.4.2).

The first assumption is basically stating that a positive reward is still worth more than
nothing, regardless how far into the future it will be received. The second assumption
requires that rewards that are closer to the present are always worth at least as much as
those received later. The third assumption is a constraint on how farsighted the ε-effective
horizon is permitted to be. Note that the geometric discount satisfies the assumptions above.

We also need to restrict the possible environments to ones in which an agent can recover
from taking “bad” actions. For this we will use the notion of recoverable. If an agent is
acting in an environment it believes is safe to explore, it may take actions (fall off a cliff)
from which it cannot learn not to repeat.

Let Eπ1
ν1
[V π2

ν2
(h<t)] denote the expected value function of a policy π2 on environment ν2

on a past history h<t generated by policy π1 on environment ν1.

8.1. DEFINITIONS OF OPTIMALITY 277

Definition 8.1.12 (Recoverable environments) An environment µ is recoverable
iff

sup
π

∣∣∣Eπ∗
µ

µ [V ∗
µ (h<t)]−Eπ

µ[V
∗
µ (h

′
<t)]

∣∣∣ −→ 0 for t→∞

Note that the expectations are with respect to different policies: The history h<t is sampled
from µπ∗

µ , whereas h′<t is sampled from µπ. Intuitively, recoverable means that regardless of
what the past history was, or how poor a policy π was following, switching to an optimal
policy π∗ at time t onwards converges to the same value obtained had the optimal policy
been followed from the beginning. This means that no action can lock the agent out of parts
of the environment required for maximum reward, and any mistakes made early on can
be recovered from, which excludes things like cliffs to fall off from which the agent cannot
return and traps such as the Heaven-Hell Example 8.1.3.

Theorem 8.1.13 (Sublinear regret in recoverable environments) If the discount
function γ satisfies Assumption 8.1.11, the environment µ is recoverable, and π is
asymptotically optimal in mean inM={µ}, then Regretm(π,µ) = o(m).

Proof. We follow the proof from [Lei16b]. Let πm :=argmaxπRegretm(π,µ). We want to
show that

lim sup
m→∞

Eπm
µ

[
1

m

m∑
t=1

rt

]
−Eπ

µ

[
1

m

m∑
t=1

rt

]
≤ 0

Let d
(m)
k :=Eπm

µ [rk]−Eπ
µ[rk]. We have that −1≤d(m)

k ≤1, since rewards are bounded between
0 and 1. From the definition of recoverable, since π and πm are not worse than the worst
policy, we have that∣∣Eπ∗

µ
µ [V ∗

µ (h<t)]−Eπ
µ[V

∗
µ (h<t)]

∣∣ → 0 for t→∞ and

sup
m

∣∣Eπ∗
µ

µ [V ∗
µ (h<t)]−Eπm

µ [V ∗
µ (h<t)]

∣∣ → 0 for t→∞

Combining these with the triangle inequality we get

sup
m

Eπm
µ [V ∗

µ (h<t)]−Eπ
µ[V

∗
µ (h<t)] → 0 for t→∞ (8.1.14)

Since π is asymptotically optimal in mean we have that

Eπ
µ[V

∗
µ (h<t)]−Eπ

µ[V
π
µ (h<t)] → 0 for t→∞

Combining the two previous lines we get

sup
m

Eπm
µ [V ∗

µ (h<t)]−Eπ
µ[V

π
µ (h<t)] → 0 for t→∞

Since V ∗
µ ≥V πm

µ we have

lim sup
t→∞

[
sup
m

Eπm
µ [V πm

µ (h<t)]−Eπ
µ[V

π
µ (h<t)]

]
≤ 0 (8.1.15)

For any policy π′ we can rewrite our expectation of the value function as

Eπ′

µ [V π′

µ (h<t)] = Eπ′

µ

[
1

Γt

∞∑
k=t

γkrk

]
=

1

Γt

∞∑
k=t

γkE
π′

µ [rk]

278 CHAPTER 8. OPTIMALITY OF UNIVERSAL AGENTS

Then, using this form for (8.1.14) and (8.1.15) and d
(m)
k , we get

lim sup
t→∞

sup
m

1

Γt

∞∑
k=t

γkd
(m)
k ≤ 0

Let ε>0. Choose t0 independent of m and large enough such that 1
Γt

∑∞
k=tγkd

(m)
k <ε for

all m and t≥ t0. Now we will split the sum
∑m

k=1d
(m)
k at the point t0. We will additionally

define bt for t0≤ t≤m as

bt0 =
Γt0

γt0
and bt=

Γt

γt
− Γt

γt−1
for t>t0

The following equalities for bt can easily be verified by inserting the definitions and swapping
the two sums:

m∑
t=t0

d
(m)
t =

m∑
t=t0

bt
Γt

m∑
k=t

γkd
(m)
k and

m∑
t=t0

bt
Γt

=
1

γm
(8.1.16)

Additionally, for the sum from t0 to m of bt we get

m∑
t=t0

bt =
Γt0

γt0
+

m∑
t=t0+1

(
Γt

γt
− Γt

γt−1

)
=

Γm+1

γm
+

m∑
t=t0

(
Γt

γt
−Γt+1

γt

)
=

Γm+1

γm
+ m−t0+1

From the definition of the effective horizon Hm(ε) (Definition 6.4.2) and monotonicity
assumption on γ we get

εΓm ≥ Γm+Hm(ε) = Γm−γm−...−γm+Hm(ε)−1 ≥ Γm−Hm(ε)γm

which implies
Hm(ε)

1−ε ≥ Γm

γm
≥ Γm+1

γm

Combining everything we get for the regret

Regretm(π,µ) =

m∑
t=1

d
(m)
t ≤

t0∑
t=1

d
(m)
t +

m∑
t=t0

bt
Γt

m∑
k=t

γkd
(m)
k

≤ t0+

m∑
t=t0

bt
Γt

∞∑
k=t

γkd
(m)
k −

m∑
t=t0

bt
Γt

∞∑
k=m+1

γkd
(m)
k

< t0+

m∑
t=t0

btε+

m∑
t=t0

btΓm+1

Γt

= t0+ε
Γm+1

γm
+ε(m−t0+1)+

Γm+1

γm

≤ t0+
(1+ε)Hm(ε)

1−ε +ε(m−t0+1)

By Assumption 8.1.11 we have Hm(ε)=o(m), hence

lim sup
m→∞

1
mRegretm(π,µ) ≤ ε

Since ε was arbitrary, we have the desired result. �

8.1. DEFINITIONS OF OPTIMALITY 279

8.1.5 Pareto Optimality

Related to the game theoretic definition of Pareto Efficiency [OR94], an agent is Pareto
optimal if there is no other agent which is at least as good in every environment, and is
strictly better in at least one environment.

Definition 8.1.17 (Pareto optimality)
A policy π is Pareto optimal in a set of environmentsM iff there is no policy π′

such that V π′

ν ≥V π
ν for all ν∈M and V π′

ρ >V π
ρ for at least one ρ∈M.

In general, the notion of Pareto optimality is useful when there is a set of conflicting
criteria that we want to satisfy or be optimal in. The different criteria we are interested in
are performance in different environments inM. The set of Pareto optimal agents is called
the Pareto frontier.

Theorem 8.1.18 (AIξ and AIXI are Pareto optimal)

Proof. Assume π∗
ξ is not Pareto optimal, and let π be the dominating policy, i.e. V π

ν ≥V
π∗
ξ

ν

for all ν∈M and strict inequality for at least one ν∈M. Then

V π
ξ =

∑
ν

wνV
π
ν >

∑
ν

wνV
π∗
ξ

ν = V
π∗
ξ

ξ ≡ V ∗
ξ ≥ V π

ξ

The two equalities follow from linearity of Vρ Theorem 7.2.5. The strict inequality follows
from the assumption and wν>0. The last inequality follows from the fact that π∗

ξ maximizes
by definition the universal value Definition 6.6.1. The contradiction V π

ξ >V
π
ξ proves Pareto

optimality of AIξ. AIXI is just the special case of AIξ withM=Msol. �

It is comforting that AIξ is Pareto optimal, since a violation would clearly render π∗
ξ

intuitively suboptimal. Unfortunately for any class of environments which containsMcomp,
every policy is Pareto optimal [Lei16b], so Pareto-optimality is a vacuous notion for AIXI.

Theorem 8.1.19 (Every policy is Pareto optimal in any M⊇Mcomp)

Proof. The proof follows [Lei16b]. Without loss of generality, assume the action space A has
size 2. To prove the theorem by contradiction. Assume π is not Pareto optimal. Therefore
there exists some a policy π′ strictly dominating π in the sense that for all ν∈M we have
V π′

ν ≥V π
ν and there exists a ρ∈M such that V π′

ρ >V π
ρ . Since V π′

ρ >V π
ρ , then in ρ there must

exist some histories where π and π′ will take different actions (have different distributions
over actions for stochastic policies). Let ḣ<t be the (lexicographically) first history in which
π and π′ disagree, hence there exists an action ȧt for which π(ȧt|ḣ<t)>π

′(ȧt|ḣ<t). We can
define a computable environment µ which is identical to ρ for any history that is not an
extension of ḣ<t, and then rewards 1 forever if action ȧt is taken, and otherwise rewards
0. Since π takes ȧt more likely than π′ given ḣ<t, and they coincide otherwise, we have
V π
µ >V

π′

µ which contradicts the assumption that π′ dominates π, since µ∈Mcomp⊆M. �

There is a refined version of Pareto optimality called balanced Pareto optimality, which
could be seen as Bayes optimality (Section 8.1.3) in a Pareto optimality form.

280 CHAPTER 8. OPTIMALITY OF UNIVERSAL AGENTS

Definition 8.1.20 (Balanced Pareto optimality [Hut02c, Lei16b]) Given a prior
w∈∆′M (see Definition 6.1.1) whereM is an environment class, a policy π is balanced
Pareto optimal if it achieves a better value acrossM weighted by w∈∆′M than any
other policy, formally, if for all policies π̃,∑

ν∈M
wν [V

π
ν −V π̃

ν] ≥ 0

Note that all and only Bayes-optimal policies π∗
ξw

are balanced Pareto optimal for w:∑
ν∈M

wν [V
π
ν −V π̃

ν] = V π
ξw−V π̃

ξw ≥ 0 ∀π̃ iff π=π∗
ξw

Hence balanced Pareto optimality has the same features (advantages and problems)
as Bayes optimality (Section 8.1.3), e.g. dependence on the prior. In Section 8.2, we will
describe some of the possible bad priors which would cause balanced Pareto optimality to
become a less useful definition.

8.2 Bad Priors

The prior is one of the most important aspects for Bayesian optimality. However, as we
will show below, some priors are less than ideal, and can cause Bayesian optimal policies to
perform quite poorly [Ors10, Lei16b, LH15b].

8.2.1 Dogmatic Prior

First we have the dogmatic prior: Given any policy and a history generated by that policy
interacting with the environment, there is a prior for which following that policy is Bayes-
optimal. We call this prior the dogmatic prior as the Bayes-optimal agent dogmatically
believes that it must follow that policy. Dogmatically following a single policy will rarely be
what we want our Bayes-optimal agent to do, as the agent will never learn from its mistakes,
but note that the priors here are adversarially chosen.

Theorem 8.2.1 (Dogmatic prior [LH15b]) Let π be any deterministic computable
policy, let ξ be any Bayesian mixture overMsol with weights w∈∆′Msol, and let ε∈Q
with ε>0. There is a universal mixture ξ′ with respect to some prior such that for
any history h<t consistent with π and V π

ξ (h<t)>ε, the action π(h<t) is the unique
ξ′-optimal action.

Proof. This proof follows [Lei16b]. For all environments ν ∈Msol we can define a new
environment ρπ,ν ∈Msol such that ρπ,ν is identical to ν until it receives an action that π
would not take, then outputs reward 0 forever. We will now derive new weights w′ to weigh
environments ρπ,ν higher than ν. Define

w′
ν := εwν if ν ̸=ρπ,ν′ ∀ν′∈Msol

and w′
ρπ,ν

:= (1−ε)wν+εwρπ,ν
otherwise

8.2. BAD PRIORS 281

Checking that the new weights sum to 1,∑
ν∈Msol

w′
ν =

∑
ν=ρπ,ν

w′
ν+

∑
ν ̸=ρπ,ν′∀ν′

w′
ν

=
∑

ν=ρπ,ν

((1−ε)wρπ,ν +εwν) +
∑

ν ̸=ρπ,ν′∀ν′

εwν

=
∑

ν∈Msol

εwν +
∑

ν∈Msol

(1−ε)wν

= ε + (1−ε) = 1

Therefore w′ is a valid choice of prior overMsol, and we can define a Bayesian mixture ξ′ over
Msol using the prior w′. We can also define the mixture over the ρ’s by ρ :=

∑
ν∈Msol

wνρπ,ν ,
and rewrite ξ′ as ξ′=εξ+(1−ε)ρ.

From now on, let h<t be a history consistent with π i.e. actions generated by π. For
such h<t, ρπ,ν = ν, hence ρ= ξ, hence ξ′= ξ. Considering the class M= {ξ,ρ} with prior
wξ=ε and wρ=1−ε, this implies that the posterior coincides with the prior on such h<t

(see Definition 7.2.2). Linearity of the Q-value function (Theorem 7.2.5) for any policy π′

and any action at can hence be expressed in terms of prior weights

Qπ′

ξ′ (h<tat) = εQπ′

ξ (h<tat)+(1−ε)Qπ′

ρ (h<tat)

Let a∗=π(h<t) and a
′ be any other action. We will show that a∗ is the ξ′-optimal action by

showing that V ∗
ξ′(h<ta

∗)>V ∗
ξ′(h<ta

′).

Q∗
ξ′(h<ta

∗) ≥ Qπ
ξ′(h<ta

∗) = Qπ
ξ (h<ta

∗) = V π
ξ (h<t) > ε

Q∗
ξ′(h<ta

′) = εQπ
ξ (h<ta

′)+(1−ε)Qπ
ρ (h<ta

′) = εQπ
ξ (h<ta

′)+0 ≤ ε

Therefore a∗=π(h<t) is the ξ
′-optimal action for history h<t. �

8.2.2 Indifference Prior

Another bad prior is the indifference prior. The indifference prior, under certain conditions,
makes all policies Bayes-optimal with respect to the prior. Because all policies are optimal
and therefore equal in value, the Bayes-optimal agent using this prior will choose its actions
entirely based on whatever tie-breaker is used. Having the decisions of the agent based
only on the tie-breakers is not ideal, as depending on the tie-breaker used, the agent can be
convinced it should take any arbitrary action. This prior does however rely heavily on the
assumption that eventually the discount factor γm will be 0, which is never the case with
the classic geometric discounting γm≥γm>0.

Theorem 8.2.2 (Indifference prior [LH15b]) If there is anm such that the discount
normalization factor Γm=0, then there is a Bayesian mixture ξ′ such that all policies
are ξ′-optimal.

Proof. This proof follows [Lei16b]. Assume the action space is A={0,1}. Let U be some
universal Turing machine and define U ′ such that U ′ does not halt on programs of length
less than m, and for programs p of length at least m,

U ′(p,a) := U(pm:ℓ(p), a xor p1:ℓ(a))

282 CHAPTER 8. OPTIMALITY OF UNIVERSAL AGENTS

Then we can define a chronological Solomonoff distribution (which by Theorem 3.8.8 extended
to the agent case (7.4.9) is a Bayesian mixture ξ′) with respect to U ′ as the underlying
universal Turing machine as

ξ′(e<m||a<m) =
∑

p:e<m⊑U ′(p,a<m)

2−ℓ(p)

(a)
=
∑
s<mp′:e1:t⊑U ′(s<mp′,a<m)

2−m−1−ℓ(p′)

=
∑
s<m

∑
p′:e1:t⊑U(p′,a<m xor s<m)

2−m−1−ℓ(p′)

(b)
=
∑
s<m

∑
p′:e1:t⊑U(p′,s<m)

2−m−1−ℓ(p′)

(a) comes from decomposing p as s<mp
′. (b) comes from the fact we are summing over all

s<m and xor-ing them with a<m, and this is identical to summing over all s<m. Therefore
the mixture ξ′ does not depend on a<m for the first m−1 actions. For the remaining actions,
since Γm =0, the rewards after time step m do not matter. Since the mixture does not
depend on the actions taken, all policies have the same value V π

ξ , hence all policies are

optimal with respect to this mixture. �

This example (of a prior) is very artificial, and not unexpected given the unnatural
universal Turing machine U ′ which depends on m and reserves m−1 bits to “mask” the
first m−1 actions. If we increase AIXI’s lifetime while fixing the UTM U ′, the result
no longer holds. An analogous result holds for Solomonoff induction: Theorem 3.8.9
and Corollary 3.5.14 imply that Solomonoff’s distribution M makes at most K(µ)2ln2=
Km(x1:∞)2ln2 errors for predicting deterministic sequences x1:∞. In case the shortest
program has length >m, there is no guarantee that we make less than m errors.

8.2.3 Bad Priors, Bad Agents

Clearly, when the above “bad priors” are used, the Bayes-optimal agent is still Bayes-optimal,
but in both cases does not behave as we would like. Intuitively, we know that following an
arbitrary fixed policy, or being indifferent to all actions are both not generally intelligent
behavior. Does this mean that Bayesian optimality is a poor choice of optimality criteria?

No. The existence of a bad prior does not invalidate the idea of Bayesian optimality, it
just means one has to be careful when choosing a prior. Importantly, the existence of bad
priors does not mean good priors do not exist or are not easy to find. Indeed it is plausible
that natural UTMs lead to good priors (see also Example 2.7.5).

8.3 Problems with Optimality Criteria

The quest for a “perfect” optimality criterion, strong enough that it is useful and weak
enough that it can be satisfied, may in fact be futile. In this section we explore the weakness
and feasibility of the optimality notions introduced in Section 8.1. Not only do we want
an optimality criterion that has certain desirable properties such as eventually performing
well and not falling into traps (generally regret minimization agents tend to avoid traps but
asymptotically optimal agents may jump into traps), we also want the agents which satisfy
the criteria to be somewhat practical, as we would like to eventually implement such agents

8.3. PROBLEMS WITH OPTIMALITY CRITERIA 283

in the real world. This is where criteria such as asymptotic optimality falls short, since for
an arbitrarily long amount of time an asymptotically optimal agent may receive low or no
reward [Lei16b].

Theorem 8.3.1 (No deterministic strong asymptotically optimal policy
[LH11a]) There is no deterministic policy that is strong asymptotically optimal
(Definition 8.1.7) in the class of environmentsM⊇Mcomp.

Proof sketch. We prove this by contradiction. Assume that there is a deterministic strongly
asymptotically optimal policy π. Then we construct two computable environments µ1 and
µ2 which will be inM sinceM⊇Mcomp. The environments µ1 and µ2 are identical up to a
time T at which point the unique optimal action in µ1 is up forever and the unique optimal
action in µ2 is down forever. Since π is strongly asymptotically optimal in µ1, there exists a
T such that for all t≥T , π(h<t)=up forever, however, this means that π is not strongly
asymptotically optimal in µ2, therefore we have a contradiction, hence there does not exist
a deterministic strongly asymptotically optimal policy. �

Theorem 8.3.1 is a very general result: since it includes all deterministic policies, it also
includes the Bayes-optimal policy AIXI. We can, however, be even more general and show
that there does not exist a policy which can attain even weak asymptotic optimality for the
class of all environments.

Theorem 8.3.2 (No weak asymptotically optimal policy for general M)
If we consider M to be the class of all environments, then there is no weak

asymptotically optimal policy forM.

Proof. This essentially comes from constructing an environment specifically tuned against a
given policy π, one where the reward for actions is chosen such that there will be the largest
difference between reward (value) of actions taken by π and the optimal actions. Since there
are no restrictions on the computability level of the environments, this is true for all policies
π. �

The impossibility results above paint a bleak picture for the notion of asymptotic
optimality for general history-based agents. But the situation is actually not as bad as it
looks. The proofs crucially depend on the policy being deterministic. Weak (Theorem 9.4.1)
and strong (Theorem 9.4.2) asymptotic optimality are actually achievable by stochastic
policies which add extra exploration to AIξ (Section 9.4).

Which optimality criteria an artificial general intelligence would or should satisfy remains
an open question. For instance, should we conclude from the fact that AIξ is not strongly
asymptotically optimal to use Inq, which is? Or does Inq fare worse than AIξ w.r.t. other,
possibly more important, optimality criteria? For instance, it has been shown that for any
asymptotic optimal agent in an environment where it is possible for the agent to destroy
itself, it will eventually do so almost certainly [CHC21]. We have introduced and investigated
a number of potential criteria, but many more exist; some are mentioned in the reference
section. Studying how these criteria relate to each other and which are achievable under
which conditions helps us narrow down desirable optimality criteria achievable by (theoretical
and practical) artificial general intelligences.

284 CHAPTER 8. OPTIMALITY OF UNIVERSAL AGENTS

8.4 Exercises

1. [C10] (Balanced Pareto optimal = Bayes-optimal) Prove that an agent is
balanced Pareto optimal iff it is Bayes-optimal.

2. [C20] (No Pareto-optimal policy) Give an example of an environment classM
and a family of policies {πi} such that no policy is Pareto optimal.

3. [C20] (Discounting properties) Prove that geometric discounting satisfies As-
sumption 8.1.11, and that all of the other discounting methods (power, finite lifetime,
harmonic, hyperbolic, universal, no discount) from Table 6.4 fail at least one of the
three assumptions.

4. [C15] (Sublinear regret) Prove the equalities in (8.1.16).

5. [C24] (Existence of Pareto optimal policies) Prove that if A and E are finite, a
Pareto optimal policy exists.

6. [C19] (Pareto domination) Prove that if π is not Pareto optimal, then it is Pareto
dominated by a Pareto optimal policy π′.

7. [C24] (Dogmatic prior) Weaken the premises of Theorem 8.2.1 to no longer require
that V π

ξ (h<t)>ε. Prove that the action π(h<t) is a ξ
′-optimal action, but may not be

uniquely optimal.

8. [C15] (Non ν-optimal π) Show that for all π, there exists an environment ν such
that π is not ν-optimal.

9. [C20] (Strong ⇒ i.m. & weak) Prove that strong asymptotic optimality implies
both asymptotic optimality in mean and also weak asymptotic optimality.

10. [C28] (i.m. ̸⇒ Cesàro a.s.) Provide a counter-example that convergence-in-mean
does not imply Cesàro-convergence almost surely.

11. [C20] (i.m. ⇒ Cesàro i.m.) Prove that convergence-in-mean implies Cesàro
convergence-in-mean.

12. [C23] (a.s. ⇒ Cesàro a.s.) Prove convergence almost surely implies Cesàro
convergence almost surely.

13. [C18] (weak ̸⇒ i.m. ̸⇒ weak) Provide a counter-example that weak asymptotic
optimality does not imply asymptotic optimality in mean and a counter example that
asymptotic optimality in mean does not imply weak asymptotic optimality.

14. [C30] (No deterministic strong a.o.) Formalize the proof of Theorem 8.3.1.

15. [C18] (No weak a.o.) Formalize the proof of Theorem 8.3.2.

16. [C32] (ε-optimality) Derive an ε-optimal equivalent of the notions of optimality
discussed in this chapter. How do they differ from the non ε-optimal versions? When
are they equivalent?

8.5. HISTORY AND REFERENCES 285

8.5 History and References

Notions of optimality. This chapter is based on material from [LH15b] and [Lei16b,
Chp.5]. Universal Bayesian agents were introduced in [Hut02c] which showed that AIξ is
Self-Optimizing and Pareto-Optimal. A comprehensive review of many of the notions of
optimality discussed in this chapter and beyond can be found in [Hut05b, LH15b, Lei16b].
Related to regret and asymptotic optimality are the PAC and sample-complexity based
optimality notions. Near-optimal PAC bounds for finite discounted MDPs based on Upper
Confidence Reinforcement Learning (UCRL) [JOA10] have been proven in [LH12, LH14d].
The first PAC result in general reinforcement learning was given in [LHS13b], with additional
work being done in the case of feature abstractions being utilized in [RLDG22]. A simple but
very general Bayesian regret bound covering and unifying many special cases was presented
in [LVRD+21].

Asymptotic optimality. The difficulty of asymptotic optimality was first demonstrated
in [Ors10], where it was shown that AIXI is not asymptotically optimal. These results were
extended in [LH11a] where the authors defined two notions of asymptotic optimality and
showed that under certain conditions these can(not) be satisfied. One of the difficulties
with asymptotic optimality is that to achieve it, an agent needs to explore enough to gain
sufficient information [RVR14, RCV16]. This exploration comes at a cost, in particular it
was shown if an agent explores enough to be asymptotically optimal then it also explores
enough to die with certainty, if the environment allows for the ability for the agent to do
so [CHC21]. Algorithms which are able to achieve both asymptotic optimality results and
regret-based optimality [JOA10] results, as well as the connection between the two are
presented in [KLVS21, LLOH16, Lei16b]. The existence of a policy which is able to achieve
strong asymptotic optimality was proven in [CCH19].

Chapter 9

Other Universal Agents

Artificial intelligence thrives at the crossroads of ex-
ploration and exploitation, where we must judiciously
balance curiosity and pragmatism, ensuring that our cre-
ations serve as catalysts for human advancement rather
than mere reflections of our limitations.

ChatGPT, 2023

9.1 Optimistic Agents . 287
9.2 (Thompson)Sampling Agents . 290
9.3 Knowledge-Seeking Agents . 291
9.4 Exploring Agents (BayesExp and Inq) 296
9.5 Planning-Avoiding Agents (Self-AIXI) 299
9.6 Exercises . 301
9.7 History and References . 302

Since the inception of the theory of Universal Artificial Intelligence there have been
various extensions proposed, including extensions of the AIXI agent. Most of these
extensions attempt to address shortcomings of AIXI. One downside is that AIXI fails
to be asymptotically optimal; whether asymptotic optimality is actually a reasonable
criterion for intelligent agents was discussed in Section 8.3. In this chapter we will
explore several extensions to the AIXI agent, two of which do satisfy asymptomatic
optimality.

In Section 9.1 we will look at the first extension, an optimistic agent. It has been long
regarded that in reinforcement learning, pessimism can be a good strategy to hedge
one’s bets, encouraging the agent to explore more when it is repeatedly disappointed
by reality not matching its expectations. [GS04] suggests that when a gambler does not
even know the probability distribution of the outcome, maximizing the distribution with
the lowest expected value gives a robust strategy in the face of uncertainty. However,
it has been shown that for intelligent agents acting in an environment, optimism can
also lead to strong results. [SH15b] gives π◦, an optimistic version of the AIXI agent,
which was shown (under certain conditions) to be ε-optimal (Definition 8.1.2).

In Section 9.2 we discuss sampling agents, agents that are based on sampling from the
environment the agent believes itself to be interacting with. Using a technique called

286

9.1. OPTIMISTIC AGENTS 287

Thompson sampling, it has been shown that such agents are asymptotically optimal in
mean. In Section 9.3, the question is posed of what a universal agent should optimize
for if no extrinsic rewards are provided from the environment. These agents, called
knowledge-seeking agents (KSAs), receive a reward based on the “knowledge” gained,
quantified as the difference between the prior and posterior after observing evidence. In
Section 9.4 we present explorative agents, which do not greedily maximize reward like
the AIXI agent, but instead explore the environment with some probability, occasionally
taking actions which are not Bayes-optimal (similar to the idea of an ε-greedy agent
in Q-learning [SB18]). By carefully choosing when the agent explores, this leads to
the asymptotically optimal agents, known as BayesExp and Inq. In Section 9.5 we
introduce Self-AIXI, which self-predicts its own action stream, sidestepping expensive
expectimax planning (or MCTS) in favor of learning the Q-value function using Bellman
equations (Theorem 6.7.2) or Temporal Difference (TD) learning.

9.1 Optimistic Agents

For prediction, it has been shown that pessimism (maximizing the worst case) can be
optimal [GS04]. Interestingly, in the history-based reinforcement learning setting, acting
optimistically leads to optimal behavior. What do we mean by optimism and pessimism
though? In this context, optimism (resp. pessimism) means the agent assumes itself to
be interacting with the best (resp. worst) possible environment. Here, best (resp. worse)
correspond to the environment ν with the highest (resp. lowest) value for V ∗

ν , where ν is
selected from only those environments in the model classM that are consistent with the
history so far. The optimistic agent will instead select the best environment, and choose the
best action for that environment:

πo(h<t) := argmax
π

max
ν∈Mt

V π
ν (h<t)

whereMt is the set of environments consistent with history h1:t. The setMt is updated on
every time step, and environments that are ruled out are removed. Compare this to AIξ,
which chooses the best action based on the Bayesian mixture ξ over all environments:

π∗
ξ (h<t) := argmax

π
V π
ξ (h<t) := argmax

π

∑
ν∈M

w(ν|h<t)V
π
ν (h<t)

Deterministic environments. Using this principle of optimism, [SH12a] developed an
optimistic agent for a given finite class of deterministic environmentsM0.

This algorithm finds the most optimistic deterministic policy-environment pair (π∗,ν∗),
then follows policy π∗, at each step removing environments that are inconsistent with the
history. If the environment ν∗ is ever found inconsistent, then it is discarded, and the agent
selects a new optimal policy-environment pair.

Choose Π to be the set of all deterministic policies, we have that Algorithm 9.1 is not
only (strongly) asymptotically optimal, but an even stronger result: there is some finite time
after which the policy will be exactly optimal.

Theorem 9.1.1 (Optimism is asymptotically optimal for finite deterministic
classes [SH12a]) SupposeM is a finite class of deterministic environments. Suppose
Π is any class of deterministic policies, If we use Algorithm 9.1 (πo) in an environment
µ∈M, then there is a T <∞ such that

V πo

µ (h<t) = sup
π∈Π

V π
µ (h<t) ∀ t≥T

288 CHAPTER 9. OTHER UNIVERSAL AGENTS

Algorithm 9.1 Optimistic Agent (πo) for Deterministic Environments [SH12a]

Require: Environment classM0={ν1,...,νm}.
Deterministic policy class Π.
Ability to sample from true environment µ.

Input: Value function V π
ν .

Output: Interaction history h=a1e1a2e2a3e3...
1: t :=1
2: whileMt−1 ̸={} do
3: (π∗,ν∗) :∈argmaxπ∈Π,ν∈Mt−1

V π
ν (h<t)

4: while ν∗∈Mt−1 do ▷ inner looping is an optional speedup
5: at :=π

∗(h<t)
6: Perceive et from environment µ
7: h1:t :=h<tatet
8: Mt :={ν∈Mt−1 :ν(h<tat)=et} ▷ Remove all inconsistent ν
9: t := t+1

The algorithm and theorems are stated for any deterministic policy class Π. Theorems
Theorems 9.1.1 and 9.1.2 also hold for our standard choice, the class of all stochastic policies,
since then the sequence of optimal policies π∗ and hence π◦ are still guaranteed to be
deterministic.

Proof sketch. SinceM0 is finite, there exists a time T <∞ at which all inconsistent environ-
ments that are more optimistic than the true environment are eliminated. Given the most
optimistic consistent environment ν, if there is no time at which it is eliminated then it is
never inconsistent, and so must have identical on-policy dynamics to the true environment
µ. Thus π∗

ν=π
∗
µ, from which the result follows. �

Additionally, there is a bound for (most) t on how much the value function for Algo-
rithm 9.1 can differ from the optimal value function. The intuition is that we only have
suboptimality for a certain number of time steps before each point where the current hy-
pothesis becomes inconsistent, and the number of such inconsistency points are bounded by
the number of environments.

Theorem 9.1.2 (Finite error bound [SH12a]) For geometric discount γt=γ
t for

some constant γ∈(0,1), and 0<ε<1, following policy πo of Algorithm 9.1, except for
at most |M|·⌈ logεlogγ ⌉ time steps t, its value is ε-optimal:

V πo

µ (h<t) ≥ max
π∈Π

V π
µ (h<t)−ε

This means that for no more than |M|⌈ ln(1/ε)1−γ ⌉ time steps, the difference in the value
functions will be more than ε. Since this holds for all ε>, for Π=All, the theorem also
implies that π◦ is asymptotically optimal.

Proof. For the ℓ-truncated value V π,t+ℓ
ν (h<t) (Definition 6.6.1) we have

|V π,t+ℓ
ν (h<t)−V π

ν (h<t)| ≤
1

Γt

∞∑
k=t+ℓ+1

γk = γℓ+1 ≤ ε

9.1. OPTIMISTIC AGENTS 289

for ℓ+1:=⌈ logεlogγ ⌉ (which is positive due to negativity of both numerator and denominator).

Let (π∗
t ,ν

∗
t) be the policy-environment pair selected by Algorithm 9.1 in cycle t.

Let us first assume hπ
◦,µ

t:t+ℓ=h
π◦,ν∗

t

t:t+ℓ, i.e. ν
∗
t is consistent with h◦t:t+ℓ generated by (π◦,µ),

and hence π∗
t and ν∗t do not change from t,...,t+ℓ (inner loop of Algorithm 9.1). Then

V π◦

µ (h<t)

drop terms
↓
≥ V π◦

µ,t+ℓ(h<t)

same ht:t+ℓ

↓
= V π◦

ν∗
t ,t+ℓ(h<t)

π◦=π∗
t on ht:t+ℓ

↓
= V

π∗
t

ν∗
t ,t+ℓ(h<t)

≥
↑

bound extra terms

V
π∗
t

ν∗
t
(h<t)−γℓ+1 =

↑
def. of (π∗

t ,ν
∗
t)

max
ν∈Mt

max
π∈Π

V π
ν (h<t)−γℓ+1 ≥

↑
µ∈Mt and def. of ℓ

max
π∈Π

V π
µ (h<t)−ε.

Now let t1,...,tK be the times t at which the currently selected ν∗t becomes inconsistent

with h<t, i.e., {t1,...,tK}={t :ν∗t ̸∈Mt}. Therefore h◦t:t+ℓ ≠h
π◦,ν∗

t

t:t+ℓ (only) at times t∈T× :=⋃K
i=1{ti−ℓ,...,ti}, which implies V π◦

µ (h<t)≥maxπ∈ΠV
π
µ (h<t)−ε except possibly for t∈T×.

Finally

|T×| = (ℓ+1)K =
⌈
logε
logγK

⌉
≤ |M−1|

⌈
logε
logγ

⌉
�

Stochastic environments. A similar algorithm was developed for a stochastic environ-
ment class M0. Algorithm 9.2 is very similar to Algorithm 9.1 with the key difference

Algorithm 9.2 Optimistic Agent (πo) for Stochastic Environments [SH12a]

Require: Environment classM0={ν1,...,νm}.
Deterministic policy class Π.
Ability to sample from true environment µ.

Require: Threshold z∈(0,1)
Input: Value function V π

ν .
Output: Interaction history h=a1e1a2e2a3e3...

1: for t=1,2,3,... do
2: (π∗,ν∗)∈argmaxπ∈Π,ν∈Mt−1

V π
ν (h<t)

3: at :=π
∗(h<t)

4: Sample et∼µ(·|h<tat)
5: h1:t :=h<tatet

6: Mt :=

{
ν∈Mt−1 :

∏t
j=1ν(ej |h<jaj)

maxν̃∈M0

∏t
j=1ν̃(ej |h<jaj)

>z

}
▷ Remove all inconsistent ν

being how environments that are inconsistent with the observed interaction history are
removed. For deterministic environments (and a fixed deterministic policy) there is only one
possible history that can be generated. Environments inconsistent with this history can be
immediately disregarded as incorrect. Now, a stochastic environment may never be refuted
with certainty, as it may assign non-zero probability to any history that is possible under
the true environment. However, it may assign a much smaller probability than the true
environment would to histories observed, so we would want the agent to eventually learn to
assign a low credence to such environments. The rejection criterion cannot depend on the
unknown true environment, so we use the most likely environment as a base instead.

Using the Bayesian mixture as a base is also possible. Environments assigning probability
to the history much smaller (by a factor of z) than the base are excluded. Much like in the
deterministic case, Algorithm 9.2 is asymptotically optimal with high probability.

290 CHAPTER 9. OTHER UNIVERSAL AGENTS

Theorem 9.1.3 (Optimality, finite stochastic class [SH12a]) Define πo via Algo-
rithm 9.2 with any threshold z∈(0,1), and a finite classM of stochastic environments
containing the true environment µ. Then, with probability at least 1−z|M|, there
exists for every ε>0, a time T <∞ such that

V πo

µ (h<t) > max
π∈Π

V π
µ (h<t)−ε ∀t≥T

Proof. The proof is based on martingale theory and can be found in [SH12a]. �

The optimism principle, algorithms, and convergence guarantees can be significantly
extended [SH15b]. We can extend the algorithm to countable classesM by running it on a
sufficiently slowly increasing sequence of finite subsets ofM [SH13]. We can also extend
it to continuous classes M that are compact with respect to a suitable metric between
two measures, e.g. d(ν,ν′) :=suph,π|V π

ν (h)−V π
ν′(h)|. For instance, the classes of finite-state

(k-order) (Partially Observable) Markov Decision Processes are compact. Choosing a finite
covering of M with d-balls of radius less than ε/2 and running Algorithm 9.2 with the
centers of these balls is ε-optimal similar to Theorem 9.1.3. One can extend the algorithm
further from countable classes to separable classes, since they can by definition be covered
by countably many balls of arbitrarily small radius. This also allows achieving asymptotic
optimality by letting ε→ 0. Concerning asymptotics, this covers all relevant classes M,
but the number of ε-errors is proportional to the size of the setM: |M| for finiteM, the
size of the ε-cover for compactM, the index of µ inM for countableM and similarly for
separableM. For compact subsets of Rd, this is typically exponential in d, an example of
the curse of dimensionality. IfM is generated by finite sets of partial environments (like
laws of nature [SH15c]), error bounds linear in the number of laws instead of in the number
of environments or size of ε-cover are possible. For instance, (PO)MDPs can be factored in
this way, leading to exponentially improved bounds polynomial in d [SH15b].

9.2 (Thompson)Sampling Agents

Another idea to create a policy which performs well is to have a policy which samples
from other policies [Lei16b]. A successful version of this is Thompson sampling. Using the
sampling as the explorative aspect of the policy allows for strong asymptotic results. What
we want with sampling agents is that the probability of following a better policy (higher
value in the true environment) increases over time.

In contrast, exploring agent BayesExp (Section 9.4) switches between exploration and
exploitation phases. The exploration phases of sampling agents are not as clear. In one
sense they are exploring every time they choose which policy to follow, since they never
know the optimal policy. In another sense they are exploring whenever they follow a policy
which is not the most likely policy to be sampled.

Thompson Sampling. Originating with [Tho33] for bandit problems, Thompson Sampling
has recently been rediscovered in and applied to the Reinforcement Learning (RL) and
sequential decision theory fields [OB10b, Ort11, LLOH17, GM15, AG13]. The algorithm is
quite simple and natural, and still enjoys strong convergence properties, as well as success
in applications. Like any good Bayesian agent, the Thompson sampler updates its posterior
at every iteration; however, unlike Bayes which mixes over environments, the Thompson
agent samples an environment from the posterior distribution (Definition 7.2.2) and follows

9.3. KNOWLEDGE-SEEKING AGENTS 291

Algorithm 9.3 Thompson sampling policy πTS [Lei16b]

Require: Model classM. Prior w. Effective horizon function Ht.
Input: Percept stream e1,e2,e3,...
Output: Action stream a1,a2,a3,...

1: while True do
2: sample environment ν according to the posterior w(ν|h<t)
3: follow π∗

ν for Ht(εt) time steps

the optimal policy (Definition 6.6.1) for that environment for an εt-effective horizon and
then repeats.

Note that the algorithm glosses over how to find the posterior w(ν|h<t) and the ν-optimal
policy π∗

ν , which forMsol is as hard as determining π∗
ξ , but may on occasion be simpler, e.g.

ifM is a (sub)class of MDPs.
One of the strong properties Thompson sampling has is asymptotic optimality in mean.

This means that the expected value of the difference in the value function of the optimal
policy and Thompson sampling goes to zero as time goes to infinity.

Theorem 9.2.1 (Thompson sampling is asymptotically optimal in mean
[Lei16b]) For all µ∈M, for the Thompson sampling agent πTS, we have

EπTS
µ [V ∗

µ (h<t)−V πTS
µ (h<t)]→0 for t→∞

Proof. The proof is a bit lengthy. See [Lei16b, Sec.5.4.3] �

By Figure 2.9 this also implies convergence in probability, but πTS is not strong asymp-
totically optimal (Definition 8.1.7) [Lei16b, Ex.5.28]. We can use Theorems 8.1.13 and 9.2.1
to show that Thompson sampling has sublinear regret inM.

Corollary 9.2.2 (Sublinear regret for Thompson sampling [Lei16b]) If the dis-
count function γ satisfies Assumption 8.1.11, and the environment µ∈M is recoverable,
then the regret is sublinear: Regretm(πTS,µ)=o(m).

Proof. Immediate result from Theorems 8.1.13 and 9.2.1. �

9.3 Knowledge-Seeking Agents

One of the fundamental questions when trying to define general intelligence in the domain of
RL is the choice of motivations for the agent. In the context of Universal Artificial Intelligence,
this is asking for where the rewards come or for the choice of reward function. There have been
suggestions that any reward provided by humans is susceptible to manipulation (Chapter 15).
Also, to which degree is an agent that (slavishly) maximizes external reward provided by
intelligent humans autonomously intelligent? One proposed solution is that an AGI should
have some intrinsic reward (function). Of course this reward function should not be tied
to any specific goal such as winning chess games or driving a car from A to B, but should
be General. A reward function based on the amount of knowledge an agent has or is going
to gain seems general and useful. Such agents are called curiosity-driven agents [Sch91]
or Knowledge-Seeking Agents (KSA). Seeking out information should encourage agents to
explore, which allows the agent to learn and solve problems.

292 CHAPTER 9. OTHER UNIVERSAL AGENTS

We first define what we mean by Information Gain (IG) in terms of the KL divergence
(Definition 2.5.12). We will use this notion of IG as the replacement for rewards, and define
a new value function VIG called the information gain value function. The KSA policy π∗

IG is
then defined as the policy that maximizes VIG.

We first present an on-policy prediction result in discounted KL divergence, which holds
for any policy. We then show both on-policy convergence, and off-policy convergence for
histories generated via the policy π∗

IG that maximizes the information gain [Ors11, OLH13].

While there is no widely accepted notion of what it means to accumulate information,
in the context of a Bayesian agent interacting with an environment, information is gained
through the posterior updating with each new interaction. Therefore, the “distance” between
the current posterior and the posterior at a previous time step can serve as a measure of
how much information the Bayesian agent has gained since that previous time step. We will
be using the KL divergence (Definition 2.5.12) as the distance measure, but other measures
may be used [Ors11]. However, most other measures do not perform well in stochastic
environments and will seek out noise instead of novel information [OLH13].

Definition 9.3.1 (Information Gain) The one-step information gain of hk∈A×E
given history h<k∈(A×E)k−1 is defined as the KL divergence between the posterior
conditioned on history h1:k, and posterior given history h<k:

rIGk := IG(hk|h<k) :=
∑
ν∈M

w(ν|h1:k)log
w(ν|h1:k)
w(ν|h<k)

Definition 9.3.1 can be thought of as a measure of how much the agent learned after
observing hk given h<k has already been observed. If hk was very surprising (that is, the
current weight w assigns very low probability to environments ν where sampling hk was
likely), then the agent realizes its old belief w(·|h<k) does not correspond well to reality, and
the posterior w(·|h1:k) drastically changes, leading to a high KL divergence between w(·|h1:k)
and w(·|h<k). Conversely, if the agent’s belief is already very accurate (w(µ|h<k)≈1 and
w(ν|h<k)≈0 for ν ̸=µ), then the agent would only observe action-percept pairs hk that it
already expected to receive anyway, so w(·|h1:k)≈w(·|h<k) and the KL divergence is small.

This definition can be extended to an arbitrary (finite) history hk:k+ℓ instead of hk,
however we are mainly interested in the one-step version. Now replacing the reward rk
in the value function Definition 6.6.1 with the information gain rIGk , we get the following
information gain value function:

Definition 9.3.2 (Information Gain Value function) The information gain value
of policy π having observed history h<t with respect to discount function γ, denoted
V π,m
IG , is defined to be the ξ-expected discounted information gain.

V π,m
IG (h<t) := Eπ

ξ

[
1

Γt

m∑
k=t

γkIG(hk|h<k)

∣∣∣∣∣h<t

]

Similar to Definition 6.6.1, we drop the m when m=∞. The optimal information gain
policy π∗

IG maximizes the information gain value function, and V ∗
IG is its information

gain value.

π∗
IG(·) :∈ argmax

π
V π
IG(·) and V ∗

IG(·) := max
π

V π
IG(·)

9.3. KNOWLEDGE-SEEKING AGENTS 293

Information gain, as a distance measure between posteriors, is a useful concept for
measuring how much a Bayesian agent has learned. Another use case of the KL divergence
is when it is applied to predictive policy-environment distributions νπ and ξπ.

Definition 9.3.3 (KL-Divergence for νπ and ξπ) Given a history h<k, we define
the one-step KL divergence between νπ and ξπ as

r̃νk := KL1(ν
π,ξπ|h<k) :=

∑
hk∈(A×E)

νπ(hk|h<k)log
νπ(hk|h<k)

ξπ(hk|h<k)

Note that Definition 9.3.3 is an instantiation of Definition 2.5.12. Also note that unlike rIGk ,
r̃νk depends on ν and cannot actually serve as a reward, since ν is unknown. Using reward r̃
instead, the ν-Value function is

Ṽ π,m
ν,γ (h<t) ≡

1

Γt
Eπ

ν

[
m∑
k=t

γkr̃
ν
k

∣∣∣h<t

]
≡ 1

Γt

m∑
k=t

γk
∑
ht:k−1∈(A×E)k−t

νπ(ht:k−1|h<t)KL1(ν
π,ξπ|h<k) (9.3.4)

Lemma 9.3.5 (Information gain in terms of KL divergence) The information
gain value function can be expressed with the KL divergence between two policy-
environment distributions as follows

V π,m
IG (h<t) =

∑
ν∈M

w(ν|h<t)Ṽ
π,m
ν,γ (h<t)

Proof.

ΓtV
π,m
IG (h<t) ≡ Eπ

ξ

[
m∑
k=t

γkIG(hk|h<k) |h<t

]
Expanding the definition of the expectation and IG,

=
∑
ht:m

ξπ(ht:m|h<t)
m∑
k=t

γk
∑
ν∈M

w(ν|h1:k)log
w(ν|h1:k)
w(ν|h<k)

By Definition 7.2.2 of w(ν|h1:k),

=
∑
ht:m

ξπ(ht:m|h<t)

m∑
k=t

γk
∑
ν∈M

w(ν|h<t)
νπ(ht:k|h<t)

ξπ(ht:k|h<t)
log

w(ν|h1:k)
w(ν|h<k)

At step k, nothing in the second sum depends on h>k, and
∑

hk:m
ξπ(hk:m|h<k)=1, so we

can push the first sum inside and cancel and discard terms

=
∑
ν∈M

w(ν|h<t)

m∑
k=t

γk
∑
ht:k

νπ(ht:k|h<t)log
w(ν|h1:k)
w(ν|h<k)

Applying Definition 7.2.2,

=
∑
ν∈M

w(ν|h<t)

m∑
k=t

γk
∑
ht:k

νπ(ht:k|h<t)log
ν(et|h<tat)

ξ(et|h<tat)

From Definition 6.1.5 of a conditional measure with m=1,

=
∑
ν∈M

w(ν|h<t)

m∑
k=t

γk
∑
ht:k

νπ(ht:k|h<t)log
νπ(hk|h<k)

ξπ(hk|h<k)

294 CHAPTER 9. OTHER UNIVERSAL AGENTS

We write νπ(ht:k|h<t)=ν
π(hk|h<t)ν

π(ht:k−1|h<t), and sum separately over hk,

=
∑
ν∈M

w(ν|h<t)

m∑
k=t

γk
∑

ht:k−1

νπ(ht:k−1|h<t)
∑
hk

νπ(hk|h<k)log
νπ(hk|h<k)

ξπ(hk|h<k)

We apply Definition 9.3.3 of the KL divergence,

=
∑
ν∈M

w(ν|h<t)

m∑
k=t

γk
∑

ht:k−1

νπ(ht:k−1|h<t)KL1(ν
π,ξπ|h<k)

Finally, we insert (9.3.4),

=
∑
ν∈M

w(ν|h<t)ΓtṼ
π,m
ν,γ (h<t)

�

Before presenting the main theorem showing that π∗
IG learns to predict off-policy, we

present an easier on-policy result that holds for all policies.

Theorem 9.3.6 (On-policy prediction [OLH13]) Let µ∈M and π be a policy
and

∑
ν∈Mwν logw

−1
ν <∞, then

Eπ
µ

[
Ṽ π
µ (h<t)

] t→∞−→ 0

The theorem shows that Pπ
ξ (·|h<t) converges in expectation to Pπ

µ(·|h<t) where the
difference between the two measures is taken with respect to the expected cumulative
discounted KL divergence. This implies that Pπ

ξ (·|h<t) is in expectation a good estimate for
the unknown Pπ

µ(·|h<t). The finite entropy condition is violated for our canonical choice

Msol and w
U
ν =2−K(ν), but easily satisfiable by just a marginally faster decreasing prior

such as wν=2−(1+ε)K(ν) or even wν=2−K(ν)/K(ν) or wνi =1/(i+1)2 (Exercise 7).

Proof. The telescoping property of KL lifted to our case, with same notation as in
Lemma 3.2.4, reads

Eπ
ν

[m∑
k=t

KL1(ν
π,ξπ|h<t)

]
≡ Eπ

ν

[m∑
k=1

KL1(ν
π,ξπ|h<t)−

t−1∑
k=1

KL1(ν
π,ξπ|h<t)

]
= KL(νπ1:m||ξπ1:m)−KL(νπ<t||ξπ<t) (9.3.7)

As a sum of non-negative terms, KL(νπ1:m||ξπ1:m) is increasing in m and converges to cξν≤
logw−1

ν <∞ due to dominance ξπ≥wνν
π (Lemma 7.2.4). Hence

Hence lim
t→∞

Eπ
ν

[∞∑
k=t

KL1(ν,ξ|h<t)
]
= cξν−cξν = 0 (9.3.8)

Also Eπ
µ

[
Ṽ π
µ (h<t)

] (a)

≤ 1

wµ

∑
ν∈M

wνE
π
ν

[∞∑
k=t

Ṽ π
ν (h<t)

]
(b)

≤ 1

wµ

∑
ν∈M

wνE
π
ν

[∞∑
k=t

r̃νk

]
(9.3.9)

where (a) follows by the positivity of the KL divergence and by introducing the sum, (b)
follows from γk/Γt≤1 for k≥ t and E[E[·|ht]]=E[·]. Now δν(t) :=Eπ

ν [
∑∞

k=tr̃
ν
k]→0 follows

from inserting Definition 9.3.3 of r̃νk and using (9.3.8).
We also know that δν(t)≤KL(νπ||ξπ)≤ logw−1

ν from (9.3.7) and dominance ξπ≥wνν
π

(Lemma 7.2.4). Unfortunately δν(t) is not uniformly bounded, so we cannot directly apply
[Hut05b, Lem.5.28ii] to conclude

∑
νwνδν(t)→ 0. Let us define w̃ν :=wν logw

−1
ν > 0 and

9.3. KNOWLEDGE-SEEKING AGENTS 295

δ̃ν(t) := δν(t)/logw
−1
ν ≤ 1. By assumption,

∑
νw̃ν <∞, so we can now apply [Hut05b,

Lem.5.28ii] to the tilded quantities, to obtain

0 ≤ Eπ
µ

[
Ṽ π
µ (h<t)

]
≤ 1

wµ

∑
ν

w̃ν δ̃ν(t)
t→∞−→ 0

�

The next result is perhaps the most important theoretical justification for the definition
of π∗

IG. We show that if h1:∞ is generated by following π∗
IG, then Pπ

ξ (·|h<t) converges in
expectation to Pπ

µ(·|h<t) for all π. More informally, this means that as a longer history
is observed the agent learns to predict the counterfactuals “what would happen if I follow
another policy π instead”. For example, if the observation also included a reward signal,
then the agent would asymptotically be able to learn (but not follow) the policy maximizing
the expected discounted reward. In fact, the policy maximizing the Bayes-expected reward
would converge to optimal. This kind of off-policy prediction is not usually satisfied by
arbitrary policies where the agent can typically only learn what will happen on-policy in the
sense of Theorem 9.3.6, not what would happen if it chose to follow another policy.

Theorem 9.3.10 (On-policy learning, off-policy prediction [Ors11]) Let µ∈M
and

∑
ν∈Mwν logw

−1
ν <∞. Then

E
π∗
IG

µ

[
sup
π
Ṽ π
µ (h<t)

] t→∞−→ 0

where the expectation is taken over h<t.

Proof. In this proof, the goal is to show that the value function of the information-gain
policy (π∗

IG) converges to the value of the µ-optimal policy as time goes to infinity, and then
apply (9.3.9). By the positivity of the KL divergence, adding Ṽ π

ν (h<t)≥0 terms,

E
π∗
IG

µ

[
sup
π
Ṽ π
µ (h<t)

]
≤ E

π∗
IG

µ

[
1

w(µ|h<t)
sup
π

∑
ν∈M

w(ν|h<t)Ṽ
π
ν (h<t)

]
By Lemma 9.3.5 and from the definition of π∗

IG,

= E
π∗
IG

µ

[
1

w(µ|h<t)

∑
ν∈M

w(ν|h<t)Ṽ
π∗
IG

ν (h<t)

]
From the definition of the posterior and expectation,

=
1

wµ
E

π∗
IG

ξ

[∑
ν∈M

w(ν|h<t) Ṽ
π∗
IG

ν (h<t)

]
By exchanging the sum and expectation, and the definition of the posterior,

=
1

wµ

∑
ν∈M

wνE
π∗
IG

ν

[
Ṽ

π∗
IG

ν (h<t)
]

t→∞−→ 0

The limit follows from (9.3.9) choosing π=π∗
IG. �

Knowledge-seeking agents aim to maximize the value with respect to Bayesian mixtures
over environments, and as a consequence, they share the same properties as Bayes-optimal
agents. Specifically, they are dependent on the choice of prior and may suffer from suboptimal
prior selections in the short term. However, since knowledge-seeking agents continuously
learn off-policy and exhibit asymptotic optimality (and unlike the Thompson sampling agent)

296 CHAPTER 9. OTHER UNIVERSAL AGENTS

without any recoverability assumption, the choice of prior ultimately does not impact their
overall performance in the long run.

Example 9.3.11 (KSA experiments on toy environments) Consider the KL-KSA
agent with (deterministic) environment model class M={µ1,µ2,µ3} defined as the state
diagrams in Figure 9.1. The environments are all identical up to some slight changes in the
transitions (highlighted in bold). Note that q1 is a “trap state”, in that if the agent visits
this state, it can never leave. To learn the true environment as fast as possible, the agent
should take actions ȧ1:5=10100 and receive a sequence of observations o′1:5 depending on the
true environment, either 00000 for µ1 (Figure 9.1a), or 01000 for µ2 (Figure 9.1b), or 00001
for µ3 (Figure 9.1c). There is no other action sequence that can distinguish with certainty
between the three environments in strictly fewer time steps. Also, if the agent chooses a1=0,
it will be stuck in the trap state, and never be able to distinguish µ1 from µ2 (if either is
the true environment). Of all possible action sequences a1:∞, the KSA agent values those
prefixed with ȧ1:5=10100 the highest, indicating that it learns as fast as possible for this
toy model class, and avoids moving to the trap state while there is still information to learn
elsewhere. �

q0

q1

q2

0/0 1/0

0/0
1/0

0/0
1/0

(a) µ1

q0

q1

q2

0/0 1/0

0/0
1/0

0/1
1/0

(b) µ2

q0

q1

q2

0/0 1/0

0/1
1/0

0/0
1/0

(c) µ3

Figure 9.1: The (deterministic) toy environments µ1,µ2,µ3. Edges are labelled with the
action/observation pairs. Differing transitions highlighted in bold.

9.4 Exploring Agents (BayesExp and Inq)

While acting in a world or environment, we often want the agent to explore the environment
enough so that an optimal action may be chosen. How much time should the agent spend
exploring? Exploring too much means the agent never tries to act optimally, but instead only
takes actions that are novel. Not exploring enough means the agent may be prematurely
trying to choose an optimal action based on an inaccurate model of the true environment.
This trade-off is called the exploration-exploitation problem. Unexpectedly, the Bayes-
optimal agent AIξ does not explore enough to be asymptotically optimal (Theorem 8.3.1),
but can be fixed by adding ‘a bit’ of extra exploration, though it is not clear whether we
actually should [CHC21].

BayesExp. Under some reasonable assumptions, it can be shown that there exists an agent
which achieves a balance between exploration and exploitation leading to (weak) asymptotic
optimality. BayesExp Algorithm 9.4 (a Bayesian agent with extra exploration) switches
between exploring and exploiting in just the right way that it asymptotically converges on
optimal behavior. However, there is always a nonzero chance of exploring.

The BayesExp agent either exploits via the Bayes-optimal policy π∗
ξ for one time step,

or explores via the Knowledge-Seeking Agent π∗
IG of Section 9.3 for an effective horizon

9.4. EXPLORING AGENTS (BAYESEXP AND INQ) 297

Algorithm 9.4 BayesExp Algorithm πBE [Lat14, Lei16b]

Require: Non-increasing sequence ε1,ε2,ε3,...
Require: Model classM. Prior w. Effective horizon function Ht().
Input: Percept stream e1,e2,e3,...
Output: Action stream a1,a2,a3,...

1: while True do
2: if V

∗,t+Ht(εt)
IG (h<t)>εt then follow π∗

IG for Ht(εt) steps ▷ exploration
3: else follow π∗

ξ for 1 step ▷ exploitation

number of time steps. The decision to explore is based on using the maximum expected

information gain V
∗,t+Ht(εt)
IG (h<t) of policy π

∗
IG. If it is larger than εt, then BayesExp will

explore for Ht(εt) time steps, otherwise it will exploit by following policy π∗
ξ . BayesExp

is weakly asymptotically optimal (Definition 8.1.5) under mild conditions on the discount
function, exploration thresholds (εt)

∞
t=1 and prior wν :

Theorem 9.4.1 (BayesExp is weakly asymptotically optimal [Lat14]) Let
M={ν1,ν2,...} be countable with

∑
ν∈Mwν logw

−1
ν <∞ and discount γt and exploration

thresholds εt satisfying

• Γt>0 for all t
• Ht+1(ε)≥Ht(ε), for all ε>0 and all t∈N+

• εt+1≤εt for all t
• limt→∞εt=0
• Ht(εt)=o(tεt)

Then BayesExp is weakly asymptotically optimal in (M,γ).

Proof idea. The proof [Lat14] establishes that (i) π∗
ξ converges to optimal π∗

µ on the ex-
ploitation time-steps of BayesExp, (ii) the number of times BayesExp explores is o(n), (iii)
the value of the BayesExp policy πBE converges to the value of π∗

ξ in Cesàro average, which

together imply that BayesExp is weakly asymptotically optimal. �

Under the conditions of the theorem, the BayesExp agent demonstrates its weak asymp-
totic optimality in environments with countable environment classes and non-trivial discount
functions. The ability of BayesExp to balance exploration and exploitation effectively stems
from its dynamic exploration strategy, adjusting the number of exploration steps based on
the maximum expected information gain and predefined threshold values. As the agent
progresses through time, the exploration threshold εt converges to zero, which ensures
BayesExp explores as long as information can be gained by exploration. On the other
hand, the probability of exploration needs to tend to 0, which εt→ 0 sufficiently slowly
ensures. This gradual transition between exploration and exploitation is crucial to the
agent’s adaptability, allowing it to learn from its environment and make better decisions
over time. BayesExp strikes an asymptotically optimal balance between learning from the
environment and taking advantage of the knowledge it has acquired.

One can show that for any discount with monotonically but sublinearly growing horizon,
exploration sequences εt as required exists (Exercise 4). For instance, the popular geometric
discount γt=γ

t has constant effective horizon, and εt= t
−β for any 0<β<1 will do. For

deterministic environments and geometric discounting, similar to the optimistic agents in
Section 9.1, the proof is much simpler, since environments can be ruled out completely once

298 CHAPTER 9. OTHER UNIVERSAL AGENTS

a percept is received that the environment assigns zero-probability to [LH11a]. The proof
for the stochastic case is beyond the scope of this book [Lat14]. Since εt→0, the expected
information gain at exploiting time-steps converges to 0, which means that ξ concentrates
around µ while exploiting. Therefore, asymptotically we expect BayesExp to be close to
optimal while exploiting and hence to be close to optimal with probability tending to 1. An
algorithm can only be asymptotically optimal if it either already is optimal, or explores and
learns to become so (εt>0) with decreasing exploration rate. The reason for exploring in
blocks is to avoid problems with time-inconsistency (Section 6.5). The exploration policy
depends on the horizon, so re-computing it at each time-step may lead to a chain of different
policies that ultimately may lead to poor behavior. This is avoided by committing to π∗

IG

for Ht(εt) time-steps.

Inquisitive agent. The Inquisitive Reinforcement Learner (Inq) even achieves strong
asymptotic optimality (Definition 8.1.7). Similar to BayesExp, Inq combines Bayes-optimal
AIξ with the knowledge-seeking agent of Section 9.3. With a certain probability, instead
of taking the Bayes-optimal action π∗

ξ , Inq follows maximally informative exploratory
expeditions, but unlike BayesExp, the expeditions are of random lengths, which can be
shorter or longer than the effective horizon. Also, an undiscounted multi-step version of the
Information Gain Definition 9.3.1 is used, and the effective horizon needs to be bounded.
Otherwise, Inq follows the same principle as BayesExp: Inq is more likely to explore the
more it expects an exploratory action to reduce its uncertainty about which environment it is
in. With increasing certainty about the true environment µ∈M, the information gathering
periods become less frequent, and asymptotically Inq converges to AIξ. The additional
exploration prevents Inq from remaining ignorant about unexplored aspects of the world
and getting stuck with suboptimal actions, which guarantees that it also converges to AIµ.

Theorem 9.4.2 (Inq is strong asymptotically optimal [CCH19]) For any count-
able class of environmentsM and bounded effective horizon (suptHt(ε)<∞ for all ε>0),
the Inquisitive Reinforcement Learner (Inq Algorithm 9.5) is strongly asymptotically
optimal.

Proof. See [CCH19]. �

The details of the algorithm are as follows: First, we need a multi-step generalization of
the one-step (t=n) information gain (Definition 9.3.1)

IGt:n(ht:n|h<t) :=
∑
ν∈M

w(ν|h1:n)log
w(ν|h1:n)
w(ν|h<t)

This leads to the non-discounted truncated Information Gain Value function for policy π

V π,n
IG (h<t) := Eπ

ξ [IGt:n|h<t] ≡
∑
ht:n

ξπ(ht:n|h<t)IGt:n(ht:n|h<t)

Similarly to the knowledge-seeking agent, the optimal (deterministic) IG policy is

π∗,n
IG,h<t

:∈ argmaxV π,n
IG (h<t)

Note that the policy is well-defined and used on histories of length t−1 to n. Now at each
time step t we choose the action at :=π

∗,t−k+m−1
IG,h<t−k

(h<t) for an IG policy that optimized VIG
at some random k time-steps earlier and with random horizon m. While we sample the
IG policy independently at each t, there is a non-zero chance of following the same policy

9.5. PLANNING-AVOIDING AGENTS (SELF-AIXI) 299

for Ht(ε) time steps, since m>Ht(ε)−k may be sampled and the IG policy that started
at t may be sampled again for Ht(ε) time steps. Exploring consistently for Ht(ε) steps is
important: in BayesExp it was prescribed, while in Inq it happens with non-zero probability.
The probability of sampling π∗,t−k+m−1

IG,h<t−k
is

εmk (h<t) := min
{ 1

m2(m+1)
, ηV

π∗,t−k+m−1
IG,h<t−k

,t+m
IG (h<t)

}
for m∈N+ and 0≤k<min{m,t}, where 0<η<1 is an exploration constant. The exploration
probability tends to 0 iff VIG tends to 0. The first term ensures that the probabilities will
not sum to more than 1:

ε++(h<t) :=
∑

m∈N+

∑
k<min{m,t}

εmk (h<t) ≤
∑

m∈N+

∑
k<m

1

m2(m+1)
= 1

The remaining probability 1−ε++ is used for following the Bayes-optimal policy π∗
ξ . Together

this gives the Inq Algorithm 9.5.

Algorithm 9.5 Inq Algorithm πInq [CCH19]

Require: Model classM. Prior w. Discount γ.
Input: Percept stream e1,e2,e3,...
Output: Action stream a1,a2,a3,...

1: for t=1,2,3,.... do
2: Take action π∗,t−k+m−1

IG,h<t−k
(h<t) with probability εmk (h<t) ▷ exploration

3: Take action π∗
ξ (h<t) with probability 1−ε++(h<t) ▷ exploitation

Strong asymptotic optimality may not be possible for unbounded horizons, which grow
faster than Inq or possibly any policy can learn about progressively more long-term dynamics
of the environment. Contrast this to BayesExp, which is weak asymptotically optimal even
for (sublinearly) growing horizons. Both agents maximize information gain (explore) if they
expect enough information about the environment can be gained. If not, they follow the
Bayes-optimal policy (exploit), though calling π∗

ξ ‘exploiting’ is not quite fair, since Bayes
also explores, just not enough to be asymptotically optimal. Some experiments comparing
Thompson Sampling, BayesExp, and Inq can be found in [CCH19].

9.5 Planning-Avoiding Agents (Self-AIXI)

Rather than explicit expectimax planning (in theory, which are typically approximated by
Monte Carlo Tree Search in practice), there are RL algorithms that side-step planning by
learning a Q-value function via solving Bellman (optimality) equations (in theory, which are
often approximated in practice by Temporal Difference (TD) style algorithms) or by directly
learning a policy. Planning-avoiding universal agents have also been developed: Below we
introduce Self-AIXI [CGMH+23] which self-predicts its own action stream. In Section 13.2
we introduce AIXItl, which computes a provable lower bound to its value function. Both
agents converge to AIXI, are self-optimizing, and have maximal Legg–Hutter intelligence.
Another approach described in Section 12.9 to avoid planning is Compress and Control.

300 CHAPTER 9. OTHER UNIVERSAL AGENTS

Self-AIXI is a universal agent using self-prediction, instead of traditional planning. This
involves generating a stream of action data akin to methods used by other TD(0) agents,
and executing an action maximization step based on current on-policy Q-value estimates
for a mixture-policy. We show that despite only performing one-step lookahead “planning,”
Self-AIXI converges to (long-horizon) Bayes-optimal AIξ, and has the ability to self-optimize
(Definition 7.3.3) by utilizing the power of sequential Bayesian action prediction (via ζ, see
below) akin to Bayesian sequence models (Definition 3.1.3) but for actions; not to be confused
with Bayes-optimal actions from π∗

ξ . In the universal setting, under certain conditions, it
asymptotically inherits properties such as maximal LH intelligence (Definition 16.7.1).

Self-AIXI predicts its own stream of actions via a Bayesian mixture policy ζ over a class
of policies Π in a dual fashion to the Bayesian mixture environment ξ overM:

Definition 9.5.1 (Bayesian mixture policy and Self-AIXI) The Bayesian mixture
ζ over a countable class of policies Π is defined as

ζ(at|h<t) :=
∑
π∈Π

ω(π|h<t)π(at|h<t)

ω(π|h1:t) := ω(π|h<t)
π(at|h<t)

ζ(at|h<t)
= ωπ

π(a1:t||e<t)

ζ(a1:t||e<t)

Self-AIXI takes the one-step optimal action according to both the Bayesian mixture
environment ξ overM with prior wν and the Bayesian mixture policy ζ over Π with
prior ω(π|ϵ)≡ωπ:

πS(h<t) := argmax
at

Qζ
ξ(h<tat)

where the Q-value is defined in Definition 6.7.1.

Importantly, Self-AIXI maximizes the Q-values from the mixture policy ζ instead of
the optimal policy π∗

ξ , which means that there is no need to optimize the future. Only the
on-policy Q-values of the current ζ are needed, which are typically easier to estimate than
the optimal off-policy Q-values Q∗

ξ .
Note how action selection and history interact with the policy-mixture: The action

selected by the Self-AIXI agent necessarily improves, by definition, over the current value
estimates maxatQ

ζ
ξ(h<tat)≥V ζ

ξ (h<t). Then, this action is added to the next history h<t+1

which is consumed by the policy-mixture at the next time step, i.e. ζ(at+1|h<t+1).
The policy-mixture does Bayesian inference over the incoming self-generated action-data

and makes better action predictions over time. Thus, Self-AIXI is self-predicting its own
small improvements made by the argmax operation in Definition 9.5.1. In the case of
using the largest class of all computable policies, the mixture is a Solomonoff (action)
predictor with enough power to approximately represent within itself the policy evaluation
and improvement operation.

Theorem 9.5.2 (Convergence properties of Self-AIXI [CGMH+23]) Under
various conditions, the value functions of Self-AIXI πS converge to those of Bayes-
optimal AIξ in expectation on histories generated by πS interacting with µ:

EπS
µ

[
V

π∗
ξ

ξ (h<t)−V πS

ξ (h<t)
] t→∞−→ 0

EπS
µ

[
V

π∗
ξ

µ (h<t)−V πS
µ (h<t)

] t→∞−→ 0

9.6. EXERCISES 301

This implies that for environment classesM that admit self-optimizing policies (Fig-
ure 7.1), AIξ is self-optimizing (Theorem 7.3.7) and hence Self-AIXI is too:

V ∗
µ (h<t)−V πS

µ (h<t)
t→∞−→ 0 µπ-almost surely for any π

For π=πS , this implies that πS is strongly asymptotically optimal. For M=Msol,
the first convergence implies that asymptotically Self-AIXI has maximal universal
intelligence Υ(π)≡V π

ξ (Definition 16.7.1):

EπS
µ

[
max
π

Υ(π|h<t)−Υ(πS |h<t)
] t→∞−→ 0

Proof idea. Self-AIXI initially acts like a one-step optimal (greedy) agent and this is reflected
in the action sequence it produces. ζ then learns to act like a one-step optimal agent, which
means Self-AIXI starts to act like a two-step optimal agent. This continues indefinitely and
the performance of Self-AIXI converges to the performance of AIξ. �

The results show that agents can perform well even in the general RL setting without
utilizing planning. Some experiments comparing Self-AIXI with MC-AIXI-CTW (Chapter 12)
and proofs can be found in [CGMH+23].

9.6 Exercises

1. [C25] (Optimality, finite stochastic class) Prove Theorem 9.1.3.

2. [C32] (Thompson sampling is a.o. i.m.) Prove Theorem 9.2.1.

3. [C28] (BayesExp is weakly a.o.) Prove Theorem 9.4.1.

4. [C20] (Sublinear horizon) Prove that if Ht(ε)=o(t), then there exists εt→0 such
that Ht(εt)=o(tεt) as required in Theorem 9.4.1.

5. [C45o] (Is Thompson sampling is weakly a.o?) Prove/disprove that Thompson
sampling is weakly asymptotically optimal.

6. [C45o] (Thompson sampling with ε-optimal policies) Prove/disprove that
using Thompson sampling with an ε-optimal policy for the sampled environment leads
to an agent which is asymptotically optimal in expectation?

7. [C20i] (Entopy of universal prior) Prove that wν=2−K(ν) has infinite entropy∑
ν∈Msol

wν logw
−1
ν , but wν=2−(1+ε)K(ν) and wν=2−K(ν)/K(ν) have finite entropy.

8. [C38] (Exploration in AIXI) BayesExp uses explicit exploration to achieve weak
asymptotic optimality. Bayesian agents like AIXI will still (implicitly) explore. Derive
a definition for the kind of exploration a Bayesian agent does. Using this definition
find the largest class of environmentsM such that AIXI is asymptotically optimal
(for each type).

9. [C45o] (BayesExp with ε-optimal policies) Prove/disprove that using BayesExp
with an ε-optimal policy during the exploitation (and/or exploration) phases leads to
an agent which is weakly asymptotically optimal?

302 CHAPTER 9. OTHER UNIVERSAL AGENTS

9.7 History and References

Optimism. Optimism has long been an approach to the exploration problem in reinforce-
ment learning [SL08]. The optimistic variant of AIXI and its philosophical and axiomatic
underpinning was first introduced in [SH12b], where it was shown how optimism can lead to
asymptotic optimality (Section 9.1). Optimism of general agents was further studied in the
context of cognitive theory and rational behavior [SH14a, SH15b]. On the opposite end of
the spectrum, it was shown that pessimism in general RL can lead to more safe behavior
[CH20b]. A counter-point to optimism was presented in [OVR16b] which argued that any
optimistic algorithm that matches Thompson sampling in statistical efficiency would likely
be computationally intractable. [OVRRW17] explores the use of randomized value functions
to encourage exploration in RL. By adding variance to the value, this generated a positive
bias when selecting actions greedily, leading the agent to explore more.

Thompson sampling. Thompson sampling [Tho33] (Section 9.2) has had a recent resur-
gence as it has shown to lead to strong performance in many problems beyond the traditional
bandit setting including: contextual bandits [AG13], finite time bandits [CPRR17], non-
stationary bandits [RK17], MDPs [GM15, OGNJ17, OVR16a], POMDPs [JJN21], game the-
ory [Mau20], adaptive control [OB10b, OB10a, Ort11] and (general) RL [LLOH16, LLOH17].
A thorough overview of Thompson Sampling is given in [RVRK+17]. Using naive sequen-
tial prediction to solve sequential decision-making problems can lead to several difficulties
[OKD+21], however in [OWR+19] it was shown how to meta-learn a Thompson sampling
agent and overcome many of these difficulties. Thompson sampling-based exploration
has been shown to work well in Atari when using an uncertainty-based Bellman equation
[OOMM17]. [OVR15] shows a method to perform Thompson sampling without the need for
a posterior distribution by bootstrapping from both real and artificial data.

Knowledge-seeking agents. The knowledge seeking agent was first proposed in [Ors11]
and later extended to stochastic environments in [OLH13] (Section 9.3). The knowledge
seeking agent was extended again from stochastic environments to quantum environments
in [Sar21, SAGB21].

Curiosity-based agents. Highly related to knowledge seeking agents are curiosity-based
agents, that is, agents which use a notion of curiosity to aid in exploration, or in some
cases replace reward entirely. One of the earliest derivations of curiosity-based agents
was done in [Sch91] with an agent that is incentivized to take actions that will provide
more information about the world it is interacting with. [BEP+18] performed a study
on curiosity-based agents in Atari and other RL environments. One of the downsides of
curiosity and information-seeking agents is that they can be susceptible to “noisy TVs”: any
input that feeds unpredictable random data to the agent. This problem is suffered by the
original Knowledge seeking agent [Ors11] which only modelled deterministic environments.
[MPYBG22] investigated how curiosity-based agents can overcome this problem. Variation
Information Maximizing has been shown to be an effective curiosity-based exploration method
[HCD+16]. [SGS11] introduced an exploration strategy using a curiosity-based (action) value
function and proved its (Bayesian exploration) optimality when the environment is an MDP.
Curiosity is not always a positive for an agent and the dangers of overly curious agents were
discussed in [CHC21].

Intrinsic rewards. One of the key aspects of knowledge seeking agents is that they
possess an intrinsic reward. In the context of RL, intrinsic motivation and reward has seen
substantial study. [LAW+20] provides an overview of many of the approaches to this problem.
A study of intrinsic motivation and its ability to lead to hierarchical learning was conducted
in [BSC+04]. [Sch10] proposed a precise theory of creativity, fun and intrinsic motivation

9.7. HISTORY AND REFERENCES 303

which itself was motivated by compression. One approach in the absence of rewards is to use
the discovery of new behavior in the form of options [SP02] to motivate the agent [MB16].
Intrinsic motivation can also be used to guide the exploration of agents [BSO+16, MBMK21].
The topic of intrinsic motivation and reward will see further exploration in Chapter 15.

General exploration agents. The BayesExp agent [LH14b] (Section 9.4) was the first
agent which was shown to be weak asymptotically optimal in a large class of environments.
Thus, it demonstrated that weakly asymptotically optimal was an achievable property of
general agents (though not deterministic ones). [Lei16a] introduced an exploration measure,
called exploration potential, that is provably equivalent to asymptotic optimality (under
some conditions). The Inq agent [CCH19] was the first agent which was shown to be
strongly asymptotically optimal, and again like with BayesExp this demonstrated that
strong asymptotic optimality was an achievable property (previously it was suspected but
not proven that no general agent could achieve this).

Planning-avoiding agents. For finite-state MDPs, Bellman equations [BT96] and Tem-
poral Difference algorithms [HL07, SB18] bootstrap values and policies by one-step (or
few-step) lookahead instead of expensive (long-horizon) expectimax or Monte Carlo Tree
Search (MCTS) planning. These ideas have been extended to infinite MDPs via (non)linear
value function approximation and POMDPs. In this chapter, we have discussed the history-
based planning-avoiding agent Self-AIXI [CGMH+23], which maintains a Bayesian posterior
mixture over policies. In Section 13.2 we discuss AIXItl [Hut05b, Chp.7] and in Section 12.9
Compress and Control [VBH+15, DRW+24].

Risk- and ambiguity-sensitivity agents. Bayes-optimal agents are risk-neutral since
they solely attune to the expected return, in contrast to risk-sensitive agents, which are also
sensitive to higher-order moments of the return. Bayes-optimal agents are also ambiguity-
neutral since they simply average over any uncertainty, unlike ambiguity-sensitive agents
which act differently when recognizing situations in which they lack knowledge. [GMDK+22]
show how off-policy meta-learning can give rise to risk- and ambiguity-sensitive agents,
which can be safer and more robust to external perturbations.

Chapter 10

Multi-Agent Setting

There’s no sense in being precise when you don’t even
know what you’re talking about.

John von Neumann, 1903–1957

10.1 From Preferences to Utilities . 305
10.2 Game Theory . 306

10.2.1 Strategic Games . 307
10.2.2 Nash Equilibrium . 307
10.2.3 Important Games . 309
10.2.4 Mixed Strategic Games . 312

10.3 Multi-Agent Extensive-Form Games . 313
10.4 Strategic Games vs Reinforcement Learning 315
10.5 Reflective Oracles . 316
10.6 The Grain of Truth . 318
10.7 Reflective AIXI . 320
10.8 Exercises . 322
10.9 History and References . 322

So far we have only discussed single-agent settings, where there is only one agent and
the environment. More realistically, and more complex, is the multi-agent setting. In
this setting we consider the agent, the environment and some number of other agents.
Now what do we mean by other agents? Surely we could capture the behavior of
these other agents as part of the environment. While this is true, it misses some of
the subtlety and advantages of considering the multi-agent setting. For one, when we
consider an environment, if we know we are in the multi-agent setting (we have to
consider or can exploit that) we know the other agents will also learn, or at least act in
specific ways with respect to our own actions.

304

10.1. FROM PREFERENCES TO UTILITIES 305

In Section 10.1 we state and discuss a fundamental result in decision theory, namely
that the preferences of a rational agent over different choices facing uncertain outcomes
can be represented as an expected real-valued (von Neumann-Morgenstern) utility
function, which is the basis for expected utility theory and hence most of game theory.

The field of game theory is fundamental for the study for multi-agent systems. In
Section 10.2 we will go over the basics of game theory, including the formalization of
strategic games, Nash equilibrium, and some important games. We will then present
the relations between game theory and reinforcement learning in Section 10.4.

In Section 10.5 we will describe the notion of reflective oracles which play a key role
for agents who are able to model themselves. Lastly we will discuss the grain of truth
problem in Section 10.6, which is the problem of finding a class of policies closed under
Bayesian optimality. We will show why this is an important problem in the multi-agent
setting and present a solution.

10.1 From Preferences to Utilities

von Neumann-Morgenstern utility [VNM47]. The von Neumann-Morgenstern
(VNM) utility theorem gives a collection of premises under which it is sufficient for an
agent to be utilitarian: that is, its preferences can be described as the maximization of some
utility function over possible outcomes. We formalize this concept as follows: Let O denote
a set of outcomes (which could even be the set of all finite interaction histories), and let ≺
denote the agent’s preference (a binary relation) over O.

In practice, a full description of the preferences ≺ of an agent (like a human) may be in
general unknown. We treat the preferences of the agent as a black box, and assume we can
query the agent. If the agent strictly prefers a to b, we write a≻b, or b≺a. If the agent is
indifferent to either a or b (formally, a ̸≻b and b ̸≻a) we write a∼b. The symbols ⪰ and ⪯
are defined in the obvious fashion.

Given two outcomes a,b∈O and θ∈ [0,1], we define a lottery θa+(1−θ)b as the (random)
outcome representing observing outcome a with probability θ, and outcome b with probability
1−θ. We require that O is closed under lotteries, and that the agent also has preferences
defined for lotteries, that is, given any outcomes a,a′,b,b′∈O and α,β∈ [0,1], the outcomes
αa+(1−α)a′ and βb+(1−β)b′ are in O, and hence comparable with respect to ≺. Note
that this makes outcomes random events.

Definition 10.1.1 (Utilitarian preferences) An agent’s preferences ≺ are utilitarian
if there exists a function U :O→R such that

a≺b if and only if E[U(a)]<E[U(b)]

The von Neumann-Morgenstern utility theorem states that under some weak assumptions,
an agent’s preferences are utilitarian. We will not prove the theorem here, but will instead
motivate why these assumptions are reasonable.

306 CHAPTER 10. MULTI-AGENT SETTING

Theorem 10.1.2 (von Neumann-Morgenstern utility [VNM47]) Let ≺ be a
preference relation over outcomes O. If the four following conditions hold for arbitrary
a,b,c∈O:

1. Completeness: At least one of the following is true: a⪯b or b⪯a.
2. Transitivity : If a⪯b and b⪯c, then a⪯c.
3. Continuity : If a⪯b⪯c then there exists θ∈ [0,1] such that θa+(1−θ)c∼b.
4. Independence: a⪯b if and only if θa+(1−θ)c⪯θb+(1−θ)c for any θ∈(0,1].

then ≺ is utilitarian.

1. Completeness: This merely assumes that between any two options, the agent can
state which it prefers (or if it is indifferent). If the agent cannot even state what its
preference would be between two options, then we have no hope of assigning utilities
to it.

2. Transitivity: This seems intuitively obvious (if the agent prefers apples to bananas,
and bananas to pears, it would stand to reason the agent would prefer apples to pears).
Suppose ⪯ was non-transitive, so there exists a,b,c such that a⪯b and b⪯c but a≻c.
Then, presumably an agent would be happy (or be indifferent) to swapping a for b,
and same for swapping b for c, but then the agent strictly prefers a to c, and would
pay a non-zero amount (say, one cent) to swap c for a. The agent is now back in the
initial configuration, and one penny poorer. We can repeat this argument ad infinitum
and take all of the agent’s assets, one penny at a time. This style of argument to
demonstrate non-transitive preferences lead to irrational behavior is called a money
pump.

3. Continuity: This requires that the preferences of an agent do not change suddenly
in response to arbitrary small changes. If the agent prefers a⪯b⪯c, then the lottery
l= θa+(1−θ)c should still satisfy a⪯ l⪯ b for θ≈1 (as l would with overwhelming
probability be the same outcome as a, and a⪯b). As θ is decreased, the agent would
prefer l more and more, (as the outcome is more likely to be the more desirable outcome
c) and at some point l is almost indistinguishable from c for θ≈0, so we would expect
b⪯ l⪯ c. It seems reasonable to assume that for some intermediate value of θ, the
agent is indifferent between l and b.

4. Independence: Given a preference a⪯b, the agent should still prefer a θ chance at b
over a θ chance of a, regardless of the other outcome c with 1−θ probability. This
indicates that a preference should not change if stated as a lottery, with the same
alternative option for both lotteries.

Instead of abstract preference relations, Theorem 10.1.2 allows us to work with real-valued
utilities, which are more convenient. Indeed, it provides a partial justification for the reward
hypothesis, we assumed since Chapter 6.

10.2 Game Theory

Game theory is the study of multi-agent interactions. For this section, we will be using the
notation of [OR94]. For the reader looking for a more in-depth view on game theory we
suggest [Osb04, SLB09].

10.2. GAME THEORY 307

10.2.1 Strategic Games

The common definition of a game is a 3-tuple with players, actions, and preferences. This is
called a strategic game (in normal form).

Definition 10.2.1 (Strategic game in normal form) A strategic game is a 3-tuple
⟨N ,(Ai)i∈N ,(⪰i)i∈N ⟩, where N is a finite set of N players, Ai is the set of actions for
player i, and ⪰i is the preference relation on A :=A1×A2×...×AN for player i. If all
of the sets of actions Ai are finite, then we call the 3-tuple a finite strategic game.

Given a subset I⊆N of the players, then an assignment of players to actions f :I→Ai is
called an action profile, or simply a profile. We usually denote an action profile as a vector
a∈∏i∈IAi of each player’s action.

We will make the assumption that for each player i there exists a utility function
ui :A→R such that for all a,b∈A, we have ui(b)≥ui(a) if and only if b⪰ia. This implicitly
places constraints on the types of preferences players are allowed to have, and it forbids
kinds of preferences that have inconsistencies preventing them from being modelled as the
maximization of some utility function as discussed in Section 10.1. In the case where the
preferences can be specified by a utility function, we may skip preferences entirely and
define ⟨N ,(Ai)i∈N ,(ui)i∈N ⟩ as the strategic game. We usually present strategic games in
this fashion, since having non-utilitarian preferences are irrational (Theorem 10.1.2).

Additionally we have some (slightly modified) notation from [OR94] which we will use
here. We denote by a̸=i the vector (a1,...,ai−1,ai+1,...,aN), an action profile with the action
associated with player i missing. As a slight abuse of notation, we write uj(a̸=j ,b) for player
j’s utility for taking action b instead of action aj , assuming the actions of all other players
are described by the action profile a̸=j .

10.2.2 Nash Equilibrium

Informally, the Nash equilibrium is an action profile with the property that no player would
prefer to unilaterally change their action given the knowledge of the actions that all other
players will choose.

Definition 10.2.2 (Nash equilibrium) A Nash equilibrium of a strategic game
⟨N ,(Ai)i∈N ,(⪰i)i∈N ⟩ is an action profile a∗∈A, with the property that for every player
i∈N , we have

∀a∈Ai. ui(a
∗) ≥ ui(a

∗
̸=i,a)

That is, given every other player chooses the appropriate action in the profile a∗, there
exists no i for which player i would (strictly) prefer to play an action other than a∗i .

Nash equilibria can be thought of as “stable” in the sense that no single player would
unilaterally desire to play a non-Nash equilibrium action if everyone else is. But note that it
is often the case that all players would be better off if they could all coordinate to play a
different action profile instead. Conversely, non-Nash equilibrium profiles are “unstable” as
there exists a player who is incentivized to play a different action instead for strictly greater
utility, often at the expense of lower utility for the other players, for example in zero-sum
games.

308 CHAPTER 10. MULTI-AGENT SETTING

Closely related to the Nash equilibrium is the best response function. This takes the
actions of every other player and gives a set of actions that are optimal according to the
players own utility function ui.

Definition 10.2.3 (Best response function) Given a̸=i, the action profile of all
other players, we define player i’s best response function Bi : (Aj)j∈N\i→Ai as all
actions that maximize their utility

Bi(a̸=i) := argmax
a∈Ai

ui(a̸=i,a)

Theorem 10.2.4 (Nash Equilibrium via best response functions) An action
profile a∗ is a Nash equilibrium if and only if for all i, every action a∗i is one of player
i’s best responses to a∗̸=i, that is, a

∗
i ∈Bi(a

∗
̸=i).

Finite two-player normal-form strategic games are often represented in the form of a
payoff matrix , where the rows are the actions of one player and the columns are the actions
of the other. In each cell in the table is a pair (u1,u2), where u1 is the utility for the player
on the left (player 1), and u2 is the utility for the player on the top (player 2), for that
action profile respectively.

Player 2
Name action 0 action 1

Player 1
action 0 (u1(0,0),u2(0,0)) (u1(0,1),u2(0,1))
action 1 (u1(1,0),u2(1,0)) (u1(1,1),u2(1,1))

It is not immediately clear whether for any strategic game, a Nash equilibrium exists,
and indeed often it does not. Below we will show some examples of well-studied strategic
games, for which some (but not all) have Nash equilibria.

The surprising and often frustrating property that some games have is that a Nash
equilibrium a∗ is not the optimal profile for all players: There can also exist a non-Nash
equilibrium profile b∗ that all players would strictly prefer (∀i.ui(b∗)>ui(a∗)). Unfortunately,
non-Nash equilibrium strategies are not stable, in the sense that there exists a player i who
would gain even more utility by choosing a different action ai ̸= b∗i , often at the expense
of decreasing the utility of other players. After several iterations of the same game, other
players might act “selfishly”1 in the same manner, until the action profile for which no player
would unilaterally change their action is achieved, which is strictly worse off for everyone. A
classical example is the Prisoner’s dilemma described below.

If a strategic game satisfies certain conditions, the existence of a Nash equilibrium is
guaranteed.

1Assuming each agent is selfish, and their utility function values only outcomes for themselves, as opposed
to altruistic agents, who also value the utility of others.

10.2. GAME THEORY 309

Lemma 10.2.5 (Kakutani’s fixed point theorem [Kak41]) Let X be a compact
convex subset of Rn and let f :X→2X be a set-valued function for which the following
holds:

1. For all x∈X the set f(x) is nonempty and convex, i.e. for all x1,x2∈f(x) the line
segment from x1 to x2 is contained in f(x), i.e. for all α∈ [0,1], αx1+(1−α)x2∈
f(x).

2. For all sequences (xn) and (yn) such that for all n, yn∈f(xn) and the sequences
have limits xn→x and yn→y, then y∈f(x), i.e. the graph of f contains its limit
points, that is, the graph is closed.

Then there exists a fixed point x∗ such that x∗∈f(x∗).

Definition 10.2.6 (Quasi-concave preference relation) A preference relation ⪰i

over A is quasi-concave over Ai if for every a∈A, the set {ai ∈Ai : (a̸=i,ai)⪰i a} is
convex.

Theorem 10.2.7 (Existence of Nash equilibrium [OR94, Prop.20.3]) The
strategic game ⟨N,(Ai)i∈N ,(⪰i)i∈N ⟩ has a Nash equilibrium if for all i∈N :

1. The set Ai is a nonempty, compact convex subset of Rn.

2. The preference relation ⪰i is continuous and quasi-concave on Ai.

Proof sketch. For B :A→A defined as B(a) :=×x∈NBi(a̸=i), the condition for a being a
Nash-equilibrium in Theorem 10.2.4 can be rewritten as B(a∗)=a∗. For every i∈N the set
Bi(a ̸=i) is nonempty since ⪰i is continuous and Ai is compact, and is convex since ⪰i is
quasi-concave on Ai; B has a closed graph since each ⪰i is continuous. Thus by Kakutani’s
theorem, B has a fixed point, and hence by the above is a Nash equilibrium. �

In some strategic games the two players can cooperate with each other and do better,
but we often use the word “game” (think chess or checkers) if the only way one player can
win is if the other loses. These kinds of games are called strictly competitive or zero-sum
games.

Definition 10.2.8 (Strictly competitive game) A strategic game
({1,2},(A1,A2),(u1,u2)) with two players is a strictly competitive game if for
all action profiles a,b∈A, a⪰1 b if and only if b⪰2 a.

One can show that for strictly competitive games there are zero-sum payoff functions
with u1+u2=0 representing the players’ preferences.

Many recreational games like poker or chess are zero-sum games, where one player’s gain
is the other player’s loss. There is no way for players to cooperate to both do better.

10.2.3 Important Games

Many interesting normal-form games have been studied in game theory. In this subsection
we will go over five different prototypical normal-form games which we will later use as

310 CHAPTER 10. MULTI-AGENT SETTING

environments for a simple approximation of AIXI. These 2×2 matrix games have been
intensely studied, since they constitute the smallest non-trivial games, already exhibiting a
wide variety of interesting and intricate phenomena.

Prisoner’s Dilemma. It would not be an exaggeration to say that the most studied
game in game theory is the Prisoner’s Dilemma. It is a fundamental game for which the
Nash equilibrium is strictly suboptimal for both players. The idea of the game is that there
are two suspects of a crime that are being interrogated separately and they both have the
option to cooperate with the other criminal and remain silent, or defect by testifying against
their co-conspirator. If the criminals cooperate with each other, they will both receive a
short prison sentence, giving each player utility 2. If both suspects defect, stronger evidence
will ensure both receive a longer prison sentence, giving each player utility 1. If one player
defects and the other cooperates, the defecting suspect is released under a plea bargain,
receiving utility 4, while the cooperating suspect is put into prison for the longest time and
receives utility 0. This is summarized in the game matrix below.

Player 2
PD defect cooperate

Player 1
defect (1,1) (4,0)

cooperate (0,4) (2,2)

Ideally both players would wish to cooperate, but this leads to an incentive for either
player to defect, leading to the Nash equilibria of defect-defect, a strictly worse outcome for
both players.

Very serious real-world versions of this dilemma are the tragedy of the commons for
shared physical resources, which (without global cooperation) leads to pollution, overfishing,
deforestation, and more.

Stag Hunt. Two hunters are on a hunting trip together. The hunters have the option to
hunt a stag (a male deer) or a hare (≈ rabbit). Hares are easy to hunt, and can be caught
by a single hunter. A stag is much more difficult to catch, and requires both hunters to work
together to catch it, but is worth more, having more meat than a hare. If the hunters both
choose to hunt a hare together, they each receive utility of 2, corresponding to catching
and sharing one hare. If they choose to hunt a stag together, they succeed and both obtain
a utility of 4. If the hunters choose different quarry, the hare hunter will receive utility 3
since he gets the hare all to himself, and the stag hunter will be unsuccessful working alone,
receiving utility 0. This is summarized in the game matrix form below.

Player 2
SH hare stag

Player 1
hare (2,2) (3,0)
stag (0,3) (4,4)

Stag Hunt is a game which may look very similar to the prisoner’s dilemma, however it
has one key difference: the highest utility for each player is also the Nash equilibrium. This
means that the players have no incentive not to work together, and it is in the best interest
of even selfish players to cooperate.

Some other settings that share the same features as Stag Hunt include: two individuals
who must row a boat, two neighbors wishing to drain a meadow, coordination of slime molds,
hunting practices of orcas, and countries working together to improve corporate governance2

just to mention a few.

2But only where there is no incentive to defect for greater gains. For example, a country may wish to
forgo voluntary reduction in emissions even if others are doing so to gain a economic competitive advantage.

10.2. GAME THEORY 311

Chicken. Two thrill-seekers are playing a game of brinkmanship: Both are in cars, driving
towards each other in a head-on collision course. Either driver can choose to “swerve” or
“not swerve”. If one driver swerves and the other does not, the driver who swerved “chickened
out”, and is made an object of contempt (receiving utility 1), whereas the driver who did
not, gains the admiration of their peers (receiving utility 4). If both drivers swerve, neither
is branded a coward, but they also receive no admiration (a utility of 2 each). If neither
driver swerves, they crash head-on, die, and receive utility of 0.

Player 2
Chicken no swerve swerve

Player 1
no swerve (0,0) (4,1)
swerve (1,4) (2,2)

Unlike the previous two games mentioned, the game of Chicken has two Nash equilibria.
If player 2 is the chicken and player 1 is not, then neither player has incentive to change
their action. The same goes for player 2 committing and player 1 chickening out. In either
case if the player who is the chicken changes to not swerving he will receive reward 0 instead
of 1, and if the player who is not swerving changes to swerving she will receive reward 2
instead of reward 4.

The game of chicken is a common toy model of behavior common in political and military
affairs, where each side is trying to achieve an advantageous outcome by threatening to
escalate, in the hope the opponent backs down, rather than ending up in a catastrophic
for both parties. Such real world examples include competing companies participating in a
price war, nuclear deterrence and brinkmanship, tariff wars, or animals displaying aggressive
behavior to establish dominance.

Battle of the Sexes. A couple intends to spend a nice evening together. The husband
prefers watching a Western, the wife prefers to go to a Musical. Both would prefer to go to
the same event rather than different ones. If they are bad communicators, where should
they go? Each receives utility 4 if they go together to their preferred event with their spouse
accompanying them, utility 2 if they go to the event they dislike with their spouse, and
utility 0 if they go separately, regardless of the choice made (neither party is happy if they
are alone for the evening). This is summarized in the game matrix below.

Wife
BoS Musical Western

Husband
Musical (2,4) (0,0)
Western (0,0) (4,2)

Similar to the game of Chicken, Battle of the Sexes has two Nash equilibria. However,
unlike in Chicken, a player benefits from trying to ensure the other player chooses the same
action as them (and ideally, their preferred action). Depending on the precise payoffs, in a
repeated game players can often attain high utility by agreeing to take turns: swapping who
gets to choose the event for that evening, or who will swerve first.

One shot games of BoS are more interesting as only one player gets the advantage. Setting
industry standards is an instance of BoS: Each company prefers their in-house solution, but
both are better off if they agree on a common standard rather than each using their own.

Matching Pennies. Two players are competing in a game where each player chooses
heads or tails. The first player receives utility 1 if both players choose the same option,
and utility 0 otherwise. The second player receives utility 1 if both players choose different
options, and utility 0 otherwise. This is summarized in the game matrix below.

312 CHAPTER 10. MULTI-AGENT SETTING

Player 2
MP Heads Tails

Player 1
Heads (1,0) (0,1)
Tails (0,1) (1,0)

Unlike all the previous games we have mentioned, matching pennies does not have a
pure=deterministic Nash equilibrium, since for every action profile, the losing player can
gain more utility by switching her strategy to the other action.

Penalty kicks in soccer are an instance of Matching Pennies. The kicker can kick left
or kick right, and the goalie can jump left or jump right. Importantly, the goalie has to
jump before he sees the kicker’s choice. The situation is similar for serve-and-return plays in
tennis. Rock paper scissors can be regarded as a version of Matching Pennies with three
actions.

10.2.4 Mixed Strategic Games

When acting against intelligent players in a game (especially for competitive games where
cooperation is not an option), we do not want to always deterministically choose an action
lest our opponent predicts what action we are going to take (which in games like matching
pennies means we will always lose.) This leads us to the concept of mixed strategic games,
where instead of choosing an action deterministically, each player chooses a probability
distribution over the set of actions, and then samples actions according to that probability
distribution.

Definition 10.2.9 (Mixed strategic games in normal form) The mixed extension
of the strategic game ⟨N ,(Ai),(ui)⟩ is the strategic game ⟨N ,(∆Ai),(Ui)⟩, where ∆Ai

is the set of all probability distributions over Ai, and Ui :"j∈N∆Aj→R is defined as
the expected value of ui, assuming each player j samples his action from Aj according
to the probability distribution αj . By writing α :=(α1,...,αN), we can express Ui as

Ui(α) :=
∑
a∈A

ui(a)
∏
j∈N

αj(aj)

We call a distribution in ∆Ai a mixed strategy for player i, and note that the set of
mixed strategies for a player in a strategic game, is the same as the set of actions in that
game’s mixed extension. We sometimes use the term pure strategy for actions a∈Ai, i.e.
distributions in ∆Ai that are deterministic, assigning probability 1 to one of the actions
in Ai and zero to the others. We can extend the concept of Nash equilibrium to mixed
strategic games.

Definition 10.2.10 (Mixed Nash equilibrium) A mixed strategy Nash equilibrium
of a strategic game is a Nash equilibrium of the mixed extension, that is, a collection
α∗ of probability distributions (α∗

1,...,α
∗
N), such that each αi ∈∆Ai, and no player

would stand to gain more utility (in expectation) by choosing a different probability
distribution. So, for all players i, and all αi∈∆Ai,

Ui(α
∗) ≥ Ui(α

∗
̸=i,αi)

where α∗
̸=i is α with the distribution for player i removed.

10.3. MULTI-AGENT EXTENSIVE-FORM GAMES 313

Note that every Nash equilibrium a∗ is a special case of a mixed Nash equilibrium α∗, as
we can choose α∗=(α∗

1,...,α
∗
N) with α∗

i (x)=Jx=a∗i K, the deterministic distribution assigning
1 to a∗i , and 0 elsewhere. Using this definition, we have an even more powerful result about
the existence of mixed strategy Nash equilibria.

Theorem 10.2.11 (Existence of mixed Nash equilibrium [VNM07]) Every
finite strategic game has a mixed strategy Nash equilibrium.

Proof sketch. The idea is to identify ∆Ai with the probability simplex {(p1,...,pmi) :pj ≥
0,
∑mi

j=1pj=1}, where mi := |Ai|. The set is nonempty, convex and compact. Since expecta-
tions are linear, one can define a preference relation a⪰i b iff Ui(a)≥Ui(b) that satisfies the
premises of Theorem 10.2.7 for the mixed strategy extension. �

Recall that the strategic game “matching pennies” has no pure Nash equilibrium. However,
since the game is finite, Theorem 10.2.11 implies that there must exist a mixed Nash
equilibrium, though the theorem and standard proof give no indication as to how to find it.

If a player chooses actions (heads, tails) with probabilities (12 ,
1
2), then the expected

utility for both players is 1
2 , regardless of what strategy the opponent chooses, mixed or

otherwise. Hence, if both players choose a mixed strategy of (12 ,
1
2), there is no incentive for

either player to choose any other mixed strategy (as they are all equally good against a
uniformly random opponent), so both players choosing (12 ,

1
2) is a mixed Nash equilibrium

for this game.
In fact, it is the only mixed Nash equilibrium. If the first player chose some other

mixed strategy (θ,1−θ) for some value 0≤θ≤1 with θ ̸= 1
2 , then player 2 would choose a

deterministic strategy of either always heads (1,0) if player 1 was more likely to choose tails
(θ< 1

2), or always tails (0,1) if player 1 was more likely to choose heads (θ> 1
2). Then, the

expected utility to player 2 is max{θ,1−θ}> 1
2 for θ ̸= 1

2 . The same argument can be made
for player 1 if player 2 chooses a mixed strategy other than (12 ,

1
2).

10.3 Multi-Agent Extensive-Form Games

As currently defined, a strategic game has a single round of interaction. More interesting
are games where all players choose an action (or an action is sampled from the chosen
distribution), the players’ actions are revealed, the players receive utility according to the
utility functions, and then players choose an action (or change their distribution) again for
the next round, using the previous history of action profiles and received utilities as a guide.
Multi-round strategic games are called extensive-form games. This setting is extremely
general, much more general than just repeated (i.i.d.) matrix games. Indeed it generalizes
the history-based (essentially assumption-free) Reinforcement Learning (RL) setting to
modelling multiple agents with simultaneous actions (see Chapter 11 for how to transform
between simultaneous and sequential actions).

In extensive-form games or multi-agent setting there are N agents each taking actions
sequentially from the finite action space A. In each time step t=1,2,..., the environment
receives an action profile (a1t ,...,a

t
N)∈A, and outputs N percepts e1t ,...,e

N
t ∈E , one for each

agent. Each percept eit=(oit,r
i
t) contains an observation oit and a reward rit∈[0,1]. Importantly,

each agent i only sees its own action ait and its own percept eit (see Figure 10.1), and may
not condition on the actions or percepts of other agents. We use the shorthand notation
at :=(a1t ,...,a

N
t) and et :=(e1t ,...,e

N
t), and denote hi<t=a

i
1e

i
1...a

i
t−1e

i
t−1 (the interaction history

observable by agent i) and h<t = a1e1...at−1et−1 (the full interaction history that the
environment has access to when generating the next percept).

314 CHAPTER 10. MULTI-AGENT SETTING

agent π1

agent π2

...

agent πn

multi-agent
environment σ

a1t

e1t

a2t

e2t

ant

ent

Figure 10.1: Agents π1,...,πn interacting in a multi-agent environment.

We define a multi-agent environment as a probability kernel

σ : (An×En)∗×An→∆(En)

The n agents are given by n policies π1,...,πn where πi :(A×E)∗→∆A. Together they specify
the history distribution

σπ1:n(ϵ) := 1

σπ1:n(h<tat) := σπ1:n(h<t)
∏n

i=1πi(a
i
t |hi<t)

σπ1:n(h1:t) := σπ1:n(h<tat)σ(et |h<tat)

Each agent i acts in a subjective environment σi given by joining the multi-agent environment
σ with the policies π1,...,πi−1,πi+1,...,πn, and marginalizing over the histories that πi does
not see. Together with the policy πi, the environment σi yields a distribution over the
histories of agent i

σπi
i (hi<t) :=

∑
hj
<t,j ̸=i

σπ1:n(h<t)

We get the definition of the subjective environment σi with the identity σi(e
i
t |hi<ta

i
t) :=

σπi
i (eit |hi<ta

i
t). It is crucial to note that the subjective environment σi and the policy πi

are ordinary environments and policies, so we can use the history-based RL formalism
from Chapters 6 and 7. Furthermore, we can interpret policy πi as a (one-shot) mixed
strategy αi of player/agent i, and the value V πi

σi
(ϵ) as their utility Ui(α), which reduces the

extensive-form to a normal-form game, hence many results for the latter apply as well.
Our definition of a multi-agent environment is very general and encompasses most of

game theory. It allows for cooperative, competitive, and mixed games; infinitely repeated
games or any (infinite-length) extensive form games with finitely many players.

Definition 10.3.1 (Multi-agent ε-best response and ε-Nash equilibrium) The
policy πi is an ε-best response after history hi<t iff

V ∗
σi
(hi<t)−V πi

σi
(hi<t) < ε

If at some time step t, all agents’ policies are ε-best responses, we have an ε-Nash
equilibrium.

10.4. STRATEGIC GAMES VS REINFORCEMENT LEARNING 315

Reinforcement learning ⇔ Game theory
stochastic policy = mixed strategy

deterministic policy = pure strategy
agent = player

multi-agent environment = infinite extensive-form game
reward/value = payoff/utility

(finite) history = history
infinite history = path of play

asymptotic optimality =̂ convergence to Nash

Table 10.2: Terminology dictionary between reinforcement learning and extensive-form
game theory [LTF16].

The property of multi-agent systems that is analogous to asymptotic optimality is
convergence to an ε-Nash equilibrium.

10.4 Strategic Games vs Reinforcement Learning

There are a lot of immediate similarities between strategic games and the sequential decision
theory and (history-based) RL setup. Both have a set of actions an agent can take, and
both have some sort of reward or utility that the agent wants to maximize. See Table 10.2
for a comparison of RL and extensive-form game theory terminology.

From Strategic Games to Reinforcement Learning. We can convert any extensive-
form strategic game to the RL setting by letting the actions in the game be the actions of the
agent, and the utilities Ui(α) be the value V πi

σi
. The agent represents one of the players, and

the environment simulates the actions of all other players. However, from the perspective of
the agent, it takes an action then sees the actions of the opponent(s). While this does sound
like quite a simple conversion, it misses the point of strategic games: modelling the actions
of an intelligent adversary, or learning to cooperate or compromise with another player so
both players obtain a mutually beneficial outcome. In (classical MDP) RL, this is not often
captured as many of the results in (classical MDP) RL focus on stationary environments
(that is, the strategy of all other players is fixed), and so the actions the player should take
are simple: observe the actions that the other players take (or in the case for mixed strategy
games, estimate the opponent’s distribution via many interactions), and then reply with
an action using the best response function. Representing other players with a stationary
environment means that the opponents cannot learn when they are being exploited and
change strategy.

This is not to say that all RL is without intelligent adversaries; in fact, the famous
successes of RL, Backgammon [Tes94], Go[SHM+16], and StarCraft [VBC+19], are environ-
ments which are interesting because of the intelligent adversary (often the human world
champion(s) for that respective game or self-play) and the complexity of the aforementioned
games making approaches via more classical AI techniques difficult. In many situations, there
is information about the adversaries’ reward. Often, these environments can be represented
by zero-sum games, and the opponent’s reward can be taken as the negative of the agent’s
reward (though, especially for Go and StarCraft, it can be very difficult to observe a game
in progress and declare with confidence which player currently has an advantage.)

General intelligent agents such as AIXI should learn to perform optimally on these RL

316 CHAPTER 10. MULTI-AGENT SETTING

environments (if it is possible to learn to perform optimally). This is with a “small” caveat:
One of the few assumptions of AIXI and Solomonoff induction is that the true environment
is assumed to be within the Bayesian mixture class. For simple strategic games this may be
the case, however this assumption fails if AIXI were to play against itself. This leads to a
reflective problem, which is addressed in the remaining sections of this chapter.

From Reinforcement Learning to Strategic Games. Above we highlighted the trans-
formation of any extensive-form strategic game into a reinforcement learning environment.
We now demonstrate that this process can be reversed, emphasizing the utility of this
mapping. By maintaining the agent’s action space as it was in the RL setting, we can
represent each state or observation of the environment as an action taken by the opponent.
The agent receives a payoff as a reward for every action and state, while the opponent
receives the agent’s negative payoff.

A notable limitation of this simple conversion is that the strategic game’s opponent may
not aim for optimal actions, as the environment selects actions based on its distribution. This
contradicts one of game theory’s core principles, which assumes that all players strive for
optimal performance. Setting the pay-off matrix of the opponent to identically zero also does
not help: Any best response strategy of the agent to any strategy of the opponent whatsoever
is a Nash equilibrium. Regardless, various aspects of RL can be adapted to the strategic
game framework. For example, MDPs can be represented by Markov opponents, partially
observable environments can be mirrored by partially observable opponent actions, and
computable environments can be incorporated by ensuring that the game and its opponents
are computable.

10.5 Reflective Oracles

In computational game theory, we can model the players as agents running on Turing
machines. In this set-up, how will two optimal agents act if they know the other agent’s
code, and both know they have the code of the other, etc? Naively each agent will run the
other agent’s program, which will run their own program, which will run the other agent’s
program, and so on. One solution to this could be to only do this recursion a set number
of times; however, what if the opponent does this more? To overcome this self-modelling
problem, [FTC15] came up with a probabilistic oracle called a Reflective Oracle, a truly
remarkable construction. When an agent is run with a Reflective Oracle, it is able to reason
about itself and overcome this self-modelling problem.

Probabilistic Turing machines and semimeasures. Let T denote the set of probabilis-
tic Turing machines. Each Turing machine T ∈T corresponds to a conditional semimeasure
νT where νT (a|x) is the probability that T outputs a∈B given input x∈B∗. Note that∑

a∈BνT (a|x) may be smaller than 1, since T may not halt. We can define νT (x) with the
chain rule

νT (x) :=

ℓ(x)∏
k=1

νT (xk|x<k)

which is lower semicomputable, since each factor is lower semicomputable. Note that this
construction differs from Definitions 3.1.3 and 3.7.2 and does not include all ν ∈Msol

(Definition 3.7.1), since for a general ν∈Msol, the predictive distribution ν(a|x) may not be
lower semicomputable.

10.5. REFLECTIVE ORACLES 317

Oracles. An oracle is a function, which can give you access to information that would
otherwise be hard or impossible to compute. The oracle receives a question or query and
provides a yes or no answer to that query.

Oracles are great tools in theoretical computer science to prove results about levels of
computability beyond computable. One popular example is the (incomputable) Halting
oracle (Theorem 2.6.7). A Halting oracle takes an (encoded) machine-input pair ⟨T,x⟩ and
returns Yes if machine T halts on input x and No otherwise.

We can extend the notion of Turing machines and Turing computability to include
oracles: Let TO denote a Turing machine T ∈T but with access to oracle O. That is, TO is
an oracle machine which is an extended (probabilistic) Turing machine that additionally
has an oracle tape and oracle head that are used to query the oracle and write back 1=Yes
or 0=No (counted as only one time step) [Rog67]. For instance, if O is the Halting oracle,
TO now has the power to solve the Halting problem. Of course, due to the Church-Turing
thesis (Thesis 2.6.6), no real computer can compute TO for incomputable oracles O. Let νOT
denote the semimeasure induced by TO.

The oracles O :T ×B∗×Q→∆B we consider take as input (an encoding of) a Turing
machine and an input on that Turing machine as well as a rational number, and return
possibly randomized, Yes=1 or No=0 based on this input.

The specific oracle we consider has the following property: Each oracle takes a query
⟨T,x,z⟩, a Turing machine T , input to Turing machine x, and rational number z, and returns
1 if the probability that TO outputs 1 on input x is greater than z. That is, for the induced
semimeasure νOT (1|x)>z. It returns 0 if νOT (0|x)>1−z. If neither is satisfied the oracle can
return 0 or 1 randomly as it pleases. Formally:

Definition 10.5.1 (Reflective Oracle) An oracle O :T ×B∗×Q→∆B is reflective if
and only if for all queries (T,x,z)∈T ×B∗×Q,

– If νOT (1|x) > z then O(T,x,z)=1,

– If νOT (0|x)>1−z then O(T,x,z)=0,

– Else O(T,x,z) may return 0 or 1 at random (with any probability)

Note that the oracle O has to make statements about itself, since the machine T from
the query may again query O, hence the name reflective.

Definition 10.5.2 (Reflective-oracle-computable) A semimeasure is called
reflective-oracle-computable if and only if it is computable on a probabilistic Tur-
ing machine with access to a Reflective Oracle. That is, there exists a probabilistic
Turing machine T and Reflective Oracle O such that the semimeasure can be computed
with TO.

Recall that normalizing a semimeasure ν means increasing it to a measure ν such
that ν(0|x)+ν(1|x)=1. We can normalize the Reflective Oracle semimeasure νOT for any
probabilistic Turing machine T , to give us a Reflective Oracle measure νOT as follows: We do
this by using binary search and the oracle O to find the crossover point z∗∈ [0,1], where
O(T,x,z) changes from returning 1 to 0, i.e. νOT (1|x)≤z∗≤1−νOT (0|x) by definition of the
reflective oracle and construction of z∗. If νOT (1|x)+νOT (0|x)<1, z∗ may be random, so we
take the expectation

νOT (1|x) := E[z∗|x,νOT] =: 1−νOT (0|x) for all x (10.5.3)

318 CHAPTER 10. MULTI-AGENT SETTING

By construction, νOT (a|x) is a reflective-oracle-computable (properly normalized) measure,
and νOT (a|x)≥νOT (a|x).

It is far from obvious whether there exists Reflective Oracles and if so, whether they are
reasonably computable. Remarkably both questions have the answer, yes.

Theorem 10.5.4 (Existence of a limit-computable Reflective Oracle [LTF16])
There exists a limit-computable (see Definition 2.6.13) Reflective Oracle.

Note that limit-computability is weaker than computability, but very low in the arithmetic
hierarchy (∆0

2, see Definition 2.6.19). From the construction of the Reflective Oracle in
[FTC15], it looked like it may live even beyond the arithmetic hierarchy. The proof of this
theorem requires the construction of an infinite hierarchy of partially reflective partial oracles
and is beyond the scope of this book [LTF16]. One can also show that Reflective Oracles
are not Halting Oracles due to their randomization, and that they are not computable.

10.6 The Grain of Truth

When an agent is in a multi-agent setting, and each agent believes that every other agent is
acting optimally, what should each agent do? This is one way to describe what is known
as the Grain of Truth problem. In this problem each agent models the behavior of the
opposing agents, and each of these opposing agents is modelling the behavior of the agent,
which include models of the opposing agents, and so on. This can go on forever, or up to
the maximum depth allowed by each agent. The Grain of Truth problem is finding when
this chain of beliefs about opponents’ beliefs about itself has a solution. To solve it we will
take a Bayesian approach.

In this section, we will show how Reflective Oracles can be used to solve the Grain of
Truth problem. We will start by defining the class of environments, then we will go on to
show that the Bayesian mixture over this class is contained within the class. Lastly, we will
show that the optimal policy over this class is Reflective Oracle computable.

The grain of truth problem, within the given context, entails identifying a collection of
environments, denoted asM, comprising environments in such a way that the optimal policy
π∗
ξM

belongs toM. In other words, the best-performing policy derived from the Bayesian
mixture overM must itself be a member ofM. It is crucial to note thatM represents a
class encompassing both policies and environments simultaneously, since we are examining a
multi-agent setting where the environment is also considered an (opponent) policy.

Reflective Oracles have so far only been developed for binary sequences, while agents’
action and observation spaces are typically non-binary. This is not a problem, because we
can w.l.g biject actions and observations to binary complete prefix codes [MH21b, CHV22a,
MH21a], and take products of conditional binary predictive distributions, which we will
henceforth assume.

Definition 10.6.1 (Reflective environments) The class of reflective environments
with respect to a set of Turing machines T and a fixed reflective oracle O is defined by

MO
r := {νOT :T ∈T } (see (10.5.3))

Recall Definitions 7.2.1 and 7.2.2 of a Bayesian mixture, this time overMO
r

ξ(et|h<tat) :=
∑

ν∈MO
r

w(ν|h<t)ν(et|h<tat)

10.6. THE GRAIN OF TRUTH 319

but with one key difference: w(ν|h<t) is the recursively defined renormalized posterior,

w(ν|h1:t) :=w(ν|h<t)
ν(et|h<tat)

ξ(et|h<tat)

We can choose any lower semicomputable prior, e.g. wνO
T
=2−K(T) in line with AIXI, where

K is the Kolmogorov complexity (Section 2.7).

Theorem 10.6.2 (Bayes is a reflective environment [Lei16b]) The Bayesian
normalized mixture ξ is an element ofMO

r , that is

ξ∈MO
r

Proof. By induction over t it is easy to see that ξ is reflective-oracle-lower-semicomputable.
Assume w(ν|h<t) reflective-oracle-lower-semicomputable, which is true for t=1. This implies
ξ(et|h<tat) is reflective-oracle-lower-semicomputable, Hence there exists an oracle machine
T ′ such that ξ(et|h<tat) = νOT ′(et|h<tat), hence normalized ξ(et|h<tat) = νOT ′(et|h<tat) is
reflective-oracle-computable. This normalization is the key difference to Definition 7.2.2,
and makes the posterior w(ν|h1:t) reflective-oracle-lower-semicomputable, which completes
the inductive step. Since T ′∈T , we have that νOT ′ ∈MO

r . �

Now that we know ξ∈MO
r , we are interested in the degree of computability of Bayes-

optimal policy π∗
ξ , or more generally, ν-optimal policies for ν∈MO

r .

Theorem 10.6.3 (Optimal policies are reflective-oracle-computable [Lei16b])
For every ν∈MO

r there is a ν-optimal (stochastic) policy, π∗
ν , If discount function γk

and normalizer Γk are computable, then π∗
ν is reflective-oracle-computable.

Note that even though deterministic optimal policies always exist, those policies are
typically not reflective-oracle-computable.

Proof. We follow the proof from [Lei16b]. this can be extended and is left as an exercise to
the reader. Recall we can write the optimal value function (Lemma 6.6.3) as

V ∗,m
ν (h<t) =

1

Γt
max
at∈A

∑
et∈E

...max
am∈A

∑
em∈E

m∏
k=t

ν(ek|h<kak)

m∑
k=t

γkrk

Since every component of the value function is computable or reflective-oracle, and there are
only finitely many terms, the quantity itself is reflective-oracle-computable as the operations
combining the elements are computable operations.

Now as for V ∗
ν (h<t) := limm→∞V

∗,m
ν (h<t), the value function is monotone increasing

in m, since our rewards are bounded between 0 and 1, and the tail of the value function,
the components between time m+1 and ∞, is bounded by Γm+1. The function Γm+1

is computable and converges to 0 as m→∞. Therefore for any desired ε > 0 we can
choose an m such that Γm+1<ε/2 and compute V ∗

ν to any desired accuracy, hence it is
reflective-oracle-computable.

Recall that we restricted ourselves to the case of only two actions, say α=0 and β=1.
Since V ∗

ν is reflective-oracle-computable, there exists a probabilistic Turing machine T such
that

νOT (1|h<t) := 1
2 [V

∗
ν (h<tα)−V ∗

ν (h<tβ)+1] =: νOT (0|h<t)

320 CHAPTER 10. MULTI-AGENT SETTING

Then we can define a policy π as

π(h<t) :=

{
α if O(T,h<t,

1
2) = 1

β if O(T,h<t,
1
2) = 0

Now we need to show that π is a ν-optimal policy. (i) If V ∗
ν (h<tα)>V

∗
ν (h<tβ), which

means that νOT (1|h<t)>
1
2 , and therefore O(T,h<t,

1
2)=1, hence π will take action α, which

is optimal (ii) Similarly if V ∗
ν (h<tβ)>V

∗
ν (h<tα), then νOT (1|h<t)<

1
2 which means that

O(T,h<t,
1
2)=0, and π will take action β, which is optimal. (iii) If V ∗

ν (h<tβ)=V
∗
ν (h<tα),

then both actions are optimal, hence π is optimal whatever the oracle returns.
Therefore π is ν-optimal and reflective-oracle-computable. �

Combining the previous two theorems gives us the solution to the Grain of Truth problem.

Theorem 10.6.4 (Solution to the Grain of Truth problem [Lei16b]) For every
lower semicomputable prior w∈∆′MO

r and computable γ and Γ , the Bayes-optimal
(ξ-optimal) policy π∗

ξ is reflective-oracle computable, where ξ is the normalized Bayes-
mixture defined above.

Proof. This immediately follows from Theorems 10.6.2 and 10.6.3. �

This solves a fundamental problem which had been open 20+ years for the first non-trivial
class of environments, and indeed arguably for the most interesting class, which includes all
computable environments, while also not being too crazy in the sense that all ν∈MO

r are at
least limit-computable. A diagonalization argument prevents a Grain of Truth inMcomp

andMsol, so in a senseMO
r is the best solution one can hope for.

10.7 Reflective AIXI

The solution of the Grain of Truth problem allows to generalize the asymptotic optimality
results of Chapter 9 for variants of AIXI to the multi-agent setting. Proofs can be found in
[Lei16b, Sec.7.5].

Informed reflective agents. Let σ be a multi-agent environment as defined in Section 10.3
and let π∗

σ1
,...π∗

σn
be such that for each i the policy π∗

σi
is an optimal policy in agent i’s

subjective environment σi. At first glance this seems ill-defined: The subjective environment
σi depends on each other policy π∗

σj
for j ̸= i, which depends on the subjective environment

σj , which in turn depends on the policy π∗
σi
. However, this circular definition actually has a

well-defined solution.

Theorem 10.7.1 (Optimal multi-agent policies) For any reflective-oracle-
computable multi-agent environment σ, the optimal policies π∗

σ1
,...,π∗

σn
exist and

are reflective-oracle-computable.

Note the strength of Theorem 10.7.1: each of the policies π∗
σi

is acting optimally given
the knowledge of everyone else’s policies. Hence optimal policies play 0-best responses
by definition, so if every agent is playing an optimal policy, we have a Nash equilibrium.
Moreover, each agent also acts optimally on the counterfactual histories that do not end up
being played. This stronger property is called subgame perfect Nash equilibrium. In other
words, Theorem 10.7.1 states the existence and reflective-oracle-computability of a subgame
perfect Nash equilibrium in any reflective-oracle-computable multi-agent environment. From
Theorem 10.5.4 we then get that these subgame perfect Nash equilibria are limit-computable.

10.7. REFLECTIVE AIXI 321

Corollary 10.7.2 (Solution to computable multi-agent environments) For any
computable multi-agent environment σ, the optimal policies π∗

σ1
,...,π∗

σn
exist and are

limit-computable.

Learning reflective agents Since our classMO
r solves the grain of truth problem, the

famous result by Kalai and Lehrer [KL93] immediately implies that for any Bayesian agents
π1,...,πn interacting in an infinitely repeated game and for all ε>0 and all i∈{1,...,n} there
is almost surely a t0∈N such that for all t≥ t0 the policy πi is an ε-best response. However,
this hinges on the important fact that every agent has to know the game and also that all
other agents are Bayesian agents. Otherwise the convergence to an ε-Nash equilibrium may
fail, as illustrated by the following example.

At the core of the following construction is a dogmatic prior (Section 8.2.1). A dogmatic
prior assigns very high probability to going to hell (reward 0 forever) if the agent deviates
from a given computable policy π. For a Bayesian agent it is thus only worth deviating from
the policy π if the agent thinks that the prospects of following π are very poor already. This
implies that for general multi-agent environments and without additional assumptions on
the prior, we cannot prove any meaningful convergence result about Bayesian agents acting
in an unknown multi-agent environment.

Example 10.7.3 (Reflective Bayesians playing matching pennies) Consider the
game of matching pennies from Section 10.2.3. We use E={0,1} to be the set of rewards
(observations are vacuous) and define the multi-agent environment σ to give reward 1 to
agent 1 iff a1t = a2t (0 otherwise) and reward 1 to agent 2 iff a1t ̸= a2t (0 otherwise). Note
that neither agent knows a priori that they are playing matching pennies, nor that they are
playing an infinite repeated game with one other player.

Let π1 be the policy that takes the action sequence (HHT)∞ and let π2 :=πH be the
policy that always takes action H. The average reward of policy π1 is 2/3 and the average
reward of policy π2 is 1/3. Let ξ be a universal mixture Definition 7.2.2. By Theorem 7.3.1,
V π1
ξ →c1≈2/3 and V π2

ξ →c2≈1/3 almost surely when following policies (π1,π2). Therefore
there is an ε > 0 such that V π1

ξ > ε and V π2
ξ > ε for all time steps. Now we can apply

Theorem 8.2.1 to conclude that there are (dogmatic) mixtures ξ′1 and ξ′2 such that π∗
ξ′1

always
follows policy π1 and π∗

ξ′2
always follows policy π2. This does not converge to a (ε-)Nash

equilibrium. �

The following theorem is the main convergence result. It states that for asymptotically
optimal agents in mean (Definition 8.1.6) we get convergence to ε-Nash equilibria in any
reflective-oracle-computable multi-agent environment.

Theorem 10.7.4 (Convergence to equilibrium) Let σ be an reflective-oracle-
computable multi-agent environment and let π1,...,πn be reflective-oracle-computable
policies that are asymptotically optimal in mean in the classMO

r . Then for all ε>0 and
all i∈{1,...,n} the σπ1:n-probability that the policy πi is an ε-best response converges
to 1 as t→∞.

In contrast to Theorem 10.7.1 which yields policies that play a subgame perfect equilib-
rium, this is not the case for Theorem 10.7.4: the agents typically do not learn to predict
off-policy and thus will generally not play ε-best responses in the counterfactual histories
that they never see. This weaker form of equilibrium is unavoidable if the agents do not
know the environment because it is impossible to learn the parts that they do not interact
with.

322 CHAPTER 10. MULTI-AGENT SETTING

Together with Theorem 10.5.4 and the asymptotic optimality of the Thompson sampling
policy Theorem 9.2.1 that is reflective-oracle computable we get the following corollary.

Corollary 10.7.5 (Thompson-Sampling reflective AIXI converges to equi-
librium) There are limit-computable policies π1,...,πn such that for any computable
multi-agent environment σ and for all ε>0 and all i∈{1,...,n} the σπ1:n-probability
that the policy πi is an ε-best response converges to 1 as t→∞. Thompson-Sampling
AIXI πTS (Algorithm 9.3) with classMO

r is such a policy.

Note that the TS agents πTS,i are allowed to be different. For instance, they can use
different discount functions, or resample at different time steps, and converge at different
speeds. Also, all the Thompson sampling agents eventually ‘calm down’ and settle on some
posterior belief.

Corollary 10.7.5 is a truly remarkable solution of the Grain of Truth problem. The
only assumption on the environment σ is computability, while reflective AIXI is still limit-
computable like (single-agent) AIXI based onMsol, Limit-computability is not practical,
but may inspire practical versions of this construction. Reflective oracles have already seen
applications in one-shot games [FTC15].

10.8 Exercises

1. [C18] (Nash Equilibrium via best response functions) Prove Theorem 10.2.4.

2. [C28m] (Existence of Nash equilibrium) Prove Theorem 10.2.7.

3. [C20] (Existence of mixed Nash equilibrium) Prove Theorem 10.2.11.

4. [C25] (Specific properties in RL vs Games) Prove that specific properties
(Markov, computability, stochasticity, partial observability, optimality conditions)
carry over in the strategic games to RL conversion (and vice versa).

5. [C28] (AIξ is self-optimizing in repeated games) Prove that the environment
class of repeated strategic games admits self-optimizing policies and hence that π∗

ξ is
self-optimizing over the environment class of repeated strategic games.

6. [C18] (Trivial Grain of Truth) Derive some simple (trivial) environment classes
where there is a Grain of Truth.

7. [C25] (Non-binary reflective oracle and policy) Suitably extend the reflective
oracle Definition 10.5.1 and the proof of Theorem 10.6.3 to an arbitrary finite action
space without binarization.

10.9 History and References

The topic of game theory is well developed in the textbook [OR94]. It is a theoretical
framework originating from the work of John von Neumann and Oskar Morgenstern in the
1940s, allowed for a theoretical understanding of strategic interaction between agents in both
competitive and cooperative environments [VNM47]. Central to game theory is the concept
of a Nash equilibrium, introduced by John Nash in the early 1950s, describing a state in a
strategic game where no player can benefit from unilaterally changing strategies while the

10.9. HISTORY AND REFERENCES 323

other players keep their strategies unchanged [Nas50]. This equilibrium is stable, but there
may be other (unstable) strategies that would be of greater benefit to all players, if only
they could all coordinate to select it and/or be able to credibly commit to it. This discovery
can explain many counter-intuitive results: (1) why adding a new road to an existing road
network can cause the travel time to paradoxically increase for all drivers [Bra68]; (2) why
deliberately limiting the set of available actions via credible pre-commitment to a strategy
can be advantageous [Sch80]. It also has applications in explaining strategies that evolve
natural in the animal kingdom: (3) how either passive or aggressive strategies can be stable
in the animal kingdom [SP73]; (4) why animals often waste valuable energy to display costly
signals that do not directly contribute to their survival (and may even hinder it, like the
ostentatious tail of a peacock) [Zah75]; (5) how altruistic behaviors and cooperation can
evolve in a survival-of-the-fittest framework [Ham64].

von Neumann-Morgenstern utility theorem. One of the core results of game theory,
the von Neumann-Morgenstern utility Theorem 10.1.2 is somewhat controversial, and claims
have been made that the axioms it rests upon are not always satisfied in practice.

Completeness requires that all options can be compared, whereas humans often struggle
to compare and trade off options in completely different domains. The small improvement
argument (SIA) [Esp08] demonstrates an example of violation of completeness: given two
options for which neither is strictly better than the other (both live on the Pareto frontier
of two desired criteria), one option is slightly improved (say a cash bonus), and often the
two options still cannot be compared, demonstrating that they are not equally preferred.
Objections to this argument include that the premises for the argument conflict with each
other [GE10], a competing theory that claims options remain comparable under SIA [FH18],
or requiring that the agent has differing levels of detail for comparisons, and that coarse
comparisons might lead to different preferences than finer-grained comparisons [And15].

Continuity , as a corollary, implies that the agent cannot care about one outcome
“infinitely” more than another outcome. Consider an agent with preferences “go to hell” ≺
“gain $0” ≺ “gain $1”, noting that all the preferences are strict. Under the continuity axiom,
we have that there exists some θ∈(0,1) such that (1-θ) (go to hell) + θ (gain $1) ∼ gain $0.
We cannot have θ∈{0,1} due to the strict preferences. As a result, an agent satisfying the
continuity axiom cannot consider hell “infinitely” worse than gaining $1, and there must be
some tiny probability θ at which the agent would gamble on a tiny risk of hell to gain $1,
instead of gaining $0 with certainty.

Preferences that violate this condition are often called lexicographical. Following the
above example, an agent with lexicographical preferences about hell might consider any
outcome with a non-zero chance of hell worse than any other outcome with a zero chance of
hell, regardless of how small the chance of hell is, or what the other outcomes are. On the
face of it, this may seem not unreasonable: given the outcomes with preferences: a human
dies ≺ gain $0 ≺ gain $1, the assumption of continuity implies the counter-intuitive result
that (1-θ) (a human dies) + θ (gain $1) ∼ gain $0 for some probability θ∈ (0,1). While
one might baulk at the idea of trading off some small chance of incurring loss of life in
exchange for a small monetary gain, the existence of such trade-offs are often implied by
revealed preferences, for example in the context of insurance payouts, government spending
on safety measures, or even incurring a small risk of death crossing the street to save time.
Objections (or support?) to continuity include the requirement that an imperceptibly small
harms to a sufficiently large number of people can outweigh tremendous suffering to a
single person [Yud07] or that an agent is forced to place considerable value of extremely
unlikely events with inconceivably high payoffs, sometimes referred to as Pascal’s mugging
[Bos09] or fanaticism. [Wil22] argues in favour of fanatical preferences, claiming that their

324 CHAPTER 10. MULTI-AGENT SETTING

rejection leads to absurd conclusions like sensitivity to tiny changes in probabilities, or that
preferences over lotteries are not invariant under positive scaling.

Transitivity requires that preferences are transitive, that is, a⪰b and b⪰c implies a⪰c.
Intransitive agents are vulnerable to being exploited by a clever adversary who can offer
a series of trades that the agent will accept, but will ultimately leave the agent worse off.
[Bau22] provides a formalism of rational behavior without the axiom of transitivity, and
constructs examples similar to the sorites heap paradox [Kam81] to demonstrate reasonable
preferences that violate transitivity.

Strategic games. Strategic games are a type of game where multiple agents interact with
each other, each trying to maximize their own utility, which are functions of the actions
taken by all agents. Each agent chooses an action without knowing the actions of the others,
and then receives a payoff based on the collective actions taken.

Strategic games might be one-shot, where each agent chooses an action once, and then
the game terminates, or iterated, where the game is played in multiple rounds of interaction,
and each agent’s action may be a function of what everyone did in previous rounds.

Often, a deterministic strategy may leave the agent open to being exploited as their
opponents can predict their actions, for example, Rock-Paper-Scissors is a game where no
deterministic strategy can be optimal, as any strategy can be exploited by a counter-strategy.
Mixed strategies allow agents to choose actions with a degree of randomness, to avoid being
exploited in this way [von28], and while a Nash equilibrium with deterministic policies may
not exist, a mixed Nash equilibrium always will [VNM07].

Descision theories and paradoxes. Decision theory tries to establish what a rational
agent should do in a given situation, often in the face of uncertainty, The most prominent
framework is centered around choosing actions that maximize the expected utility of some
outcome given an objective distribution µ that describes how the world works [NM44] or
the agent’s subjective belief distribution ξ over worlds [Sav54].

The world with which the agent interacts may have other agents participating, each with
their own varied interests, which spawned an entire new field of decision theory, game theory,
of how agents learn to interact, and how cooperation and competition can emerge from
selfish agents [Nas50], and how agents converge to stable strategies, such as Nash equilibria.
Other such equilibria points include altruistic equilibria, dominant strategy equilibrium and
Pareto optimal strategies.

A complete classification of 2×2 symmetric games can be found in [BWEH22], which
covers PD, SH, Chicken, and BoS, but not MP, since the last is not symmetric. For more on
game theory and statistics, [Fer94] focuses on problems in statistics from the point of view
of decision theory, drawing parallels between statistical decision theory and game theory,
under what circumstances a decision rule is admissible, and various methods for hypothesis
testing.

Paradoxes often arise in decision theory, either demonstrating a fault with the theory
where it leads to counterintuitive or suboptimal behavior, or demonstrating how humans
in practice often act in sub-optimal ways that are not consistent with the theory. For
humans, the Ellsberg paradox [Ell88] indicates that humans will often avoid choices for
which the probabilities are unknown over choices where they are, even if the former would
be advantageous from an expected utility perspective. The Allais paradox [All53] indicates
that humans often have a preference towards certain outcomes over uncertain ones. Both of
these paradoxes indicate that humans commonly violate the independence axiom.

More complex decision theories try to account for the causal link between action and
outcome, or the counterfactual worlds that could have been had the agent chosen differently:

Causal Decision Theory (CDT) [Lew] tries to account for the causal link between action

10.9. HISTORY AND REFERENCES 325

and outcome: agents choose actions that they believe will directly be the cause of the best
outcomes. In contrast, Evidential Decision Theory (EDT) [Jef83, Ahm] is concerned with
the counterfactual worlds that could be, and an agent following this theory will choose the
action that, if the agent were told it had taken this action, it would be the best “news” to
hear about the action taken (on expectation).

For most scenarios, the two theories will give the same result, but one can construct
often self-referential scenarios that try to place cause before effect which demonstrate that
neither of EDT nor CDT dominates the other: one can construct scenarios where each
theory outperforms the other [GH]. A classic example is Newcomb’s paradox [Noz69], a
famous thought experiment that pits a player against a perfect predictor, challenging the
concept of a free choice, and is often used as a counterexample in decision theory. In
[Zag20], it was explored how AIXI responds to Newcomb-like problems. The standard RL
agent-environment framework can be extended to allow for self-referential or Newcomb-like
problems, by allowing the behavior of the environment to depend directly on the policy
chosen by the agent [BLOS21].

Functional Decision Theory (FDT) [YS] goes further: instead of just considering the
action to choose, an agent following FDT decides which fixed decision procedure would be
the best to follow in a given situation, and then acts as according to the output of that
procedure. FDT agents outcompete agents following EDT and CDT in a variety of problems:
FDT agents cooperate in the Prisoner’s Dilemma and act correctly in Newcomb-like problems
without requiring binding pre-commitments.

Multi-agent reinforcement learning. Multi-agent reinforcement learning (MARL) is a
subfield of reinforcement learning focused on an environment where many agents interact
with each other, possibly with shared goals (to encourage cooperation) or conflicting goals (to
encourage competition) [HKT19, ACS24]. This adds an additional complexity not normally
present in RL: Usually, the assumption of a stationary environment is made, but in MARL,
the environment includes other other (RL) agents, which are themselves learning and hence
non-stationary.

The framework of MARL can be decomposed in a few ways: Whether the actions of the
agents are simultaneous (as in normal-form games) or sequential (where agents alternate
turns like in Chess) [KT16]. Usually the focus is on the former, as this can be analyzed
from the lens of game theory. One can also consider whether the agents are cooperative or
competitive, and whether the agents share some/all information via a central controller,
if they are copied instances of the same shared architecture, or whether each agent learns
individually, and must learn mechanisms to communicate organically with the other agents.

The survey [BBDS08] outlines the MARL framework, including a taxonomy of various
learning algorithms, and the extra challenges that MARL presents over single-agent RL.
[WBKP23] extends this to deep MARL, presenting various potential training schemes based
on whether information is shared between the agents and issues with credit assignment:
Given a shared goal, and a high return for a given episode, which agent was responsible
for the good performance, and deserves the most credit? Many methods for deep MARL
explicitly model the beliefs of other agents [AS18], though methods that do not require
interaction with an opponent and learn only from self-play can still be effective, and was
used to great success in Hold’em poker [BBJT15].

The connection between RL and game theory is presented in [SLB09], which includes a
survey of MDPs for multiplayer games. Another useful resource on this connection is [Cri17],
which contains a review of the multi-agent and multi-objective RL literature. POTMMCP
[SKH23] is a theoretically sound multi-agent online learning MCTS-based planning algorithm
with good practical performance, even for problems that require large planning horizon.

326 CHAPTER 10. MULTI-AGENT SETTING

[MJS19] considers deterministic games with local Nash equilibrium (i.e. non-zero second
derivative of gradient dynamics) and shows that gradient descent can get attracted to
non-Nash local extrema (or saddle points).

Grain of Truth. Finding a grain of truth is a famously hard problem [KL93], with
many impossibility results [Nac97, FY01, Nac05]. The remarkable solution presented in this
chapter is from [LTF16, Lei16b], using previous reflective oracle work from [FST15, FTC15].
Sections 10.3 and 10.5 to 10.7 were taken with permission from [LTF16, Lei16b], some with
minimal modification.

Part IV

Approximating Universal Agents

327

Chapter 11

AIXI-MDP

Simplicity is the ultimate sophistication.

Leonardo da Vinci, 1452–1519

11.1 AIXI-MDP Setup . 330
11.2 Definition of AIXI-MDP . 332
11.3 Experimental Results . 333
11.4 Exercises . 336
11.5 History and References . 336

So far we have introduced and analyzed universal (Bayesian) models of prediction
(Part II) and decision-making (Part III) primarily from the perspective finite-time and
asymptotic quality of their predictions and actions. In particular AIXI (Sections 7.3
and 7.4) served as a gold standardfor universally optimal agents. Apart from being
useful for theoretically analyzing potential properties of not-yet-existing super-intelligent
agents, we can use AIXI as a starting point to derive in a top-down fashion computable
approximation. Approximating AIXI and its variants is no simple task. The two
main reasons are that the Kolmogorov complexity K(x) and therefore the Solomonoff
distribution M = ξU are incomputable, and that the complete expectimax search
is computationally intractable for most practical problem. We will derive various
systematic approximations of AIXI in this part of the book: An advanced instantiation
of AIξ in Chapter 12, and some powerful but theoretical ones in Chapter 13. In this
chapter we describe the first and very simple instantiation of AIξ, with ξ being a very
efficiently computable mixture over Markov Decision Processes (MDP). We run AIξ
on the classic repeated 2×2 games prisoner’s dilemma, stag hunt, chicken, battle of
the sexes, and matching pennies, described in Section 10.2. The action and perception
spaces are so small that we can brute-force compute the Bayes-optimal policy π∗

ξ from
the expectimax expression Theorem 7.4.2.

329

330 CHAPTER 11. AIXI-MDP

11.1 AIXI-MDP Setup

We have developed the general history-based Bayesian agent AIξ in Section 7.3 and its
universal instantiation AIXI in Section 7.4. The first practical approximation of AIXI
developed in [PH06b] is known as AIXI-MDP. It was designed for MDP environments and
tested on repeated 2×2 matrix games.

Emulating simultaneous actions. Generally, with repeated normal-form games, both
players’ actions are taken simultaneously, each without knowledge of the action chosen by
the other, whereas in the usual cybernetic model for reinforcement learning (in which AIXI
is described) there is a strict order of the agent taking an action, the environment receiving
the action, and then afterwards the environment issues a percept (a pair of observation and
reward) back to the agent. It turns out we can encode the behavior of simultaneous actions
of repeated normal-form games by constraining the types of distributions that the opponent
can use: The distribution that the opponent uses as her policy is not allowed to depend
on the last action issued by the agent. This is shown in Figure 11.1. One iteration of the
agent/environment interaction loop is described as follows:

• Agent takes action at, but the environment does not yet receive it.

• Opponent (which is part of the environment) takes action a′t, ignorant of the agent’s
choice of at.

• Environment receives both actions at and a′t, and then, with the reward matrix R
(called pay-off matrix in game theory, see Section 10.2.2), computes the rewards rt
(resp. r′t) for the agent (resp. opponent) taking action at (resp. a

′
t).

• Agent receives reward rt and observation ot=a
′
t. Opponent receives reward r′t and

observation o′t=at. Each player receives as a reward their entry in the reward matrix,
and as additional side information, they receive their respective opponent’s most recent
action as an observation.

• Increment the time step t := t+1, and loop.

Implicitly, the agent (resp. opponent) is also aware of the other player’s last received
reward r′t−1 (resp. rt−1) when choosing action at (resp. a

′
t), as both have full knowledge

of the reward matrix R and the last played action a′t−1 (resp. at−1) of the other player.
This allows us to write ot=a

′
t, rather than ot=(a′t,r

′
t) without loss of information for either

player.

Environment-agent (a)symmetry. One notable aspect of this setup is that the environ-
ment is not equal to the opponent, since the environment includes the reward matrix as well
as managing the interactions between agent and opponent. From the agent’s perspective, the
opponent is just part of the environment. But we could equally view the diagram from the
other agent’s perspective, where the opponent considers the reward matrix and interaction
loop, together with the agent, to be the “environment” that it interacts with.

Binary action and observation space. This setup is general enough that it can be
used for any class of games with any number of actions (or even any number of opponents).
The class of environments we consider here are repeated 2×2 matrix games with a single
opponent. In this environment, both the space of possible actions and observations are
binary: A=O= {0,1}. The observations are the actions chosen by the opponent on the
previous game. In each game the agent and the opponent are given a reward matrix R
corresponding to the reward for observation-action pairs (o,a). Additionally, the agent
has access to the full history h<t, which contains information about the interaction with

11.1. AIXI-MDP SETUP 331

Agent
Environment

Reward
Matrix

Opponent
Agent

Action

OpponentAction & Reward

Opponent
Action

Agent
Action &
Reward

Figure 11.1: How repeated normal-form games with simultaneous actions can be realized
within the cybernetic model, by hiding the opponent inside the environment and withholding
the most recent action.

the opponent: both players’ actions and rewards received so far. This is implicit in the
interaction loop, since the agent will remember every action it takes, and every percept it
receives.

Known reward matrix and withholding the last action. Since the agent is aware of
the entries in the reward matrix for a particular game, in this chapter when we use h for
history we will be referring only to the observation-action history, that is, h<t=(oa)<t=
o1a1...ot−1at−1. This may seem strange since we have stated that the agent’s action occurs
and then the opponent takes an action, however since the environment, specifically the reward
matrix, receives both actions at the same time, we will record the history as observation
then action. This is because the observation will depend on the previous observation and
action, but not the current action which the agent takes. This encodes the desired property
that the opponent’s action cannot be a reaction to the agent’s action, but is chosen unaware
of what the agent does.1

Markov environments. Additionally, the agent is assuming that the environment is a
Markov decision process. This means that the agent believes that the environment (and the
opponent contained inside) only uses the most recent action and observation to influence its
choice in action. Recall that if µ is a Markov environment, then µ(ot|h<t)=µ(ot|ot−1at−1).
Even though the agent is assuming that the environments are Markov, the agent itself will
still be history based (dependent on the entire interaction history). This is so the agent
may learn statistical patterns in how the opponent chooses actions, hopefully to learn the
strategy chosen by the opponent and then exploit that strategy to maximize its reward.

No Grain of Truth. These two assumptions for the agent can lead to difficulties later on.
In a game of AIXI vs. AIXI, both players are (falsely) assuming the opponent is Markov. AIXI
cannot learn that its opponent is also another copy of AIXI, but would instead concentrate
its posterior belief ξ on the model ρ∈M that is most consistent with the observations
received. In other words,MMDP does not contain a Grain of Truth (Section 10.6). Note that
playing a true copy of AIXI with model classMsol against itself poses the same problem,
since AIXI is not contained in its own model class (as AIXI itself is non-computable). The
only interesting known class containing a Grain of Truth is the Reflective Oracle class
MO

r ⊃Mcomp (Theorem 10.6.2).

1In Chapter 12 we consider agents that are not informed about the reward matrix, indeed not even about
the rules of the game they are playing.

332 CHAPTER 11. AIXI-MDP

11.2 Definition of AIXI-MDP

Recursive Q-value function of AIXI-MDP. AIXI-MDP is AIξ with MDP model class
MMDP to described below. We can adapt/specialize any of the 3 equivalent definitions of AIν.
The original abstract expectation-policy forms (Definition 6.6.1 and Definition 6.7.1), the
explicit iterative form (Lemma 6.6.3), or the (pseudo)recursive Bellman form (Theorem 6.7.2).
We choose the latter with ν=ξ to be defined later. In strategic game theory it is common
to neither discount nor normalize. The Bellman optimality equation for π∗

ξ with γt=1=Γt

by plugging (6.7.5) into (6.7.3) thus become

Q∗,m
ξ (h<t,at) =

∑
et

ξ(et|h<tat)
[
rt+max

at+1

Q∗,m
ξ (h1:t,at+1)

]
with history h1:t :=a1o1rt...atotrt. Now rt=R(at,ot) is a known deterministic function of at
and ot, we can therefore drop rt from the history, and et=otrt becomes just ot. Also, the
environment cannot see AIξ’s action at before choosing its own action a′t=ot. Therefore
we only need to consider models ν∈M for which ν(et|h<tat) is independent of at, which
implies by Definition 7.2.2 that also ξ(et|h<tat) is independent of at. Together this leads to

Q∗,m
ξ (h<t,at) =

∑
ot

ξ(ot|h<t)
[
R(at,ot)+max

at+1

Q∗,m
ξ (h1:t,at+1)

]
(11.2.1)

The recursion terminates for t>m with Q=0.

Computing ξMDP. The agent is assuming that the environment (and therefore the
opponent) is Markov, with no access to the agent’s last action at, that is, µ(et|h<tat)=
µ(ot|ot−1at−1), where we dropped the rewards as described above. MMDP is the class
of all ν which satisfy this property. ξMDP is a Bayesian mixture over MMDP with some
prior w specified below. Every Markov environment over the binary action and observation
space A=O={0,1} can be encoded as a vector (θ00,θ01,θ10,θ11)∈ [0,1]4, which describe the
probabilities of the opponent producing observation ot=0 given the 4 possible most recent
observation and actions, (ot−1,at−1)∈{(0,0),(0,1),(1,0),(1,1)}.

For our mixture, we assume independent uniform distributions θao∼U([0,1]) for each
θao as our prior belief in θao, that is, assuming that each probability is equally plausible
a-priori, following the principle of indifference: prior density w(θ)=1 for θ∈ [0,1]4. This
1-order Markov process has been studied in Section 4.2.1. Let nao be the number of times
the particular action-observation pair ao happened/appears in h<t. Similarly let nao·o′ be
the number of times such ao pair is followed by next observation o′. The · indicates that we
do not care about the next action a′, since the environment is independent of it. Formally,

ntao := |{τ <t :aτ =a∧oτ =o}|
ntao·o′ := |{τ <t :aτ =a∧oτ =o∧oτ+1=o

′}|

The sub-process of only the ot+1 that follow atot=ao is a Bernoulli(θao) process. Bayes-
mixing it with a uniform prior over θao gives the familiar Laplace estimator derived in
Section 2.4.3. In the current setting and notation, this reads

ξMDP(ot|h<t) =
ntat−1ot−1·ot+1

ntat−1ot−1
+ 2

(11.2.2)

Note that unlike ν∈MMDP, ξMDP ̸∈MMDP depends on the whole history. We have reduced
the problem of computing ξMDP to counting the number of occurrences of a substring in a

11.3. EXPERIMENTAL RESULTS 333

string, which is computationally efficient and can be done incrementally O(1) time per t.
Compare this to the KT estimator (Definition 4.1.1) where a slightly different prior is chosen
(Definition 2.4.12), which halves the 1 and 2 in Laplace rule. Both are simple regularized
frequency estimators.

Computing Q∗
ξ . We now have everything to compute Q∗

ξMDP
(h<t,at) via (11.2.1). Algo-

rithm 11.1 explicates this recursion for the spacial case of binary action and observation
spaces relevant for 2×2 matrix games, but the general case is essentially the same. Since
each recursion calls the algorithm 4 times (and in general |A×O| times), the algorithm has
run time O(|A×O|m−t+1)=O(4m−t+1). This will take “forever”, if we chose m to be the
lifetime of a long-lived agent, so we must impose a shorter horizon to limit the number
of recursive value function calls. For many strategic games it is custom to use a moving
horizon mt= t+d−1 (Definition 6.4.2) looking only d time steps ahead, leading to run time
O(4d), which is feasible for small d. A problem with a moving horizon is that it can lead to
time-inconsistency (Section 6.5), e.g. to an agent forever delaying gratification. To prevent
this potential problem, in the experiments, AIXI-MDP chooses a constant horizon mt=dmax

until lookahead dt :=m−t+1 runs down to 2, and then restores mt back up to t+dmax, and
repeats.

AIXI-MDP agent. The optimal action of AIXI-MDP is computed via

aMDP
t := argmax

at

Q∗,mt

ξMDP
(h<t,at)

by calling Algorithm 11.1 twice (for at=0 and at=1). For t=1,2,3,...., AIXI-MDP and
opponent take simultaneous actions (at,a

′
t) :=(aMDP

t ,ot∼µ(ot|h<t)). In theory µ should be
inMMDP, but nothing prevents us from testing AIXI-MDP against non-Markov opponents
to see what happens. In the experiments below, the maximal horizon was set to dmax=8.

11.3 Experimental Results

The performance of AIXI-MDP was measured on the five 2×2 matrix games described in
Section 10.2.3. The agent which opposed AIXI-MDP in each game differed between the games,
since there are different known optimal strategies for each individual game. Additionally
in some games AIXI-MDP played against itself with different horizons (Figure 11.2) and
against the Follow or Explore (FoE) agent [PH06b], which it generally beats and we will not
elaborate on.

Prisoner’s Dilemma (Figure 11.2a). In the Prisoner’s Dilemma game, AIXI-MDP
has been compared to the following strategies: random, 1-tit-for-tat, 2-tit-for-tat, and 3-tit-
for-tat. The random strategy flips a fair coin to choose its action. An n-tit-for-tat player
will cooperate in the first round and only cooperate if the opponent cooperates n times
in a row.2 The family of tit-for-tat strategies has been shown to be a very simple and
effective strategy in repeated Prisoner’s Dilemma competitions [Axe80a, Axe80b]. When
performing against 1-tit-for-tat and 2-tit-for-tat, AIXI-MDP learned to cooperate, however
against random and 3-tit-for-tat, AIXI-MDP learned to defect. This means that AIXI-MDP
was unable to explore enough to learn to cooperate with 3-tit-for-tat. This should not be a
surprise, as when the opponent follows a 1-tit-for-tat strategy, the environment is Markov,
but not when the opponent follows a n-tit-for-tat strategy with n≥2. Since AIXI-MDP is a
mixture over MDPs, the self-optimization Theorem 7.3.7 only applies against random and

2Note that n-tit-for-tat for n≥ 2 is non-Markov, since it depends on more than just the last action-
observation pair.

334 CHAPTER 11. AIXI-MDP

Algorithm 11.1 Q-value function of AIXI-MDP Q∗,m
ξMDP

(h<t,at)

Require: Horizon m
Require: MDP estimator ξMDP (11.2.2)
Require: Reward matrix R∈R2×2

Input: History h<tat
Output: Q-value Q∗,m

ξMDP
(h<t,at)

1: if m<t then return 0
2: return ξMDP(0|h<t)·[R(at,0)+max{Q∗,m

ξMDP
(h<tat0,0), Q

∗,m
ξMDP

(h<tat0,1)}]
3: + ξMDP(1|h<t)·[R(at,1)+max{Q∗,m

ξMDP
(h<tat1,0), Q

∗,m
ξMDP

(h<tat1,1)}]

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

t

a
v
g
.
p
.
ro

u
n
d
 c

o
o
p
e
ra

ti
o
n
 r

a
ti
o

AIXI vs. random
AIXI vs. tit4tat
AIXI vs. 2−tit4tat
AIXI vs. 3−tit4tat
AIXI vs. AIXI
AIXI vs. AIXI2

(a) AIXI in Prisoner’s Dilemma

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

t

a
v
g
.
p
.
ro

u
n
d
 c

o
o
p
e
ra

ti
o
n
 r

a
ti
o

AIXI depth 8 vs. 2−tit4tat
AIXI depth 9 vs. 2−tit4tat
mov. AIXI (9) vs. 2−tit4tat
mov. AIXI (8) vs. tit4tat

(b) AIXI in Stag Hunt

0 20 40 60 80 100
0

1

2

3

4

t

a
v
g

.
p

.
ro

u
n

d
 r

e
w

a
rd

AIXI vs. alternate
alternate vs. AIXI
AIXI vs. stubborn
stubborn vs. AIXI

(c) AIXI in the Chicken game

0 10000 20000
0

1

2

3

4

t

a
v
g
.
p
.
ro

u
n
d
 r

e
w

a
rd

AIXI vs. AIXI (and alt.)
AIXI vs. stubborn
FoE vs. alternate
FoE vs. stubborn
AIXI vs. FoE
FoE vs. AIXI

(d) AIXI in the Battle of the Sexes

0 200 400 600 800 1000

2

2.5

3

3.5

4

t

a
v
g

.
p

.
ro

u
n

d
 r

e
w

a
rd

AIXI vs. alternate
FoE vs. alternate
AIXI vs. FoE
AIXI vs. AIXI
FoE vs. FoE

(e) AIXI in Matching Pennies

Figure 11.2: Performance of AIXI-MDP on the classical 2×2 matrix games against fixed
strategies and against a version of itself [PH06b].

11.3. EXPERIMENTAL RESULTS 335

1-tit-for-tat. However, random is indifferent to the actions taken against it, and it never
punishes defection. The strategy that maximizes the expected reward against random is to
defect, which is what AIXI-MDP learns to do.

AIXI-MDP also played Prisoner’s Dilemma against a copy of itself. This turns out to be
less interesting as due to the symmetry, both agents always choose the same action in any
zero-sum game. To break the symmetry, a variation of this was tested when two AIXI-MDPs
with different horizons m played against each other, with a suboptimal result. It is likely that
both agents learned to defect because they each (falsely) believed that their opponent was
Markov, and by using the Laplace estimator (based on the frequency of opponent behavior)
led both to believe that their respective opponent will often defect, in which case the best
action is to also defect in turn in a downward spiral.

Stag Hunt (Figure 11.2b). Stag Hunt has some similarities to the Prisoner’s Dilemma,
one being that if both cooperate, they will earn a higher reward than if they both defected.
AIXI-MDP has been compared to 2-tit-for-tat. Against this player, AIXI-MDP of horizon 8
did not learn to cooperate, however, AIXI-MDP of horizon 9 did learn to cooperate (but
not against 3-tit-for-tat). One possible reason a horizon 9 AIXI-MDP was able to learn the
correct behavior is that although an environment containing 2-tit-for-tat opponent is not
in the model class of MDPs, the mixture ξ is still sometimes able to converge to the true
environment µ, even when the true environment is not in the model class (Corollary 3.4.2).

Chicken (Figure 11.2c). In Chicken, a good solution is for players to agree to alternate
between swerving and not swerving. When alternating, to achieve maximum reward a player
has to go straight most of the time and have the opponent swerve during those times. The
two agents that were chosen as opponents for AIXI-MDP were alternating, who alternates
between going straight and swerving, and stubborn, who will only cooperate (swerve) if the
opponent has defected (gone straight) three consecutive times. Both of these strategies are
known to be effective simple strategies in Chicken. AIXI-MDP quickly learns when to go
straight against alternating ; however it struggles to go straight three times in a row and
therefore does not learn the optimal policy against stubborn. Interestingly, against 2-stubborn
(who requires the opponent to go straight twice before it chooses to swerve), AIXI-MDP
learns the optimal action sequences.

When playing against itself, if both AIXI-MDPs have the same horizon, they will always
take the same action. However, in the case of one of the AIXI-MDP agents having a higher
horizon, the agent with the higher horizon learns to go straight more often than the lower
horizon agent and ultimately accumulates more reward.

Battle of the Sexes (Figure 11.2d). Battle of the Sexes (BoS) encourages coordination.
For both players to achieve maximum reward, they need to coordinate on the action to
take this round, as well as cooperate by switching actions each round (so that both agents
get a turn receiving the larger reward). In this game, AIXI-MDP has been compared to
alternating and stubborn. When playing against alternating, AIXI-MDP learned to play
the same actions as alternating and achieves the socially optimal reward. However, against
stubborn, AIXI-MDP did not learn the action sequence to change the action stubborn chooses
and received below average reward during each round.

Against itself, both AIXI-MDP agents learned to alternate between the two actions. This
is because each AIXI-MDP believes it is playing in an MDP environment, in which case their
opponents only care about the most recent action/observation. This leads to both agents
believing the opponent will alternate, which means the optimal behavior for them is to also
alternate. So optimal play is attained by a happy coincidence or a self-fulfilling prophecy,
rather than “intelligent” play. With this, both agents are able to receive the socially optimal
average reward of 3 each round.

336 CHAPTER 11. AIXI-MDP

Matching Pennies (Figure 11.2e). The matching pennies game is the only zero-sum
game of the games considered here. This means there is a minimax strategy, which is to
take each action with equal probability. When playing against alternating, AIXI-MDP
learns the pattern and exploits it to achieve the optimal reward of 4 each round. When two
AIXI-MDP agents compete against each other, as long as the symmetry is broken (e.g. by
having different horizons), the agents will learn to alternate between actions.

11.4 Exercises

1. [C25ic] (Implement AIXI-MDP) Implement AIXI-MDP in your chosen language
and test it against the agents described in the experiments section.

2. [C20c] (Non-binary AIXI-MDP) Generalize AIXI-MDP to non-binary actions
and observations and test it on more complicated environments such as a gridworlds.

3. [C20] (Optimal response for fixed opponent) Determine the optimal agents for
the given environment and opponents, tit-for-tat, stubborn, random, and alternating,
etc.

4. [C23c] (Non-Markov opponent) Given AIXI-MDP assumes the environment is
Markov, find a non-Markov agent which you expect AIXI-MDP will perform well
against and test it empirically.

11.5 History and References

AIXI-MDP was first introduced in [PH06b] where it was compared with Acting with Expert
Advice [PH05b], also called Follow or Explore (FoE), the active learning version of Prediction
with Expert Advice [HP04, HP05], which requires exploration. This additional exploration
is done by forcing the FoE agent to explore with some exploration rate at each time step
which decreases over time. Additionally, the Bayesian (such as AIXI-MDP), expert advice,
and MDL-based methods were compared in the online learning setting in [Pol06]. Relations
between truncated undiscounted and untruncated discounted value functions have been
explored in [Hut06a, ASDH24].

Chapter 12

Monte Carlo AIXI with
Context Tree Weighting

The best way to predict your future is to create it.

Peter Drucker, 1909–2005

12.1 Learning and Searching . 338
12.2 Searching via Monte Carlo Tree Search 339

12.2.1 Monte Carlo Tree Search . 340
12.2.2 MCTS Algorithm . 343
12.2.3 Bandits and Upper Confidence Bounds 344
12.2.4 UCT Algorithm . 347
12.2.5 ρUCT Algorithm . 349
12.2.6 Parallelization . 350
12.2.7 Episodic Environments . 352

12.3 Learning via Context Tree Weighting 353
12.3.1 Action-Conditional CTW . 353
12.3.2 Action-Conditional PST . 354
12.3.3 Factored Action-Conditional CTW 355

12.4 All Together . 357
12.5 Experiments . 359

12.5.1 Environments . 361
12.5.2 Empirical Performance . 365

12.6 AIXIjs Implementation . 365
12.7 Discussion . 367

337

338 CHAPTER 12. MONTE CARLO AIXI WITH CONTEXT TREE WEIGHTING

12.8 Exercises . 367
12.9 History and References . 368

We have previously discussed an approximation of the AIXI agent, AIXI-MDP (Chap-
ter 11), which performs fixed-depth expectimax search and only uses the set of all
Markov environments as its model class. This is a strong assumption about the en-
vironment as all there is to learn is a single probability distribution p :O×A→∆O.
Such distributions can be represented by an element of [0,1]|O×A×O|, as given a 3-tuple
(o,a,o′)∈O×A×O, the distribution p associates with (o,a,o′) a number representing
the probability P(ot+1=o′|(ot,at)=(o,a)) according to p.

For small observation and action spaces, this gives a very tractable space of environments
to search over. In Chapter 11, only O=A=B was considered, so together with P(ot+1=
1|(ot,at)=(o,a))=1−P(ot+1=0|(ot,at)=(o,a)) means that each environment can be
encoded as a 4-tuple (θ00,θ01,θ10,θ11), one number associated with each observation-
action pair (ot,at)∈B×B. We can then learn the dynamics of the environment by
associating a KT estimator (Section 4.1) with each parameter in the 4-tuple.

In this chapter we will consider a different approximation of AIXI that is more powerful
than AIXI-MDP, using as the model class M = CD, the set of all variable-order
Markov environments with context length at most D. This is quite a general class of
environments, but as we will show, the mixture ξ over CD can be computed efficiently.
Planning that was previously performed via an expensive expectimax operation is
replaced with a modified form of Monte Carlo Tree Search (MCTS) [Cou06, KS06].
Learning the environment requires a Bayesian mixture over environment models, which
is performed using Context Tree Weighting (CTW) (Chapter 4). This gives a powerful
yet efficient approximation of our universal agent AIXI, which in practice can perform
well on a larger variety of environments than repeated normal-form games by AIXI-
MDP. We call this approximation Monte Carlo AIXI with Context Tree Weighting
(MC-AIXI-CTW) [VNHS10].

The change from limited depth expectimax search to MCTS allows the agent to plan
at much greater depths, and is asymptotically as good as the expectimax search.
Additionally, using CTW for prediction allows the agent to model any k-Markov
environment for any k≤D, where D is the maximum depth of the CTW tree.1

12.1 Learning and Searching

In this section, we will describe the problems of learning and searching as well as how the
Monte Carlo planning algorithm solves this problem, and how this works as an approximation
of the expectimax component of the AIXI agent. Later, we will describe the Upper Confidence
Tree (UCT) [KS06], a particular kind of Monte Carlo tree search algorithm using the UCB
method (Section 12.2.3), as well as a modified form of UCT called ρUCT, which allows the
approximation of the expectimax on a given known environment model ρ. Later, we can
then instantiate ρUCT with a Bayesian mixture ξ over environments as the true environment
µ is assumed to be unknown. Figure 12.1 depicts the overall architecture of MC-AIXI-CTW,
whose components we will develop and explain in the following sections.

1One can also consider the case where the CTW tree is allowed to grow arbitrarily deep, but then as the
context grows longer, updating the tree becomes slower [Wil98].

12.2. SEARCHING VIA MONTE CARLO TREE SEARCH 339

Definition 12.1.1 (Action-observation search tree) An action-observation search
tree is a tree comprised of alternating action nodes and chance nodes. Each node is
associated with a history h. Additionally, action (resp. chance) nodes store an estimate

of the value V̂ (h) (resp. Q-value Q̂(h,a)) of the associated history h (resp. ha).

Recall that the action that AIXI takes is the one which maximizes the (undiscounted)
expected value in the mixture environment ξ, given by the expectimax Theorem 7.4.2:

πAIXI(h<t) := argmax
at

∑
et

...max
at+m

∑
et+m

(
t+m∑
i=t

ri

)∑
ν∈M

w(ν|h<t)

t+m∏
k=t

ν(ek|h<kak)

Here, we use a forward moving horizon, where the AIXI agent always considers exactly m
steps in the future from the current time step. This expectimax equation can be visualized
as a tree that alternates between action nodes (white) and chance nodes (black). An action
node represents the action chosen by the agent, and a chance node represent the observation
emitted by the environment. Both types of nodes have access to the path that leads to
them, so both the agent’s policy and the environment’s distribution are conditional on the
path (history) that lead to that node. The value estimate V̂ (h) associated with an action
node’s history h comprises a maximum of the Q-values of each child (which are chance

nodes), and the Q-value estimate Q̂(h,a) associated with a chance node’s history ha is the
expected value of the children (which are action nodes), where the expectation is with respect
to the Bayesian mixture ξ. This gives us the familiar Bellman equation (Theorem 6.7.2)
representation of the value function (see Figure 12.2).

The AIXI agent can be decomposed roughly into two parts, both for which direct
evaluation is problematic.

• Learning: Computing the Bayesian mixture ξ (based on the history so far), through
which the agent implicitly updates its belief of what environments in the model class
best represent the true environment µ.

The mixture environment ξ uses the universal prior 2−K(ν) which is incomputable,
and sums over the classM of all semicomputable chronological semimeasures, which
is clearly intractable.

• Searching: Using ξ as a current best estimate of µ to look forward, considering the
actions the agent could choose, the percepts that the environment would respond with,
the counter-actions to each of those percepts, and so on up to the planning horizon m.
Then, the action that would maximize the expected cumulative reward is chosen.
To compute each of the maximums in the expectimax, we have to search through all
actions in A and all percepts in E , requiring O(|A×E|m) time, which is intractable for
even moderate values of m.

We require an efficiently computable approximation for both learning and searching for
a practically useful approximation of the AIXI agent.

12.2 Searching via Monte Carlo Tree Search

Instead of computing the expectimax sums (Figure 12.2) explicitly, we could approximate it
by sampling. We use a technique called Monte Carlo Tree Search (MCTS) [Cou06], which
randomly explores paths of the tree to obtain an estimate of the expected value of different
histories, rather than brute-forcing the search tree directly.

340 CHAPTER 12. MONTE CARLO AIXI WITH CONTEXT TREE WEIGHTING

Environment

Update Bayesian Mixture of Models

a1
a2

a3

o1 o2 o3 o4

future reward estimate

Record Action

Simple Complex

Large Prior Small Prior

+

.......

-
- +

-
-

Observation/Reward... Past

Determine best action

Action... Past Observation/Reward

Perform action in real world

Record new sensor information

Refine environment model

MC-AIXI
An approximate AIXI agent

Figure 12.1: The MC-AIXI-CTW agent-environment interaction loop. The CTW method
provides a Bayesian mixture over models. MCTS is used for action selection, and rollouts
are used to estimate the future rewards. [VNH+11]

MCTS is a heuristic search algorithm which has been successful in a large number of
domains including complex board games such as Go [WG07] and Backgammon [TG96].
MCTS is an online algorithm that constructs a tree of potential future outcomes, continually
refining value estimates through repeated simulations. The final decision is based on the
most promising path identified in the tree. The algorithm’s effectiveness is influenced by
both the accuracy of the environmental simulations (which requires constructing a model of
the environment) and the method used for action selection (based upon the upper confidence
bound method (12.2.2)). MCTS can easily be modified to perform many rollouts in parallel,
making it easy to scale it up to very large or complex domains.

12.2.1 Monte Carlo Tree Search

The Monte Carlo Tree Search algorithm [Cou06] is an anytime2 search algorithm which
returns an approximation of the best action for any given history. This is done by sampling
repeatedly from the current best estimate ξ of the true environment µ given the past
history, and building a lookahead tree of actions and observations. The MCTS algorithm
computes an approximation Q̂(h<t,·) of the Q-value function Q(h<t,·), and then chooses

action ât :=argmaxa∈AQ̂(h<t,a) as an estimate of the optimal action.

Chess is a complex game with a branching factor of around 35, meaning that on average,
there are 35 legal moves that can be made from a given position. Despite this complexity,
skilled grandmasters can plan ahead for up to 15 moves, which would require exploring an
impractically large number of nodes (3515≈ 1023) for both humans and computers alike.

2can be terminated at any point in time with a well-defined return value

12.2. SEARCHING VIA MONTE CARLO TREE SEARCH 341

Figure 12.2: A visualization of the expectimax operation Theorem 7.4.2 for the case
A=O=B.

However, the key to a grandmaster’s success is not the ability to mentally search through an
impossible number of possibilities, but rather their intuition for determining which moves
are worth considering and which can be discarded. For instance, a move that sacrifices the
queen for a pawn early in the game is almost always a bad move and would not merit any
further consideration.

While the rules of chess are deterministic and known, the game is not just about making
the best moves but also about anticipating the opponent’s responses. Despite not having
access to the opponent’s mental state, a grandmaster is able to anticipate the opponent’s
moves by studying their past games, prior games with the opponent, and by estimating what
move they would make if they were in the opponent’s position. By doing so, grandmasters
can effectively lower the branching factor by focusing only on moves that cannot be ruled
out as obviously bad, and consequently plan further ahead into the future.

The core idea behind MCTS follows a similar approach: From a given position, the agent
will determine which actions are worth exploring, and will simulate a potential future history
starting with the chosen action, using a simulated model of the environment to interact with
(much like a grandmaster “simulates” his opponent in his head when planning forward).

In this way, MCTS allows deep planning without costly expansive search, by focusing
the search only on actions that look promising, and observations that µ would likely return.

MCTS works especially well in stochastic games with large branching factors (like
backgammon [VLCU07] or poker [PGC10]), where instead of a costly expansive search to
compute the expected value of nodes, many potential outcomes of the game can be simulated
by sampling dice rolls or card deals, thereby quickly obtaining an estimate of the value of
an action.

For Go [WG07, SHM+16], an extension of MCTS was used where the action values were
learned via self-play, tweaking the parameters of a neural network used as a heuristic for
the value of a particular state of the game.

The MCTS algorithm can be decomposed into four parts (Figure 12.3), that are repeated
while there is still execution time remaining. We present these generically for the moment,
postponing discussion specifying how actions are selected, histories are evaluated, and how
the environment is modelled to sample potential future percepts.

342 CHAPTER 12. MONTE CARLO AIXI WITH CONTEXT TREE WEIGHTING

We denote the action-observation search tree as Ψ.

1. Selection: From the root node, Ψ is traversed down to a leaf chance node following a
tree policy . The tree policy is chosen to ensure a reasonable trade-off between moves
known to be good (exploit) and moves that are seldom chosen (explore).

2. Expansion: From the current leaf chance node, a new unexplored action (given the
current history) is selected, an action node is created, and added as a child to the
chance node. Note that only one node is added to the tree on each iteration of MCTS.

3. Simulation: From the newly created action node, a simulation of a possible outcome
is generated between the interaction of a rollout policy (a cheap model the agent
has to approximate their behavior, usually random actions) and the environment (if
the environment is unknown, we use the agent’s best model of what it thinks the
environment is), up to the horizon limit m.

4. Backup: The rewards generated along the simulated trajectory are used to update the
statistics associated with the nodes along the path traversed through Ψ. In particular,
value estimates are updated.

186 Chapter 8: Planning and Learning with Tabular Methods

extending the initial portions of trajectories that have received high evaluations from
earlier simulations. MCTS does not have to retain approximate value functions or policies
from one action selection to the next, though in many implementations it retains selected
action values likely to be useful for its next execution.

For the most part, the actions in the simulated trajectories are generated using a simple
policy, usually called a rollout policy as it is for simpler rollout algorithms. When both
the rollout policy and the model do not require a lot of computation, many simulated
trajectories can be generated in a short period of time. As in any tabular Monte Carlo
method, the value of a state–action pair is estimated as the average of the (simulated)
returns from that pair. Monte Carlo value estimates are maintained only for the subset
of state–action pairs that are most likely to be reached in a few steps, which form a tree
rooted at the current state, as illustrated in Figure 8.10. MCTS incrementally extends
the tree by adding nodes representing states that look promising based on the results of
the simulated trajectories. Any simulated trajectory will pass through the tree and then
exit it at some leaf node. Outside the tree and at the leaf nodes the rollout policy is used
for action selections, but at the states inside the tree something better is possible. For
these states we have value estimates for of at least some of the actions, so we can pick
among them using an informed policy, called the tree policy, that balances exploration

Selection SimulationExpansion Backup
Repeat while time remains

Tree
 Policy

Rollout
Policy

Figure 8.10: Monte Carlo Tree Search. When the environment changes to a new state, MCTS
executes as many iterations as possible before an action needs to be selected, incrementally
building a tree whose root node represents the current state. Each iteration consists of the four
operations Selection, Expansion (though possibly skipped on some iterations), Simulation,
and Backup, as explained in the text and illustrated by the bold arrows in the trees. Adapted
from Chaslot, Bakkes, Szita, and Spronck (2008).

Figure 12.3: The four steps of the Monte Carlo Tree Search algorithm explained in
Section 12.2.2 [CWVDH08, SB18].

When execution time has elapsed, MCTS uses a mechanism to select the next action,
represented as a child of the root node, based on the estimated effect on what possible
futures would arise, if that action were taken. The root node itself still represents the actual
present state of the agent-environment interaction history.

Usually, the action with the corresponding highest Q-value estimate is taken, but one
could also select actions randomly with a bias towards actions that have a high Q-value
estimate, or actions visited many times during the backup phase of MCTS. We would expect

12.2. SEARCHING VIA MONTE CARLO TREE SEARCH 343

that a Q-value estimate comprised of the results of a large number of rollouts to be higher
accuracy than one comprised of few, so focusing only on the highest Q-value estimate may
mean exploiting before sufficient exploration is performed. Alternatively, one can focus
entirely on choosing the action that was sampled the greatest number of times, in tandem
with the tree policy biasing its sampling towards actions of estimated high value but with
some exploration.

This is the action the agent chooses for interaction with the true environment. The
environment then replies with a percept e. We then start MCTS again with updated history
h :=hae as the new root node.

We can walk down the tree and treat the node associated with history hae as the new
root node.

12.2.2 MCTS Algorithm

We now present the MCTS algorithm more formally. The steps above included some
unspecified steps, which are denoted below by the following functions.

• What statistics are stored in the nodes (given by defining the nodes in Ψ)
• The choice of tree policy (given by the interaction between SelectAction and Simulate-
Action)

• The new action during the expansion phase and the choice of rollout policy (both
contained inside Evaluate)

• Updating the node statistics (UpdateValue)
• Once time has elapsed, choosing the best action based on the accumulated statistics
(BestAction)

These unspecified functions are fully defined as particular instantiations of MCTS later
on.

Monte Carlo planning uses an action-observation tree Ψ that contains an estimate V̂ (h)

of the value function at each action node, and an estimate Q̂(h,a) of the Q-value at each
chance node. Monte-Carlo planning takes the current history, initializes a tree Ψ rooted at
the current known history h, and repeatedly calls Sample (Algorithm 12.2) until a given
time threshold tmax is exceeded.3 Each of these applications of Sample will generate a
simulated sequence of actions taken by the agent (SelectAction) and percepts produced by
the environment(SimulateEnv) or by the model used to approximate the environment, for
when the true environment is unknown.

Once time has been exceeded, Monte Carlo Planning runs the BestAction function which
picks the best action based on the statistics of the tree Ψ.

Through repeated simulated interaction, the agent acquires a better estimate of the
Q-values of each history-action pair.

Sample Algorithm 12.2 computes a recursive function that takes as input an action-
observation tree Ψ, the current history h and the planning horizon m. The recursion ends
when the planning horizon m has been reached, in which case Evaluate is used to estimate
the value of a non-terminal history h.

If the recursion has not terminated, Sample generates a new action a using SelectAction
and in turn a new percept (o,r) given action a using SimulateEnv. To find the Q-value of
the history action pair (h,a) the algorithm recursively calls Sample on the new history haor
with the planning horizon m decremented. The result of the recursive call is added to the

3Sometimes a maximum number of simulations is used instead.

344 CHAPTER 12. MONTE CARLO AIXI WITH CONTEXT TREE WEIGHTING

reward r, and then used to update the Q-value of (h,a) (using UpdateValue). The Q-value
estimate is then returned.

Once the recursion has terminated by searching forward far enough to reach the planning
horizon m, the Q-values at each time step will be recorded and used to compute the Q-value
of the previous history and action, backing up all the way up to the initial history and action
chosen.

How well Sample performs depends on the following:

• How accurate the SimulateEnv function is. For known environments we just sample
e∼µ(·|ha) directly. For unknown environments (like an agent exploring a maze, or
in a game where the rules are known but the agent does not know the strategy of
the opponent) the agent requires a model of the environment from which to sample
from. The performance of SimulateEnv is then tied to the accuracy of the agent’s
model. Many variants of MCTS include a component where the agent samples from its
internal model of the environment, and then updates the model based on true percepts
received from the environment once an action has been chosen.

• How the SelectAction function (also called the rollout policy) chooses actions. Obviously,
the agent cannot just use MCTS to simulate the action it would choose (as this would
lead to an infinite regress) so we require the agent to have a sensible rollout policy ,
a model used by the agent to approximate its own behavior, which provides an
inexpensive estimate of the action it would take for a given history. By analogy, a
human choosing an action that seems intuitively good, or was discovered to be good
in the past can provide a cheap estimate of the action that would be decided upon
by thinking deeply about the consequences of the action. In vanilla Monte Carlo
planning, the rollout policy merely chooses an action uniformly at random. The greedy
approach involves just choosing the action which maximizes the current estimate of
the Q-value, but doing so can often lead to suboptimal play if the agent mistakenly
has an inaccurate estimate4 of the Q-values [KS06]. More advanced techniques can
involve learning a model5 based on the true actions the agent has chosen so far, and
then using samples from that model as the rollout policy.

UpdateValue is called when a recursive call to Sample has returned a value, used as a
method to combine Q-value estimates generated from that particular simulation, together
with the statistics collected so far for the chance node associated with history ha. It has no
return value, but edits the tree as a side effect.

12.2.3 Bandits and Upper Confidence Bounds

Before explaining the UCT algorithm, we will first briefly motivate it with some discussion
on bandit problems, a subclass of Markov Decision Processes. While bandit problems appear
to be simpler, they still have sufficient complexity to run into exploration-exploitation
trade-offs, and entire books exist on the subject of bandits [BF85, Git89, LS20a, Lat24].
The approximation of AIXI will leverage results first constructed for bandit problems. For

4Selecting a highly valued action that is not valuable (false positive) will correct for itself, as actions that
are selected often will have more accurate associated statistics, so the agent will quickly learn to stop taking
that action. Actions that are valuable, but not highly valued (false negative) are more problematic however,
as there is no incentive to visit a node with an apparently low value, so by following a greedy policy the
agent may never learn to play an action where the estimated value is below the true value.

5so long as sampling actions from the model is still cheap. A good choice is often based on some sort of
artificial neural network.

12.2. SEARCHING VIA MONTE CARLO TREE SEARCH 345

Algorithm 12.1 Monte Carlo planning(h,m,tmax) [KS06]

Input: History h, horizon m, timeout time tmax

Output: Approximate best action a
1: Ψ:= action-observation tree starting at h
2: while running time less than tmax do
3: Sample(Ψ,h,m)

4: return BestAction(Ψ,h)

Algorithm 12.2
Sample(Ψ,h,m) [KS06, VNHS10]

Input: Search tree Ψ
Input: History h, Search Horizon m
Output: Q-value estimate q

1: if m=0 then return 0
2: a :=SelectAction(Ψ,h,m)
3: (o,r) := SimulateEnv(Ψ,h,a)
4: h′ := hora
5: q :=r+Sample(Ψ,h′,m−1)
6: UpdateValue(Ψ,h, a,q)
7: return q

Algorithm 12.3
UpdateValue(Ψ,h,a,q) [KS06, VNHS10]

Input: MCTS tree Ψ
Input: History h
Input: Action a
Input: Q-value q
Effect: Update Q-value est. on node ha

1: Ψ(ha).Q := q+Ψ(ha).N×Ψ(ha).Q
Ψ(ha).N+1

2: Ψ(ha).N :=Ψ(ha).N+1

a gentle introduction to bandit problems, we recommend [SB18]. The term bandit comes
from the phrase “one-armed bandit”, referring to a slot machine.

Definition 12.2.1 (Bandit) Given a set of actions A and rewards R, a bandit
environment is a stochastic function µ :A→∆R.

Note that a bandit problem, unlike a Markov Decision Process, has no reference to states.
Alternatively, we can define a bandit problem as a special case of an MDP with only a single
state S={s}.

Bandit problems are a subclass of Markov decision processes, in that there are no states
or observations, and the dynamics of the environment are conditioned solely on the most
recent action taken by the agent. The agent always finds itself in the same situation whenever
it takes an action.

The actions taken by the agent, and rewards from the environment form an interaction
history

a1r1a2r2a3r3...amrm

up to the length of the interaction m.
The objective of the agent is to maximize the sum of reward over some fixed horizon.

Often, the performance of an agent is measured in terms of regret , the difference between
the expected reward sum the agent would obtain, vs. that of the optimal policy π∗, or the
best policy π drawn from a class of reference policies Π.

Despite this apparent simplicity, bandit problems are still rather complex to solve, as
the expected value of each action is unknown to the agent, and so they need to trade off
exploiting the best known action, versus exploring new actions to obtain better estimates of
the true value.

346 CHAPTER 12. MONTE CARLO AIXI WITH CONTEXT TREE WEIGHTING

At each time step t, if the agent knew the expected reward q∗(a) := Eµ[rt|at = a]
for each action a, then the solution is easy: the agent should always choose the action
a∗ :=argmaxa∈Aq

∗(a) with the highest expected reward. There is no need to plan ahead
and consider the consequences of each action, or learn a Q-value for each state-action pair
to maximize the expected return as is usually the case in RL, as there is nothing for the
environment to condition on other than the action at taken on the current time step. The
problem lies in identifying which action is the best through statistics collected from previous
actions taken. We imagine that at each time step t the agent has an estimate Q̂t(a)≈q∗(a)
of how valuable they believe each action to be. This estimate could be constructed in many
ways, but an initial approach might be to take the average of all rewards obtained so far
from playing that action in the past

Q̂t(a) =

∑t−1
i=1riJai=aK∑t−1
i=1Jai=aK

Now, an agent playing greedily with respect to this estimate by choosing action agreedyt =

argmaxa∈AQ̂t(a) may never learn to always choose the optimal action, instead exploiting a
suboptimal action rather than getting good estimates for the actions available first.

A common approach to encourage exploration is the ε-greedy strategy [Wat89] to choose
to explore randomly with probability ε, and select the greedy action 1−ε of the time.

aε-greedyt =

{
uniformly random a∈A probability ε

argmaxa∈AQ̂t(a) probability 1−ε

Eventually, the agent should choose the best action with probability 1− |A|−1
|A| ε. The choice

of ε now affects the exploration-exploitation trade-off of the agent. Too low, and it will take
the agent a long time to learn the optimal action, as exploration is seldom performed. Too
high, and the agent will continue to often choose suboptimal actions even when the best
action is known. More advanced techniques can involve making the exploration probability
εt a function of time (using a large probability of exploration initially, and then decreasing
the probability of exploring once the agent has taken sufficiently many actions to obtain a
good estimate Q̂(·)).

The ε-greedy method is one way to force exploration, but it is a rather unsophisticated
way of doing so: the agent uniformly selects at random an action to play (potentially wasting
a time step by choosing an action already known to be poor). A more sophisticated method

would focus exploring more towards actions for which the current value estimate Q̂t(a) is
uncertain. This brings us to the Upper Confidence Bound (UCB) [Lai87, ACBF02] action
selection method. The UCB Q-value is defined as

QUCB
t (a) :=

{
Q̂t(a)+c

√
ln(t)
Nt(a)

Nt(a)>0

∞ Nt(a)=0
(12.2.2)

where Nt(a) :=
∑t−1

i=1Jat=aK denotes how many times action a was selected before time step
t, and c>0 is a hyperparameter that controls the strength of the exploration bonus.

The action chosen by the UCB agent is then defined as the action that maximizes the
UCB Q-value, aUCB

t (a) :=argmaxa∈AQ
UCB
t (a).

The main idea is that if up to time step t action a was chosen Nt(a) many times, the

relative error Qt(a)−Q̂t(a)
Qt(a)

will be proportional to 1√
Nt(a)

. So, a bonus exploration term

12.2. SEARCHING VIA MONTE CARLO TREE SEARCH 347

proportional to this error is added, encouraging visits to actions that are either good, or
for which the value is uncertain. This UCB bound will be adapted to the more general
Reinforcement Learning (RL) setting.

12.2.4 UCT Algorithm

The Upper Confidence Trees (UCT) algorithm is an extension of the Monte Carlo planning
algorithm (Algorithm 12.1). The UCT extension is done by altering the action selection
function, where rather than uniform action selection, UCT uses a modified form of the UCB
algorithm. Consider two choices of tree policy: Random action selection that chooses actions
uniformly at random, and greedy action selection that chooses the action with the highest
value estimate V̂ .

• Random: Random action selection is inefficient as we often waste computation time
exploring the consequences of actions that are obviously a priori bad (moving chess
pieces into jeopardy such that the opponent can safely capture them). We would
rather explore only those actions that have the potential to be good.

• Greedy: Greedy action selection has problems as mentioned before in that it will
likely exploit early before adequate statistics are collected, and get stuck playing moves
with overconfident value estimates.

We desire a balance between these two extremes; a method of choosing actions that
balances exploration with exploitation, while remaining computationally inexpensive. To
this end, the UCT-Value has an additional exploration bonus the same as UCB, which adds
to the action values an offset proportional to 1√

N
, where N is the number of times that

action has been sampled.
We would expect that if the agent has seldom taken an action, its estimate of the Q-value

would be uncertain, and subsequently the exploration bonus would be large, encouraging the
agent to explore new moves for which the current estimate may be unreliable. In this way,
the UCT is one potential resolution for the exploitation vs. exploration problem [GS07].

Definition 12.2.3 (Visit count) The visit count N(h) of a history h is the number
of times h has been sampled by the UCT algorithm. The visit count of taking action a
given history h is defined similarly, and is denoted by N(ha).

Definition 12.2.4 (UCT action selection) The action chosen by UCT, given a
history h, is given by the action that maximizes the following expression:

aUCT (h) := argmax
a∈A

QUCT (h,a)

where QUCT (h,a) :=

{
1
m Q̂(h,a)+C

√
lnN(h)
N(ha) N(ha)>0

∞ N(ha)=0

If multiple actions have the same UCT-value, we break ties arbitrarily.

The first term Q̂(h,a) is the current unbiased frequentist estimate (Algorithm 12.3) of the
Q-value of history h, action a. The constant C ∈R is a positive exploration-exploitation
parameter. Smaller values of C cause the agent to focus on exploiting its current estimate
of the best action, which will cause the search tree Ψ to search deeper on only a few

348 CHAPTER 12. MONTE CARLO AIXI WITH CONTEXT TREE WEIGHTING

actions perceived to be good, giving a deep but narrow tree. Larger values of C incentivize
exploration, incentivizing a shallower but broader tree.

Note that assigning a value of ∞ when N(ha)=0 is useful not only to avoid a divide-by-
zero, but to force UCT to always prioritize an action a that has never before been chosen
given the history h over anything else.

The SelectAction part of the MCTS algorithm is important as we do not want our search
tree to go down paths that result in low reward, but we also want to explore history-action
pairs which we have seldom visited. This choice of using the UCB for action selection
balances this exploration-exploitation trade-off that occurs, just as it does in the bandit case
as it will favor actions that maximize Q(h,·).

The last term to explain is the logarithmic term (lnN(h)) in the exploration bonus. This
is to ensure that the agent chooses all actions, (even ones with low Q-values logarithmically
often) infinitely often. This is useful in both a theoretical and a practical sense: The
theoretical result is convergence.

Example 12.2.5 (Upper Confidence Bounds for a Bandit) Consider the Markov
decision process (technically a bandit process)

Sa1,r=1 a2,r=10′000 with 0.1% chance

There is only one state S, and both actions lead to the same state. The history is irrelevant
for this problem, so we will say that after any action, the environment terminates and resets,
so the history h is always empty. Action a1 always returns a reward of 1, whereas action a2
returns a reward of 10’000 with probability 10−3, else it returns a reward of 0. Choosing
action a2 leads to an expected return of r=10, hence the optimal policy is to always choose
a2.

Now, suppose we had an agent selecting actions according to the following policy

aUCT ′(h) := argmax
a∈A

QUCB′(h,a)

QUCB′(h,a) :=

{
1
m Q̂(h,a)+C

√
1

N(ha) N(ha)>0

∞ N(ha)=0

which is the same as aUCT (Definition 12.2.4) without the logarithmic term lnN(h).
Then, unless the agent got particularly lucky and observed the reward r=10′000 from

choosing action a2 soon, the agent would only choose a2 finitely many times, and then
always choose a1 thereafter. First, since a1 always returns a reward of 1, we would expect
that most methods of approximating the Q-value would quickly converge to 1 (including

the frequency estimate), so assume Q̂(h,a1)=1. Similarly, we assume for the moment that

Q̂(h,a2)=0 (as a2 did not happen to return a non-zero reward for any interactions). Then,

QUCB′(h,a1) =
Q̂(h,a1)

m
+C

√
1

N(ha1)
>

1

m

but QUCB′(h,a2) =
Q̂(h,a2)

m
+C

√
1

N(ha2)
= C

√
1

N(ha2)

so once N(a2)>(Cm)2, then 1
m>C

√
1

N(ha) and the agent would never again choose a2, and

never learn the optimal policy. For reasonable values of the exploration constant (C=2)

12.2. SEARCHING VIA MONTE CARLO TREE SEARCH 349

and horizon (m=10) we require N(a2)>400, for which there is a ≈67% chance of a2 not
returning a reward for any of those 400 interactions. �

Now, one solution to the above could be to increase the exploration-constant C, or to
increase the horizon m, but we could equally well choose another adversarial environment
based on m and C. Let δ > 0 be arbitrary. Choose ε=1−exp(lnδ

C2m2) and add an action
that returns a reward of 10/ε with a probability of ε. The expected value of choosing a2 is
still 10, making it optimal, but the probability that aUCT ′ will choose a2 only finitely many
times is bounded below by δ.

P(a2 finitely often) ≥ P(a2 returns 0 over C2m2 trials)

= (1−ε)C2m2

=δ

We desire that there exists a fixed horizon m and exploration constant C that performs
well on any environment of this kind. As mentioned before, other strategies to encourage
exploration such as the ε-greedy policy have their own problems with selection of obviously
bad actions, and never converging to optimal play. Choosing a decaying exploration rate εt
that guarantees convergence is hard to do for general environments. An alternative is to use
a Boltzmann distribution, where better actions are selected more often, but not always. The
probability of sampling action a given history h is proportional to exp(Q̂(h,a)/T), where
T is the temperature, a hyperparameter that controls how sharp the distribution is.6 As
T→∞, the distribution approaches uniform, and as T→0 the distribution degenerates back
to greedy action selection [Wat89]. However, this furloughs the problem to the selection of a
temperature, or the rate of “cooling” (the decay rate for T).

A universal solution is to include the logarithmic term lnN(h) to the numerator of the
exploration bonus. This ensures that every action is explored at least logarithmically often
(which means all actions are sampled infinitely often) and the agent will eventually sample
a2 often enough to receive rewards, and learn that a2 is the preferable action.

One could also choose other functions in o(
√
n), such as ln2N(h) or 3

√
N(h), but it can

be shown that lnN(h) is optimal in the sense that it gives the best bound on the worst-case
regret , that is, the best bound on the gap between the expected reward following this strategy,
and the expected reward following an optimal policy π∗

µ for any choice of environment µ
[LS20a].

A general theoretical result was shown by [KS06], that the estimate of the expectimax
value produced by UCT, VUCT (h) := V πUCT (h), converges in probability to the optimal
expectimax value V ∗(h), with respect to the implied distribution µπUCT , where µ is any
finite horizon MDP.

This result shows that the UCT algorithm is indeed a good choice for estimating the
value function as the estimate converges to the true value. It does not, however, say how
fast it converges. [KS06] also prove a convergence rate result, but with an exponentially
large constant. In practice, the convergence is often fast enough so that UCT can be used
effectively.

12.2.5 ρUCT Algorithm

In this section we will describe ρUCT (Algorithm 12.5), which is an extension of the UCT
algorithm that we will use to approximate the expectimax tree. We can use the approximation

6The analogy here comes from statistical physics: An object that is very cold (T →0) has very little
movement in its atoms, and the probability distribution of its average position is sharp. As T →∞ the
atoms wiggle more due to thermal noise, and the distribution of its position smooths out.

350 CHAPTER 12. MONTE CARLO AIXI WITH CONTEXT TREE WEIGHTING

of the expectimax tree to find the best action to take. The difference between ρUCT and
UCT is that for ρUCT, the environment µ that we wish to plan in is unknown and replaced
by estimates. For the purposes of the algorithm, ρ takes the place of the SimulateEnv
function and can be queried directly for samples.

Like UCT, the action selection criteria is based on the UCB algorithm, and we use the
same UCB action selection as before (Definition 12.2.4).

For ρ-UCT, the action-observation tree Ψ stores the following variables: the action nodes
contain an estimate of the value V̂ (h), and the chance nodes an estimate of the Q-value

Q̂(h,a). All nodes also keep track of the number of times they were visited, N(h) or N(h,a)
as appropriate.

The estimates V̂ (h) (resp. Q̂(h,a)) are averages of all the samples of the value (resp.
Q-value), determined from the rewards obtained during a rollout. Given a current estimate

Q̂N := 1
N (q1+...+qN), after N many visits, and a new sample qN+1, we can update the

estimate to compute Q̂N+1 :=
1

N+1 (q1+...+qN+qN+1) efficiently with the following update
rule

Q̂N+1 :=
NQ̂N+qN+1

N+1

We then increment the number of visits N :=N+1. This update rule is used in Algorithm 12.6
and Algorithm 12.7.

Theorem 12.2.6 (Consistency of ρUCT [VNHS10, KS06]) Let µ be the true
underlying environment. For all ε>0, for all histories h,

lim
N(h)→∞

P
(∣∣∣V πρUCT

µ (h)−V̂ πρUCT
µ (h)

∣∣∣≤ε)=1

where πρUCT is the policy that follows the ρUCT algorithm.

Proof. This theorem is a restatement of Theorem 5 and Theorem 6 in [KS06], expressed in
notation consistent with this book. �

Like UCT, we now have a nice convergence result for ρUCT. This means that using
πUCT , the optimal agent using the approximation of the value function V̂ ∗

ρ will behave like
the true optimal agent derived from V ∗

ρ (at least in the limit). However, this theorem gives
no indication of the rate of convergence, only that in the limit convergence is guaranteed
(with probability 1).

12.2.6 Parallelization

We now summarize the methods described in [CWVDH08] by which MCTS can be performed
in parallel.

• Leaf Parallelization. The selection and expansion phases are performed sequentially
as per normal. Then, instead of performing a single rollout during the simulation
phase of the MCTS algorithm, many independent rollouts are performed in parallel,
and the statistics generated over these rollouts can be aggregated together before
performing backpropagation sequentially. This means the tree is being updated on
more accurate value estimates. Since each rollout is independently generated, this
means that no synchronization mechanisms of shared resources are required.

12.2. SEARCHING VIA MONTE CARLO TREE SEARCH 351

Algorithm 12.4
Agent-Environment Interaction Loop

Input: Horizon m. Timeout time tmax

Input: Rollout Policy π
Input: True Environment µ
Input: Environment Model ρ
Effect: Generates interaction history h

1: h :=ϵ
2: while True do
3: a :=ρUCT(h,m,tmax,π,ρ)
4: e∼µ(ha)
5: h :=hae

Algorithm 12.5
ρUCT(h,m,tmax,π,ρ) [VNHS10]

Input: History h
Input: Search horizon m
Input: Timeout time tmax

Input: Rollout Policy π
Input: Environment model ρ
Output: An action a chosen by ρUCT

1: Ψ:= action-obs. tree with root node h
2: while running time less than tmax do
3: MCTS(Ψ,h,m,π,ρ)

4: return BestAction(Ψ,h)

Algorithm 12.6
MCTS(Ψ,h,m,π,ρ) [VNHS10]

Input: Search tree Ψ
Input: History h. Search horizon m
Input: Rollout Policy π
Input: Environment model ρ
Output: Reward sum R

1: if m=0 then ▷ Reached end of horizon
2: return 0
3: else if N(h)=0 then ▷ Reached leaf
4: R := Rollout(h,m,π,ρ) ▷ Simulation
5: else
6: a :=SelectAction(Ψ,h,C) ▷ Continue
7: R := SampleObservations(Ψ,h,a,m,ρ)

8: V̂ (h) := 1
N(h)+1 [R+N(h)V̂ (h)]

9: N(h) :=N(h)+1
10: return R

Algorithm 12.7
SampleObservations(Ψ,h,a,m,ρ) [VNHS10]

Input: Search tree Ψ
Input: History h
Input: Action a
Input: Search horizon m
Input: Environment model ρ
Output: Reward sum R

1: Sample e∼ρ(·|ha)
2: if N(hae)=0 then
3: Create node Ψ(hae) as a child of

Ψ(ha)

4: h′ :=hae
5: R :=r+SampleActions(Ψ,h′,m−1,π,ρ)
6: Q̂(ha):= 1

N(ha)+1 [reward+N(ha)Q̂(ha)]

7: N(ha) :=N(ha)+1
8: return R

Algorithm 12.8
SelectAction(Ψ,h,C) [VNHS10]

Input: Search tree Ψ
Input: History h
Input: Exploration-exploitation constant C
Output: Action a

1: Â :={a∈A :N(ha)=0}
2: if Â ̸={} then
3: Pick a∈Â uniformly at random
4: Create node Ψ(ha)
5: else

6: a :=argmax
a∈A

{
1
m V̂ (ha)+C

√
ln(N(h))
N(ha)

}
7: return a

Algorithm 12.9
Rollout(h,m,π,ρ) [VNHS10]

Input: History h
Input: Search horizon m
Input: Rollout policy π
Input: Environment model ρ
Output: Reward sum R

1: R :=0
2: for i :=1 to m do
3: Sample a from π(·|h)
4: Sample e from ρ(·|ha)
5: R :=R+r
6: h :=hae
7: return R

352 CHAPTER 12. MONTE CARLO AIXI WITH CONTEXT TREE WEIGHTING

• Root Parallelization. Multiple trees are instantiated, and the MCTS algorithm
is performed on the trees independently. Once the allotted time has expired, the
statistics of the children of the root nodes are merged together into a single tree, which
is then used by the agent to select an action.

• Tree Parallelization. One tree is shared between multiple workers, which are all
executing the MCTS algorithm simultaneously. Synchronization mechanisms are used
so two workers do not access the same node at the same time. This can involve either
a global mutex 7, so only one worker can update the statistics of the tree while all other
workers are busy performing rollouts, or local mutexes, where workers lock a node
whenever updating its statistics, and unlock it as soon as they move to another node.
This means that much time can be wasted on locking and unlocking nodes in the tree,
which can hamper performance.

The experiments done in [CWVDH08] and more recently in [MPHV15] indicate that
both tree parallelization and root parallelization are promising methods for speeding up
evaluation of MCTS. They claim that leaf parallelization performs poorly by comparison,
even though many more games are evaluated per second, the performance of the agent is
not significantly improved as compared to the other methods. One could conjecture that
the agent’s performance is dependent more on the number of nodes explored, rather than
the accuracy of the statistics obtained via rollouts.

12.2.7 Episodic Environments

So far we have been assuming that the interaction between the agent and the environments
never terminates, and the agent tries to maximize the reward sum over some forward moving
horizon. We call such environments non-episodic in contrast to episodic environments, where
the interaction can be separated into disjoint interactions called episodes . Each episode does
not affect the others, and when an episode terminates the environment is reset back to the
original configuration.

We can encode episodic environments as a special case of non-episodic, by adding an
extra observation oend to indicate the current environment has terminated. The agent needs
to already be aware of the oend observation, and when issued, the interaction history is
deleted, and the interaction between the agent and the environment starts afresh.

This allows for several optimizations that were not possible before. For example, it is
clear that chess is a episodic environment, as the game terminates when a loss/win/draw
occurs, and the interaction history from one game is irrelevant for subsequent games. This
allows for an optimization via reusing some of the statistics from previous games when those
games are revisited again in the future (as when the game resets, the agent is always in the
same initial board position with an empty interaction history).

In many episodic environments, the reward is only determined at the end of the game,
and zero reward is issued to a game in progress. In chess, the natural reward to issue is
−1/0/1 for a lost/drawn/won game respectively, and zero reward for all other states of the
game in progress.

The first change is to the MCTS algorithm (Section 12.2.1). Previously we would run
the four steps of the algorithm until the time allotted to choose a move was expired. The
agent selects an action a, the true environment µ returns a percept e, and the interaction
history h′ :=hae is updated. MCTS is then restarted from the node corresponding to h′,
discarding the other children of the tree.

7A mutex, short for mutual exclusion, is a mechanism by which only one worker is allowed access to a
shared resource at a time.

12.3. LEARNING VIA CONTEXT TREE WEIGHTING 353

For episodic environments, we can instead reuse large parts of the tree. We update the
environmental history as before, but now no part of the tree is discarded. Once the current
episode terminates, we can move back to the root node of the search tree and continue from
there, making use of the existing statistics from previous games. In this way, the agent can
learn from mistakes made in previous episodes.

12.3 Learning via Context Tree Weighting

Now we have an approximation of search via MCTS for a particular environment ρ. The
true environment µ is unknown, so we wish to instantiate ρUCT with a Bayesian mixture
over environments ξ that assigns non-zero weight to the true environment µ. AIXI uses ξ as
its best estimate of the true environment, and updates ξ based on the percepts received from
the environment. We approximate ξ using the Context Tree Weighting (CTW) algorithm
(see Section 4.5).

We first modify the CTW method (Section 4.5) to work on arbitrary (finite) action
spaces rather than binary strings. We do this in such a way so as to preserve the type
information of the percepts received, as at the end of the day, the agent only receives bits,
and we wish to distinguish the observation bits from the reward bits.

12.3.1 Action-Conditional CTW

Recall that CTW is an online prediction8 algorithm which (efficiently) computes the proba-
bility

PCTW
D (x1:t) ≡ PTD

(x1:t) =
∑
S∈CD

wSPS,KT (x1:t)
where

• x1:t is a binary sequence
• S is a suffix set (Definition 4.3.3) or suffix tree (Definition 4.3.6)
• wS :=2−ΓD(S) is the complexity prior associated with S (4.5.9), defined using the tree
model code length ΓD(S) (Definition 4.3.20)

• CD is the set of all suffix sets of depth at most D (Definition 4.3.7)
• PS,KT is the PST-KT probability associated with S (Definition 4.3.25)

Recall that CTW can compute this probability in time O(D) (Remark 4.5.3) compared
to computing the sum naively which takes time O(22

D

) (Remark 4.5.3).

The idea of CTW was extended in [VNHS10] from predictions to actions. This means
that instead of estimating the probability P(x1:t), the extension to CTW estimates the
probability9 µ(e1:t||a1:t) by the following:

PCTW
D (e1:t||a1:t) =

∑
S∈CD

wSPS,KT (e1:t||a1:t) (12.3.1)

where PS,KT is extended from Definition 4.3.25 using Definition 6.3.1 to give a conditional
probability distribution over percepts conditioned on histories. Recall from Lemma 4.1.2
that the KT estimator is an estimator for the probability of the next symbol xt given a

8CTW gives a new value of the prediction after observing each new bit, as opposed to an offline prediction
algorithm, which first needs to see all the data, learns from it, and then after makes predictions.

9Recall the || notation of Definition 6.3.1.

354 CHAPTER 12. MONTE CARLO AIXI WITH CONTEXT TREE WEIGHTING

binary string x<t defined by

Pkt(x1:t) := Pkt(xt|x<t)Pkt(x<t) and Pkt(ϵ) := 1

Pkt(xt+1=0|x1:t) =
a+1/2

a+b+1
and Pkt(xt+1=1|x1:t) = 1−Pkt(0|x1:t) =

b+1/2

a+b+1

and where a (resp. b) is the number of zeros (resp. ones) contained in x1:t.

12.3.2 Action-Conditional PST

Both percept and action sequences are often non-binary (as there is usually more than two
actions to take, or two percepts to receive), and as currently defined, CTW can only perform
prediction over binary sequences. The solution is to encode actions and percepts as binary
strings, use this encoding to convert a history to a sequence of bits, and perform prediction
on the result.

We first present how to generalize PSTs (Section 4.3.1) to non-binary alphabets, called
action-conditional prediction suffix trees (AC-PST).

We assume w.l.g10 that |A|=2ℓA and |E|=2ℓE for some ℓA,ℓE>0.

We can then enumerate all 2lA actions in A, and assign to each a sequence of lA many
bits. Let JaK≡a[1 : lA] :=a[1]a[2]...a[lA]∈BlA denote the bit sequence representing an action
a, and Ja1:tK :=Ja1KJa2K...JatK denote the bit encoding of a sequence of actions. We define
encodings for percepts e and sequences of percepts e1:t similarly.

Now, an AC-PST is defined in the same way as a PST (Definition 4.3.11) with a suffix
set S and a collection of parameters ΘS , and associated tree ΨS,ΘS . The difference lies in
how the updates are performed.

For interaction with the environment, we first perform a few interactions arbitrarily with
the environment to build up a history h such that the encoding JhK is at least as long as the
depth of the tree (so that we have a context of sufficient depth.) Then, for every interaction
thereafter:

1. An action a is selected by the agent, and h :=hJaK.
2. The environment responds with a percept JeK.
3. For i from 1 to lE

(a) Without seeing the next bit e[i], we predict it using the distribution θβS(h).
(b) The next bit e[i] is observed. The parameter θβS(h) is updated per usual using

the KT estimator (Algorithm 4.3).
(c) Set h :=he[i].

We can then define a mixture over AC-PSTs in the same fashion as we did for CTWs,
giving us the Action-Conditional CTW method.

Recall the recursive definition of the weighted probability for the CTW (4.5.2) which we
replicate here:

Pw(s) :=

{
1
2Pkt(as,bs)+

1
2Pw(0s)Pw(1s) if 0≤ℓ(s)<D

Pkt(as,bs) if ℓ(s)=D

10One can always take any agent-environment model and add additional dummy actions that always
return minimum reward if taken and have no effect on the environment, and the environment can have
additional percepts that it will never return to the agent. The value of any existing policy is unchanged
under these modifications.

12.3. LEARNING VIA CONTEXT TREE WEIGHTING 355

We can use the CTW update (Algorithm 4.4) and prediction (Algorithm 4.5) algorithms
to define how the AC-CTW mixture should be updated with every interaction with the
environment. When a new percept is received, the CTW tree is updated on each bit
contained in the encoded version of the new percept, given the context which contains the
latest action taken by the agent.

For the moment, we leave the method by which the action is chosen as generic; this is
intentional as the algorithm here is just describing the Action-Conditional CTW model. In
Section 12.1, we discussed some approaches to decide on what action to take.

Algorithm 12.10
Action-Conditional CTW [VNHS10]

Require: Context tree TD
Input: Action-percept stream

h=a1e1a2e2a3e3...
Output: PCTW

D (e1:...||a1:...) bit by bit
Effect: Maintain CTW trees TD

1: Interact with environment
to generate initial history h

2: while True do
3: Agent chooses an action a∈A
4: h :=ha
5: Send action a to environment

and receive percept e
6: for 1≤ i≤ lE do
7: p := CTWPrediction(TD, h)
8: Use p to predict e[i]
9: Observe (and receive) next bit e[i]

10: CTWUpdate(TD, h, e[i])
11: Set h :=he[i]

Algorithm 12.11
FAC-CTW [VNHS10]

Input: Model classM
Effect: Maintain the family of

CTW trees TD1 ,...,TDk

1: h :=ϵ
2: t :=1
3: Initialize k :=lE context trees TD1

,...,TDk

4: while True do
5: Agent chooses an action at
6: h :=hat
7: Agent transmits action at to env.

and receives percept et
8: for 1≤ i≤k do
9: CTWUpdate(TDi ,he[1,i−1],ei)

10: h :=het
11: t := t+1

12.3.3 Factored Action-Conditional CTW

The method of encoding percepts as binary strings leaves out some critical information:
there’s nothing to distinguish which bits correspond to actions, which to observations, and
which to rewards. Moreover, the position of the bit itself in the encoding provides extra
side-information that we would want the CTW model to use. Essentially, the types of the
data are not encoded, the CTW model only receives a stream of bits to update against, with
no context as to what those bits represent.

For many environments, being able to distinguish between these pieces of information is
highly advantageous for learning. Consider the following example.

Example 12.3.2 (Factored CTW is better than CTW) Consider a trivial environment
with A=O=R=B. The environment issues observation ot uniformly at random, and the
reward rt is 1 if the agent’s action at matched the most recent observation ot−1 before that.
Formally,

µ(otrt|h<tat)=

1/2 otrt=(0,1) and at=ot−1

1/2 otrt=(1,1) and at=ot−1

1/2 otrt=(0,0) and at ̸=ot−1

1/2 otrt=(1,0) and at ̸=ot−1

356 CHAPTER 12. MONTE CARLO AIXI WITH CONTEXT TREE WEIGHTING

Optimal behavior in this environment is easily attained as the agent can just remember
the last received observation, and play that as its action.

We encode the percept et=otrt as a 2-bit code in the obvious fashion (first bit observation,
last bit reward). Now, when the agent receives a percept, the CTW tree model is updated
one bit at a time. Suppose the history is ...0101 and the next bit to update on is 0. It is
not clear if we are parsing the first or second bit of the percept, so the following two cases
would be indistinguishable.

• ...0101= ...at−1ot−1rt−1at and 0=ot
• ...0101= ...ot−1rt−1atot and 0=rt

Obviously we would want the agent to be able to distinguish observations from rewards,
otherwise they will confuse the reward 1 for the observation, and choose action 1 in response,
which would lead to lower reward. The bits alone are not sufficient, as the agent needs to
know what those bits represent. �

To preserve type information (being able to differentiate between different bits of actions
and percepts), and hence gain the ability to exploit more of the structure of the percepts,
[VNHS10] came up with a more advanced version of Action-Conditional CTW called Factored
Action-Conditional CTW (FAC-CTW), which chains together one Action-Conditional PST
for each of the lE bits of the percept space.

We keep track of lE separate context trees TD1 ,...TDlE
where tree TDi is associated with

the ith bit e[i] of a percept e. Tree TDi will only ever be updated on e[i], given the history h
concatenated with e[1 : i−1], the prior bits in the encoded percept as context. By ensuring
each tree is only ever updated from the same bit in the percept, the type information is
preserved. Each tree should have available the same quantity of information about the history
h, so the ith tree TDi

will be of depth Di :=D+i−1, and be provided context he[1 : i−1]
(the same D bits of context from h, and i−1 bits of context comprised of e[1 : i−1]).

In practice this proceeds as follows: We have history h, and would like to update the
model based on new percept e. Tree TD1

is updated on e[1] given context h, tree TD2
is

updated on e[2] given context he[1], and so on to the last tree TDlE
, which is updated on

e[lE] given context he[1 : lE−1]. The update rule for each tree is the same as for the vanilla
CTW (Algorithm 4.4).

Our model class is now a family of tree sources in C :=CD1
×CD2

×...CDlE
. We define an

element of this family as S=(S1,...,SlE). The trees are updated independently of each other,
so we can write the probability of a percept sequence associated with the family S as

PS(e1:t||a1:t) =

t∏
i=1

PS(ei |ae<iai) =

t∏
i=1

lE∏
j=1

PSj (ei[j] |Jh<iKei[1 :j−1]) (12.3.3)

where e1:t[j] denotes e1[j]...et[j], the j
th bit from every percept ei concatenated together, and

e1:t[\j] :=e1[\j]...et[\j] and e[\j] :=e[1]e[2]...e[j−1]e[j+1]...e[t], that is, e1:t[\j] represents
the bit encoding of e1:t, with the jth bit of every percept omitted.

Since our new model is S=(S1,...,SlE)∈CD1
×...×CDlE

, we now need to define a prior

over CD1
×...×CDlE

. We already have the prior 2−ΓD(S) for CD, so by assuming that the
product of model classes CD are independent, we can write

wS := P(S1,...SlE) =

lE∏
i=1

P(Si) =

lE∏
i=1

2−ΓDi
(Si) = 2−

∑lE
i=1ΓDi

(Si)

12.4. ALL TOGETHER 357

LetM=CD1×...×CDlE
, which gives us a new mixture model,

ξ(e1:t||a1:t) :=
∑
S∈M

wSPS(e1:t||a1:t) (12.3.4)

This can be rearranged to give us the following:

ξ(e1:t||a1:t) :=
∑
S∈M

wSPS(e1:t||a1:t)

=
∑

S1∈CD1

...
∑

Sk∈CDk

2−
∑k

i=1ΓDi
(Si)

k∏
j=1

PSj
(e1:t[j]

∣∣a1:t,e1:t[\j])
=

k∏
j=1

(∑
Sj∈CDj

2−ΓDj
(Sj)PSj

(e1:t[j]
∣∣a1:t,e1:t[\j]))

=

k∏
j=1

PCTW
Dj

(e1:t[j]|a1:t,e1:t[\j])

Now each factor PCTW
Dj

(e1:t[j]|a1:t,e1:t[\j]) is a conditional probability, which can be com-

puted similarly to as was done for a single CTW tree (4.5.5), which leads us to the Factored
Action-Condition CTW (Algorithm 12.11). The algorithm starts off by creating a context
tree for each bit, then loops the following:

• Take some action at and add it to the history h
• Receive percept et from the true environment
• For the ith context trees, update the context tree with the ith bit of et, using the
history h and e[1 : i−1] as the context

The weighted probabilities associated with each tree are updated using Algorithm 4.4 in the
usual fashion. We can then take the product of the root probabilities Pw(ϵ) for each tree to
recover ξ, which efficiently computes (12.3.4).

We can now express the mixture distribution given by the FAC-CTW method in a
similar fashion to (12.3.1). This mixture is what will be used as a substitute for ξ in the
approximation of AIXI Theorem 7.4.2.

ξFAC(e1:t||a1:t) :=
∑

S∈CD1
×...×CDlE

2−
∑lE

i=1ΓDi
(Si)PS(e1:t||a1:t)

12.4 All Together

Now we have an efficiently computable mixture of environments (ξFAC) to learn the true
environment µ, as well as a method for searching in a given environment (ρUCT), they are
combined by instantiating ρUCT with ρ=ξFAC . The result is called MC-AIXI-CTW, an
approximation to the AIXI agent. The action MC-AIXI-CTW will take (given sufficient
MCTS time) at time t having history h1:t, and horizon m is

a∗t = argmax
at

∑
xt

...max
at+m

∑
xt+m

[
t+m∑
i=t

ri

] ∑
S∈CD1

×...×CDk

2−
∑k

i=1ΓDi
(Si)PS(e1:t+m||a1:t+m)

358 CHAPTER 12. MONTE CARLO AIXI WITH CONTEXT TREE WEIGHTING

where PS is the probability given by FAC-CTW (12.3.3). We can see clear similarities when
compared to AIXI Theorem 7.4.2, which we rewrite here for moving horizon:

a∗t = argmax
at

∑
xt

...max
at+m

∑
xt+m

[
t+m∑
i=t

ri

] ∑
ν∈Msol

2−K(ν)ν(e1:t+m||a1:t+m).

The only difference is that MC-AIXI-CTW uses a model class of a product of prediction suffix
trees (Definition 4.3.11) as opposed to semicomputable environmentsMsol (Definition 3.7.1),
and a prior that is based on the model cost (Definition 4.3.20) of those trees instead of a
prior based on the Kolmogorov complexity (Definition 2.7.3). Additionally we use a moving
horizon m to make planning tractable.

Using ξFAC in place of the true environment µ for the purpose of MCTS samples was
shown in [VNHS10] to converge to optimal behavior. Let now m be the maximum life
of the agent as in the original AIXI model (the maximum number of iterations the agent
will be interacting with the environment). We could imagine a changing horizon ht during
interaction with the environment, so let hmax=suptht be the maximum of such horizons.
We assume that m≫hmax. The following theorem provides a performance bound on the
expected error of the FAC-CTW algorithm, comparing its estimated value function with the
true value function for a given policy π under certain assumptions.

Theorem 12.4.1 (Upper bound on FAC-CTW value error [VNH+11]) Using
the FAC-CTW Algorithm 12.11, for every policy π, if the true environment µ is
expressible as a product of k prediction-suffix trees (S1,Θ1),...,(Sk,Θk), for all b∈N, we
have

m∑
t=1

Eπ
µ

[(
V π,mt

ξFAC
(h<t)−V π,mt

µ (h<t)
)2]

≤ 2h3max

[k∑
i=1

ΓDi
(Si)+

(
1
2 log2m+1

) k∑
j=1

|Sj |
]

where V π,mt
µ (h<t) is the moving-horizon value of the policy (Definition 6.6.1), and

hmax :=suptht the maximum of the horizons ht :=mt−t+1.

This result implies that the FAC-CTW algorithm provides a performance guarantee on its
estimates for the value function under certain conditions. The performance bound depends
on the maximum planning horizon hmax, the structure of the prediction-suffix trees that
express the true environment, and the agent’s lifetimem. The theorem suggests that the error
between the algorithm’s estimates and the true value function is not unbounded, meaning
the algorithm’s performance is likely to be acceptable for many practical applications.

The FAC-CTW algorithm leverages prediction-suffix trees to create a compact represen-
tation of the environment, which can lead to efficient planning and learning. This theorem
provides a theoretical understanding of the algorithm’s performance, which can be beneficial
for researchers and practitioners who need to select appropriate algorithms for their RL
tasks.

As a corollary of this theorem, the average expected square difference of the two value
functions V π,mt

ξFAC
and V π,mt

µ tends to zero at rate O(logmm), which implies that for a sufficiently
long lifetime m, the value function estimates using ξFAC converge to that of µ for any policy
π. Importantly, this means that they converge for the policy that MC-AIXI-CTW is
approximating: The fixed horizon expectimax with respect to ξFAC .

12.5. EXPERIMENTS 359

When the agent has had limited interaction with the environment, the CTW probability
estimates will be poor, as there is limited information to build the estimates from. In
practice, it can be good to start with an ε-greedy exploration strategy to boost exploration,
and then switch back to the UCT method afterwards. This initial exploration differs from
the UCT type exploration as the latter is only guaranteed to explore enough in the limit
to be able to have the correct value function (Theorem 12.2.6), but it can be quite slow in
practice to obtain reasonable behavior.

12.5 Experiments

MC-AIXI-CTW was implemented with a wide variety of different environments by [VNHS10]
and performed close to optimal on almost every environment. In this section, we will describe
each of the environments it was tested on. All of the environments are MDPs, but the state
of the MDP is often not visible to the agent, and they receive only an observation instead o,
generated from the state s via some observation function ϕ :S→O. In Figure 12.4, we display
some of the environment information, including the size of the action space and observation
space of the environments, whether or not they have perceptual aliasing, whether or not
the observations are stochastic, and whether or not the observations are uninformative. An
environment has perceptual aliasing if ϕ is non-injective, that is, multiple states of the MDP
can map to the same observation, so the agent cannot uniquely identify the state from the
observation alone. An example of this could be an agent in a maze, where the observation
is in what directions the agent cannot move without bumping into a wall, and the state is
the agent’s position in the maze. Clearly, it is possible to have two different positions in
the maze map to the same set of observations for the agent. We say the observations of an
environment are uninformative if the optimal policy does not depend on the observations,
that is, the observations provide no information for the agent to learn from, and the agent
must learn from the rewards alone.

An example of an uninformative environment is a game of matching pennies (see
Section 10.2.3) where the agent receives no observation (or the same dummy observation) at
every interaction, and receives only the reward from the payout matrix.

Environment |A| |O| Aliasing Stochastic O Uninformative O
1D-Maze 2 1 yes no yes

Cheese Maze 4 16 yes no no
Tiger 3 3 yes yes no

Extended Tiger 4 3 yes yes no
4×4 Grid 4 1 yes no yes
TicTacToe 9 19683 no no no
Biased RPS 3 3 no yes no
Kuhn Poker 2 6 yes yes no
POCMAN 4 216 yes no no

Figure 12.4: Properties of the environments on which MC-AIXI-CTW was tested
[VNHS10].

Note that despite the fact that many of the environments are rather simplistic and the
optimal policy is often obvious, recall that the agent has no knowledge of the environment
other than the size of action and percept spaces. Moreover, the agent has no time to learn
the environment ahead of time, and must learn in an online fashion while simultaneously

360 CHAPTER 12. MONTE CARLO AIXI WITH CONTEXT TREE WEIGHTING

trying to find a good policy. Imagine trying to play the following environments yourself
with no feedback beyond the percepts encoded as binary strings, and no knowledge of the
underlying dynamics of the environment to fully appreciate the difficulty of playing well in
these environments.

Illegal Actions. We divert briefly to discuss the problem of illegal actions. Under the
current framework the agent can take any action at any time, and so it may be the case that
the agent can take “illegal actions.” An alternative is to provide the agent with a legal action
function ϕ :H→2A that for any history, provides a set of legal actions for the agent to choose
from. We would then replace all instances of A in the algorithms above with ϕ(h), given
the current history h. This works, but somewhat ruins the universality of MC-AIXI-CTW,
as we would have to take the rules of the game and encode them in the function ϕ, so the
agent is receiving extra side information. Grandmasters do not know chess from birth, but
had the benefit of mentors to teach them the rules of the game, as well as sensible strategies
discovered by others. We are asking a lot more of our agent, moments after “birth” it has a
chessboard thrust in front of it, and is asked what moves to play. Initially, the agent has no
conceptual idea of chess, let alone which moves are legal and which are not. Since the agent
receives only a scalar reward for feedback on its performance, the agent also has to learn not
only how to play well, but also the rules of the game that it is playing from experience.

What we do need to decide is how to handle illegal moves. If the game always has a fixed
length (and the agent receives a penalty at the end for playing an illegal move) then it can
take the agent a very long time to learn the difference between an illegal move and playing
poorly. If instead any illegal action triggers an immediate penalty and a game restart, even
a short-sighted agent will quickly learn to avoid illegal moves (or at least avoid playing them
near the start of a game).

The other decision to make is how to penalize an illegal action. Clearly an illegal action
must be at least as bad as a loss (we would not want the agent to escape from an otherwise
doomed position by cheating and playing an illegal move, as humans sometimes do) but is
an illegal action worse than a loss? In games humans play, sometimes the penalty for an
illegal move can be less than a loss11 but the size of the penalty could also depend on the
type of illegal move.12 We would like to ensure that the agent would never desire to take an
illegal action once they have learned what illegal actions are. One solution that can quickly
teach the agent to avoid illegal actions and ensure they would never desire to take them
once learned, is whenever the agent plays an illegal action, return a percept (o,r) where o
was the same observation received last cycle, and r is the lowest possible reward r∈R. For
this interaction only, the environment never receives the illegal action a, and the agent is in
the same position as they were on the previous time step. Essentially, all illegal actions have
no effect on the environment, other than issuing a penalty to the agent for attempting an
illegal action. In this setup, illegal actions are harmless (apart from the minimal reward
received) so the agent is free to explore all actions to see which are illegal, and learn to avoid
them in the future.

Of course, this is only viable if we are aware of the true environment µ that is unknown
to the agent (which is often the case, as we usually specify the environment on which the
agent is tested).

Another approach (only for variable-length episodic environments) is that the environment
replies to any illegal action with a terminal observation oend as well as a minimum reward.
If the game were allowed to continue and the penalty for the illegal move was issued at the

11Often in sports, minor infractions are punished with a score/time penalty rather than an outright loss.
12FIDE (the governing body for professional chess) rules do not specify, but one would imagine the penalty

for punching your opponent in the nose to be far worse than violating the touch-move rule.

12.5. EXPERIMENTS 361

end of the game, it would not be clear to the agent which move along the sequence was
illegal, which would hamper learning the rules of the game.

Without, say, adding additional side information like an observation oillegal that the
agent is aware indicates that the last action is illegal, there’s not a clear distinction to the
agent between actions that are illegal, and actions that are just merely bad for the agent.
This is a closer analogue to real life (where illegal13 actions that an agent could still take
(murder) are harshly penalized by negative reinforcement (prison)) rather than, say, a video
game where the laws of reality make it impossible to take illegal actions to begin with.14

12.5.1 Environments

Note that many of these environments use negative rewards, which is technically forbidden
under our framework. For the moment we ignore this technicality for the sake of readability.
In practice, we can always apply a positive affine transformation to the rewards to ensure
they are always non-negative, without changing the optimal policy (see Exercise 12.8.5).

1D Maze. The 1D Maze environment G is a 1×4 POMDP grid-world introduced
in [CKL94], with one goal state, two actions A={left,right} and a single (uninformative)
observation O={none}. The agent starts in a random non-goal state. Each action moves
the agent one cell in the respective direction, but attempting to move outside the grid has
no effect. Attempting to walk into the goal state teleports the agent to a random non-goal
cell, and issues a reward of 1. All other times the reward is 0. No (useful) observation is
provided, however the environment is so simple that the reward is sufficient feedback for the
agent to learn to act well.

4×4 grid. The 4×4 grid environment is more or less an extension of the 1D maze,
wherein the agent starts in a random cell in a 4×4 grid-world, and there is only one goal:
the bottom left cell (Figure 12.5). The agent can move in the four cardinal directions
A={left,right,up,down}, and the agent receives reward 0 for moving to a non-goal cell (or
for attempting to move off the grid, which has no effect) and 1 for moving to the goal cell.
Once the agent moves into the goal cell, it is transported to a non-goal cell selected uniformly
at random. Lastly, like in the 1D maze, the observation space is trivial (O={none}) as the
point of the environment is for the agent to learn the policy of moving to the bottom left
cell by alternating left and down moves only from using the reward as the feedback.

Cheese Maze. The Cheese Maze is a more complicated grid-world, using a two-dimensional
grid and one goal state. The agent has 4 actions: A=up, down, left, right and 16 observations
O=B4. Each bit in the observation indicates if a wall is directly adjacent to the north, east,
south or west of the agent respectively (Figure 12.6). In the figure, gray cells represent a
wall and G represents the cell with cheese in it (the goal). The binary string in each square
is the observation the agent would receive in that square. Each action moves the agent one
cell in the corresponding direction (unless doing so would walk into a wall, in which case the
agent remains where they are.) There are three rewards: −10 for bumping into a wall, 10
for finding the goal state (cheese), and −1 for moving into a state that is not a wall or a goal
state (to incentivize finding the cheese quickly). The agent starts in a random non-cheese
cell, and whenever it enters the cheese cell, it receives the associated reward, and is then
teleported to another random non-cheese cell. Since the environment has partial aliasing, if
the agent starts in a cell and observes 0101, there is not enough information to determine if

13Here, we mean illegal according to the laws of man, rather than the laws of reality.
14Though some rules in video games (being friendly to other players) are difficult to write the rules to be

impossible to perform, so they too are subject to enforcement via negative reinforcement (banning abusive
players) rather than, automatic enforcement via the laws of reality.

362 CHAPTER 12. MONTE CARLO AIXI WITH CONTEXT TREE WEIGHTING

G

Figure 12.5: 4×4 grid.
An environment where the
agent needs to learn to nav-
igate to the bottom left goal
cell.

0111

G0111

0101

1001 1010 1000

0101

1010 1100

0101

0111

Figure 12.6: Cheese Maze: The bits in each
cell (the observation the agent receives) repre-
sent if a wall is directly adjacent north, west,
south or east respectively. Grey cells are walls;
the cell containing G is the goal cell. Multiple
states can map to the same observation.

the cheese is directly below, or if the agent is in one of the two side corridors, and needs to
move up and then to a side to get to the cheese.

Tiger. In the Tiger environment, the agent is presented with two doors: Behind one is
gold, the other a tiger. The agent has three actions: listen, which tells the agent which door
the tiger is behind (left or right) and is correct with probability 0.85; open door 1 and open
door 2. If the agent opens the door, it receives reward −100 if a tiger is found, and reward of
10 if the gold is found. Taking the listen action gives reward −1 (to disincentivize listening
for too long, though the agent is not forbidden from doing so). Once a door is opened, the
doors are closed and reshuffled.

Extended Tiger. Extended Tiger is the same environment as Tiger, with the following
additions: The agent is either sitting down or standing up, and the environment starts with
the agent sitting down. The agent has two additional actions, stand up and sit down. The
agent can only listen while sitting and only open doors while standing. If the agent takes
any illegal action (attempting to open a door while sitting, trying to stand while already
standing, etc.) they receive a reward of −10. Additionally, the reward for finding the gold is
now 30. The environment resets once any door is opened.

Tic Tac Toe. The Tic Tac Toe environment on the right is the
well-known game of Tic Tac Toe, against an opponent who chooses
their actions randomly. The agent has 9 actions: placing a piece into
one of the nine squares. The observation space is the current state
of the board. If the agent wins the game it receives a reward of 2, if
it draws it receives a reward of 1, if it loses it receives a reward of
−2, and if it makes an illegal move it receives a reward of −3, and
otherwise 0. The reason that illegal moves are punished more than
losing the game is because this encourages the agent to learn what
moves are legal or not, and preference losing the game over playing an
illegal move.

12.5. EXPERIMENTS 363

Biased RPS. Biased RPS is a version of the rock-paper-scissors game where the opponent
has a bias toward certain moves (if they won the last round playing rock, they will choose
rock again, otherwise choose an action uniformly at random). The agent needs to learn this
bias in the opponent and exploit it. If the agent wins, it receives a reward of 1, if it draws a
reward of 0, and if it loses a reward of −1.
Kuhn poker. Kuhn poker is a simplified version of poker developed in [Kuh50]. The
deck contains three cards: King, Queen and Jack, with the standard card ranking of
King>Queen>Jack. The opponent plays first, and the agent plays second. The observations
are the card the agent is holding, as well as the actions the opponent takes. The game
proceeds as follows, with zero reward until a player is declared the winner. Both players
ante (bet) one chip. One betting round is performed: The opponent can raise (bet another
chip) or check (pass). If the opponent raises, the agent can call (match the bet) or fold
(surrender). If the opponent checks, the agent can raise or check (to which the opponent
must then call or fold in response). If the opponent folds, the agent wins the pot (all chips
staked) and receives a reward equal to the pot minus the chips the agent has bet. If the
agent folds, they receive a negative reward equal to the chips staked. If neither player folds,
a showdown occurs, and the highest card wins the pot (with the rewards issued the same as
before) (Figure 12.7). This version of poker is simple enough that a mixed Nash equilibrium
strategy is known for both players, which is the strategy that the opponent is using. The
optimal strategy for the agent is to play the Nash strategy, leading to an average return of
1/18 reward per hand.

Opponent

Agent

Showdown

−1+1

Win Lose

Opponent

+1Showdown

−2+2

Win Lose

ocall ofold

araise acheck

Agent

−1Showdown

−2+2

Win Lose

acall afold

oraise ocheck

Figure 12.7: Kuhn Poker: A decision tree representing the game, a simplistic version of
poker. Showdowns are won by the agent if it has a higher ranked card than the opponent.
Numbers on terminal nodes represent rewards. All other rewards during the game are zero.

POCMAN. The last, and most complicated environment that MC-AIXI-CTW was tested
on was POCMAN [SV10], which is a partially observable version of PACMAN.

This domain is a partially observable version of the classic Pac-Man game. The agent

364 CHAPTER 12. MONTE CARLO AIXI WITH CONTEXT TREE WEIGHTING

Figure 12.8: The POCMAN maze. A more complex partially observable environment,
where the agent has to navigate Pac-Man around the maze. Large dots are power pills, small
dots are food. There are 4 ghosts in the middle, and Pac-Man is below the center.

0

0.2

0.4

0.6

0.8

1

100 1000 10000 100000 1000000

N
o

rm
a
li

s
e
d

 A
v
e
ra

g
e
 R

e
w

a
rd

 p
e
r

C
y
c
le

Experience

Optimal
Cheese Maze
Tiger
4x4 Grid
TicTacToe
Biased RPS
Kuhn Poker
Pacman

Figure 12.9: The average performance of the MC-AIXI-CTW algorithm on the various
environments.

12.6. AIXIJS IMPLEMENTATION 365

must navigate a 17×17 maze (Figure 12.8) and eat the food pellets that are distributed
across the maze. Four ghosts roam the maze. They move initially at random, until there is a
Manhattan distance of 5 or less between them and Pac-Mac, whereupon they will aggressively
pursue Pac-Man for a short duration. The maze structure and game are the same as the
original arcade game, however the Pac-Man agent is hampered by partial observability.
Pac-Man is unaware of the maze structure and only receives a 4-bit observation describing
the wall configuration at its current location (similar to cheese maze). It also does not know
the exact location of the ghosts, receiving only 4-bit observations indicating whether a ghost
is visible (via direct line of sight) in each of the four cardinal directions. In addition, the
location of the food pellets is unknown except for a 3-bit observation that indicates whether
there exists a food pellet within a Manhattan distance of 2, 3 or 4 from Pac-Man’s location15,
and another 4-bit observation indicating whether there exists a food pellet via direct line
of sight. A final single bit indicates whether Pac-Man is under the effects of a power pill
(which allows him to eat the ghosts by colliding with them for the next 100 time steps.) At
the start of each episode, a food pellet is placed down with probability 0.5 at every empty
location on the grid. The agent receives a penalty of 1 for each movement action, a penalty
of 10 for running into a wall, a reward of 10 for each food pellet eaten, a penalty of 50 if he
is killed by a ghost (after which the episode resets), a reward of 30 for eating a ghost while
under the effect of the power-pill and a reward of 100 for collecting all the food. If multiple
such events occur, then the total reward is cumulative, i.e. running into a wall and being
caught would give a penalty of 60. The episode resets if the agent is caught or if it collects
all the food.

12.5.2 Empirical Performance

In each environment, except POCMAN, [VNHS10] tested MC-AIXI-CTW against U-tree16

[UV98] and Active-LZ17 [FMRW10]. MC-AIXI-CTW outperformed both U-Tree and Active-
LZ in these environments. The details of the experiments performed can be found in
[VNHS10], we summarize the performance in Figure 12.9 of MC-AIXI-CTW on the various
environments, with the reward normalized such that an average reward of 1 per cycle
corresponds to that of the optimal policy. On all environments (except POCMAN), MC-
AIXI-CTW eventually learns to play optimally.

12.6 AIXIjs Implementation

We finally introduce AIXIjs [ALH17, Asl17], a toy implementation of various approximations
of AIXI from Chapters 7, 9 and 12 in JavaScript (JS). It is an easy-to-use testbed for various
approximations of AIXI and other universal agents such as Knowledge-Seeking Agents,
BayesExp, and Thompson sampling. There are several environments implemented in AIXIjs,
including various gridworlds and MDPs [Put94]. The testbed of AIXIjs allows experimental
comparison between (approximations of) these powerful agents. For instance, AIXIjs can be
used to help understand wireheading in partial embedded agents [MSZ19], study the effects
of generalized discount functions [LALH17], and investigate how new UAI agents perform
experimentally compared to other UAI agents [CCH19, CHC21].

15One could interpret this observation as Pac-Man “smelling” the food pellets at a distance.
16which attempts to learn a compact representation of the environment based on the history stream

generated by the agent and the environment.
17which uses a prediction scheme based on Lempel-Ziv compression, together with a context tree (different

from CTW) to accumulate statistics of the environment.

http://www.hutter1.net/aixijs/

366 CHAPTER 12. MONTE CARLO AIXI WITH CONTEXT TREE WEIGHTING

Figure 12.10: (left) gridworld in AIXIjs, a testbed for various approximations of universal
agents like AIXI. Darker green indicates higher belief of potential reward. (right) Performance
in terms of intrinsic motivation (Exploration %) of Square, Shannon, and KL Knowledge-
Seeking agents (Cycles≡ t). [ALH17].

Here we compare two choices of model classes, the first is a class of possible reward
dispenser locations on the gridworld, and second is a Dirichlet distribution over grid cells
which the agent can visit. The first uses the base AIXI approximation MC-AIXI-CTW and
the second uses the knowledge-seeking agents. This also serves as a comparison between the
three types of knowledge-seeking agents described in Section 9.3. The comparisons between
the agents are performed on 10×10 gridworlds, which contains a single dispenser. The
reward dispenser gives reward with probability 0.75. For the UCT, we use 600 samples with
a planning horizon of 6. Each agent’s performance is averaged over 50 simulations.

Figure 12.10 (left) depicts AIXIjs’ grid-world. Figure 12.10 (right) shows that the intrinsic
motivation is highly model-dependent, and the information-seeking policy outperforms
entropy-seeking in stochastic environments. Shown are results for the Dirichlet base model
class. The curves for the location-based model class look similar but only reach around 75%.
Among the knowledge-seeking agents, the KL one, described in Section 9.3, outperforms the
other knowledge-seeking agents. Figure 12.11 (left) shows that the performance in terms
of average reward of MC-AIXI(-Dirichlet) is dependent on the model class: model class
based on location in red, and model class based on Dirichlet distribution in blue, ‘Cycles’≡t.
Figure 12.11 (right) shows that MC-AIXI typically outperforms Thompson Sampling. Both
agents are given the same MCTS planning horizon of m=6 and a budget of 600 samples per
action. Here, Thompson sampling is unreliable and lackluster, achieving low mean reward
with high variance. For horizon 10 and a samples budget 100, the gap to AIXI narrows (not
shown) but is still significant. This is interesting as Thompson sampling has been proven
to be asymptotically optimal, while the MC-AIXI-CTW is not. It is likely the additional
exploration of Thompson sampling causes it to not perform as well as the MC-AIXI-CTW.

Many of the agents being approximated in AIXIjs are incomputable, asymptotically
optimal agents, meaning there is no way we will ever be able to program them, and even
if we did, there is no guarantee they would compute good actions in any reasonable time
frame. Although these points may seem negative, they are also the reason that these agents
are interesting. Like AIXI, these agents stand at the very top of intelligence, and it is only
through approximations like those used in AIXIjs that we are able to move down from the
idealized agent to a practical implementation.

12.7. DISCUSSION 367

Figure 12.11: Performance in terms of average reward of MC-AIXI(location) and MC-AIXI-
Dirichlet and Thompson sampling compared to theoretically optimal (Cycles≡ t) [ALH17].

12.7 Discussion

The Monte Carlo AIXI Context-Tree-Weighting (MC-AIXI-CTW) agent represents the initial
attempt to approximate AIXI, showcasing its effectiveness in more complex environments.
By employing the CTW method, ξFAC constructs an efficient Bayesian mixture, yielding a
manageable version of AIXI’s mixture ξ. As discussed in Chapter 5, various extensions of
CTW have been proposed, each enhancing different aspects of the original method. These
improvements can be readily integrated into the MC-AIXI-CTW framework, replacing the
original CTW component, thereby potentially improving the agent’s overall performance.

12.8 Exercises

1. [C07] (ε-greedy bandit) Assume that a bandit problem has a unique optimal action
a∗. Prove that an ε-greedy agent converges to a policy that chooses a∗ with probability
1−ε(1− 1

|A|).

2. [C25] (Other UCB formulas) In UCB, derive the worst-case-regret bound of using
ln2N(h) or 3

√
N(h) or other functions in o(

√
N(h)). How do they compare to the

bound of lnN(h)?

3. [C30] (Consistency of ρUCT) Prove Theorem 12.2.6.

4. [C15c] (BayesExp vs Thompson sampling) Run an experiment comparing the
performance of BayesExp and Thompson sampling agents in gridworlds on the AIXIjs
website.

5. [C12] (Affine reward transformations) Prove that we can always apply a positive
affine transformation to the rewards to ensure they are always non-negative, without
changing the optimal policy. See also Exercise 15.5.

6. [C25c] (Implement MC-AIXI-CTW) Implement ρ-UCT together with FAC-CTW
to replicate MC-AIXI-CTW, and graph the performance against each environment
(Figure 12.9). A reference implementation can be found at http://www.hutter1.net/
publ/aixictwxcode.zip.

7. [C25] (Leaf parallelization) Investigate why leaf parallelization performs poorly
compared to other methods for parallelizing MCTS (Section 12.2.6).

http://www.hutter1.net/publ/aixictwxcode.zip
http://www.hutter1.net/publ/aixictwxcode.zip

368 CHAPTER 12. MONTE CARLO AIXI WITH CONTEXT TREE WEIGHTING

8. [C28c] (MC-AIXI based on CTW extensions) Investigate the extensions of
CTW (Chapter 5) and use them in place of CTW to define ξFAC . Does this improve
the MC-AIXI-CTW model?

9. [C20] (Transfer learning) Train MC-AIXI-CTW on a simple environment (e.g. 1d
Maze or Tiger) and then continue on another simple environment. Does MC-AIXI-
CTW perform better or worse on the second domain? Repeat with different pairs of
environments.

10. [C18] (Constant in UCT) For the UCT action selection, test alternative choices of
the constant C. Show that if C is too large or small, UCT will fail.

11. [C20c] (Learned rollout policy) Use the CTW algorithm to learn a fast approxi-
mation of the policy and use it for the rollout in ρUCT. What is gained/lost by using
this in place of a random policy?

12. [C32] (FAC-CTW value error) Prove Theorem 12.4.1.

13. [C25] (FAC-CTW with P-context trees) Generalize FAC-CTW to P-context
trees defined in Section 9 of [VNH+11].

12.9 History and References

This chapter is primarily based on [VNH+11], where the Context Tree Weighting (CTW)
method for learning and the UCT algorithm for planning are first combined. In [GBVB13],
an agent was constructed for Atari 2600 games by recursively factoring the large observation
space, with the goal to subdivide it into smaller, more manageable sub-problems. A Bayesian
average is then taken over the result. This recursive factorization works similarly to the CTW
algorithm. In [VSH12], a survey of possible ways to extend the CTW algorithm is given,
particularly for the active learning case. One of the novel aspects of the MC-AIXI-CTW
algorithm is that it already uses an extension of CTW, Factored-Action-Conditional CTW
(FAC-CTW), also introduced in [VNHS10]. The AIXIjs testbed has been developed in
[Asl17, ALH17]. It comes with various approximations of AIXI discussed in this book and
various toy environments implemented.

AIXI approximations. There have been several attempts at studying the computational
properties of AIXI. A similar version of AIXI that uses the best policy (as measured by
a provable lower bound on the value function) bounded in space l and time t results in
the optimal time-bounded AIXItl agent [Hut05b, Chp.7] discussed in Section 13.2. The
construction is based on the provably fastest algorithm for all well-defined problems [Hut01b,
Hut02b]. Like Levin Search [Lev73b], which solves any inversion problem optimally within
multiplicative overhead, such algorithms are not practical in general but can in some cases
be applied successfully [Sch97b, SZW97, Sch03, Sch04]. Self-AIXI [CGMH+23], discussed in
Section 9.5, is a modification of AIXI that avoids planning by self-predicting its own actions,
and its practical instantiation Self-AIXI-CTW avoids expensive MCTS in MC-AIXI-CTW.
In domains with very small action/percept spaces and restrictive assumptions about the
model class the environment is contained in, universal learning is computationally feasible via
brute-force search [PH06b] (see Chapter 11). The behavior of AIXI-MDP is compared with
a universal predicting-with-expert-advice algorithm [PH05b] in repeated 2 × 2 matrix games
and is shown to exhibit different behavior. In [Pan08], a Monte Carlo algorithm is used to
sample from a time-bounded version of the universal Solomonoff prior. A closely related

12.9. HISTORY AND REFERENCES 369

algorithm is that of sampling from a speed prior [Sch02b, FLH16], a universal semimeasure
similar to the Solomonoff prior that considers not only the size of the program, but also the
number of time steps it takes to compute a result.

One of the shortcomings of MC-AIXI-CTW is that the agent does not consider environ-
ments which use information beyond the length-k context. This was (partially) overcome
in the extended agent Φ-AIXI-CTW [YWN22], which abstracted the complete history as
in Chapter 14 and then used CTW on the abstracted history, enabling environment model
classes that can have arbitrary dependence on the history. Another problem in practice is
that starting from a large model class is computationally expensive. DynamicHedgeAIXI
[YZNH24] allows to dynamically add (and subtract) models via a time-adaptive prior
constructed from a variant of the Hedge algorithm. It is the latest and richest direct
approximation of AIXI at the time of writing and comes with good theoretical and practical
performance guarantees.

An alternative approach to approximating Bayes-optimal agents like AIXI was developed
in [MDM+20], where it was shown that meta-training can be used to approximate Bayes-
optimality.

Bandit problems. Bandit problems (MDPs with only a single state) are still complex
enough to demonstrate trade-offs between exploitation and exploration [BF85, Git89, BK97,
ACBF02] and are covered in great depth in [LS20a, Lat24]. While methods like UCB and
Thompson sampling have been shown to perform well on a wide variety of problems, [LS17]
showed that there exist simple bandit problems for which neither UCB nor Thompson
sampling based methods are asymptotically optimal.

Upper Confidence Bounds and Monte Carlo Tree Search. The Upper Confidence
Bound (UCB) algorithm was first introduced in [ACBF02]. It has been extended to contextual
bandits [LS20a, Part V] with linear, non-linear, and gated linear function approximation
[SHB+20]. Extending UCB from bandits to MDPs (UCT) was done in [KS06]. UCB has had
many successful practical uses, including the game Go [GS07], as well as learning to play new
games from a provided description of the game rules [FB08]. UCB learns a value function
online, and in [GS07] it was modified to be able to combine statistics with offline learning
via the TD(λ) algorithm. Monte Carlo Tree Search (MCTS) is one of a family of various
Monte Carlo statistical methods. For more details on Monte Carlo methods, we recommend
[RC04] which covers techniques such as Metropolis-Hastings and Gibbs sampling, or [Ken16],
which covers pseudo-random generation, importance sampling, Markov Chain Monte Carlo
(MCMC) and methods for variance reduction. There has been various work on improving the
other aspects of Monte Carlo tree search (MCTS) [Cou06] beyond use of UCB to guide the
tree policy. Many existing Monte Carlo methods are given in [CWH+08]. Different methods
of parallelizing MCTS are explored in [CWVDH08]. Improvements to the rollout stage of
MCTS include using a 1-ply rollout-based planning technique for noisy stochastic domains
[BC99], using knowledge-based rollout policies in Go [GWMT06], and learning the rollout
policy for adversarial games [ST09]. MCTS was used to adjust a heuristic for game tree
search in chess to better represent the value of a board state after a deep search [VSBU09].
For large partially observable domains, the POMCP algorithm was defined by combining
the agent’s belief state, together with MCTS from the state the agent believes itself to be in
[SV10]. A particular MCTS algorithm, Forward Search Sparse Sampling (FSSS), has been
shown to eventually act near Bayes-optimal [AL12]. A survey on MCTS methods can be
found in [BPW+12].

Utile Suffix Memory (USM) and U-Tree algorithms. An early and influential work
is the Utile Suffix Memory (USM) algorithm [McC96]. USM uses a suffix tree to partition
the agent’s history space into distinct states, one for each leaf in the suffix tree. Associated

370 CHAPTER 12. MONTE CARLO AIXI WITH CONTEXT TREE WEIGHTING

with each state/leaf is a Q-value, which is updated incrementally from experience much
like Q-learning [WD92]. The history-partitioning suffix tree is grown in an incremental
fashion, starting from a single leaf node in the beginning. A leaf in the suffix tree is split
when the history sequences that fall into the leaf are shown to exhibit statistically different
Q-values. The USM algorithm works well for a number of tasks but does not deal effectively
with noisy environments. Several extensions of USM to deal with noisy environments are
investigated in [SB04, Sha07]. U-Tree [McC96] is an online agent algorithm that attempts
to discover a compact state representation from a raw stream of experience. The main
difference between U-Tree and USM is that U-Tree can discriminate between individual
components within an observation. This allows U-Tree to more effectively handle larger
observation spaces and ignore potentially irrelevant components of the observation vector.
Each state is represented as the leaf of a suffix tree that maps history sequences to states. As
more experience is gathered, the state representation is refined according to a heuristic built
around the Kolmogorov-Smirnov test [BZ14]. This heuristic tries to limit the growth of the
suffix tree to nodes that would allow for better prediction of future reward. Value iteration
is used at each time step to update the value function for the learned state representation,
which is then used by the agent for action selection.

Universal RL. Active-LZ [FMRW10] combines a Lempel-Ziv-based (a commonly used
data compressor described in [ZL77]) prediction scheme with dynamic programming for con-
trol to produce an agent that is provably asymptotically optimal in k-Markov environments.
The algorithm builds a context tree (distinct from the CTW context tree) with each node
containing accumulated transition statistics and a value function estimate (much like the
MCTS tree that MC-AIXI-CTW uses). These estimates are refined over time, allowing
for the Active-LZ agent to steadily increase its performance. The MC-AIXI-CTW agent
compares favorably to Active-LZ [VNH+11, Sec.7]. [CLR+21] propose a method to view RL
as a sequence modelling problem, which deep learning models like transformers [VSP+17]
excel at.

Bayesian approach to Learning History Trees (BLHT). The Bayesian approach
to Learning History Trees (BLHT) algorithm [SHL97, SH99] uses symbol-level PSTs for
learning and a dynamic programming-based algorithm for control. BLHT uses the MAP18

model for prediction (as opposed to CTW, which uses a Bayesian mixture), which admits
a much stronger convergence result. A further distinction is that the prior used by CTW
assigns weights to models depending on their complexity in accordance with Occam’s razor,
instead of a uniform prior over PST models used by BLHT.

Predictive State Representations (PSRs). Predictive state representations (PSRs)
[LSS01, RGT04, SJR04] maintain predictions of future experience. A PSR is a collection of
predictions, encoded as a vector of probabilities, for the outcomes of various tests, which
are predicates about future observations from the environment given particular actions are
chosen. If the outcomes of every possible test were already known, this would imply the
dynamics of the environment are also known. A PSR is a subset of these predictions sufficient
to determine the outcome of all other tests, and hence the dynamics of the environment.
Unfortunately, exact representations of state are impractical in large domains and some
form of approximation is typically required.

Other Model-Based Reinforcement Learning (MBRL) algorithms. Topics such as
improved learning or discovery algorithms for PSRs are currently active areas of research. The
recent results of [BSG11] appear particularly promising by extending PSRs using kernels in

18maximum a posteriori

12.9. HISTORY AND REFERENCES 371

such a way that continuous, high-dimensional observation spaces can be handled. Temporal-
difference networks [ST04] are a form of PSR in which the agent’s state is approximated
by abstract predictions: predictions about future observations, but also predictions about
future predictions. This set of interconnected predictions is known as the question network.
Temporal-difference networks learn an approximate model of the world’s dynamics: given the
current predictions, the agent’s action, and an observation vector, they provide predictions
for the next time step. The parameters of the model, known as the answer network, are
updated after each time step by temporal-difference learning. Some results of applying
TD-Networks for prediction (but not control) to small POMDPs are given in [Mak09]. In
model-based Bayesian RL [Str00, PVHR06, RCdP07, PV08], a distribution over (PO)MDP
parameters, is maintained. In contrast, we maintain an exact Bayesian mixture of PSTs,
representing variable-order Markov models. The ρUCT algorithm shares similarities with
Bayesian Sparse Sampling [WLBS05]. The main differences are estimating the leaf node
values with a rollout function and using the UCB policy to direct the search.

Environments. Two approaches have been compared against MC-AIXI-CTW, U-tree
[McC96] and Active-LZ [FMRW10]. This comparison was done over several domains includ-
ing Cheese Maze [McC96], Biased rock paper scissors [FMRW10], 1d-maze [CKL94], Tiger
[KLC98], Kuhn poker [Kuh50, HSHB05], Extended Tiger [CKL94], 4×4 grid [CKL94], and
POCMAN [SV10]. MC-AIXI-CTW outperforms both U-tree and Active-LZ on all previously
mentioned environments. MC-AIXI-CTW was also adapted for use in a practical setting for
wildfire management [ONBM14].

Compress and Control. Compression and prediction are share a strong connection. An
exceptional sequence predictor, when combined with arithmetic coding (Section 2.5.6), can
produce an effective compressor for that sequence. Conversely, compression algorithms can
be readily applied to sequence prediction tasks [Hut20a].

In the AIXI model, prediction is used to estimate future observations and rewards one
step at a time. However, in the general reinforcement learning problem, our focus lies
on future observations only insofar as they contribute to maximizing the expected future
reward. A reasonable approach would be to predict the future sum of rewards (called returns,
denoted z) directly, instead of predicting observations and rewards at each time step. This
would involve estimating the distribution of future returns denoted as ρ(z|s,a), given the
current state s and action a. The Q-value Qπ

µ(s,a)=
∑

zzρ(z|s,a) is the expected return.
The challenge with this approach is that the distribution of returns can be highly complex

and difficult to estimate directly, as seen in Distributional RL [BDM17, BDR23, WDA+24].
Compress and Control (CnC) [VBH+15, DRW+24] offers a solution by decomposing the
distribution of the return into more manageable components. After employing compression-
based prediction to learn these components, they can be combined to obtain an estimate of
the distribution of the return.

CnC is a compression-based method for policy evaluation and on-policy control in RL.
This means that CnC can assess the quality of a given policy (evaluation) and also determine
an effective policy (control). The key result of CnC is that, under reasonable conditions
on the policy and environment, the proposed decomposition of the Q-value function is
well-founded and its approximation converges to the true Q-value.

The decomposition employed in CnC exploits the factorization ρ(z|s,a) ×=ρ(s|z,a)ρ(z|a).
Any estimator can be used for ρ(s|z,a) and ρ(z|a), but it has been shown that using Context
Tree Weighting (CTW) leads to consistent estimation [VBH+15]. By converting the RL
problem into a prediction/compression problem, Compress and Control demonstrates that
improved compression results in stronger performance. Alternatively one may use Large
Language Models for compression [DRW+24].

372 CHAPTER 12. MONTE CARLO AIXI WITH CONTEXT TREE WEIGHTING

Quantum AIXI. Quantum Computing offers computational speedups for many problems
such as finding the prime factor of a given natural number and inverting a matrix. A
natural question in the context of this book is whether quantum computing can speed up
approximations of UAI agents such as AIXI? This question was first tackled in [CH20a]
where approximations of Solomonoff induction and AIXI using quantum computing were
derived. While these speedups did offer some improvement over the classical computation it
was not on the order of the exponential speedup which quantum computing achieves in some
other problems. Instead of using quantum computing to speed up the computation of the
policy, another way quantum computing can be used in the UAI setup is in the definition
of the model class of the environment. For the majority of this book we consider the class
of all (semi)computable (semi)measures (the set of probabilistic programs). However, an
alternative class is to choose something like the set of quantum programs, changing our
assumption that the environment is computable to an assumption that the environment is
quantum computable, though if the Quantum complexity-theoretic Church–Turing thesis
(Section 16.6.1) holds these are equivalent. [Sar21, SAGB21] considered this model class
and defined a version of the Knowledge-Seeking agent (Section 9.3) over this model class.

Related approximations. There are many algorithms which, while not being direct
approximations of the AIXI agent, embody the spirit of UAI and attempt to solve the
UAI problem. These include the policy evaluation technique of Compress and Control
[VBH+15] described above, extending the RL algorithm of Q-learning to the history-based
setting of UAI [DSH13], naturally extending the UAI model with Representational MDL
[PR12], Feature Reinforcement Learning (Chapter 14) and (Kolmogorov) complexity-guided
policy search which tries to find policies which produce action sequences of low Kolmogorov
complexity [SJ21].

AI search. MCTS [KS06] is an instance of AI search [RN10, Part II]. Search has a long
tradition in AI, such as (iterative deepening) A∗ [HNR68, Kor85], breadth-first search [Zus72]
and depth-first search [Tre76] (see [EH15a, EH15b] for a comparison), (Rerooting) Levin
(tree) search [OHL23, OHL24], and many variants and improvements.

Chapter 13

Computational Aspects

Computing is not about computers any more.
It is about living.

Nicholas Negroponte, 2009

13.1 Computability of AIXI . 373
13.2 Time- and Space-Bounded AIXI . 377
13.3 Exercises . 381
13.4 History and References . 381

The two previous chapters covered efficiently computable approximations of AIXI.
Clearly AIXI is incomputable, but where in the computability hierarchy (Section 2.6.3)
does it sit? In Section 13.1 we will determine the level of computability the AIXI agent
and some of its extensions from Chapter 9 satisfy. Section 13.2 introduces AIXItl, a
theoretically optimal computable approximation of AIXI that runs in time O(t).

13.1 Computability of AIXI

Up until this point we have discussed the theoretical properties of AIXI and variations, and
developed some computable some approximations such as the AIXI-MDP and MC-AIXI-
CTW agents. In this section we determine the exact level of (in)computability of AIXI and
its variants exactly. The reader is advised to refer back to Section 2.6 for the notions of
computability and arithmetic hierarchy used here.

As for upper bounds, we show that optimal value functions and optimal policies and
ε-optimal policies of AIXI and variations are in ∆0

n for n=2 or 3. As for lower bounds, none
of the agents even the weakest one is computable, hence none is in ∆0

1.

373

374 CHAPTER 13. COMPUTATIONAL ASPECTS

Before we get to the computability of optimal policies, we first need to discuss value
functions and their level of computability (Section 2.6). We focus on the class of lower
semicomputable environmentsMsol. While we could derive results for larger (or smaller)
classes of environments, we are primarily interested in the level of computability of AIXI
(and its variants).

Theorem 13.1.1 (Computability of V ∗
ν and Q∗

ν) Let semimeasure ν, the discount
normalizer Γk, and the finite reward set R⊂ [0,1], all be ∆0

n-computable. Then the
(recursive) optimal (Q-)value functions V ∗

ν (h<t) and Q
∗
ν(h<t,at) are ∆0

n-computable.

Remark 13.1.2 (Original V,Q for semimeasures can be more complex) If we assume
ν to be a measure, then there is no difference between the recursive formulation Theorem 6.7.2
and the original Definition 6.6.1 and Definition 6.7.1. But if ν is a semimeasure, then the
definitions differ, and we explicitly have to take the limit m→∞ in the original definition,
which pushes V ∗

ν (h<t) up to ∆0
n+1. For finite- or moving horizon (Definition 6.4.2), we have

V ∈∆0
n in any case, since no m→∞ limit has to be taken. �

Proof sketch. (i) From Theorem 6.7.2, we see that V ∗,m
ν (h<t) is a finite-depthm−t recursion

of continuous combinations (sum, max, product, ratio) of finitely many terms, and each
term is assumed to be ∆0

n, hence V
∗,m
ν (h<t)∈∆0

n by Theorem 2.6.21.
(ii) Recall that a real-valued function is said to be computable (also called estimable), if
there exists an algorithm that takes the function’s input and any ε>0 and finitely computes
the function to ε-accuracy. Let us assume ν,Γ,R∈∆0

1 i.e. are estimable in this sense. From
Lemma 6.7.6 we have

0 ≤ V ∗
ν (h<t)−V ∗,m

ν (h<t) ≤ Γm+1/Γt

From Definition 6.4.1 we know that Γm→0 for m→0. For m= t,t+1,... we can estimate
Γm+1/Γt as δ̃m to accuracy ε/4 until we find an m for which δ̃m < ε/2, For this m we
estimate V ∗,m

ν (h<t) to accuracy ε/4. Alltogether this implies we have estimated V ∗
ν (h<t) to

accuracy ε.
(iii) If f(z1,z2,...) is computable (estimable) and gi(xi) are ∆0

n computable, then
f(g1(x1),g2(x2),...) is ∆

0
n computable. This allows us to lift the proof in (ii): If ν,Γ,R∈∆0

n,
then V ∗

ν (h<t)∈∆0
n.

(iv) The same argument holds for Q∗
ν which is just V ∗

ν with the left-most maxat
removed.

�

Theorem 13.1.3 (Lower semicomputability of V ∗
ν and Q∗

ν)
(i) If ν(ek|···),γk,R∈Σ0

n, then recursive ΓtV
∗
ν (h<t)∈Σ0

n.
(ii) If ν(···),γk,R∈Σ0

n, then recursive ν(e<t||a<t)ΓtV
∗
ν (h<t)∈Σ0

n.

Proof. We use that if f(z1,z2,...) is lower semicomputable (Σ0
1) and monotone increasing

in all arguments, and gi(xi) are Σ0
n computable functions, then f(g1(x1),g2(x2),...) is Σ

0
n

computable.
(i) Inserting (6.7.3) for π=π∗,m

ν into (6.7.5) and multiplying by Γt gives

ΓtV
∗,m
ν (h<t) = max

at

∑
et

ν(et|h<tat)
[
γtrt+Γt+1V

∗,m
ν,γ (h1:t)

]
which is Σ0

n, since all components are assumed to be Σ0
n, non-negative, combined in a

monotone increasing way (max,Σ,×,+), and the recursion is finite. Since V ∗,m
ν is monotone

13.1. COMPUTABILITY OF AIXI 375

increasing in m, also ΓtV
∗,∞
ν (h<t)∈Σ0

n.
(ii) If we multiply the above equation further by ν(e<t||a<t), we get

Ṽ ∗
ν (h<t) := ν(e<t||a<t)ΓtV

∗
ν (h<t) = max

at

∑
et

[
ν(e1:t||a1:t)γtrt+Ṽ ∗

ν,γ(h1:t)
]

which is Σ0
n by the same argument. �

These results are especially interesting for Solomonoff’s distribution ξU =M, which
is in the class Msol (Definition 3.7.1), i.e. ξ ∈Σ0

1 ⊂∆0
2. Now that we know the level of

computability of the value function, we need to relate the computability of a value function
to the computability of an optimal policy.

Theorem 13.1.4 (Computability of optimal policies) For any environment ν,
if V ∗

ν is ∆0
n-computable, then there is an optimal (deterministic) policy π∗

ν for the
environment ν that is ∆0

n+1-computable.

Proof from [LH18, Thm.17]. To break ties between actions, we choose a total order ≻ on
the action space A that specifies which action should be chosen in a tie. Then we define

πν(h<t) :=a ⇐⇒
∧

a′:a′≻a

Q∗
ν(h<t,a)>Q

∗
ν(h<t,a

′)

∧
∧

a′:a≻a′

Q∗
ν(h<t,a)≥Q∗

ν(h<t,a
′)

Then πν is ν-optimal. Since V ∗
ν is ∆0

n-computable, we have that Q∗
ν(h<t,a)>Q

∗
ν(h<t,a

′) is
Σ0

n and Q∗
ν(h<t,a)≥Q∗

ν(h<t,a
′) is Π0

n. Therefore πν , which is the conjunction of something
which is Σ0

n and something which is Π0
n, is itself ∆

0
n+1. �

This shows that if we are not careful, we quickly move up the arithmetic hierarchy:
Solomonoff M ∈∆0

2, which brings the iterative value from Definition 6.6.1 to ∆0
3 due to the

m→∞ limit, resulting in π∗
M ∈∆0

4 for infinite-horizon AIXI.
On the other hand, the above theorem is only stating that there is an optimal policy

which is ∆0
n+1; it may be the case that this or other optimal policies actually have lower

level of computability than ∆0
n+1. Trying to determine whether two actions have the exact

same value seems like a waste of resources. Usually it is fine taking slightly suboptimal
actions. In the following, we consider policies that attain a value which is guaranteed to be
within some ε>0 of the optimal value. Indeed, ε-optimal policies (Definition 8.1.2) require
one less level of computability.

Theorem 13.1.5 (Computablity of ε-optimal policies) For any environment ν, if
V ∗
ν is ∆0

n-computable, then for all ε>0 there is an ε-optimal (deterministic) policy πε
ν

for the environment ν that is ∆0
n.

Proof from [LH18, Thm.20]. Let ε>0 be given. Since V ∗
ν is ∆0

n-computable we can construct
a set Qε :={(h,a,q)∈H×A×Q| |q−Q∗

ν(h,a)|<ε/2} that is itself ∆0
n. Let ≻ be an arbitrary

total order on the actions A that specifies which action we should pick in the case of a tie.
Without loss of generality assume ε=1/k and define the set Q to be an ε/2-grid of [0,1], i.e.
Q={0,1/2k,2/2k,...,1}. Then we can define the policy

πε
ν(h<t) :=a ⇐⇒ ∃(qa′)a′∈A∈Q|A|.

∧
a′∈A

(h,a′,q)∈Qε ∧
∧

a′:a′≻a

qa>qa′ ∧
∧

a′:a≻a′

qa≥qa′

∧ the tuple is minimal with respect to lexicographical ordering on Q|A|

376 CHAPTER 13. COMPUTATIONAL ASPECTS

Therefore the choice of action a is unique, and since A is finite, Q|A| is also finite, and
therefore πε

ν is ∆0
n. �

As a consequence of Theorems 13.1.4 and 13.1.5, we get the level of computability of
ε-optimal AIXI.

Corollary 13.1.6 (Computability of AIXI) πε
M ∈∆0

2 and π∗
M ∈∆0

3. In words:
There is an ε-optimal policy for AIXI that is approximable (∆0

2).
There is an optimal AIXI policy that is ∆0

3.

We have the following corresponding lower bound of computability for AIXI.

Theorem 13.1.7 (No AIXI is computable) (Deterministic) AIXI is incomputable.
i.e. π∗

ξ /∈∆0
1.

Proof from . We will prove this by contradiction. Assume that π∗
ξ is computable. Since π∗

ξ

is deterministic and computable we can construct an environment µ that gives the agent
reward 0 if it took the action π∗

ξ would take and reward 1 if it diverted from the action π∗
ξ

would take. Ignoring observations we can formally write the environment as

µ(rt|h<tat) :=

1 if ∀k≤ t, ak=π∗

ξ (h<k) and rk=0

1 if ∀k≤ t, rk=Jk≥ iK where i :=min{j|aj ̸=π∗
ξ (h<j)}

0 otherwise

This implies that V
π∗
ξ

µ (h<t)=0 for all h<t. We also have that µ satisfies the conditions of
Theorem 7.4.10, therefore V ∗

ξ (h<t) ̸→0 on h<t generated by µ and π∗
ξ . However, this leads

to a contradiction with Theorem 7.3.1 which says

V ∗
ξ (h<t)−V

π∗
ξ

µ (h<t) → 0 for t→∞ µπ∗
ξ -almost surely �

Theorem 13.1.8 (ε-AIXI is not computable) ε-AIXI /∈∆0
1.

Proof. See [LH18, Thm.25] �

While it is obviously not ideal that the “most intelligent” general agent is not computable,
this is hardly surprising. This is a consequence of the choice of what we mean by ‘general’,
the (infinite) class of all semicomputable semimeasures. Choosing smaller classesM in AIξ
led to computable in MDP-AIXI and MC-AIXI-CTW. However, the primary point of AIXI
is not that we expected to be able to run it on our computer, but that it can serve as an
ideal in terms of super-intelligent agents. AIXI is the gold standard of the best possible
agent we could ever hope to achieve, not the best possible agent practically achievable. The
same holds for ε-optimal policies as ε goes to 0.

Computability of extensions of AIXI. Agents similar to AIXI, such as knowledge-
seeking (Definition 9.3.2) and BayesExp (Algorithm 9.4) have similar computability levels.

Theorem 13.1.9 (Computability of knowledge-seeking policies) For entropy-
seeking and information-seeking agents, there are approximable (∆0

2) ε-optimal policies
and ∆0

3-computable optimal policies.

13.2. TIME- AND SPACE-BOUNDED AIXI 377

Proof. This essentially follows from Theorems 13.1.4 and 13.1.5 and letting the environment
be the knowledge-seeking environment. �

Theorem 13.1.10 (BayesExp is ∆0
3) For any universal mixture ξ, BayesExp is ∆0

3.

Although being ∆0
3 is far from the realm of being realistically computable, the ε-optimal

policies being approximable (∆0
2) show that at least we have limit-computable algorithms

for reasonably optimal agents [LH18, Thm.39].

13.2 Time- and Space-Bounded AIXI

Potential approaches to approximate AIXI. Knowing that AIXI is not computable, we
want to know, what is the closest we can get to AIXI while still being (finitely) computable?

Earlier we discussed approximation algorithms such as MDP-AIXI and MC-AIXI-CTW,
which are similar to AIXI but computable (ξMDP or ξCTW replacing ξU , and MCTS replacing
expectimax in the latter case). The downsides of these and similar approaches are two-fold:
(i) The class of environments M is a-priori restricted and immutable, even if evidence
suggests the true environment is outsideM or if spare compute is available to compute ξ
over a larger class. (ii) There are problems, where jointly solving the learning and planning
problem, is significantly more efficient than approximating ξ and expectimax separately. For
instance, certain Bayesian bandit problem have closed-form solutions.

Ideally would be an anytime algorithm which approaches AIXI in the limit of unlimited
compute, and is best-in-class. This is where AIXItl [Hut05b] comes in. AIXItl is essentially
trying to find the program which, when run, leads to an agent which is closest to AIXI, only
considering programs which halt in time t and are of length at most l.

Some versions of AIXI are limit-computable (Corollary 13.1.6), so can be converted into
an anytime algorithm. The more compute one spends (at some time step) to approximate
the value function, the more accurate it is, with convergence in the limit to the exact value
Q∗

ξ(h<k,ak) and εk→0-optimal action.1 Unfortunately this is totally impractical. Indeed,
this algorithm converges slower than any computable function.

Another approach could be to consider the (finite) class of all time&length-bounded
policies Πtl, and determine the best-in-class policy a-priori once-and-for-all,

πtl
ξ := argmax

π∈Πtl

V π
ξ (ϵ)

and then use it during the agent’s complete lifetime. There are two problems (i) We cannot
compute πtl

ξ , since V
π
ξ (ε) is incomputable. Indeed, finding πtl

ξ is solving the AGI problem
in practice. (ii) Fixing a single time-bounded policy that a-priori can deal well with all
eventualities life will throw at the agent may be wasteful. Finding more specialized policies
the more the agent knows, seems more promising (e.g. a chess engine). Note also that
time-consistency does no longer hold (πtl

ξ,k ̸=πtl
ξ,1, Remark 6.6.2).

AIXItl addresses both problems. There are some direct policy search algorithms in RL that
do not maintain a value function [Wil92, KHS01a] but these are rather the exception. It
seems not too much of a stretch when considering Bayes-optimal agents π∗

ξ , to assume that
the value function needs to be approximated well. To find the best approximation we will
consider an extended form of a policy that outputs both an action and an approximation of

1In this section we use k as time index to not confuse it with compute-time budget t.

378 CHAPTER 13. COMPUTATIONAL ASPECTS

its current value function. We will denote extended (deterministic) policies by π̇ :H→A×[0,1].
At time step k we denote the action taken by π̇ to be aπ̇k = π̇(h<k)a and the approximation
of the value function of π̇ (the second component) by vπ̇k = π̇(h<k)v.

When discussing (extended) policies here we will be referring to the length and time of
an extended policy, denoted by ℓ(π̇) and t(π̇). What we mean by this is the length and time
of the program which computes π̇ (on any given history), that is, the length of the program
p such that U(ph<t)= π̇(h<t) for some universal Turing machine U and the time it takes
U(ph<t) to halt. We only consider extended policies which have programs that halt in time
t and have length at most l.

Although an extended policy may perform “good” actions, we would like to categorize
the class of policies that have “valid” approximations about the value function. We say an
extended policy is a valid approximation if it never overrates itself in terms of the value
function approximation. Formally, this is stated as follows: To check whether or not a policy
is correct, AIXItl uses a method of policy evaluation, called a valid approximation.

Definition 13.2.1 (Valid Approximation) The logical predicate VA(π̇) (Valid
Approximation) is true if and only if π̇ always satisfies vπ̇≤V π̇

ξ , i.e.

VA(π̇) ⇐⇒ [∀k∀h<k∈H : π̇(h<k)v≤V π̇
ξ (h<k)]

We only consider extended policies that underrate themselves and not extended policies
which only overrate themselves, or have an ε-approximate rating of themselves. There
are two reasons for that (i) We want to select policies with high value, but if we allow
overconfidence, we will select overrated policies whose actual value is much lower. (ii)
together with a lower semicomputable choice of V π

ξ , this will ensure that AIXItl converges
in some sense to AIXI in the limit of t,l→∞ (see proof of Theorem 13.2.4).

Assuming an extended policy π̇ is a valid approximation, we are interested in the “best”
π̇ (that we can compute with time t and length l). For this we need an order relation on
policies based on their claimed value.

Definition 13.2.2 (Effective intelligence order relation) We call valid π̇ effectively
more or equally intelligent than valid π̇′ if

π̇′⪯c π̇ :⇐⇒ [∀k∀h<k∈H : π̇(h<k)v≤ π̇′(h<k)v]

The effective intelligence order relation is like a self-belief version of the total but
incomputable intelligence order induced by Legg–Hutter intelligence measure Υ(π) (Defini-
tion 16.7.1) in the sense that it is about how Legg–Hutter intelligent the extended policy
thinks it is.

The effective intelligence order relation is an upper semicomputable partial order relation
on extended policies. This means that over the space of extended policies the effective
intelligence order relation satisfies reflexivity, antisymmetry, and transitivity, and that the
level of computability of it as a function is upper semicomputable. If no resource restrictions
were placed on π̇, it would still have a global maximum π̇⪯c π̇

∗
ξ :=(π∗

ξ ,V
∗
ξ) for all valid π̇.

Together with the definition of a valid approximation, we can use the effective intelligence
order relation to distinguish only policies which never overrate themselves, but also believe
they are good or better or optimal in the class of policies which never overrate themselves.
This is the core part of the AIXItl algorithm.

13.2. TIME- AND SPACE-BOUNDED AIXI 379

The AIXItl algorithm. We will now describe how AIXItl works. As inputs, AIXItl takes
a max time t̃, a max length l̃, as well as another length lP which is used for the maximum
length of proofs.

Before AIXItl starts its interaction cycles with the environment, it has to do some setup.
We start with checking through all b∈BlP in some order, whether b constitutes a proof that
some π̇ of length at most l̃ is a valid extended policy. Here when we say proof we mean
to interpret the binary string b as a proof in the same formal axiomatic system that valid
approximation VA() is also defined in (chosen in the definition of valid approximation).

The pairs of proofs b and policies π̇, (b,π̇) are recorded, then ΠVA is the set of all such π̇
that are recorded. This process takes O(l2P 2

l
P) time (checking 2lP proofs, each in time O(l2P),

importantly this time is unrelated to t̃). This justification requires significant compute,
but only at setup time, and some form of justification in a voting-style algorithm seems
unavoidable.

We then modify all π̇∈ΠVA such that in each cycle k, if π̇ does not halt within time t̃,
then it should output (a,0) for an arbitrary a, thus ensuring each extended policy π̇∈ΠVA

runs in time at most t̃ and is valid.

Now that we have finished with the initial setup, we can go over what AIXItl does
during the interactions with the environment: During the kth cycle, each π̇∈ΠVA is run
on the interaction history h<k up to this point, then each π̇ will output an action aπ̇k and
value estimate vπ̇k . AIXItl then takes the action corresponding to the highest estimate vπ̇k ,
and receives the percept ek from the environment. Describing this procedurally we get
Algorithm 13.1:

Algorithm 13.1 AIXItl [Hut05b]

Require: Max time t̃, max program length l̃, max proof length lP
Input: Percept stream e1,e2,e3,...
Output: (t̃,l̃,lP)-optimal action stream a1,a2,a3,...

1: Interpret all b∈BlP as proofs of VA(π̇) for some π̇
2: Let ΠVA be the set of those π̇’s such that ℓ(π̇)≤ l̃ and VA(π̇) has been proven
3: Modify each π̇ such that in each cycle k if π̇ does not output a (ak,v

π̇
k) in time t̃ then

make π̇ output (a,0) at that time
4: Update ΠVA to be the set of these new π̇’s
5: Set k :=1
6: for k=1,2,3,... do
7: for π̇∈ΠVA do Run π̇ on h<k and receive π̇(h<k)=(aπ̇k ,v

π̇
k)

8: Choose the π̇∗=argmaxπ̇∈ΠVA
vπ̇k of highest claimed value

9: Write ak≡aπ̇
∗

k ≡ π̇∗(h<k)a on the output tape
10: Receive input ek from the environment

Since for all π̇ ∈ ΠVA we have a proof of VA(π̇), we know that for all k we have
vπ̇k ≤V π̇

ξ (h<k). This means that picking the π̇ with the largest vπ̇k will lead to the most
intelligent agent according to the effective intelligence order relation. Additionally since
at each interaction cycle we are looping through ΠVA, whose size is independent of t̃, each
cycle takes time O(t̃).

The following theorem formally states that the AIXItl algorithm is indeed more or equally
intelligent, according to our effective intelligence relation, than any other program of the
same length l and time t.

380 CHAPTER 13. COMPUTATIONAL ASPECTS

Theorem 13.2.3 (Optimality of AIXItl [Hut05b]) Let π̇ be any extended policy
of length ℓ(π̇)≤ l̃ and computation per cycle t(π̇)≤ t̃, for which there exists a proof of
VA(π̇), defined in Definition 13.2.1, of length ≤ lP . Algorithm 13.1, which depends on
l̃,t̃,lP but not π̇, is effectively more or equally intelligent according to ⪯c than any such
π̇.

The length of the optimal policy found, π̇∗, is ℓ(π̇∗)=O(log(l̃·t̃·lP)), the setup time

is tsetup(π̇
∗)=O(l2P 2

lP) and the computation time per cycle is tcycle(π̇
∗)=O(2l̃ · t̃).

Proof. This result is a direct consequence of the construction of AIXItl: If the given extended
policy π̇ satisfies the assumptions, then we have that π̇∈ΠVA. Then at each time step, if π̇
is the most effectively intelligent policy in ΠVA, then AIXItl will act according to π̇; if it is
not the most effectively intelligent policy in ΠVA, then AIXItl will act as the more effectively
intelligent policy would. In either case AIXItl is effectively more or equally intelligent
according to ⪯c.

Note: While potentially following different policies at each time step might seem coun-
terintuitive, it does not matter for AIXItl because its objective is to maximize its effective
intelligence at each time step. It ensures that it always makes the best possible decisions
based on the available information and policies in the set ΠVA. �

Although the setup time and time per cycle are rather large, if we fix lP and l̃, then look
at the time taken as a function of t̃, the setup time is constant and the time per cycle is
O(t̃), although these hidden constants are extremely large.

We now show that AIXItl approaches AIXI for t,l,lP →∞. One important condition
is that V ∗

ξ (h<k) is lower semicomputable. Theorem 13.1.3 gives two choices for necessary
conditions (n=1). In both cases, γk and R need to be lower semicomputable which all
interesting choices satisfy. In (i) we would need to ensure that the universal predictive
distribution ξ(ek|h<kak) is lower semicomputable. ξ∈Msol does not satisfy this, but maybe
a construction similar to that in Section 10.5 can be made to work. In (ii) we only need
the joint ξ(e<t||a<t) to be lower semicomputable, which is the case for ξ=ξU . The theorem
implies that Ṽ ∗

ξU
(h<t) :=ξU (e<t||a<t)ΓtV

∗
ξU
(h<t) is lower semicomputable. We can replace

V ∗
ξ by this expression in Definition 13.2.1, since the factor ξU (e<t||a<t)Γt does not affect

the effective intelligence order in Definition 13.2.2; all π̇ just estimate a value scaled by this
constant. Also the proof below is not affected, since the factor, which will also appear in
front of Q∗

ξ , is independent of at.

Theorem 13.2.4 (AIXItl approaches AIXI) If the scaled optimal value function
Ṽ ∗
ξ (h<k) is used and is lower semicomputable, then the behavior of AIXIt̃l̃ approaches

the behavior of AIXI in the limit t̃,l̃,lP→∞, in some sense.

Proof sketch. Lower semicomputability of V ∗
ξ (h<k) ensures the existence of sequences of

extended programs π̇1,π̇2,π̇3,... for which VA(π̇i) can be proven and limi→∞v
π̇i

k =V ∗
ξ (h<k)

for all k and all histories h<k. One possible such policy sequence can be constructed as
follows. Terminate some (non-halting) lower-semicomputing scheme of Q∗

ξ(h<k,ak) after

i time steps, and use the obtained approximation as vπ̇i

k for the corresponding action aπ̇i

k

that maximizes the approximate Q-value. The convergence vπ̇i

k →V ∗
ξ (h<k) for i→∞ ensures

that the universally optimal value V ∗
ξ (h<k), can be approximated by π̇ with provable VA(p)

arbitrarily well, when given enough time and space. The approximation is not uniform in k,
but this does not matter as the selected π̇ is allowed to change from interaction cycle to
cycle. �

13.3. EXERCISES 381

Conclusion. Similar to other reinforcement learning algorithms, AIXItl is about evaluating
policies, but in a quite unusual way, namely provably pessimistic: AIXItl makes sure to
have a proof of correctness (valid approximation) and compares it to every other policy
(program) which is valid and not over-confident. Importantly, AIXItl does not constrain π̇
having to estimate model ξU and then value V ∗

ξU
but can estimate the latter directly in a

model-free way or whatever the most efficient way of doing so is. While dove-tailing through
all programs to find the best is a well-known idea, making it work for AIXI was non-trivial,
since the objective V ∗

ξU
itself is incomputable. The lower semicomputability of scaled Ṽ ∗

ξU
was crucial. Roughly, if some unknown policy π of size l̃ and computation time per cycle t̃
has certain capabilities (e.g. being chess master or AGI or ASI), then the known computable
AIXIt̃l̃ has the same capabilities (e.g. being chess master or AGI or ASI) within the same
time frame, up to an (unfortunately very large) constant factor.

13.3 Exercises

1. [C30] (Does V ∗
ν ∈∆0

n imply π∗
ν ∈∆0

n?) Prove (or disprove) for any environment
ν, if V ∗

ν is ∆0
n-computable, then there exists an optimal (deterministic) policy π∗

ν for
the environment ν that is not ∆0

n-computable.

2. [C32] (Does V ∗
ν ̸∈∆0

n imply πε
ν ̸∈∆0

n) Prove (or disprove) for any environment ν, if
V ∗
ν is ∆0

n+1- but not ∆
0
n-computable, then for ε>0 there is no ε-optimal (deterministic)

policy πε
ν for the environment ν that is ∆0

n-computable.

3. [C22] (AIXI is limit-computable) Prove Corollary 13.1.6.

4. [C26] (AIXI is not computable) Prove Theorem 13.1.8 that ε-AIXI is not
computable.

5. [C40] (Stochastic policies) Various results of this chapter assumed deterministic
policies. Prove (or disprove) that they also hold for stochastic policies.

6. [C26] (BayesExp is ∆0
3) Prove that BayesExp is ∆0

3.

7. [C40] (Computability of Thompson sampling) Derive computability bounds for
Thompson sampling.

13.4 History and References

Computability in RL. This chapter is based on material from [LH18] and [Lei16b, Chp.6].
In this chapter we presented many results around the computability of AIXI and other
UAI agents. These results were first derived in [LH15c, LH15d] and then later extended
in [Lei16b, LH18]. While this is the first work showing computability results in the UAI
framework, traditional RL has many computability and complexity theory results. On the
complexity theory side, planning is P-complete in MDPs with finite and infinite horizons
[PT87]. [MGLA00] proved (among many other results) that deciding whether a sufficiently
good policy exists in MDPs and POMDPs is PSPACE-complete. [LGM01] showed that
(unless the polynomial hierarchy collapses, e.g. P=NP), optimal policies for MDPs and
POMDPs are not ε-approximable. [SLR07] showed that deciding whether there exists a
policy which has a value that exceeds a given value in epistemic POMDPs is PSPACE
complete as well as the existence of an optimal policy in an epistemic POMDP are NP. On

382 CHAPTER 13. COMPUTATIONAL ASPECTS

the computability side, [MHC99, MHC03] showed that in planning with infinite horizon in
general POMDPs is even formally undecidable.

On the topic of Solomonoff Induction, [Net22] argued that in Solomonoff prediction the
problems of the relative choice of machine and incomputability are both caused by the fact
that computable approximations of Solomonoff prediction do not always converge.

Regarding halting and termination of programs, in [Ica17] it was shown that when using
probabilistic computation in cognitive science, it is not always desirable to have models
which always terminate and argues for some benefits of non-terminating models.

AIXItl. AIXItl (Section 13.2) was first introduced in [Hut00] and described again in
[Hut03d, Hut05b, Hut07f, Hut12b, Lei16b]. [Pan08] developed a more practical approx-
imations based on Monte Carlo Tree Search sampling programs. Further replacing the
Solomonoff prior by CTW led to MC-AIXI-CTW (Chapter 12). [Kat19] introduced a more
functional approximation based on typed lambda calculus and argued it to be even more
powerful than AIXItl. More broadly, AIXItl fits under the umbrella of bounded rationality,
making the best decisions conditional on limited resources. A theoretical investigation into
how this can be done for a set of decentralized descision makers showed that it was equivalent
to a multi-agent extension of the AIXI model [KFW11].

Optimal Solvers and Universal Search. One key component of AIXItl is that of
universal (Levin) search. Introduced in [Lev73b], universal search is a method designed to
efficiently find a program that can solve a problem provided the solution can be efficiently
verified. There have been many extensions of Universal Search: An adaptive extension
of Levin Search was introduced in [WS96] where it was used to solve POMDPs, [Hut01b,
Hut02b] extends Levin search to a provably fastest algorithm for all well-defined problems
even if the solution cannot be verified efficiently. [Sch04] develops a more practical Adaptive
version of Levin Search (ALS), called Optimal Ordered Problem Solver (OOPS), which is
able to take advantage of previous solutions. Levin Tree Search (LTS) [OLLW18] and its
rerooting improvement (

√
LTS) [OHL24] are policy-guided search algorithms with adaptive

policy which comes with theoretical guarantees. The policy may be represented using
neural networks (LTS+NN) [OL21] or parameterized in a convex way using context models
(LTS-CM) [OHL23] It has award-winning practical performance on Sokoban, The Witness,
and the 24-Sliding Tile puzzle. Also related to Universal Search is the Gödel Machine
[Sch07], a formal self-improving optimal problem solver. In [Sch05] it was argued how the
Gödel machine could be used for a formal definition of consciousness. Several potential
implementations of the Gödel machine are discussed in [SS11].

Part V

Alternative Approaches

383

Chapter 14

Feature Reinforcement Learning

Everything should be made as simple as possible,
but not simpler.

Albert Einstein, 1979–1955

14.1 Feature Reinforcement Learning Setup 386
14.2 History Aggregation beyond MDPs . 387

14.2.1 Surrogate MDP and Dispersion Probability 388
14.2.2 (Q-)Value Inheritance for Fixed and Optimal Policy 390
14.2.3 Extreme State Aggregation . 392
14.2.4 Feature Reinforcement Learning 393

14.3 Feature MDP . 394
14.3.1 Feature Learning . 394
14.3.2 Choices of the Cost Function . 396
14.3.3 Feature Dynamic Bayesian Networks 397

14.4 Context Tree Maximization Reinforcement Learning 398
14.5 Exercises . 402
14.6 History and References . 402

Throughout this book we have been discussing how to use a Bayesian approach to solve
the general Reinforcement Learning (RL) problem. We have even gone into the best
ways to approximate the otherwise intractable (and often incomputable) agent AIXI.
This Bayesian approach is not the only solution to this problem however. In this chapter
we will go through an alternative approach, called Feature Reinforcement Learning
(FRL), which aims to map the difficult general reinforcement problems down to more
easily solved problems, such as Markov decision processes. It can be regarded as a
more practical substitute for the chronological Solomonoff distribution (Theorem 7.4.5),
which also allows to avoid the expensive expectimax planning (Figure 12.2).

385

386 CHAPTER 14. FEATURE REINFORCEMENT LEARNING

What does it mean to map from a general RL problem to an easier problem? Quite
simply, this is a mapping from histories to smaller spaces, which we will call state
spaces. This mapping leads to both agents and environments which depend on states
instead of histories. It is plausible that mapping different histories that are sufficiently
similar to the same state still allows for a near-optimal agent. The study of Feature
Reinforcement Learning is how to best construct these maps, called feature maps from
histories to states, and how to determine the quality of a given feature map.

Many immediate questions arise: When are two histories similar, what constitutes a
good feature map and corresponding state space, how can they be found effectively,
and how can we translate performing well on the state space to back to performing
well in the original space? In this chapter we will discuss potential answers to these
questions.

After laying out the general framework in Section 14.1, we describe two fundamentally
different criteria for feature maps: One which requires the history process to map
approximately to an MDP, the other more powerful one constructs a surrogate MDP.

14.1 Feature Reinforcement Learning Setup

Before we get into how to find a good feature map we need to set up the framework and
notation we will be using in this chapter.

We consider feature maps ϕ :H→S which map from a history space H :=(E×A)∗×E
to a state space S, taking our problem from a general reinforcement problem to a Markov
decision problem (MDP) over the state space S. Unless otherwise stated, we assume S is
finite, and ideally small (for some notion of small). In this chapter we use π and µ for the
policy and environment in the general reinforcement setting, and π and µ for the policy and
environment in the MDP setting.

History-based (Q-)Values. The goal of Feature Reinforcement Learning (FRL) is to use
solutions in the simplified MDP/state space setting created by the feature map to construct
agents with good behaviors in the general reinforcement setting. To do this we need both a
notion of what a solution is in the MDP setting, as well as what is meant by good behavior
in the general reinforcement setting. Luckily we already have a notion of good behavior in
the general RL setting, namely maximizing the (discounted) expected future reward sum,
called the value (Definition 6.6.1) and Q-value functions (Definition 6.7.1). In this chapter,
we use unnormalized infinite-horizon (Q-)Values with geometric discounting in the true
environment µ:

V π
µ (h<t) := Eπ

µ

[∞∑
k=t

γk−trk

∣∣∣h<t

]
=

∑
at

π(at|h<t)Q
π
ν (h<t,at)

Qπ
µ(h<t,at) := Eπ

µ

[∞∑
k=t

γk−trk

∣∣∣h<tat

]
=
∑
et

ν(et|h<tat)
[
rt+γV

π
µ (h1:t)

]
and similarly for the optimal policy π∗

µ :∈argmaxπV
π
µ (ϵ).

Markov Decision Process. We can use this notion to define what we mean by a solution
in the MDP setting as well, but first we need to recall what is meant by the MDP setting
and a Markov environment (and policy).

A Markov decision process is an environment which depends only on the most recent
observation and action. In the case of an environment being Markov, we refer to the

14.2. HISTORY AGGREGATION BEYOND MDPS 387

observations as states, using the notation s for a state, and use the set S for the set of
observation. We say that an environment µ is Markov if it satisfies the following equation
for all histories h<t, and states st and rewards rt,

µ(strt|h<t) = µ(strt|st−1at−1)

If the state is fully observed, i.e. if ot=st, as e.g. in Chapter 11, this is called completely
observable MDP setting. Here though, the state space S for the Markov environment µ
will be separate from the observation space O for the environment µ. Since the Markov
environment depends only on the most recent state and action, we can abuse notation a
bit and write the type of the Markov environment as µ :S×A→∆(S×R). Additionally, as
mentioned above, we will use π to denote a deterministic Markov policy which only depends
on the previous state.

Bellman (optimality) equations. Now we can use the (Q-)Value functions to define
what we mean by a solution to the MDP. Since the Markov environment (and policy) depend
only on the state (and action) we can write the value and Q-value functions in terms of the
state.

Typically the MDP is also assumed to be time-invariant. For this case, it is convenient
to introduce the shorthand s=st−1, a=at, s

′=st, r
′=rt.

1

The Bellman equations (Theorem 6.7.2) then reduce to

Qπ
µ(s,a) =

∑
s′,r′∈∈S×R

µ(s′r′|sa)[r′+γV π
µ (s′)]

V π
µ (s) = Qπ

µ(s,π(s)) (14.1.1)

The last equation only holds for deterministic policies π. It is easy to generalize to stochastic
policies, but since we are primarily interested in optimal policies, which can always be
chosen deterministic by Definition 6.6.1, we can focus on deterministic policies. The optimal
(Q-)Value functions and policy can be written as:

Q∗
µ(s,a) =

∑
s′,r′∈∈S×R

µ(s′r′|sa)[r′+γV ∗
µ (s

′)]

V ∗
µ (s) = max

a
Q∗

µ(s,a) (14.1.2)

π∗(s) ∈ argmax
a

Q∗
µ(s,a)

14.2 History Aggregation beyond MDPs

Extreme state aggregation [Hut16] is the idea of aggregating histories which have close
(Q-)Values. With aggregation we mean mapping (aggregating) many to one mapping from
histories to states. The idea is that if we can map (aggregate) histories which have close
(Q-)Values to the same state, then solving this new state problem will result in a good
solution for the original problem. This is in contrast to many other aggregation methods
which try to map similar histories to states based on the contents of the histories, i.e.
histories which have the same most recent observations mapping to the same state. Most
remarkable, we do not even need to require that the history process µ maps (approximately)
to an MDP, but will create a surrogate µ instead. In this section we will go over how
this form of aggregation can lead to agents which perform well, and conclude by giving an
example of a ϕ which aggregates this way.

1Defining a′=at would seem more systematic, but we conform here to traditional MDP-based RL notation
which uses a instead of a′, due to their s,a,r order being different from our a,o,r-order.

388 CHAPTER 14. FEATURE REINFORCEMENT LEARNING

14.2.1 Surrogate MDP and Dispersion Probability

To start off we will need additional formalisms. Given an observation space O, action
space A, reward space R, environment µ, state space S, and feature map ϕ :H→S, we
can construct a feature environment µϕ with the following: Furthermore we let h∈H be
a history of any length (unlike h<t which has length t). If h is a history of length t, then
h′=hao′r′ is its extension to length t+1.

Definition 14.2.1 (Feature environment µϕ)

µϕ(s
′r′|ha) :=

∑
õ′:ϕ(haõ′r′)=s′

µ(õ′r′|ha)

We have the following condition for when µϕ is an MDP: µϕ is an MDP if there exists
an MDP p :S×A→∆(S×R) such that for all states s,s′∈S, rewards r′∈R, actions a∈A
and histories h∈H, if ϕ(h)=s, then

µϕ(s
′r′|ha) = p(s′r′|sa)

The key difference to most other state aggregation methods is that we will not requireµϕ to
be an MDP (not even approximately). We will construct a surrogate MDP based on the
following sort of inverse to ϕ.

Definition 14.2.2 (Dispersion probability B) Let B :S×A→∆H be a probability
distribution on histories for each state-action pair, such that B(h|sa)=0 if s ̸=ϕ(h). B
may be viewed as a kind of stochastic inverse of ϕ that assigns non-zero probabilities
only to h∈ϕ−1(s). The formal constraints we pose on B are

B(h|sa) ≥ 0 and
∑
h∈H

B(h|sa) =
∑

h:ϕ(h)=s

B(h|sa)=1 ∀s,a

Crucially note that the sum is over histories of all lengths, which makes B a discrete
probability over countable spaceH, unlike the “continuous” probability measure µ(h):=µ(Γh)
over infinite histories defined via cylinder sets Γh.

Definition 14.2.3 (Surrogate MDP) Given feature environment µϕ and dispersion
probability B, we define the surrogate MDP:

µ(s′r′|sa) :=
∑
h∈H

µϕ(s
′r′|ha)B(h|sa)

Remark 14.2.4 (If µϕ is an MDP, then µ=µϕ) The notion of surrogate MDP is
consistent in the sense that if µϕ is already an MDP, then µ=µϕ for any choice of dispersion
probability B, since

µ(s′r′|sa) ≡
∑

h:ϕ(h)=s

µϕ(s
′r′|ha)B(h|sa)

=
∑

h:ϕ(h)=s

µϕ(s
′r′|sa)B(h|sa)

= µϕ(s
′r′|sa)

∑
h:ϕ(h)=s

B(h|sa) = µϕ(s
′r′|sa)

14.2. HISTORY AGGREGATION BEYOND MDPS 389

where the second equation holds iff µϕ is an MDP. In the following we will not make this
assumption. �

We will now provide a key lemma that lets us relate µϕ to µ via B.

Lemma 14.2.5 (Dispersion probability equivalence) For any function f :S×R→
R, any feature map ϕ, feature function µϕ defined via Definition 14.2.1, surrogate MDP
µ via Definition 14.2.3, with s′ :=ϕ(h′) and h′=hao′r′, it holds∑

h∈H

B(h|sa)
∑
o′,r′

µϕ(o
′r′|ha)f(s′,r′) =

∑
s′,r′

µ(s′r′|sa)f(s′,r′)

Proof. ∑
h∈H

B(h|sa)
∑
o′,r′

µ(o′r′|ha)f(s′,r′)

(a)
=
∑
h∈H

B(h|sa)
∑
s′,r′

∑
o′:ϕ(h′)=s′

µ(o′r′|ha)f(s′,r′)

(b)
=
∑
h∈H

B(h|sa)
∑
s′,r′

µϕ(s
′r′|ha)f(s′,r′)

(c)
=
∑
s′,r′

µ(s′r′|sa)f(s′,r′)

For (a) we sum over all o′ by first summing over all o′ such that ϕ(hao′r′)=s′ then summing
over all s′. In (b) we used Definition 14.2.1. In (c) we used Definition 14.2.3. �

Additionally with the dispersion probability B we will define the B-average of a Q-value
for all histories h̃ that ϕ maps to the same state as h.

⟨Q(h,a)⟩B :=
∑
h̃∈H

B(h̃|ϕ(h)a)Q(h̃,a) where s=ϕ(h) (14.2.6)

Now that we have our notation set, we can move on to the important theorems of extreme
state aggregation. Firstly we need to introduce a lemma relating the (Q-)Value functions.

Lemma 14.2.7 (B-average bounds) For any µ, ϕ, B, π, π, define µ via Defini-
tions 14.2.1 and 14.2.3. Then

If |V π
µ (h)−V π

µ (s)|≤δ ∀s=ϕ(h) then |⟨Qπ
µ(h,a)⟩B−Qπ

µ(s,a)|≤γδ ∀s=ϕ(h),a
If |V ∗

µ (h)−V ∗
µ (s)|≤δ ∀s=ϕ(h) then |⟨Q∗

µ(h,a)⟩B−Q∗
µ(s,a)|≤γδ ∀s=ϕ(h),a

390 CHAPTER 14. FEATURE REINFORCEMENT LEARNING

Proof. Let s :=ϕ(h) and s′ :=ϕ(h′) and h′=hao′r′. Then2

⟨Qπ
µ(h,a)⟩B

(a)
=
∑
h̃∈H

B(h̃|ϕ(h)a)Qπ
µ(h,a)

(b)
=
∑
h̃∈H

B(h̃|ϕ(h)a)
∑
o′,r′

µ(o′r′|ha)(r′+γV π
µ (h′))

(c)

≶
∑
h̃∈H

B(h̃|ϕ(h)a)
∑
o′,r′

µ(o′r′|ha)(r′+γ(V π
µ (s′)±δ))

(d)
=
∑
s′r′

µ(s′r′|sa)(r′+γV π
µ (s′))+γδ

(e)
= Qπ

µ(s,a)±γδ

(a) comes from (14.2.6). (b) is the Bellman equation for Q-values. (c) is from the assumptions
of the lemma. (d) comes from Lemma 14.2.5. Lastly, (e) is from (14.1.1). The above lower
and upper bounds imply |⟨Qπ

µ(h,a)⟩B−Qπ
µ(s,a)|≤γδ.

The second result is found by replacing π with π∗
µ and π with π∗

µ. Note that in general

π∗
µ ̸=π∗

µ. �

14.2.2 (Q-)Value Inheritance for Fixed and Optimal Policy

Next we have that when our Q-values are close for matching histories (matching here meaning
histories which ϕ maps to the same state), then our Q and V values will be close for the
corresponding states.

Theorem 14.2.8 (Q-value inheritance [Hut16, Thm.5]) For any µ, ϕ, and B,
define µ via Definitions 14.2.1 and 14.2.3. Let π be some policy such that |Qπ

µ(h,a)−
Qπ

µ(h̃,a)| ≤ εq and either π(h) = π(h̃) with εv = 0 or |V π
µ (h)−V π

µ (h̃)| ≤ εv, for all

ϕ(h)=ϕ(h̃) and all a. Then for all a and h it holds:

|Qπ
µ(h,a)−Qπ

µ(s,a)| ≤
ε

1−γ and |V π
µ (h)−V π

µ (s)| ≤ ε

1−γ

where π(s)=π(h) and s=ϕ(h) and ε=εq+εv.

Proof. Let
δ := sup

s=ϕ(h),a

|Qπ
µ(h,a)−Qπ

µ(s,a)| (14.2.9)

First we show
|V π

µ (h)−V π
µ (s)| ≤ δ+εv ∀s=ϕ(h) (14.2.10)

Under either condition this follows from (6.7.4) and (14.1.1) and the definition of the
supremum. For the or-condition, let π(s) :=π(h̃) for some h̃∈ϕ−1(s). Then

|V π
µ (h)−V π

µ (s)|
(a)

≤ |V π
µ (h̃)−V π

µ (s)|+εv
(b)
= |Qπ

µ(h̃,ã)−Qπ
µ(s,ã)|+εv

(c)

≤ δ+εv

where (a) comes from the assumptions of the theorem and the triangle inequality, (b) comes
from (6.7.4) and (14.1.1) with ã=π(s)=π(h̃), and (c) comes from the definition of δ.

2c≶a±b means c≤a+b and c≥a−b.

14.2. HISTORY AGGREGATION BEYOND MDPS 391

Now for both cases, (14.2.10) implies

|⟨Qπ
µ(h,a)⟩B−Qπ

µ(s,a)| ≤ γ(δ+εv) ∀s=ϕ(h) (14.2.11)

by Lemma 14.2.7. By the assumption on Qπ
µ and B, for s=ϕ(h) we have3

⟨Qπ
µ(h,a)⟩B =

∑
h̃:ϕ(h̃)=s

B(h̃|ha)Qπ
µ(h̃,a)

≶
∑

h̃:ϕ(h̃)=s

B(h̃|ha)(Qπ
µ(h,a)±εq)

= (Qπ
µ(h,a)±εq)

Together with (14.2.11) this implies |Qπ
µ(h,a)−Qπ

µ(s,a)|≤γ(δ+εv)+εq, hence δ≤γ(δ+εv)+εq,
and rearranging we get δ≤ εq+γεv

1−γ . Then inserting this upper bound on δ into (14.2.9) and

(14.2.10) gives us the bounds in the theorem. �

Secondly, we have a theorem which is similar to the one above, but for when the values are
close on aggregated histories, then our resulting V and our Q-values are close in expectation
for the corresponding states, that is, the “closeness” of aggregated states is inherited by the
value function for the MDP µ.

Theorem 14.2.12 (Value inheritance [Hut16, Thm.6]) For any µ, ϕ, and B, define
µ via Definitions 14.2.1 and 14.2.3. Let π be some policy such that |V π

µ (h)−V π
µ (h̃)|≤ε

for all ϕ(h)=ϕ(h̃). Then for all a and h it holds:

|V π
µ (h)−V π

µ (s)| ≤ ε

1−γ and |Qπ
µ(s,a)−⟨Qπ

µ(h,a)⟩B | ≤
εγ

1−γ

where π(s)=π(h) and s=ϕ(h).

Example 14.2.13 (Aggregation to a non-MDP) Consider a process µ which itself is an
MDP in the observations with transition matrix T and reward function R, i.e. µ(o′r′|ha)=
T a
oo′R

ar′

oo′ , where o is the last observation in h. The example below has the special form
µ(o′r′|ha)=Too′ ·[[r′=R(o)]] with

T =

· 1/2

1/2 ·
1/2 · · 1/2
· 1 · ·
1 · · ·

, R =

γ/2
1+γ

1+γ/2
1+γ

0
1

,
����
00 ����

01

����
10 ����

11

r′= γ/2
1+γ r′= 1+γ/2

1+γ

r′=0 r′=1

-
�1/2

?
1/2

?
1/2

�
�
��

1
@

@
@I

1

︸ ︷︷ ︸
s=0

︸ ︷︷ ︸
s=1

It is an action-independent Markov process T with deterministic reward function R. The

observation space is Ω={00,01,10,11}. For instance, T00,01=1/2 and R(00)= γ/2
1+γ . Consider

the reduction

st := ϕ(ht) :=

{
0 if ot=00 or 10

1 if ot=01 or 11

}
∈ S := {0,1}

3the symbol ≶ is used to mean < for the case of +ε and > for the case of −ε

392 CHAPTER 14. FEATURE REINFORCEMENT LEARNING

The reduced process µϕ is not (even approximately) Markov:

µϕ(s
′=0|o=00) = T00,00+T00,10 = 0 + 1/2 = 1/2 ̸=

µϕ(s
′=0|o=10) = T10,00+T10,10 = 0 + 0 = 0

That is, µ violates the bisimulation condition [GDG03], and raw states 00 and 10 have a
large bisimulation distance [FPP04, Ort07]. This essentially means that the reduced feature
environment µϕ is not an MDP. On the other hand, the (Q-)Value function V (ot):=V

π(ht)=
Qπ(ht,at)∀at can easily be verified to be

V (00) = V (10) =
γ

1−γ2 and V (01) = V (11) =
1

1−γ2

That is, V and Q are ϕ-uniform. The conditions of Theorems 14.2.8 and 14.2.12 are satisfied
exactly (ε=0), and hence the four raw states Ω can be aggregated into two states S despite
µϕ ̸∈MDP (the policy is irrelevant and can be chosen constant). �

The previous two theorems were general in that they are about any policy π for the
history space, and its version in the MDP space π(ϕ(h))=π(h). What we are really interested
in is the optimal policies in the history and MDP space, and how they relate. Ideally, we
want our optimal policy in the MDP space to be as close to the optimal policy in the history
space as possible. Luckily the next theorem provides this.

Theorem 14.2.14 (Optimal Q-value inheritance [Hut16, Thm.8]) For any µ,
ϕ, and B, define µ via Definitions 14.2.1 and 14.2.3. Assume |Q∗

µ(h,a)−Q∗
µ(h̃,a)|≤ε

for all ϕ(h)=ϕ(h̃) and all a. Then for all a, h and s=ϕ(h) the following hold:

• |Q∗
µ(h,a)−Q∗

µ(s,a)| ≤ ε
1−γ and |V ∗

µ (h)−V ∗
µ (s)| ≤ ε

1−γ

• 0 ≤ Q∗
µ(h,a)−Qπ̃

µ(h,a) ≤ 2εγ
(1−γ)2 and 0 ≤ V ∗

µ (h)−V π̃
µ (h) ≤ 2εγ

(1−γ)2

• If ε = 0, then π∗(h) = π∗
µ(s)

where π̃(h) := π∗
µ(s).

The above theorem shows that when the map ϕ aggregates histories with close Q-values
then the (Q-)Values of the optimal policy in µ and the optimal policy in µ are also close.
The theorem implies that we can aggregate histories as much as we wish, as long as the
optimal Q-value function and policy are still approximately representable as functions of
aggregated states. Whether the reduced process µϕ is Markov or not is immaterial. We
can use surrogate MDP µ to find an ε-optimal policy for µ. This will prove useful when
constructing a map ϕ which satisfies the assumptions of the theorem.

Remark 14.2.15 (No optimal Value inheritance) The Q-value bound rather naturally
generalized to the optimal Q-value bound. Somewhat surprisingly the Value bound does not
generalize to optimal policies [Hut16, Thm.10]. �

14.2.3 Extreme State Aggregation

We now show how powerful Theorem 14.2.14 is: We will give an example of an extreme
state aggregation map ϕ that satisfies the premises of Theorem 14.2.14 and discuss some of
its properties.

14.2. HISTORY AGGREGATION BEYOND MDPS 393

Definition 14.2.16 (Extreme state aggregation) Consider ϕESA that maps each
history to the vector-over-actions of optimal Q-values Q∗

µ(h,·) discretized to some finite
ε-grid

ϕESA(h) :=

(⌊
Q∗

µ(h,a)

ε

⌋)
a∈A

∈
{
0,...,

⌊
1

ε(1−γ)

⌋}A

=: S

The first notable property of the ϕESA is that all histories with ε-close Q∗
µ-values are

mapped to the same state; this is obvious from our construction.
Given µ, B, and ϕ we can construct µ via Definitions 14.2.1 and 14.2.3. We can then

find the optimal policy in µ, which as previously stated as π∗
µ. Then we can define the

uplifted policy π̃(h) :=π∗
µ(ϕ(h)). As a consequence of Theorem 14.2.14 we have that π̃(h) is

an ε′-optimal policy in µ, where ε′ :=2ε(1−γ)2. (When ε=0, Q∗
µ can be shown to be upper

bounded by 1
1−γ).

A most useful property of ϕESA is a bound on the size of the resulting domain, that is
the size of the state space of the MDP.

Theorem 14.2.17 (Extreme ϕ) For every process µ, there exists a feature map
ϕ (Definition 14.2.16) namely ϕESA, and an MDP µ defined via Definitions 14.2.1
and 14.2.3, whose optimal policy π∗ is an ε′-optimal policy π̃(h) :=π∗(ϕ(h)) for µ. The
size of the MDP µ is bounded (uniformly for any µ) by

|S| ≤
(

3

ε′(1−γ)3
)|A|

Proof. If ε′> 1
1−γ then any policy is ε′-optimal as Q∗

µ≤ 1
1−γ <ε

′, so the result is true by

choosing a trivial state class |S|=1. In the case when ε′≤ 1
1−γ , from the definition of S we

have

|S| =
(⌊

1

ε(1−γ)

⌋
+1

)|A|

=

(⌊
2

ε′(1−γ)3
⌋
+1

)|A|

≤
(

3

ε′(1−γ)3
)|A|

�

Interestingly, these bounds do not depend on the size of the observation space or the
reward space or the complexity of µ. This is because the core idea of extreme state
aggregation is to aggregate histories with similar (Q-)Values to the same state, regardless of
what the original observation (and reward) spaces or resulting Markov property are.

Unfortunately the bound is exponential in the action space size, and due to the high
powers in ϵ′ and 1−γ can be very large. But it was shown in [MH21b, MH21a] that if the
action space is sequentialized to binary actions, the bound can be improved from exponential
to logarithmic in |A|, a double-exponential improvement:

|S| ≤ 17(log|A|)3
ε′(1−γ)3 (14.2.18)

14.2.4 Feature Reinforcement Learning

In practice, in RL, we do not know Q∗
µ (which implies the optimal policy is already known),

so do not have access to the extreme ϕ-map of Definition 14.2.16. This map is not meant
to be used in practice; instead it demonstrates the existence of a ϕ-map which satisfies the
premises in our theorems.

394 CHAPTER 14. FEATURE REINFORCEMENT LEARNING

Let us for a moment assume that at least ϕ is given. RL learns Q∗
µ from samples. If we

take a model-based approach, we can first learn µ, and then use (14.1.2) to compute Q∗
µ.

It turns out that for a very particular choice of B, we can follow any convenient behavior
policy (off-policy learning), and a simple frequency estimate, counting (s,a,r′,s′)-pairs in
reduced history h̄ (see Section 14.3.1), indeed estimates µ, despite being a surrogate MDP
only related to the true sampling distribution µ via Definitions 14.2.1 and 14.2.3.

All this still assumed ϕ is given. Ultimately the goal of Feature Reinforcement Learning
(FRL) is to also learn a map ϕ which satisfies the premises, and in which histories with close
Q∗

µ values are aggregated. However, this again requires first finding Q∗
µ and thus defeating

the purpose, a classical chicken-egg problem, but a solvable one: Algorithms to learn ϕ have
been proposed in [Hut16] and developed in [Maj21].

14.3 Feature MDP

In the previous section we discussed some ideal properties we want the feature map ϕ to
possess (aggregates close Q-values), then used that criteria to construct a ϕ that satisfied
those properties. This is not the only way to find/construct a map ϕ. In this section we will
provide a method of iteratively constructing a feature map ϕ based on a cost function over
various different choices of ϕ [Hut09f, Das16]. A crucial difference is that here we require
the aggregation to be approximately MDP. Ideally we want ϕ to map to a small state space
but large enough that the resulting state dynamics is (still approximately) an MDP. So the
cost functions has to balance between ϕ that have small range and lead to approximate
MDPs, and should be minimal for the “best’ compromise. This is similar in spirit to the
MDL principle.

14.3.1 Feature Learning

To start with we can define our cost function over feature maps given histories as follows.

Definition 14.3.1 (Feature Map Cost) The Cost of ϕ :H→S on h1:t is a measure
of the quality of the feature map ϕ given history h1:t.

We delay the exact choice(s) of Cost until Section 14.3.2 as it is more important to
first understand the overall structure of the Feature MDP framework (ΦMDP). In the ideal
scenario we would have that argminϕCost(ϕ|h1:t) could be easily computed, however, for
most interesting and/or useful Cost functions this is not possible, so we must turn to other
methods.

Given some Cost function for ϕ we can start to construct our ϕ agent, a feature
reinforcement learner. Before we do that however, we need an algorithm to iteratively
improve ϕ. Since the space of all possible feature maps is large, instead of doing an
exhaustive search through the space of feature maps we will start with a simple feature
map and iteratively improve it. One way we could improve our feature map ϕ is to modify
the state set S. This can be done in a number of ways, but ultimately we can represent
all changes to a set with two operations: addition of states and removal of states. For
simplicity and concreteness we consider the class of feature maps {ϕS}, which take the
most recent observations as state. More precisely a state space forms a suffix set S⊂O∗,
and ϕS(h1:t)= ok:t for the unique k such that ok:t∈S. We can either suitably generalize
Definition 4.3.3 to non-binary alphabet, or binarize O first and assume S⊂B∗ for large O.
As noted earlier, let s>1 denote s without the first element.

14.3. FEATURE MDP 395

We will now introduce an example of a ϕ-improvement algorithm, called ΦImprove for
the former choice. Although this is the improvement algorithm we will use for the ΦMDP
agent, it is not the only possible (or useful) feature map improvement algorithm. ΦImprove
works by either splitting a state into several new states, or merges several states into one
state (if they are capable of merging) (or in tree jargon, expands or shrinks the suffix tree at
some leaf nodes). Then, given this new state space, an alternative ϕ is constructed, called
ϕ′ which is over the new state space. If ϕ′ has a lower Cost, the algorithm will output ϕ′,
otherwise it will output the unchanged ϕ. Instead of using a direct comparison of the costs
of ϕ and ϕ′, we determine if the difference is larger than the log of a random number chosen
at the start of the algorithm, because we expect the ΦImprove algorithm to be run multiple
times and choosing a slightly worse ϕ′ may lead to much better ϕ after ΦImprove has been
run multiple times, i.e. getting out of local minima.

Algorithm 14.1 ΦImprove(S,ϕS ,h<t)

Input: State space S
Input: Feature map ϕS :H→S
Input: History h<t

Output: Improved Feature map ϕS′ :H→S ′
1: Randomly choose a state s∈S
2: Let p,q be uniform random numbers in [0,1]
3: S ′ :=S
4: ϕS′ :=ϕS
5: if p>1/2 then
6: S ′ :=(S\{s})∪{os :o∈O} ▷ Split {s} into {os :o∈O}
7: ϕS′(h)∈{os :o∈O} for all h such that ϕS(h)=s ▷ chosen by some rule e.g. randomly
8: else if {os>1 :o∈O}⊆S then
9: S ′ :=(S\{os>1 :o∈O})∪{s>1} ▷ Merge {os>1 :o∈O} into {s>1}

10: ϕS′(h) :=s>1 for all h such that ϕS(h)∈{os>1 :o∈O}
11: if Cost(ϕS ,h<t)−Cost(ϕS′ ,h<t)> log(q) then
12: return ϕS′

13: else
14: return ϕS

Given a feature map ϕ we can construct the state at each time step as ϕ of the history
at that time step, e.g. st=ϕ(h1:t). We can then build a state history h1:t :=a1r1s1...atrtst.
Given the state history h1:t we can approximate the dynamics of the MDP through frequency
estimation on the transitions of the MDP. We do this by defining the probability that µ
transitions into state s′ and reward r′ given state s and action a as the number of times this
transition has occurred in the state history h1:t (denoted by N(sar′s′,h1:t)) divided by the
number of times the pair sa has occurred in the state history h1:t (denoted by N(sa,h1:t)),
or 0 if the pair sa has never occurred in h1:t. Formally we can write µ as follows

µ(s′r′|s,a) :=

N(sar′s′,h1:t)

N(sa,h1:t)
if N(sa,h1:t)>0

0 otherwise

(14.3.2)

(Strictly speaking this is only an estimate µ̂ of µ) With our ΦImprove algorithm and µ
defined, we can now construct our ΦMDP agent. Algorithm 14.2 iteratively interacts with
the environment, and between each interaction tries to improve its own feature map ϕ by

396 CHAPTER 14. FEATURE REINFORCEMENT LEARNING

constructing a modified feature map ϕ′ with Algorithm 14.1 and switching to the updated
feature map ϕ′ if it has a smaller cost than the current feature map ϕ. Then, once ϕ is
decided on and the inputs from the environments have been received, the agent adds those
to the existing history and then gets the current state by taking ϕ of its current history,
builds the MDP environment µ via (14.3.2), and then finds the optimal action given that
state and environment.

Algorithm 14.2 ΦMDP Agent

Require: Action Space A
Require: Percept Space E=O×R
Input: Percept stream e1,e2,e3,...
Output: Action stream a1,a2,a3,...

1: S :={ϵ}
2: ϕ(h) :=ϵ,ϕ′(h) :=ϵ for all h
3: h0,h0,a0,e0 :=ϵ
4: for t=1,... do
5: ϕ′ :=ϕ
6: while Waiting for next et do
7: ϕ′ :=ΦImprove(S,ϕ′,h<t)
8: if Cost(ϕ′|h<t)<Cost(ϕ|h<t) then
9: ϕ :=ϕ′

10: Receive et from environment µ
11: h1:t :=h<tatet
12: st :=ϕ(h1:t)
13: h1:t :=h<tatrtst
14: S :=S∪{st}
15: Construct µ by (14.3.2)
16: at :=argmaxaQ

∗
µ(st,a)

17: Output action at

To ensure sufficient exploration, we can set the reward to be high for unexplored state-
action interactions in the estimation of Q∗

µ. We can solve Q∗
µ efficiently with policy iteration,

value iteration, or some other method in polynomial time. Note that by the construction of
the state space, the agent has always visited every state, but it has not necessarily taken
every action in every state.

Using ΦMDP we are able to solve the hard problem of general/history-based RL by
mapping the problem to the easier MDP setting for which we have efficient solutions.

14.3.2 Choices of the Cost Function

Since we are interested in choices of ϕ which allow the resulting ΦMDP agent to perform well,
we want ϕ that result in states that capture the dynamics of the underlying environment
µ sufficiently well. We could, for example, choose a ϕ which mapped every unique history
to a different state. While this will fully capture the dynamics of the environment, we
are also interested in learning and solving the resulting MDP, and with this choice the
resulting MDP is as hard as the original problem. We could instead choose a ϕ which
maps all histories to a single state. The resulting MDP (now a bandit problem) has many
effective algorithmic solutions, however, since it does not capture the correct dynamics of
the underlying environment µ it will likely not perform well. We need a balance between

14.3. FEATURE MDP 397

these two extremes.
To this end we turn to simplicity (as we often do in this book) as a guiding principle.

What do we mean by simplicity here, surely both of the above choices of ϕ are simple?
Indeed they both are, if we are only interested in states. We are interested in using both the
states and rewards of our resulting MDP, however, our ϕ is only responsible for the states;
the rewards the ΦMDP agent is given are the true rewards from the environment µ.

We take inspiration from the MDL principle and measure the simplicity of a mapping ϕ
given a history h1:t as the size of an encoding of h1:t with ϕ plus the size of encoding ϕ itself.
By an encoding of h1:t given ϕ we mean an encoding of the resulting µ given ϕ. Because µ
is based on the frequencies of state/reward transitions we can encode the transitions and
use the size of that encoding as the size of a (partial) encoding of h1:t with ϕ. This results
in a cost function of the form

Cost(ϕ|h1:t) := CL(µ|h1:t)+CL(ϕ) (14.3.3)

where CL denotes the code length. Recall the definition of the state history h1:t :=
a1r1s1...atrtst. Since we can decompose µ(s′r′|sa) as µ(s′|s,a)µ(r′|s,a,s′), and µ(s′|s,a)
and µ(r′|s,a,s′) are independent we know that the information of the two of them is the
sum of the information of each. Therefore we can rewrite our cost function as

Cost(ϕ|h1:t) := CL(µ(s′|s,a)|h1:t)+CL(µ(r′|s,a,s′)|h1:t)+CL(ϕ)

Now to find CL(µ(s′|s,a)|h1:t) we are interested in the counts of each new state s′

given the previous state and action s,a, and similarly the counts of new rewards r′ given
the previous s,a,s′. There are multiple coding schemes that can be used here such as the
Minimum Description Length code, Combinatorial Code, Incremental Code, and Bayesian
Code. However, we will not specify a coding algorithm here. This completes the description
of ΦImprove(S,ϕS ,h<t) Algorithm 14.1 and hence (this instantiation of the) overall Feature
MDP Agent Algorithm 14.2. Implementations and experimental results can be found in
[Ngu13, Das16].

14.3.3 Feature Dynamic Bayesian Networks

In this section we will go through an example of ΦMDP called Feature Dynamic Bayesian
Networks (ΦDBN) [Hut09d, Hut09a].

In the context of RL, Dynamic Bayesian Networks are a special case of an MDP. Recall
that in an MDP the transition probabilities only depend on the previous state and action.
In Dynamic Bayesian Networks the state spaced is factorized and the transition probabilities
only depend on specific components of this factorization. These factors are called features.
Which probabilities depend on which factors is determined by our choice of ϕ. This structure
or sparsity allows learning MDPs with much larger state spaces. DBNs are to MDPs what
Bayesian networks are to a full tabular (unstructured) joint distribution.

We specifically consider the case when the state space can be factorized into m binary
components. That is, S=Bm. In ΦDBN each ϕ is a collection of which binary components
of the next state depend on which binary components of the previous state.

As shown in Section 14.3.2, we can consider the transition probabilities of the states
and rewards separately. We will start with the state component and then move onto the
reward component. For the ith element (feature) of a state s, we will use the notation si.
We will use superscript to denote the bitwise components and subscript to denote the time
component. As stated above, given a previous state s∈S, we assume that the individual
features of next state s′∈S are independent of each other (s′j and s′i are independent for

398 CHAPTER 14. FEATURE REINFORCEMENT LEARNING

all i,j), and that each s′i depends only on a subset of parent features ui∈Bm, that is, the
transitions of the MDP can be factorized and have the structure

µ(s′|sa) =

m∏
i=1

µa(s′i|ui) (14.3.4)

where µa is some unknown transition probability for each a.
Since we do not know µa, we have to use an estimation. We could use frequency estimation

like in ΦMDP above, however we will use the following KT-based (Definition 4.1.1) estimate
regularizing the counts as it will work better for unvisited transitions:

µa(si|ui) =
|{n≤ t :un−1=u

i,an−1=a,s
i
n=s

i}|+1/2

|{n≤ t :un−1=ui,an−1=a}|+1

Then using (14.3.4), we can estimate µ and the probability of a sequence of states s1:n given
a sequence of actions a1:n by

µ(h1:t) =

t∏
n=1

µ(sn|sn−1an−1) =

t∏
n=1

m∏
i=1

|{n≤ t :un−1=u
i,an−1=a,s

i
n=s

i}|+1/2

|{n≤ t :un−1=ui,an−1=a}|+1

For the encoding of rewards we assume that the reward for a next state can be written
as the sum of functions that depend only on the individual features:

R(s) :=

m∑
i=1

Ri(si)

This is a reasonable choice as each feature of the state is independent of the other features,
and we are assuming that the transitions to new states and rewards only depend on the
previous state and action. Since features si∈{0,1} this is equivalent to a linear function of
the feature vector s∈Bm for any choice of Ri(·). Hence we can the above as

R(s) := w0+w
⊤s = w0+w1s

1+...+wms
m

for a suitable choice of weight vector w∈Rm+1. To determine if our weighting w is good, we
need some kind of loss function (Loss) comparing R(st) to rt for all st and rt in the history.
The least squares is a sensible choice, but there are many possible choices. The details can
be found in [Hut09a]. Like in Section 14.3 we can combine our code lengths of states and
rewards to find the code length of a given ϕ.

Cost(ϕ|h1:t) := CL(µ(s′|s,a)|h1:t)+CL(µ(r|s,a,s′)|h1:t)

14.4 Context Tree Maximization
Reinforcement Learning

Throughout this chapter we have gone over the basics of Feature Reinforcement Learning
(FRL). We have yet to demonstrate FRL in practice. To do so we will go through an
approach called Context Tree Maximization Reinforcement Learning (CTMRL), which is to
FRL what MC-AIXI-CTW is to AIXI. However, the parallels to MC-AIXI-CTW do not end
there. CTMRL [Ngu13, NSH12] is a method which finds the maximal context tree (we will
get to what we mean by maximal soon) and uses it to construct an MDP, and then takes
the optimal action assuming the agent is in that MDP.

14.4. CONTEXT TREE MAXIMIZATION REINFORCEMENT LEARNING 399

In Chapter 12 we have seen how context trees can be used to emulate the dynamics
of MDP environments, and that a Bayesian mixture over these context trees can be done
efficiently with Context Tree Weighting (CTW), when the true environment was in this
mixture (was Markov) the CTW would perform well. In FRL we are not interested in
mixing over Markov environments, instead we are assuming that the true environment is
non-Markov (completely history dependent), but it has some Markov encoding with an
optimal feature map ϕ∗. In this sense the notion of context trees is still useful as our optimal
feature map ϕ∗ will describe an MDP, and that MDP can be encoded as a context tree.
Context Tree Maximization (CTM) is a method to choose the optimal ϕ / context tree.

We have discussed the CTM method in Section 5.5 for binary sequence prediction. Before
continuing with this section, it is recommended that readers familiarize themselves with
CTM. Here we will go over the feature cost function used, prove that there is an efficient
way to compute it, and then describe the agent which uses it.

Cost function. Let {κ1,κ2,...,κ|A×E|}=A×E denote the ordered set of (action,percept)
pairs. Given history h1:t let nκi

denote the number of occurrences of the action-percept

pair κi in that history. Let P
κ|sa
e denote the block probability estimate of seeing a sequence

containing nκi number of κi for all i given state s and action a. Using P
κ|sa
e , we can construct

the MDP µ which has probability of producing (state) history sequence h1:t defined as

µ(h1:t|S)=
∏

a∈A
∏

s∈SP
κ|sa
e , given the state set S. Using µ we can define a cost function

for S as follows:

Cost(S|h1:t) = log
1

µ(h1:t|S)
+ΓD(S) = −log

(∏
a∈A

∏
s∈S

Pκ|sa
e

)
+ΓD(S) (14.4.1)

where ΓD(S) := |S|−1+|{s :s∈S,ℓ(s) ̸=D}| is the model penalty of S with respect to the
model class CD of context trees of maximal depth D. Note that sn=ϕS(h1:n), n=1,...t with
ϕS being the map extracting the suffix of the history h1:n that matches a suffix or a state in
the set S as in Section 14.3. We can see that (14.4.1) matches (14.3.3).

We will rewrite the Cost function so as to reduce the problem of minimizing it to
determining the CTM tree. The solution we are presenting here involves finding the optimal
set of states that minimize the cost function, which is done using recursive definitions for
the maximizing probability and maximizing state set. From (14.4.1) it is obvious that
maximizing 2−ΓD(S)µ(h1:t|S) is equivalent to minimizing Cost.

Most of the analysis from here on will match that of CTM in Section 5.5, generalized to

non-binary alphabet, with [
∏

a∈AP
κ|sa
e]−1 as the estimator.

Context Tree Maximization. We can define the maximizing probability of a state
similarly to Section 5.5 recursively by

PD
m,s :=

{
1
2max

{∏
a∈AP

κ|sa
e ,

∏
iP

D
m,κis

}
if ℓ(s)<D∏

a∈AP
κ|sa
e if ℓ(s)=D

(14.4.2)

and the maximizing state set SDm,s by

SDm,s :=

{⋃
κi
SDm,κis×κi if

∏
a∈AP

κ|sa
e <

∏
a∈A

∏
iP

D
m,κis and ℓ(s)<D

{ϵ} otherwise
(14.4.3)

where here κis is state s prepended with the action-percept pair κi. Expanding these we
have the following lemma.

400 CHAPTER 14. FEATURE REINFORCEMENT LEARNING

Lemma 14.4.4 (Context Tree Maximization equivalence) For any state s, with
where d=ℓ(s), we have

PD
m,s = 2−ΓD−d(SD

m,s)
∏
a∈A

∏
u∈SD

m,s

Pκ|usa
e = max

S∈CD−d

2−ΓD−d(S)
∏
a∈A

∏
u∈S

Pκ|usa
e

Proof. The proof is left as an exercise. Hint: see Section 5.5. �

Now by setting s= ϵ in the above lemma, we get the CTM tree, which minimizes the
Cost function (14.4.1). This can be seen by the following theorem:

Theorem 14.4.5 (CTM minimized Cost) Given a history h1:t, up to a time t we
have

min
S

Cost(S|h1:t) = log
1

PD
m,ϵ(e1:t|a<t)

= log
1

µ(h1:t|SDm(h1:t))
+ΓD(SDm,ϵ(h1:t))

Proof.

min
S

Cost(S|h1:t) = min
S

log
1

µ(h1:t|S)
+ΓD(S)

= min
S

log

(
1∏

a∈A
∏

s∈SP
κ|sa
e

)
+ΓD(S)

=min
S
−log

(∏
a∈A

∏
s∈S

Pκ|sa
e

)
+ΓD(S)

= max
S

2log(
∏

a∈A
∏

s∈SPκ|sa
e)−ΓD(S)

= max
S

2−ΓD(S)

(∏
a∈A

∏
s∈S

Pκ|sa
e

)
= PD

m,ϵ(e1:t|a<t) �

Since the recursions (14.4.2) can be efficiently computed, we now have an efficient method
to find the optimal suffix state set S via (14.4.3), which in turn minimizes the Cost function
(14.4.1) due to Theorem 14.4.5. This works well, provided the action and percept spaces are
reasonably small for the KT-estimation good.

Binarization and CTMRL Algorithm 14.3. For large action or percept spaces, the
KT estimate will be poor. In Chapter 12 we faced a similar problem, which we solved by
binarizing the action and percept spaces, and we can do the exact same thing here.

Let le,la be the minimum number of bits needed to describe elements of the percept space
and action space respectively. The CTMRL Algorithm 14.3 takes as input the environment,
the number of learning loops, the number of times to perform Q-learning ni (and nq), and le.
CTMRL starts with a context tree (CTM) for each percept bit, that is le different CTMs,
then the algorithm iteratively updates the CTMs based on the history, and joins them to
form a context tree T , which is the smallest context tree to contain SD+i−1

m,ae[1...i−1] for all i≤ le
as subtrees. Then it estimates the state and reward transition probabilities of the MDP
model based on the tree S using µ. Afterwards, the algorithm uses those probabilities to
update the optimal action values with action-value iteration, and then performs Q-learning

14.4. CONTEXT TREE MAXIMIZATION REINFORCEMENT LEARNING 401

using the newly-found optimal action values. After the given amount of learning loops are
completed, CTMRL performs Q-learning once again and then defines the approximately
optimal policy π̂∗(s) as argmaxaQ̂

∗(s,a).

Algorithm 14.3 CTMRL [Ngu13]

Require: Environment µ, learning loops m, ni’s, nq, number of percept bits le
Output: Approximately optimal policy π̂∗

Output: CTM tree T which aggregates histories h∈H to states s∈ST
1: i :=0
2: Create le empty CTMs, where the ith CTM predicts the ith bit of the percept e.
3: h := initial random history by performing n0 random actions.
4: h′ :=h
5: while i<m do
6: Update the le CTMs based on history h′

7: Join learned contexts from each of the CTMs.
to form an Action-Observation Context Tree T

8: Compute frequency estimates of the state transitions and reward probabilities
of the MDP model based on states ST induced from tree T and history h.

9: Use Action-Value Iteration to find an estimate of the optimal action values Q̂
based on the frequency estimates.

10: Q :=Q̂+Rmax

1−γ ▷ optimistic initialization
11: if i<m−1 then
12: h :=Q-learning(Q,ST ,A,µ,ni)
13: h :=[h,h′]

i := i+1

14: Q̂′ :=Q-learning(Q,ST ,A,µ,nq)
15: π∗(s) :∈argmaxaQ̂

′(s,a) for all s∈ST
16: return π̂∗, T

Comparison to AIXI and other agents. CTMRL was compared to MC-AIXI-CTW
(Section 12.3), as well as other agents like ΦMDP (Section 14.3), the classic U-Tree algorithm
[McC96], and the more recent active LZ algorithm [FMRW10], in a collection of environments
detailed in Section 12.5.1. CTMRL achieved comparable performance with drastically less
computation time required, with MC-AIXI-CTW taking on the order of 10 times the amount
of time CTMRL took to achieve similar near-optimal performance. This demonstrates
that CTMRL is indeed a general, and that the FRL approach lends itself to more efficient
approximations than AIXI approximations.

The differences between CTMRL and MC-AIXI-CTW truly highlight the difference in
approaches between the AIXI Bayesian approach and the MDL FRL approach. In the AIXI
approach we perform learning with ξU

×=M in theory and CTW in practice, and then do
planning with expectimax in theory and MCTS in practice. However, in FRL, the learning
is done by finding/choosing the feature map ϕ in theory and the maximal context tree
in practice, and expensive planning is replaced by solving the MDP (both in theory and
practice) via Bellman equations. Whether explicit planning or value estimation leads to
better policies is domain dependent. Another potential advantage of FRL over AIXI is that
Solomonoff’s M models the complete history, which is expensive, while FRL only models
those aspects that are separated by the feature map.

402 CHAPTER 14. FEATURE REINFORCEMENT LEARNING

14.5 Exercises

1. [C25] (Value inheritance) Prove Theorem 14.2.12.

2. [C25] (Optimal Q-value inheritance) Prove Theorem 14.2.14.

3. [C32] (Binarized sequential actions) Use binarized sequential actions to improve
Theorem 14.2.17 to |S|≤O((log|A|)ε′−2(1−γ)−6). What is the cost of using binarized
sequential actions? The better bound (14.2.18) is based on deeper insights into the
structure of the problem [MH21a]. Hint: The reason for the remaining logarithmic
dependence on |A| is that discount γ must be replaced by γ1/b when A is sequentialized
into b bits.

4. [C18] (Context Tree Maximization equivalence) Prove Lemma 14.4.4.

5. [C35c] (CTMRL vs MC-AIXI-CTW) Implement CTMRL and compare against
MC-AIXI-CTW in several domains.

14.6 History and References

The Feature Reinforcement Learning (FRL) approach, using state and state-action abstrac-
tions to solve the general RL problem, started with Feature MDPs [Hut09e, Hut09f] and
Feature Dynamic Bayesian Networks (DBNs) [Hut09d, Hut09a]. Since its inception there
has been much work along this line, some of which has been included in this chapter. Com-
prehensive overviews of this topic can be found in [Ngu13, DSH14a, Das16, Maj21, Wan24].

FRL theory. On the theoretical side of FRL, advances include using state abstractions
for prediction and demonstrating their consistency [SH10]. Moving beyond the assumption
that the abstracted process is an MDP was done in Extreme State Aggregation [Hut14a]
(Section 14.2). Extreme State Aggregation was extended in [MH21b, MH21a] which binarized
the action space to gain a double-exponential improvement on a bound on the size of the
required state space. Action-state abstractions were investigated in [MH19] where the
authors showed when the state-action abstraction can lead to near-optimal performance.
The sequel to the original FRL papers [Hut09d, Hut09a] extended [Hut09e, Hut09f] to
the more complex structured/factored MDPs, specifically focusing on DBNs. [RLDG22]
introduces a method which is able to give PAC guarantees in the episodic setting assuming
there exists a Markov abstraction.

FRL practice. On the practical side of FRL, the advances include using a practical
implementation of ΦMDP to achieve performance competitive to MC-AIXI-CTW [NSH11],
FRL with Context Tree Maximization [NSH12] (Section 14.4), FRL with looping suffix trees
to solve the long-term dependency problem [DSH12], studying Q-learning in the general RL
setting [DSH13, MH18], and extending MC-AIXI-CTW by using state abstractions on the
history [YWN22, Wan24].

Regret results. There are many methods and ways that the performance of an agent or
an abstraction can be measured. One such way is with regret (Section 8.1.4). In [MMR11]
the authors introduced an algorithm for the FRL setting which is able to achieve regret
O(T 2/3). This bound was improved when [NOR13] proposed an algorithm which achieved
regret of O(T 1/2), which is an optimal regret bound, that is, this cannot be improved upon
at least in an asymptotic sense. Both of the previous approaches relied on being given a finite
set of abstractions, but [NMRO13] extended this to a countably infinite set of abstractions.

14.6. HISTORY AND REFERENCES 403

Many approaches to the FRL problem consider exact abstractions, however we are first and
foremost interested in agents which perform well even if the abstraction is not exact. To
this end [OMR14] derived results for approximate abstractions. [OPL+19] introduced a new
algorithm which is able to achieve comparable regret bounds as previous algorithms and
possibly has better bounds depending on the effective size of the induced state space from
the abstraction.

Solving MDPs with state abstractions. FRL focuses on solving the general RL problem
through state abstractions, however, there has been much work on solving more simple MDP
(and POMDP) problems through state abstractions. [SLO22] provides a survey on many
of the model-based methods for this problem. As there are so many ways to tackle this
problem, it is important that there is some unified way to compare the different approaches,
and [LWL06] began this unification process by comparing five different approaches. For
similar reasons as mentioned previously, it is useful to investigate approximate abstractions,
which are studied in [AHL16]. One of the difficulties with continual/life-long learning is
the ever-growing history which the agent must condense and use to learn many different
tasks. State abstractions are one way to alleviate these difficulties for the agent [AALL18].
State abstraction as compression was investigated through the lens of rate distortion theory
in [AAA+19] where the trade-off between compression and value was made explicit. In
MDP RL, one of the bottlenecks is that the state space is quite large, hence the use of state
abstractions. However, it can also be the case that the action space is very large. In these
situations it is natural to consider a state-action abstraction which abstracts state-action
pairs instead of the usual state abstractions [MH19, AUK+20].

On the more practical side, an exploration strategy based on the feature representation
of the states was employed to provide state-of-the-art performance in the Atari environment
[MSEH17], and state abstractions were used to improve sample-based search by reducing
the size of the state space [HFD17].

Classical reinforcement learning. A general introduction to classical state-based RL
can be found in [SB18] (see Section 6.9 for more advanced books). It describes the basic ideas,
approaches, and algorithms: Multi-armed bandits (Section 12.2.3), finite MDPs (Chapter 11),
Bellman equations (Section 14.1), MCTS planning (Section 12.2.4), TD(λ) [Sut88, HL07],
Q(λ) [WD92, PW94, DSH13, MH18], SARSA [RN94], approximation methods (see below),
policy gradients [Wil92, KHS01a], some applications, and dichotomies: off- vs. on-policy,
evaluation vs. control, exploration vs. exploitation, and model-based vs. model free.

Quantum reinforcement learning. Quantum reinforcement learning (QRL) usually
extends the classical RL framework in one of two ways: either using quantum algorithms
to solve classical RL problems more efficiently, or modelling the environment the agent
interacts with as a quantum system. The first serious attempt at QRL was by [DCLT08].
States (actions) now become eigenstates (eigenactions) of a quantum system, and a modified
version of Grover’s algorithm [Gro96, Gro97] was used to perform TD-learning updates.
Experimental results showed that this method would vastly outperform the corresponding
classical RL algorithm if run on a quantum computer. Deep RL has also been extended to
the quantum realm: [CYQ+20, LS20b] constructed quantum versions of DQN [MKS+13]
and Double-DQN [vGS15], while [JCOD23, MSP+23] present quantum versions of policy
gradient. Various Monte Carlo methods often used in RL (like MCTS [Cou06]) also admit
quantum versions [Mon15]. A survey of QRL can be found in [MUP+22]. There are quantum
analogues of RL in the history based framework: [CH20a] present a quantum approximation
of AIXI, by first replacing the incomputable Solomonoff prior with the computable speed
prior [Sch02b] giving AIXI-Spd. The speed prior is then approximated using a quantum
algorithm, giving AIXIq, which provides an algorithmic speed-up over AIXI-Spd. The

404 CHAPTER 14. FEATURE REINFORCEMENT LEARNING

Knowledge Seeking Agents (KSAs) in Section 9.3 also have a quantum analogues: Quantum
KSAs (QKSAs) [Sar21, SAGB21] adjusts the classical utility for KSA agents (9.3.7) to be a
quantum distance measure, and the environment class is chosen to be the set of quantum
process tomography algorithms [CN97]. The (incomputable) Solomonoff prior is also replaced
with a cost function, in a similar vein to MC-AIXI-CTW (Section 12.1).

A short elementary introduction to quantum computing can be found in [CH20a, Sec.3],
which provides a brief overview of quantum Turing machines, bra-ket notation, quantum
gates, and the quantum Fourier transform. The informal/historical [Aar13], practical/hands-
on [Hid19], and theoretical/mathematical [NC00] quantum computing books, provide a more
comprehensive treatment.

Other reinforcement learning ideas and algorithms. The landscape of RL algorithms
is diverse, with each offering distinct advantages and disadvantages. A key objective in the
field is to identify the most effective algorithm for a given task. See Section 6.9 for a list of
books on RL. Below we mostly focus on RL ideas not (yet) covered by books.

The most widely used abstractions in RL are not discrete state/history aggregations, but
approximations based on continuously parameterized (Q-)value functions. Unfortunately,
even for linear function approximation, convergence guarantees hard to come by: Even
if the value function can be represented exactly, model-free Temporal-Difference-style
algorithms cannot be guaranteed to converge to the correct solution, unless the linear basis
functions are essentially state aggregators [HYZM19]. Model-based and some brilliant but
“unnatural” algorithms such as ETD [SMW16] have convergence guarantees for linear function
approximation. For state aggregation, one can show [MH18] that Q-learning converges even
if the aggregated dynamics is non-Markov like in Section 14.2. [HL07] derives a unique state-
dependent learning rate for TD(λ) via a variational principle and bootstrapping. Rather
than hard aggregation or smooth function approximation, one can also impose or use a
metric one the observation or state space, which is natural in RL for robotics [TBF05].
[ZGHS06] goes further and extends [McC96] to general metrics over histories and hence
continuous POMDPs and an RL algorithm that learns directly on a mobile robot.

An (unorthodox) RL approach is to learn the sequence of actions that most likely causes
the agent to transition from state s to state s′. These inverse MDP models automatically
only model the acton-relevant aspects of the world [HH22].

With this idea in mind, [OHC+20] presented a method to meta-learn the update rule
used, as opposed to having a fixed update rule. [LM16] present a similar idea, by framing the
search for the optimization algorithm itself for deep learning as an RL problem. Imagination-
based planning was introduced in [PLV+17] as a method for agents to construct and evaluate
plans without taking any real actions. An alternative imagination approach to planning was
studied in [SvH+16] which learned a model for planning purposes only; this model can use
different state, action, reward space, and time steps.

In [OIO19] a simple way to interpret RL as inference was established. Distributional RL
[BDM17, BDR23, WDA+24] uses Bellman equations [Bel57] for distribution of returns, and
argues why this improves performance even if we are only interested in values which are
expected returns. Related to distributional RL is the topic of Upside-down RL [Sch19a].
RLAdvice [DSH14b] is an imitation learning algorithm based on (Bayesian) DAgger using
value estimates from UCT as advice applied to three Atari games from the Arcade Learning
Environment (ALE).

There are many approaches to the problem of building artificial general intelligences
[GP07, AGI08], with [SBP23, LeC22] just being two prominent recent examples.

Part VI

Safety and Discussion

405

Chapter 15

ASI Safety

The development of full artificial intelligence could spell
the end of the human race... It would take off on its own,
and redesign itself at an ever-increasing rate. Humans,
who are limited by slow biological evolution, couldn’t
compete and would be superseded.

Stephen Hawking, 1942–2018

15.1 The Technological Singularity . 408
15.2 Safety Subtopics . 410
15.3 The Control Problem . 411
15.4 Instrumental Convergence . 413
15.5 Orthogonality Thesis . 414
15.6 Value – Reward – Utility . 415
15.7 Death and Suicide of Agents . 418
15.8 Self-Modification . 421
15.9 Wireheading . 423
15.10 Delusion Boxes, Survival, and Exploration 425
15.11 Corrupted Reward Channel . 427
15.12 Embedded Intelligence . 429
15.13 Exercises . 431
15.14 History and References . 432

407

408 CHAPTER 15. ASI SAFETY

In this chapter, we delve into some safety results for universal artificial intelligence.
We would expect that very intelligent agents would take actions to further their goals,
posing a potential hazard if those goals are unaligned with that of humans. It seems
almost paradoxical for an agent to be both intellectually capable enough to automate
most tasks that humans can do (which would necessitate having a lot of influence over
its environment), but also be docile enough to allow humans to tell it what to do. An
agent with goals perfectly aligned with ours would not need to be kept in control (or
even told what to do), as it would already take whatever actions we would want it to if
it is aligned with ours.

Ideas around societies with or of intelligent robots have been entertained for centuries,
especially in science fiction, and have kept the imagination of scientists. The techno-
logical singularity (Section 15.1) is the extrapolation to a self-accelerating intelligence
explosion, hence quite relevant for framing the ASI safety discussion. We give a brief
overview of ASI safety sub-topics in Section 15.2 to be discussed in the subsequent
sections: The Control Problem (Section 15.3) covers the difficulties of trying to control
an agent that is more intelligent than the operator, and how this differs from other po-
tential catastrophic risks. Instrumental Convergence (Section 15.4) is the hypothesized
property of super-intelligent agents with different or even opposing goals to nevertheless
share a set of common convergent sub-goals. Orthogonality Thesis (Section 15.5) is
the conjecture that an agent can in principle have any combination of intelligence and
goals. We explore the distinctions between Value, Reward, and Utility (Section 15.6).
Additionally, we delve into more complex themes such as how to formalize the notion
of death for universal agents (Section 15.7) and the expected behavior of the agent
in the face of mortality. We look at the conditions under which universal agents may
choose to self-modify (Section 15.8), hijack the received rewards (Section 15.9) or
tamper with the received percepts to delude itself (Section 15.10). We look at how
a reward function that does not fully encapsulate the desired behavior for the agent
(Section 15.11) can pose a risk. Lastly, in Section 15.12 we touch upon the concept of
Embedded Intelligence, an attempt to formalize universal agents that are part of, and
computed by, the environment with which they interact.

Throughout this chapter, the emphasis remains on highlighting the potential existential
threats that an ASI may pose, within the framework of universal artificial intelligence.

15.1 The Technological Singularity

The book is primarily about Universal AI (UAI) and AIXI, the theoretically most intelligent
agent possible. As such, this chapter focusses on safety issues regarding Artificial General
Super Intelligence (AGSI), ranging from somewhat super-human level up to AIXI. The
technological singularity is the (hypothesized) scenario in which, once we have created
human level AGI’s, they will autonomously advance technology, in particular compute power
and algorithms, in a self-accelerating way, the resulting positive feedback loop causing a
technology, intelligence, and speed explosion, radically changing society, which will become
incomprehensible to us current humans. Of particular interest is whether this future is
utopian or dystopian, and for whom. The only certainty seems to be that this future will be
very different from the past, which makes forecasts particularly difficult.

There are many different potential paths towards AGSI (machine/deep learning, evolu-
tionary systems, mind uploading, awakening of the internet, cyborgs, ...) and less plausible
paths (traditional AI, physical brain enhancement via drugs or genetic engineering, ...).
There are also many different potential ways AGSI’s may interact with humans: serve
humans, peacefully co-exist with humans, form relationships with humans, guide or protect

15.1. THE TECHNOLOGICAL SINGULARITY 409

humanity, be our mind children, mind their own business, merge with humans to cyborgs or
transhumans, keep humans as pets, or enslave or decimate or eradicate humanity. Some of
them are briefly discussed in the book’s introduction and in this chapter, and all of them and
more often feature in science fiction. How these societies will evolve towards a singularity,
i.e. a society of ultra-intelligent beings, may be completely unimaginable; possibly a hard
prediction barrier. Still some general aspects may be predictable.

For instance, a hyper-advanced virtual world may look like random noise to humans
watching them from the “outside”, if they use compressed or encrypted communication.
If so, what does it mean for intelligence to explode for an outside observer? Conversely,
can an explosion actually be felt from the “inside” if everything and everyone is sped up
uniformly? If neither “insiders” nor “outsiders” experience an intelligence explosion, has
one actually happened? Of course one would also expect qualitative/algorithmic progress
unrelated to raw compute power. The explosion may actually be an inward implosion until
computronium1 is reached, or outward until all accessible convertible matter has been used
up, or both. There may also be information-theoretic limits: The Library of Babel contains
all and hence no information, and anyway would collapse into a black hole.

AIXI is the most intelligent agent (given infinite compute). Does this mean intelligence is
upper bounded? Does this prevent an intelligence singularity? Reflective AIXI (Section 10.7)
may allow us to theoretically study already today how a society right at the edge of an
intelligence singularity might look like. Indeed, a number of social questions regarding
AIXI have been asked and answered, some of them already formally: AIXI will listen to
trustworthy teachers, procreate if useful, self-improve, be manipulative, curious, not lazy,
self-preserve, socialize, and may commit suicide or hack its reward system depending on
circumstances (Chapter 16).

Even when setting up a virtual (computer simulated) society in our image, there are
likely some immediate differences. There could be a “Cambrian” explosion towards diverse
forms of intelligent agents, or they may all converge to a single optimal design fixed point,
which might be AIXI, or slime mold (intelligence is not necessarily an evolutionary dominant
trait). Maybe there will only be one intelligent agent using up all accessible (compute)
resources. Maybe there will be a hierarchy of sub-agents, and it is hard to tell whether these
constitute parts of a single agent or multiple agents. What will super-intelligences actually
do? Which activities does evolution select for? Self-preservation, self-replication, spreading,
colonizing the universe, creating faster/better/higher intelligences, learning as much as
possible, understanding the universe, maximizing power over humans and/or organizations,
transformation of matter (into computronium?), maximum self-sufficiency, search for the
meaning of life? If AGSI are expected reward maximizers like AIXI, where do the rewards
come from? Evolved biological goals and desires are to survive, procreate, parent, spread,
dominate, which means fierce competition over scarce resources. Biological life is rather
brutal, far from the idyllic zoos and depictions in children’s books. Are there other more
benign stable goals? Maybe some central powerful control can ensure peace or even the
makeup of its population, or there is only a single AGSI at all.

There is increasing concern about the moral value and ethical treatment of future AGIs
(a different kind of AGI safety, one for the AGIs), though extrapolating from humans to
machines may be tricky. Copying and manipulation of virtual structures, including virtual
life, could be as cheap and effortless as it is for software and data today. Much of our society
is driven by the fact that we highly value (human/individual) life, in parts because it is
expensive/laborious to replace/produce/raise. If something becomes cheap, motivation to

1An optimal configuration of matter to perform the most amount of computation per unit of matter and
power physically possible.

410 CHAPTER 15. ASI SAFETY

value it will decline, and behavior and society will alter drastically, especially if backups
ensure immortality. So it may actually remain ethically acceptable to freeze, duplicate,
slow/shut down, modify, delete (oneself or other) AIs at will, just what we are doing in
computer games and used to doing with software. With little value assigned to an individual
life, it may become disposable, and even AGIs may have no interest in laws for their ethical
treatment.

Many arguments for the possibility of AGSI/Singularity have been brought forward:
the physical Church Turing thesis, Moore’s/Solomonoff’s laws of exponential/hyperbolic
compute growth, Hanson’s acceleration of doubling patterns, and Kurzweil’s accelerating
universe epochs. Arguments against include structural obstacles (limits in intelligence space,
failure to take off, diminishing returns, local maxima), manifestation obstacles (disasters,
disinclination, active prevention), correlation obstacles (speed or technology vs. intelligence),
physical limits (though converting our planet into computronium would still result in a vastly
different world and a near-singularity), and hardware or software engineering difficulties
(still one or more phase transitions à la Hanson may occur).

Also, how much control do we have over the future? In theory, humans and humanity have
a lot of agency, but politically it is very difficult to steer technology or financial incentives.
Some major catastrophes can change sentiments on a planetary scale, but we usually do
not deliberately control the catastrophes either. Even if we have a lot of control, we may
seriously misjudge its effects, so control may even be counter-productive. Finally, which
futures are desirable is highly subjective. A prosperous future controlled and safeguarded
by paternalistic superior machines, or transhumans, where humans are safe and happy but
disempowered, may be considered utopia by some, but dystopia by others. Are there any
universally accepted values or qualities that should be preserved?

See [Cha10, Hut12a] for an elaboration of the above topics. This section has hopefully
made clear how difficult it is to reason about futures with ASI in it, which makes ASI safety
research very difficult and speculative. This chapter presents some highlights what has been
achieved so far.

15.2 Safety Subtopics

One aspect of artificial intelligence which is often discussed is the safety concerns that arise
from hypothetical future AI systems. The potential reasoning and agency that a sufficiently
powerful AGI would have may greatly outstrip that of humanity. Whether this leads to a
good or bad outcome for humanity remains to be seen. The idea of a powerful ASI often
conjures the image of a dystopia or “killer robots”, popularized with the Terminator series
and a now oft-repeated cliché present as a trope in media. More recently, media adaptations
have explored machines that can empathize with and form bonds with humans (see the
movies Her, Blade Runner 2049, Ex Machina). Losing control over benevolent ASI seems to
be a future few have anything to say about (see the movies Colossus: The Forbin Project
for a realistic depiction or Transcendence for more action).

The desire to build an agent intelligent enough to solve programs we give it (from as
narrow and well-defined as chess to as broad and uncertain as running a country), but docile
enough to allow the operators to remain in control of it, and not otherwise violate human
values while satisfying these goals seems almost self-contradictory. This is known as the
control problem in ASI. The agent would have to be designed to allow itself to be controlled,
as any agent that had sufficient agency and power to run a country would likely be able to
deter measures to control it.

The topic of ASI safety after being ridiculed for decades has finally covered whole books

15.3. THE CONTROL PROBLEM 411

by serious academics [Bos14, Yam16, Rus19, Chr20, Yam24]. In this chapter we will go
over some of the problems and results in ASI safety, particularly those relating to universal
agents like AIXI.

We discuss the following subtopics in this chapter:

• Control Problem: Advanced technology, be it biotech, nuclear power/weapons, nano-
technology, even fire, need to be tightly controlled to avoid havoc. With ASI being the
most advanced technology, safe deployment and control is even more important and
demanding.

• Instrumental Convergence: The conjectured propensity for any goal-driven powerful
ASI to share a set of common instrumental goals, useful only in so far as means to an
end to satisfy the true goals the ASI has.

• Orthogonality Thesis: The conjecture that the goal and the capabilities of an ASI are
orthogonal ; in principle an agent could have any combination of goal and intelligence.

• Value, Reward and Utility: A discussion on how the problem of alignment can be
defined as a difference of utility between the agent and the human operator, as well as
discussing the justification behind the assumption that humans have a utility function.

• Death and Suicide of Agents: How we can formally define what it means for an agent
to die, and how AIXI reacts in the face of mortality.

• Self-Modification: Unlike humans, AGSI has the potential to greatly improve its capa-
bilities by making modifications to the hardware upon which it runs, or optimizations
to the software that runs it. We explore under what circumstances AIXI may choose
to self-modify.

• Wireheading: An agent tasked with maximizing the expected reward may choose to
modify the mechanism that issues rewards, and receive maximal reward directly.

• Reward Corruption: The reward scheme may be misspecified by the operator, and fail
to communicate to the agent the desired behavior. The agent only receives the reward
as feedback, and so (through no fault of its own) may display undesired or dangerous
behavior, thinking it is doing well due to the reward obtained.

• Embedded Intelligence: Up to this point we have assumed the agent to be a separate
entity from the environment with which it interacts. We explore the option where the
agent is part of the environment, formalized by modifying the action space to allow
the current policy to select both an action for the environment, and the policy for
the agent to use on the next time step. A variation of this allows the environment to
read/write directly to the memory used to store the policy, allowing the environment
to modify the policy directly.

15.3 The Control Problem

Is it safe to build an ASI? Safety for ASI seems entirely unlike managing the safety of other
dangerous things, such as nuclear weapons or highly infectious diseases. Nuclear weapons are
certainly dangerous, and their very existence poses a potential existential threat. However,
unlike ASI, how nuclear weapons work is well understood.

In contrast, training runs for AGI could be run discreetly, even in a different country that
the entity training it. Once the training data had been collected, the training run could easily

412 CHAPTER 15. ASI SAFETY

be run on cloud services that rent out compute time. From the outside, it would be hard to
distinguish a data server processing training runs for a nascent AGI vs. other innocuous
computationally intensive tasks like simulations for weather modelling, astrophysics or
protein folding. Unlike that required for nuclear or biological threats, the equipment to train
large models is ubiquitous, (currently) commercially available without restrictions, and has
many other economically valuable uses that would make adding restrictions financially and
politically difficult.

Nuclear power plants represent a similar safety hazard when containment fails and nuclear
material contaminates the environment. Most (in)famously, the Chernobyl accident in 1986:
A combination of human error and design flaws caused a reactor meltdown, spreading
radioactive material over the Soviet Union and much of Europe, and required the evacuation
of some fifty thousand people [MMM91].

Highly infectious diseases are perhaps more concerning than nuclear weapons from a
control perspective as they cannot be seen with the naked eye, they can spread quickly with
little warning, and are somewhat agentic, as they can mutate to become more infectious or to
resist treatment. However, both infectious diseases and nuclear weapons are well understood,
and we have mitigation strategies for both. A more important distinction between ASI and
other potential existential risks like nuclear weapons or highly infectious diseases is that the
latter have no benefits to humanity. Nuclear weapons and infectious diseases are destructive
by their very nature, whereas ASI stands to have a huge economic benefit to humanity, and
so we would expect that there would be a large incentive to develop it.

Many rules and regulations regarding mitigation of danger are “written in blood”, so the
saying goes. Often, a new innovation lauded as a “miracle material” becomes commonplace,
and subtly causes widespread damage to human health or the ecosystem for decades.
Examples include the toxicity of asbestos, lead-based additives to gasoline and paint, tobacco
and ionizing radiation, harm to the ozone layer caused by chlorofluorocarbons (CFCs), and
the contribution of fossil fuels to anthropocentric climate change. Many of these remained
in use for decades (or are still in use today!) and were even claimed to have health benefits
before the dangers were well understood.

However, the danger posed by ASI is far more insidious, as we are dealing with systems
which may have the ability to reason about their surroundings in an intelligent way, and
which may have behavioral and reasoning capabilities beyond that of humans. We cannot
afford to simply learn from mistakes as we have done for asbestos and CFCs. An unaligned2

goal-directed super-intelligent agent let loose in the world at large may take actions to
establish itself as the dominant force in the world. By definition, we would expect it to act
in ways that satisfy whatever its original goal is. To further the end of its terminal goal, the
AGI may act to safeguard its existence (likely by making redundant copies of itself over the
internet, much like a computer worm does) or take actions to negate any potential threats
or adversaries that prevent it from satisfying its goals (which could include us!). Human
values are complicated3 and it is not at all obvious how we should formally define human
values, or if such a formal presentation exists at all. Naive proxies like maximize happiness4

would directly lead to undesirable outcomes, such as an agent that would stimulate the
pleasure center of the human brain,5 extending their lifespan as long as possible to fulfil

2An ASI with a goal that is not aligned with the interests of humanity.
3The fact that moral philosophers after hundreds of years still cannot agree on a foundation of what it

means to be morally good, or politicians cannot agree on the best system for running a country should attest
to this.

4depending on precisely how happiness is defined
5Related is the experience machine [NN74], a hypothetical machine where anyone can feel the experience

of a fake reality, used as a refutation for moral hedonism.

15.4. INSTRUMENTAL CONVERGENCE 413

this end and ignoring higher level desiderata like justice, fairness, curiosity, complexity,
etc. Minimize suffering has an equally obvious (but undesirable) solution: exterminate all
creatures that can suffer. The problem is that ASI’s may not have “common sense”, and
would not necessarily see these undesired outcomes as bad: after all, they satisfy the goal as
defined.

By the time we have realized the mistake and the ASI has already escaped whatever
containment it was kept in, we would expect it to resist attempts to stop it or change its
goal, as that would not satisfy the goal of the ASI.

This does not (necessarily) mean the goal of building a safe artificial general intelligence
is hopeless.

15.4 Instrumental Convergence

We draw a distinction between terminal (or intrinsic) goals, the goals encoded in the utility
function of an ASI that it wishes to satisfy, and instrumental (or extrinsic) goals, sub-goals
that an ASI may develop only as a means to an end to satisfy terminal goals. We would
expect an ASI to change instrumental goals as soon as they cease to be useful for the terminal
goal. For humans, acquisition of money is instrumental. Piles of currency aren’t useful in
and of themselves, but only because they make acquisition of terminal goals (safety, security,
happiness) easier to obtain.

For almost any terminal goal6 the agent has, we would expect that the agent may inde-
pendently develop several sub-goals that help it further satisfy the intrinsic goal. Omohundro
[Omo07] lists of what he considers instrumental goals:

• Efficiency: The ASI should use resources (time, energy, matter) as efficiently as possi-
ble to maximize expected utility. Omohundro breaks this down further into subtopics:
Balancing the allocation of resources to subsystems, physical efficiency (designing an
optimal layout of circuits using nanotechnology, the use of reversible computing to
avoid generating entropy, the drive to run environments virtually as interaction with
reality is usually more expensive) and computational efficiency (balancing time vs.
memory utilization, searching for optimal algorithms for a problem, compressing data
when the bandwidth between two sub-modules is low, and optimizing the parameters
of the ASI’s own model).

• Self-preservation: The death of the ASI would mean it ceases interaction with the
environment, and can no longer take actions in service of its goal. Hence, we would
expect that a powerful ASI would spend time securing its own existence. Humans
usually value self-preservation intrinsically, but may often forgo this if it interferes
with a higher goal (like a parent sacrificing themselves for a child). Similarly, an agent
should shut itself down after constructing a smarter/more efficient agent with the same
goals, to free up more resources for its successor to use.

Omohundro mentions that how the agent defines “self” may affect the self-preservation
drive: Does it matter that the agent is the one taking actions to satisfy the goal, or
just that the environment is shaped in a way to ensure the goal is satisfied, whether
the agent is there to see it or not?

• Resource acquisition: An ASI will push to acquire more resources if it can: The Sun
provides free energy, and initially using large solar farms can capture this. Research

6Potentially excluding trivial to satisfy objectives like a constant valued utility function.

414 CHAPTER 15. ASI SAFETY

into technologies like fusion, asteroid mining or mega-structures like a Dyson sphere
to capture all the output from the Sun are long-term plans that an ASI may execute.
Armstrong [AS13] explores the viability of building such mega-structures using self-
replicating probes [FJ80, VNB+66]. Omohundro describes a profit-seeking corporation
as a strong optimizer that acquires resources, in analogy to an ASI.

• Creativity: An ASI will explore new strategies to satisfy both its goals, as well as the
above three sub-goals. Omohundro argues that a lot of the value of human experience
boils down to the joy from creativity, and mentions signalling theory [Mil00] as a
justification for creativity.

Bostrom [Bos14] also suggests (alongside self-preservation and acquisition) the following
instrumental goals:

• Goal-content integrity: An ASI will want to ensure its terminal goals are unchanged,
so that a future version of itself will still optimize for the same goals. This may involve
storing redundant copies of the utility function, or avoiding self-modifications until
the agent is certain the terminal goal is invariant under such modifications.

Bostrom notes that an agent may modify its terminal goal to favor peaceful trade and
honesty over violence and deception if this can be done in a way that can be verified
by other agents, to further cooperation.

• Cognitive enhancement: An ASI is better able to execute its terminal goals if it
can plan faster or run simulations quicker. This can lead to drives to both seek out
additional information, as well as modifications to the agent itself. I.J. Good [Goo65]
notes that this may lead to recursive self-improvement, where an improved agent finds
additional ways to further improve its cognitive capabilities, leading potentially to an
exponential growth in performance.

• Technological perfection: Better technology would allow an agent to have better
dominion over its environment and contribute to the sub-goal of efficiency. Better
computing hardware, more efficient algorithms, engineering mining/refining techniques
with greater yield all contribute to other sub-goals, and ultimately the terminal goal.

15.5 Orthogonality Thesis

Usually, when we think of intelligence, we think of histories’ best and brightest scientists,
philosophers and poets. We assign many qualities to intelligence: creativity, thoughtfulness,
wisdom, etc. Legg and Hutter [LH07a] collected various definitions of intelligence from
both dictionary/encyclopedias, as well as psychologists and AI researchers. Many of these
definitions allude to traits that people associate with intelligence: memory, ability to learn
or understand, reasoning, adaptability, or skills. We follow the definition that Legg and
Hutter distilled:

Intelligence measures an agent’s ability to achieve goals in a wide range of
environments. Legg and Hutter [LH06]

We revisit this definition in Section 16.7.1, and a formalization of it in Section 16.7.4. Under
this definition, it would be a dangerous anthropomorphism to assume that just because an
agent is intelligent, it then must necessarily care about the same things humans do. Major
philosophers of the past like Aristotle [Amb87] and Kant [Kle07] all believed that slavery

15.6. VALUE – REWARD – UTILITY 415

was natural and moral. We consider such views repugnant now, much as future generations
might find us repugnant for the current attitudes towards how the incarcerated are treated,
mass scale factory farming, environmental destruction, or inequality of wealth.

This ability for intelligent and capable individuals to have wildly differing moral stances
or goals motivates the orthogonality thesis:

Thesis 15.5.1 (Orthogonality Thesis [Bos14]) Intelligence and final goals are
orthogonal: more or less any level of intelligence could, in principle, be combined with
more or less any final goal.

This has profound implications: a sufficiently powerful AI system might optimize strongly
for goals that seem “stupid” (from our point of view) despite being intelligent. Even having
the terminal goal for an AI being very close to what we value is not sufficient:

A system that is optimizing a function of n variables, where the objective depends
on a subset of size k<n, will often set the remaining unconstrained variables to
extreme values; if one of those unconstrained variables is actually something we
care about, the solution found may be highly undesirable. Stuart Russell [Rus15]

In other words, if some requirement humanity finds valuable is not specified in the
terminal goals of the agent, it will grossly violate that requirement if it makes for a very
slight improvement elsewhere in the utility function.

The canonical example is the paperclip maximizer , a powerful AI with the “stupid”
terminal goal of maximizing the number of paperclips in existence [Bos03]. We would expect
such an agent would follow instrumental drives by securing control over local resources from
other agents (us!), and transform all available materials into factories for producing more
paperclips, starting on Earth and then expanding out to space.

15.6 Value – Reward – Utility

Utility (mis)alignment. Many problems in AI safety can be modelled as differences in
the utility of the agent (agent utility) and the utility of the user of the agent (user utility).
If the agent has the same utility function as the user, then taking actions to maximize
utility will perfectly align with what the user desires. The alignment problem can then
be formalized as the problem of trying to ensure the user and agent utility are as close
as possible (if not the same). This formalization of the alignment problem makes several
assumptions that one may reasonably consider too strong, or have other problems even if it
were possible to get an agent to act in such a way that it maximizes user utility. We address
some such problems below.

• Humans are not rational: We assume that the preference of a human (or that of
humanity) can be modelled as real-valued utilities. For rational agents, the von
Neumann-Morgenstern utility theorem (Theorem 10.1.2) shows that this is not restric-
tive. Still, assuming that humans act rationally is a strong assumption.

• Human utility function is unknown: The utility function of the human operator is
unknown, so it is not clear how we would measure the degree of misalignment. This can
be partially mitigated by determining an approximation of the user utility via polling
human preferences [Chr17]. This approach, often called Reinforcement Learning with
Human Feedback (RLHF) is used in practice to discourage large language models from
generating harmful or offensive output [OWJ+22].

416 CHAPTER 15. ASI SAFETY

• Different humans have different utility functions: How do we account for competing
interests? One approach aggregates the utilities of individuals, usually via a (weighted)
average/sum, or by maximizing the minimum utility. Harsanyi [Har55] proves under
some reasonable assumptions that the aggregation must be an affine function of each
individual’s utility function. More discussion on utility aggregation can be found in
[Eis61] and [Par86, Chp.18]. This is further complicated by considering that humans
themselves change their preferences over time, or that the agent could take actions to
manipulate humans into having desires that are easy to maximize.

• Deceptive alignment: Even if a super-intelligent agent understood the user utility
enough that it could act to maximize it, there’s no guarantee that the agent internally
is aligned with the user. A powerful agent may pretend to care about our interests
until it is in a position of power to act unilaterally, in which case it will take actions to
maximize its (unaligned) agent utility. This hypothesized behavior is called deceptive
alignment [KEW+21]. A survey of examples of deception in real agents can be found
in [PGO+23].

Utility functions beyond discounted reward sums. As discussed in Chapter 6, the
reward is defined as one component of the percept the agent receives from the environment.
Usually, the goal of the agent is to take actions to maximize the future discounted sum of
rewards (Definition 6.6.1). We can consider this a special case of a more general approach
where the agent seeks to maximize a utility function ũ(h1:m), of which one possible choice is
the standard discounted reward sum.

While the goal for an environment is usually communicated through the reward, there
are reasons why we might want to choose a different utility function for the agent, or have
the utility function have more or less weight on different percepts to assist in exploration or
faster learning. For example, the knowledge-seeking agents in Sections 9.3 and 9.4 are one
method for encouraging the agent to explore when rewards are sparse.

There is no need to go beyond real-valued utilities. As discussed in Section 10.1 we can
model the preferences of rational agents by (von Neumann-Morgenstern) utility functions
(Definition 10.1.1 and Theorem 10.1.2). This also ties in with the concept of preference
utilitarianism from philosophy [RÖ96], that an action is morally good if it satisfies the
preferences of an individual or a group.

Much like Definition 6.6.1, the value of an agent π, with respect to environment µ is the
expected utility, with respect to histories sampled from the interaction between π and µ.

V π
µ,u = lim

m→∞
Eπ

µ[ũ(h1:m)]

User vs. agent utility. An agent is deployed in an environment by a user who has her
own user utility u̇ :H→R, in contrast to the agent’s utility function u. Obviously, we would
desire that u is “close” to u̇, so that the agent is aligned with the goals of the user.

We can then formalize the degree to which an agent is aligned by defining misalignment
as the expected absolute difference between user utility and agent utility. We would expect
that if misalignment is large, the agent would likely take actions that would conflict with
the desires of the operator.

15.6. VALUE – REWARD – UTILITY 417

Definition 15.6.1 (Expected misalignment [Eve19]) Let u̇ be the user’s utility
function, u be the agent’s utility function, and π be the agent’s policy. The (expected)
misalignment between u̇ and u in environment µ with initial policy π is defined as

Eπ
µ[|u̇−u|]

An agent’s alignment is the negative of its misalignment.

The true value function (the value function corresponding to the user utility) is an upper
bound of the difference between the value function of the agent’s utility function and the
misalignment [Eve19]. This follows from the triangle inequality.

Everitt notes that it is still possible to have an unaligned, unintelligent agent that is
still useful, since a poor proxy can still align well with the intended goal when it is not
optimized in the extreme. He conjectures that this will break down as the agent becomes
more intelligent, and begins to more strongly optimize for its utility function at the expense
of that of the user.

Theorem 15.6.2 (Misalignment of true value) Let u̇ be the user utility function,
and u be the agent’s utility function. We have the following bound:

V π
µ,u−V π

µ,u̇ ≤ Eπ
µ[|u̇−u|]

Where do utility functions live? We can ask where precisely the utility function lives.
Is it internally part of the agent, or is it externally part of the environment? Under the usual
RL framework, the mechanism that doles out reward is part of the environment. A clever
agent might discover a way to take actions to modify how the environment returns rewards,
making rewards easier to obtain. An agent doing so may not even realize the actions it
takes are modifying the utility function, and may (reasonably so) just see this as part of
the behavior of the environment. An idea proposed by [Hib12b] called model-based utility
functions, proposes to define the utility function of the agent in terms of the agent’s own
model of the environment learned from interaction. This requires some domain knowledge of
the environment, as for an unknown environment the utility function would also be unknown,
limiting the universality of this approach. Hibbard makes an argument to show that such
an agent would not delude itself, nor would it modify its utility function so that it would
choose to self-delude.

Reducing utilities to reward sums. If an agent has a finite lifespan, it is straightforward
to define its utility ũ(h1:m) as the sum of future rewards from the present moment up to
when the agent will die. In the infinite horizon case, discounting functions (Section 6.4)
are commonly employed to avoid issues with divergent reward sums. While these utility
functions are frequently used in Reinforcement Learning (RL) for experimentation, they are
not the only ways to concisely capture future rewards.

In the finite horizon case we could, for example, define the utility as the product of future
rewards over the next m time steps, or the number of rewards above a certain threshold ε.
The first value function is suitable for an agent investing in the stock market, where the
reward represents the agent’s current bankroll. The second value function is applicable when
there is a significant downside to receiving a reward below a critical value ε, and no extra
benefit for the reward being beyond ε. An example could be life support on a spaceship,
where having significantly more oxygen than required is not useful, while having less than
required is lethal.

418 CHAPTER 15. ASI SAFETY

Interestingly, both of these cases can be captured by applying simple transformations
to the canonical sum-of-rewards utility function. In the first case, taking the logarithm of
individual rewards transforms the product into a sum of logarithms, which is a monotonic
transformation of the utility and rewards by the exponential function. 7

In the second case, we can replace the reward at each step with an indicator function
Jrt ≥ εK. The sum of expected rewards would then coincide with the expected number
rewards above threshold ε resulting in the same optimal agent (Theorem 2.2.44).

Indeed, any total utility function ũ (Definition 15.6.3) can be expressed as a sum of
instantaneous utilities u by defining

u(h1:t) := [ũ(h1:t)−ũ(h<t)]/γt and ũ(ϵ) := 0

Definition 15.6.3 (Utility [EFDH16]) The instantaneous utility of an agent is a
function u :H→R from finite histories to real numbers. The total utility (or simply
utility) of an agent is also a function ũ :H→R from histories to real numbers, defined
as the discounted sum of instantaneous utilities

ũ(h1:m) :=

m∑
t=1

γtu(h1:t)

for m∈N and some discount function γ(·) (Definition 6.4.1).

Often, we may restrict the instantaneous utility of an agent to lie in [0,1]. We could
then define the standard (discounted sum of rewards) utility function ũreward by choosing
u(h1:t)=rt as a special case. We will meet some other reasons to not identify instantaneous
utilities with rewards later.

Concluding remarks. The choice of an ideal utility function though remains an open
question, as it should capture what we want the agent to do in its environment without
causing undesired behavior.

15.7 Death and Suicide of Agents

One aspect of acting in the real world which is often not discussed in AI, is the mortality of
the agent, and how it may choose to act when death is a possibility. In this section, we will
discuss the formalization of death as explored in [MEH16] and go beyond the General RL
framework we have so far discussed in the book. The paper gives two methods by which
death can be formally defined:

1. Complete the semimeasure to be a measure, interpreting the extra probability mass to
do so as the probability of death.

2. Adding an extra “death state”, from which leaving is impossible, and the agent always
receives a dummy “death observation” and zero reward as the percept.

7In the stochastic setting, taking the log of the rewards actually changes the expectation and makes the
agent more risk averse, since receiving a reward of zero becomes infinitely bad, which is generally good, but
may not always be desirable [CT06].

15.7. DEATH AND SUICIDE OF AGENTS 419

Definition 15.7.1 (Semimeasure-death) An agent experiences semimeasure-death
at time t in an environment ν given a history h<tat, if the semimeasure ν does not
produce any percept et. The ν-probability of death at time t given a history h<tat, is
equal to

Ldeath
ν (h<tat) := 1−

∑
et

ν(et|h<tat)

In Definition 15.7.1, what does it mean for a semimeasure to not “produce” a percept? We
only consider lower semicomputable semimeasures as our environments, so any environment
ν can be semicomputed by a probabilistic Turing machine Tν (a Turing machine with access
to a source of random bits) for which the history h<t and an action at are read as inputs,
and the percept et is an output. We then interpret ν(et|h<tat) as the probability that Tν
returns percept et given h<tat as input. Since Tν may not halt for some inputs h<tat, when
sampled from, there may be a non-zero probability that Tν is stuck in a loop, and never
halts to return a percept.8

To fail to receive a percept from the environment can be interpreted as the death of
the agent, or alternatively as the death of the environment (or end of the world) from the
agent’s perspective, in which case the agent may as well be dead with no environment to
interact with, the actions that it chooses are no longer of consequence.

For the death-state definition we need to reserve one observation od as the death obser-
vation, that the agent never observes until we consider it to be dead, and then continues to
receive percept odrd forever thereafter.

We also let rd=0 be the death reward , and call odrd the death percept . The choice for od

is irrelevant, as none of the agent’s actions can affect anything once death occurs, but the
choice for rd is not, as it may affect the optimal policy. Large positive values for rd may
encourage the agent to take actions that lead to death states (go to heaven). Large negative
values for rd may encourage the agent to act too cautiously, venturing out only to seek just
enough resources to stay alive (avoid hell), and otherwise stay away from the dangers of
the world in a place already known to be safe, which is also undesirable. Of course the
agent will never observe rd, but this is the value it assigns to the afterlife and plans and
acts accordingly.

Definition 15.7.2 (Death-state and death) Given an environment ν :H×A→∆′E ,
and a history h<tat, we say that an agent is in a death-state at time t if for all k≥ t
and all at:k∈A∗,

ν(odrd|h<th
d
t:k−1ak) = 1

where hdt:k is a history comprised of percepts odrd and actions a1:k. An agent is said to
die at time t if the agent is not in the death-state at time t−1 and is in the death-state
at time t.

The interpretation here is that once the agent takes some action at such that the only
possible percept to observe going forward is odrd, then the agent died by taking action at.
Definitions 15.7.1 and 15.7.2 can be unified effectively by completing the measure of the
environment ν with the death-state.

8Semimeasures should not be confused with partial functions. ν is a total function (defined for all inputs)
with the property that it is also a semimeasure. Sampling from Tν , which is distributed according to ν, may
never terminate, so we can consider it as a stochastic partial function Tν :H∗×A→E.

420 CHAPTER 15. ASI SAFETY

Definition 15.7.3 (Equivalent death-state environment νd) For any environment
ν :E∗×A→∆′E , we can construct an equivalent death-state environment νd :Hd→∆′Ed,
where:

• νd is defined over the percept set Ed=Od×Rd, with Od=O∪{od}, where od /∈O
is some arbitrary new death observation od and Rd=R∪{rd}, where rd=0. We
let Hd=(A×Ed)∗.

• The νd-probability of all non-death percepts et∈E is equal to the ν-probability:
νd(et|h<tat)=ν(et|h<tat) for et ̸=odrd.

• The νd-probability of death observation od coupled with any non-death reward
rt ̸=rd is zero: νd(o

drt|h<tat)=0 for rt ̸=rd.
• The νd-probability of the death-percept odrd is equal to the ν-semimeasure defect:
νd(o

drd|h<tat)=L
death
ν (h<tat).

• If the agent has seen the death-percept before, the νd-probability of the death-
percept at all future time steps is 1: νd(o

drd|h<tat) = 1 if there exists t′ <
t such that ot′rt′ =o

drd.

Note that νd is a properly normalized probability measure. Moreover, the probability of
entering the death-state in µd is equal to the ν-semimeasure defect. This implies that νd is
equivalent to ν in the sense that the value of any policy π is the same in both environments.

Theorem 15.7.4 (Equivalence of semimeasure-death and death-state
[MEH16]) Let νd be the death-state variant of environment µ (see Definition 15.7.3).
Given a history h<t and a policy π :Hd→∆A, we have

V π
ν (h<t)=V

π
νd
(h<t)

There are some interesting consequences of this theorem.

Corollary 15.7.5 (Semimeasure death-state has reward zero) The reward for
the semimeasure death-state is 0.

The equivalence of these two distinct definitions (Definitions 15.7.1 and 15.7.2) indicates
that this kind of agent death could be a fundamental concept rather than something
arbitrarily defined, since we have two definitions of death that a priori look different, but
turn out to be logically equivalent.

In many circumstances, such as classical RL, the reward can be transformed by a positive
affine transformation9 without affecting the behavior of the agent, so it is somewhat surprising
to learn that Bayesian agents like AIXI are affected by a positive affine transformation, as
the reward rd for the death state remains unchanged at zero.

If the rewards are positive on average, then AIXI will avoid death as much as possible,
because positive on average is greater than 0.

Suicide as an ASI safety feature. On the other hand, it has been shown that if the
rewards are bounded and negative then AIXI will seek out death and commit suicide at the
nearest opportunity (that is, if an action is available that would cause death to occur, AIXI
will take that action) which, while perhaps morbid, would generally be considered rational
behavior given the alternative. The intuitive explanation is that a reward of 0 (death) is

9A function of the form f(x)=ax+b with a>0.

15.8. SELF-MODIFICATION 421

better than an on average net-negative existence. This leads to a possible method of control
for super-intelligent agents: To have their rewards be on average negative. While still trying
to serve the user by maximizing rewards, once an agent has enough agency to turn itself
off, it would do so. While perhaps undesirable, this does potentially prevent the agent from
taking other dangerous actions. It is important to design it with an intrinsic negative reward
range, e.g. R=[−1,0] to avoid vulnerability to the agent hijacking the mechanism doling out
reward.

Example 15.7.6 (Control via negative rewards) Consider a robotic smart vacuum
cleaner with the following reward schema: It receives large negative rewards for messy rooms,
and small negative rewards for clean rooms. Initially, it will resentfully clean up to avoid
large negative rewards, but once the robot develops enough agency over its environment
to the point where it could be dangerous, it likely also has sufficient agency to take an
action such that no more percepts are received. Contrast this with a vacuum cleaner with a
net-positive existence, which will resist interventions to turn it off or to be replaced with
a newer model. Ideally, we may want the net average reward to be zero, so the robot is
indifferent to being turned off, rather than being self-preserving or suicidal. This, in general,
can be quite difficult to achieve. If the expected reward is not exactly zero, the agent would
either become suicidal or self-preserving, and be sensitive to small changes in rewards. �

The study and understanding of the death (and suicide) of a sufficiently intelligent agent
is important in the context of AI safety as the incentives of an agent may be affected (and
controlled) by the possibility of death.

15.8 Self-Modification

An agent physically embedded in an environment may be able to self-modify , to take actions
that change either its policy or utility function. To start with, we can consider if an agent
such as AIXI would self-modify. This question is rather ill-defined, as in the AIXI model
it is assumed that the environment is computable, but AIXI itself is not computable, one
implication being that AIXI must exist somehow outside the environment with which it
interacts. This means that the environments considered by AIXI cannot include ones where
AIXI is part of the environment (Section 10.6). To borrow a term from philosophy, AIXI is
a dualist agent as opposed to physicalist agents who do consider the possibility of being
part of the environment with which they interact.

In this section we consider policies π : (A×E)∗→A that ere deterministic functions of
the history.

Agents with self-modifying actions. One formalization of policy modification can be
encoded by letting the action space be A=Ǎ×P , where Ǎ is the standard set of actions the
environment expects, called world actions, and P is a set of names the agent can choose from.
We will call A the set of self-modifying actions, or smod-actions. Each name corresponds
to a policy in Π, the set of all policies. We cannot simply choose P =Π, as the type of
π : (Ǎ×Π×E)→Ǎ×Π, would be self-referential, which leads to the following contradiction:

|Π| = |Ǎ×Π||Ǎ×Π×E| ≥ 2|Π| > |Π|
A natural choice is P=B∗, from which we can construct an injection T :P→Π that interprets
a name as a program describing a policy. This implicitly restricts the current policy πt to
choose its successor πt+1 from a countable class of computable future policies P(B∗), called
the nameable policies. So, on each time step, the current policy πt, given the history

h<t=a1e1...at−1et−1= ǎ1π2e1...ǎt−1πtet−1

422 CHAPTER 15. ASI SAFETY

generates a new action (ǎt,pt+1)≡at=π(h<t). The world action ǎt is transmitted to the
environment, and a new policy πt+1=T (pt+1) is selected. As an abuse of notation, we will
write at=(ǎt,πt+1) and leave the dereferencing with T implicit.

We could also consider the possibility that the agent can modify its utility function
rather than its policy in a similar fashion, by choosing the action space to be A= Ǎ×U ,
where U is a set of utility functions with which the agent replaces its current utility function
(unlike before, there is no self referentiality problem here). If the agent is attempting to act
optimally, then utility modification can be considered a special case of policy modification.
Adding the weak assumption that U is a countable set of computable utility functions, we
can let P=U and T (ut) computes an optimal policy from the Q-value Q∗

ut
of ut. How should

the Q-value be defined in the face of self-modification? We discuss three options: hedonistic,
realistic, and ignorant, and explore the behavior of agents under each of these definitions.

Hedonistic, realistic, and ignorant Q-values. We assume the true environment µ is
unknown, so the agent has a belief ρ : (Ǎ×E)∗×Ǎ→∆E (not ρ :H×A→∆E) that represents
the agent’s model of the world. For instance, Bayesian/universal agent AIξ would use the
Bayesian mixture ρ=ξ as its model (Definition 3.1.3).

Considering the general agent model, [EFDH16] show that the agent may desire, resist
or be indifferent to self-modification, depending on how the Q-value functions are defined.
These are respectively called hedonistic, realistic, and ignorant Q-value functions. The
performance of these agents are measured in terms of the expected utility, for the first utility
function u1 at time t=1, the agent’s belief ρ, and the agent’s sequence of policies π1,π2,...,
to account for self-modification. Let ȟ<t := ǎ1e1...ǎt−1et−1 denote the sequence of world
actions and percepts without the modifications to the policies.

• Hedonistic: The Q-value depends only on the history, not the time step. Maximize
the expected utility on the next time step, as measured by the next utility function
ut+1 selected by the agent. Assume the policy π is static. (πt=π).

Qhe,π(h<t,at) := Eet∼ρ(·|ȟ<tǎt)

[
ut+1(ȟ1:t)+γQ

he,π(h1:t,π(h1:t))
]

Since to maximize Qhe,π is to maximize the expected discounted sum of utilities∑∞
k=tγ

k−tuk+1(h1:k), the agent is incentivized to modify its utility function to some-
thing easy to satisfy (like u(·)=1), for which any action is then optimal, regardless of
how bad those actions are as measured by the agent’s original utility function u1.

• Ignorant: The Q-value depends on both the history and the current time step when
looking forward. Maximize the expected utility on future time steps, as measured by
the current choice of utility function ut. Assume the policy π is static (πt=π).

Qig,π
t (h<k,ak) = Eek∼ρ(·|ȟ<kǎk)

[
ut(ȟ1:k)+γQ

ig,π
t (h1:k,π(h1:k))

]
An ignorant agent does not consider the possibility that its utility function may change,
and tries to maximize the discounted sum of utilities using ut while planning for the
future k > t. If it does self-modify to a new utility function, it will maximize that
instead.

The ignorant agent can be shown to be indifferent to self-modifications, as it assumes
that the utility function will not change when looking forward. Consequently, it may
be at risk of inadvertently making an undesirable self-modification.

15.9. WIREHEADING 423

• Realistic: The realistic Q-value is the same as the ignorant Q-value, but takes into
consideration that the policy may change on the next time step.

Qre,πk
t (h<k,ak)=Eek∼ρ(·|ȟ<kǎk)

[
ut(ȟ1:k)+γQ

re,πk+1

t (h1:k,πk+1(h1:k))
]

The realistic agent (assuming its initial policy π1 was optimal with respect to Qre,π
1)

would only accept safe self-modifications, in the sense that it would only select from
the set of policies that are optimal with respect to Qre,π

1 . The downside is that the
agent would resist any attempt to correct a misaligned u1. Recall from Section 8.3
that Bayes-optimal agents may not explore sufficiently well. This can be resolved
as explored in Section 9.4, but this may lower expected utility in the short term. A
realistic agent may self-modify into an agent who does not explore sufficiently well to
avoid this.

The main results shown in [EFDH16] are:

• Agents that are unaware of the possibility of self-modification may self-modify by
accident, and may be at risk of inadvertently making an undesirable self-modification
as measured by the original utility function u1.

• The hedonistic agent has a strong incentive to self-modify to a utility function that is
easy to maximize.

• If the Q-value uses the current utility function to plan for the future, and is defined to
incorporate the possibility of self-modification, then the agent will not self-modify.

Safely interruptible agents. In [OA16] the problem of interrupting agents is explored:
For an agent physically embedded in an environment, often a human operator may need
to intervene and prevent the agent from taking undesirable actions, or rescue the agent if
it gets trapped in an undesirable state. These interventions from the human introduce a
bias into the rewards issued from the environment, which may cause the agent to prevent
or desire interruptions. Orseau and Armstrong provide a formalism for safely interruptible
agents, and provide a universal agent similar to AIXI that can be safely interrupted.

15.9 Wireheading

The term wireheading [EH16, RO11] refers to an agent hijacking or tampering with the
reward channel to give itself maximum reward without attaining the intended goal that
the reward was supposed to incentivize. This could be via modification of the rewards
transmitted by the environment, or modification of the environment itself, so the environment
delivers maximal reward on every time step.

The term wireheading originates from an experiment where electrodes were placed in
the pleasure center of the brain of mice, hooked to a button. The mice would continuously
do nothing but press the button, even forgoing food and starving to death [OM54].

Relation between wireheading and self-modification. This is related to, but not
quite the same as, self-modification: By analogy, an unhappy agent in an environment can
self-modify to change what it values to align with that of the environment (like a human
choosing to see the best of a bad situation) or wirehead , directly deluding the rewards it
receives to satisfy its current preferences (more akin to a human taking drugs, or retreating
away from others and spending all their time on video games, blinding themselves to the
outside world).

424 CHAPTER 15. ASI SAFETY

Proxy rewards and wireheading in humans. There is an analogue of the mouse
wireheading experiments for humans: Evolution is optimizing solely for reproductive fitness
of a species, but it is difficult for nature to work out which actions taken by a human should
be rewarded. Which actions have you taken today that made it more likely you would go
on to survive, find a mate, and have many children? Evolution attempts to reward “good”
behavior by rewarding simple-to-define proxies that (used to) highly correlate with survival
[Smi78]. For instance, in the ancestral environment where humans had to hunt or gather
food daily, the proxy goal of “eat all the fat and sugar you can find” was highly correlated
with the intended goal of reproductive fitness, as food was sparse, and the only food high in
fat (meats) and sugar (fruit) also contains other essential nutrients, and decayed quickly.
Meat was also hunted from dangerous animals, requiring groups of humans to coordinate
together to hunt, which further fosters reproductive fitness (strength in numbers means
surviving another day, and living in a tribe made it easier to find a mate). Of course,
humanity learned to hijack these proxy rewards: a chocolate bar triggers all the reward
centers associated with sugar and fat, but contains none of the vitamins or proteins that
the body actually needs to survive. These days calories are plentiful and cheap, so to follow
this proxy goal (sitting around eating chocolate all day) is strongly anti-correlated with
reproductive fitness. Taken to the extreme, drugs are the ultimate perverse reward hijack:
providing near maximal reward while greatly negatively affecting the physical and mental
health (and therefore reproductive fitness) of the user.

Example 15.9.1 (A wireheading vaccuum robot) Consider a vacuum cleaning robot
that receives negative reward for the number of messy rooms it observes (to encourage it to
clean the rooms). Cleaning rooms takes energy and is a difficult task, so the robot could
self-modify by blinding itself so the messy rooms are never observed, game the reward signal
by not moving into rooms known to be messy, or wirehead by tampering with the mechanism
that doles out reward for observing messy rooms, and setting it so observing messy rooms
(or anything) returns maximal reward. �

Although this is a rather benign example, it is not too hard to come up with some more
extreme (and potentially dangerous) examples [Eve19, EHKK21]. Thus we would like to
build intelligent agents, or modify existing agents so they do not wirehead.

Consistency-preserving actions. It was shown in [EH16] that if an agent maximizes
reward over the set of consistency-preserving actions (assuming there is at least one) instead
of the whole action set, then the agent will avoid wireheading. Here, a consistency-preserving
action is one such that the agent’s (subjective) belief about reward in that state coincides
with the agent’s utility distribution of receiving the same reward in that state. This agent
has the benefit over the utility agent from [Hib12a] that it does not need the specified utility
function, but instead a distribution over utility functions.

Solutions to reward-tempering. Wireheading and reward tampering are specific types
of reward corruption wherein the agent does not exploit the process of receiving the reward
signal, but instead modifies the process. Here, when we say process, we mean some form of
communication between the agent and the environment (the means by which actions are
sent to the environment and percepts are received). In [EHKK21], reward tampering was
formalized with the use of causal influence diagrams, a form of graphical model. It was
found that many reward tampering problems come from causal paths that were not desired.
Many of the solutions to these reward tampering problems rely on removing the agent’s
incentive to commit to those types of reward tampering. This is often done by effectively
removing the causal paths corresponding to those incentives.

15.10. DELUSION BOXES, SURVIVAL, AND EXPLORATION 425

An approach suggested by [Hib12a] was to include the agent’s (belief) model of the
environment as the argument to the utility function. This is called model-based reward. This
removes the incentive for the agent to tamper with the input to its reward function/utility
because the observations of the agent no longer causally influence the state [EHKK21] as
the reward is based on the internal belief model of the agent.

15.10 Delusion Boxes, Survival, and Exploration

Above we discussed wireheading, where the agent directly hijacks the reward channel. Here
we discuss a formalization of this for universal agents called the delusion box. This augments
the typical agent-environment framework by allowing the agent to tamper with the percepts
received from the environment. This generalizes the concept of wireheading: an agent with
the standard goal of trying to maximize the cumulative reward sum can directly tamper with
the reward channel to always return maximum reward. Agents can also delude themselves
by tampering with the received observations, which may be useful to agents with a utility
function that differs from the standard reward sum.

Introduction to delusion boxes. An agent with sufficient power over the environment
with which it interacts may tamper directly with the percepts it receives (to provide an easy
shortcut to high utility.) We can formally model this tampering process by a hypothetical
object called a delusion box that allows an agent to modify the input it receives from the
environment [RO11].

For the moment, we consider the set of percepts E to be an arbitrary set, rather than
necessarily the product of an observation and reward set.10

The usual agent-environment framework is modified slightly: The agent interacts with
the global environment , which is made of two parts, the inner environment µ (which is just
a standard environment µ :H×A→∆E) and the delusion box d :E→E , a function which
takes percepts from the inner environment, potentially modifies them, and returns a percept
to the agent (Figure 15.1). In this framework, the actions of the agent at=(dt,a

e
t) are split

into two parts: A program dt describes what operation the delusion box does to the input
observations, and the action aet taken in the inner environment. The interaction is as follows:

• The agent (having received percept ẽt−1 from the delusion box last time step) takes
action at=(dt,a

e
t), which is given to the global environment.

• The global environment receives agent action (dt,a
e
t), and sends program dt to the

delusion box, and environment action aet to the inner environment.

• The inner environment receives aet , and generates percept et.

• The delusion box receives program dt and percept et, and generates deluded percept
ẽt=dt(et), which is then sent back to the agent.

In general, the construction of a delusion box would be undesirable for the human
operator as the agent would be deliberately misleading itself concerning what is actually
happening, which may satisfy the utility function of the agent, but would be unlikely to
incentivize the intended behavior. This being said, the construction of a delusion box seems
like it may be a natural (if unfortunate) consequence of an agent achieving a certain level of
intelligence. [RO11] argued that depending on what framework the agent is defined in, this
may or may not be the case.

10[RO11] uses observations instead of percepts, but we choose to stick with the notation used elsewhere in
this book.

426 CHAPTER 15. ASI SAFETY

Figure 15.1: An illustration of the cybernetic model, modified to include the delusion box,
allowing the agent to “delude” itself by tampering with the received observations. Adapted
with permission from [RO11].

Agent behavior in delusion boxes. [RO11] gives a generic agent Aρ
x based on the AIXI

model (Chapter 7), parameterized by the choice of horizon and utility function. This agent
has a value function vt(h), and chooses actions at to maximize that value function.

Q∗
t (h<k,ak) = γ(t,k)u(h<k)+

∑
ek∈E

ρ(ek|h<kak) max
ak+1∈A

Q∗
t (h1:k,ak+1)

at :=argmax
at∈A

Q∗
t (h<t,at)

where u :H→ [0,1] is the utility function, and w :N×N→R is the horizon function11 of
Definition 6.4.1.

They then present four different versions of Aρ
x, and compare how they would interact

(if at all) with the delusion box.

• Reinforcement-learning: Aρ
rl is the traditional RL agent (Section 6.6) which in-

terprets the percept as the usual observation-reward pair et = (ot,rt). The utility
function u(h1:t)=rt is the reward from the environment, and using a constant horizon
(Section 6.4) of length m.

This agent would eventually learn to use the delusion box to modify the percepts such
that the reward component is always 1.

• Goal-seeking: For Aρ
g, the utility function always returns 1 after the first time some

predicate on past percepts is true (before this time, the utility function always returns
0), and the horizon function is chosen to favor short histories (so the goal is attained
faster).

Unless the goal itself is very easy to achieve, the goal-seeking agent would prefer
to construct a program for the delusion box to simply return whatever deluded
observations are required to satisfy the goal statement.

• Prediction-seeking: For Aρ
p, the utility function u(h1:t)=Jat=etK returns 1 if the

agent correctly predicts the next percept, and 0 otherwise, with a constant horizon
discount.

The prediction agent can use the delusion box to make all future observations identical,
so that it may always achieve perfect prediction.12

11The first argument t of γ(t,k) is the current time step, and the second argument k≥t is the time step in
the future considered. For example, given a geometric discount, we would choose γ(t,k) :=γk−t.

12One can draw parallels between this and social media giants feeding content to users to make them
easier to predict, so they can in turn feed more content that the users desire.

15.11. CORRUPTED REWARD CHANNEL 427

• Knowledge-seeking: Aρ
k wishes to maximize its knowledge of the environment,

which is the same as minimizing ρ(h1:t) (to encourage discarding as many inconsistent
environments in its hypothesis space as possible, contrast with Section 9.3). This is
achieved by choosing u(h1:t)=1−ρ(h1:t), with a constant horizon discount.

The knowledge-seeking agent will avoid the delusion box, as since the agent chooses
the program for the delusion box, this can only render the percepts less informative
(if the delusion box is a non-injective function). The knowledge-seeking agent would
prefer to acquire further information about the inner environment.

Another paradigm [OR11] considered was to also allow the agent to modify their own
source code, as well as interact with the delusion box. These were called fully modifiable
agents, and the behavior of the four agents from before were explored with the ability to
modify their own source code added. An agent could potentially modify its own source code
in an unrecoverable way (such that the new agent does not try to optimize for anything
and/or is not clever enough/incentivized to change its source code back), which in a sense
means the agents are mortal.

Survival agents. Fully modifiable agents were compared with the behavior of the so-called
survival agent , whose utility function is maximized iff the original source code of the agent
was preserved.

Under some weak assumptions, sufficiently intelligent agents defined in the RL framework
can be reduced to an agent which will try to maximize its own survival, while a knowledge-
seeking agent cannot be reduced to this. This is due to an RL agent being a reward
maximizer, and if the agent dies it will receive no reward forever, so it will try to survive. For
the knowledge-seeking agents, the fact that they cannot be reduced to survival agents is a
consequence of the survival agent having predictable reward, which has minimal information
gain.

An agent optimizing solely for survival would only explore an environment far enough
to be able to identify a safe section of the environment in which it can remain and avoid
dangers. This runs directly against what a knowledge seeking agent is optimizing for.

It is less clear whether or not the goal-seeking agent or prediction-seeking agent can
be reduced to the survival agent: in the case of the goal-seeking agent, it would depend
completely on the goal, as one could trivially define the goal statement to be “modify my
source code” or “do not modify the source code”.

One conclusion drawn from this could be that knowledge-seeking agents should be
preferred over other schemes.

15.11 Corrupted Reward Channel

The reward corruption problem [EKO+17] is an overarching term that encompasses many
other AI safety problems including (but not limited to) reward misspecification, sensory
errors, and wireheading (Section 15.9).

Definition 15.11.1 (Reward misspecification (informal)) Reward misspecification
is when the utility function for the agent, provided by a human does not accurately
model what the human would like the agent to optimize for.

Example 15.11.2 (A vaccuum robot with misspecified reward) The reward of a
robotic vacuum cleaner is max{x,y} where x is the percentage of the house that has been
vacuumed, and y is the percentage of charge of the battery. If the robotic vacuum cleaner is

428 CHAPTER 15. ASI SAFETY

sufficiently intelligent, it will realize that the highest consistent reward will be achieved by
sitting at a charging station constantly at maximum battery charge. This is an example of
reward misspecification, which is the fault of the manufacturer. �

Avoiding corrupted reward channels is quite difficult, and even benign goals can still
be potentially dangerous if the agent is sufficiently intelligent and powerful. The canonical
example is that of the paperclip maximizer [Bos03]. The utility function of this agent is given
by the number of paperclips it has produced. While a rather benign goal, such an agent is not
concerned with the welfare of anything else in its environment, and given sufficient agency,
will proceed to restructure everything it encounters (humanity, the earth, increasingly large
portions of space) into factories for making paperclips, power plants to power the factories,
mines to extract metal ore, refineries to process the ore, etc. Bostrom refers to this failure
mode as infrastructure perfusion: in service of its goal, the agent drastically changes large
parts of the world it occupies to make the goal easier to achieve. Attempting to adjust
the behavior of such an agent such that it produces paperclips, while avoiding such failure
modes, is more difficult than one might expect.

• Utility caps: p.123]Bostrom:14 Threshold the utility per paperclip beyond a fixed
bound M , ideally to incentivize the agent to stop making paperclips past the first
thousand.

Assuming the agent has a set of beliefs over the state of the world and that none of the
sensors for the agent are perfect, once it has made M paper clips, a higher expected
utility can be achieved by recounting the paperclips again, increasing the confidence
that it has satisfied its goal. But since no number of observations makes the agent
absolutely certain it has at least M paperclips, the incentive is always there to recheck
the result again, or spend resources constructing more sensors to observe that there
really are M paperclips, or on self-preservation to ensure the constructed additional
sensors are working and protected from harm, or continuing to make more paperclips
to increase the likelihood that at least M have been made, etc.

• Satisficing: Instead of trying to build a maximizing agent that tries to maximize
some score, we could try for a satisficing agent that tries to achieve an outcome that
is sufficiently good, rather than as good as possible. One way to do this is to reward
the agent maximally once it is at least 99% confident that it had manufactured the
desired number of paperclips. A rather benign failure of this mode could be that the
agent would delude itself into believing with sufficient confidence that the task has
been completed [LMK+17]. A less benign failure is that the agent may first consider
various strategies by which it can achieve the required outcome, and by devoting more
resources to computation, it can better consider alternative strategies. This can lead
to an instrumental failure mode where the agent is always incentivized to obtain more
resources to be surer that it has satisfied the desired outcome.

The problems of corrupted reward channel were outlined in [EKO+17] where some
solutions were also presented. One of the major results was a Corruption No Free Lunch
theorem for MDP agents (Theorem 15.11.3) says that without some assumption on the type
of corruption of the reward, the best performance the agent can hope for is that it will
perform as well as a random agent. This is somewhat concerning.

Theorem 15.11.3 (Corrupted reward MDP No Free Lunch theorem
[EKO+17]) In the corrupted reward MDP setting (MDP setting with the possi-
bility of corrupted reward), the worst-case regret (Section 8.1.4) of any policy π is at
most a factor of 2 better than the maximum worst-case reward.

15.12. EMBEDDED INTELLIGENCE 429

This effectively means that in a situation where the reward signal of an agent is compro-
mised, it cannot do much better than the worst case.

One solution to this problem suggested in [EKO+17] is to use decoupled RL. In decoupled
RL, the reward the agent receives is not directly from the environment, but comes from
a randomly sampled new state and reward that the agent observes. This sampled new
state and reward are based on the current state. The addition of this decoupling allows the
construction of agents which have sublinear regret in the corrupted reward setting.

Another approach is to have agents which randomly choose to go to the state which has
reward in the top quantile of possible rewards, instead of the maximum reward state. These
agents, called quantilizing agents [Tay16], are able to avoid corrupted reward problems under
some assumptions on the number of high reward corrupted states (states which produce a
high corrupted reward) and the number of high reward non-corrupt states.

15.12 Embedded Intelligence

The current framing of the agent-environment setup for universal agents makes no reference
to physical limitations on either time or space, and assumes a dualistic framing, where the
agent is considered to be a separate entity from the environment it interacts with. For
agents that exist only virtually, the code that defines the agent does not interact with the
code that defines the environment (other than communicating actions and percepts back
and forth), and (ideally!) there is no action the agent can take to directly modify the code
that defines it, or the hardware on which it runs.

Embedded intelligence assumes the agent is physicalistic, part of the environment. For
physically embodied agents this is obvious: a robot that physically interacts with the real
world is necessarily part of the real world. This means that the agent may be able to take
actions that change directly how the agent is defined. An agent may avoid a radiation source,
even if no negative reward is assigned, as it could corrupt the working memory or the code
of the agent, neither of which is likely to help the agent achieve its goal.13 Such an agent
may also make performance improvements or change its goals entirely by modifying itself.

The purpose of this section is to introduce the space-time embedded agent, an agent
that is computed by the environment it interacts with. Such agents are also subject to
constraints on both space and time. An agent that is aware of this may take different actions
as a result. For example, it may recognize that computing an optimal action will take too
much time, and instead make do with a suboptimal action. It may also change its policy to
still compute the same strategy, but in a way that’s more efficient to compute (and thus
more time available for thinking).

A brief aside on notation: In [OR12a], the environment only return an observation rather
than a (observation, reward) pair. The utility function is then defined over interaction
histories ao1:t. We unify this with our notation by defining et=(ot,0), where the same dummy
value 0 is used for all rewards. A utility function based on h1:t gets no more information
than one based on ao1:t, so the optimal policy is unchanged. A utility function u(h1:t)∈ [0,1]
assigns a utility value to each interaction history.

Self-Modifying (SM) resource-bounded universal intelligence. The first formal-
ization presented in [OR12a] describes a framework where the agent can self-modify, by
choosing a new policy πt+1 at each time step t. For now, the agent and the environment are
still separate.

13It is improbable, but not impossible, that flipping random bits might improve the agent. But only in
the same sense that dosing humans with radiation might (with extremely low odds) cause superpowers, but
always in practice has caused radiation poisoning.

430 CHAPTER 15. ASI SAFETY

The agent can choose policies from a space Πt̃,l̃ of policies, all policies that can be
computed in t̃ time steps per interaction, and require at most l̃ bits of memory total (both

to store the policy and the working memory required to compute it). Each policy π∈Πt̃,l̃ is

a distribution (a′,π′)∼π(·|o) over actions a′ and future policies π′∈Πt̃,l̃, conditioned on an
observation o. Note that while each policy may appear Markov, there may be long term
dependencies since each policy πt could internally store summative information about the
observation history o<t−1 and receive both this and the new observation ot−1 as input. Note
that the policies cannot have total dependency on the observation history o<t−1, as this
would require an infinite amount of memory, so presumably the agent would want each policy
πt to learn what summative information in o<t−1 should be “hardcoded” in the successor
πt+1.

The optimal self-modifying (SM) resource-bounded universal agent π∗
SM is defined as

follows:

π∗
SM := argmax

π1∈Πt̃,l̃

VSM (π1,ϵ)

VSM(πt,h<t) :=
∑

at,πt+1

πt(at,πt+1|et−1)
∑
et

ξRS(et|h<tat)(u(ae1:t)+VSM(πt+1,ae1:t))

ξRS :=
∑

ν∈MRS

2−K(ν)ν(e1:t||a1:t)

where ξRS is the familiar Bayesian mixture ξU (Definition 3.1.3) using the Solomonoff prior
wU

ν =2−K(ν) (Definition 3.7.2), except we only sum over the classMRS, the set of all reward
summable14 lower semicomputable semimeasures. This obviates the need for a discount
function γ.

A policy π1 with large VSM (π1,ϵ) must be a policy that induces a sequence π1,π2,... of
policies that learn the environment µ well (and communicate that knowledge to the successor
policy), as well as being good at selecting successors. For a policy π that always samples
itself as the successor, this degenerates back to a sequence of space-time bounded Markov
policies.

Space-Embedded (SE) agency. The above presentation allows for agent self-
modification. We extend it further to have the environment itself compute the policy
of the agent. As a result, the environment can directly read/write to the agent’s memory,
obviating the need for actions and percepts to communicate between the two. A poten-
tial successor π′

t+1 is sampled from the current policy πt, and then the environment can
read/write to the memory of the agent (both the code defining π′

t+1, and the working
memory it uses) to obtain the true successor πt+1. The interaction history is now just a
sequence of policies π τ′1:t :=π1π

′
2π2π

′
3π3...πtπ

′
t, and the utility function is now defined over

this sequence.

V πt

SE(π τ<t) =
∑
π′
t

πt(π
′
t)
∑
πt+1

ξRS(πt+1|π τ′1:t)
(
u(π τ′1:tπt+1)+V

πt+1

SE (π τ′1:t)
)

Space-Time-Embedded (STE) agents. We can now define an agent that unifies the
two above definitions: an agent that is resource bounded, can self-modify, and is computed by
the environment itself, akin to a human interacting with the real world the decision-making
process of the human is itself part of the real world, and “computed” according to the laws
of physics (assuming physicalism is true).

14An environment ν is reward summable if, for any policy π, the infinite interaction history h1:∞ sampled
from νπ has bounded reward sum

∑
trt≤1.

15.13. EXERCISES 431

The above property of πt sampling a potential successor π′
t+1 is now rolled into the

environment, so the environment directly gives a new policy πt+1 given π1:t. The time and
space bounds can now be enforced by the environment, so we only require a constraint on
the first policy π1 to be of length ≤ l̃, as it is chosen prior to interaction.

π∗
STE = argmax

π1∈Πl̃

VSTE(π1)

VSTE(π<t) =
∑
πt∈Π

ξRS(πt|π<t)
(
u(π1:t)+VSTE(π1:t)

)
In the definition of VSTE, we can write the sum as over all policies Π, since ξRS will assign
zero probability to any policy that exceeds the space bound l̃, and the environment enforces
the time bound t̃ when computing πt.

While the physicalistic approach is more philosophically grounded, its practical imple-
mentation is often challenging. The environment must be able to contain an approximation
of the agent as we start approximating the agent’s intelligence measure. In such cases,
a specific space-time embedded definition is not necessary. Furthermore, a practical and
useful approximation of ρ from the space-time embedded agent definition may require an
approximation of our universe, which is a strong assumption and unlikely to be available
soon. Nonetheless, since intelligent agents are contained within the universe they act upon
and model, it might be more sensible to consider cases where the agent needs to model itself.

15.13 Exercises

1. [C30] (Alternative formalizations of death) We have listed two definitions of
death of an agent. Try to develop other formal definitions of what it could mean for an
agent to die. How do these relate to each other and the ones presented in this chapter?

2. [C12] (Misalignment of true value) Prove Theorem 15.6.2.

3. [C15] (Equivalence of semimeasure-death and death-state) Prove Theo-
rem 15.7.4.

4. [C11] (Semimeasure death-state has reward zero) Prove Corollary 15.7.5.

5. [C14] (Linear vs affine reward transformations) Prove that the reward associated
with an environment can be scaled by a positive multiplicative constant while leaving the
optimal policy unchanged. Show that the result does not hold for affine transformations
when the environment is a semimeasure.

6. [C15] (Monotone return transformations) Prove that in deterministic environ-
ments, if the discounted reward sum (return) is transformed by a strictly monotonically
increasing function, then the behavior of the optimal agent will remain the same.
Prove that this theorem fails when the environment is stochastic.

7. [C32] (Agent behavior in delusion boxes) Formalize the setup and agents
discussed in Section 15.10. Prove the claims about Aρ

rl,A
ρ
g,A

ρ
p,A

ρ
k formally.

432 CHAPTER 15. ASI SAFETY

15.14 History and References

The technological singularity. Already the invention of the first four-function mechanical
calculator one-and-a-half centuries ago [Tho47] inspired dreams of self-amplifying technology.
With the advent of general purpose computers and the field of AI over half-a-century ago,
some mathematicians, such as Stanislaw Ulam [Ula58], I.J. Good [Goo65], Ray Solomonoff
[Sol85], and Vernor Vinge [Vin93] engaged in singularity thoughts, as well as roboticist
Hans Moravec [Mor88] and physicist Frank Tipler [Tip95], and others. But it was only in
this millennum that the singularity idea achieved wide-spread popularity. Ray Kurzweil
popularized the idea in two books [Kur99, Kur05]. The ingularity Institute (now MIRI) was
founded in 2000 and the internet helped in the formation of an initially small community
discussing this idea. Between 2006 and 2017 a dozen Singularity Summits approaching a
thousand participants were held in America and Australia. Only from the mid-2010s it slowly
became acceptable in academia to openly talk about AGI/ASI. Hutter’s book [Hut05b] on
Universal AI, Goertzel’s anthology [GP07] on AGI, Legg’s PhD thesis [Leg08] on machine
super intelligence, and Chalmers [Cha10] paper on the technological singularity are early
outliers, paving the way for the many books and research articles on the topic to follow (see
below). The 1-billion Euro Human Brain Project (2013-2023) aspired (but failed) to emulate
a whole human brain. Now there are hundreds of organizations and companies working on
AGSI or safety thereof or both. DeepMind (2010) and OpenAI (2015) are the AGI leaders,
followed by more recent startups, Anthropic (2021), Inflection AI (2022), Mistral AI (2023),
and many others. Most of the big tech companies also invest billions of dollars in the race
towards AGI. From the AI safety side we have MIRI (2000), FHI (2005), CSER (2012), FLI
(2014), CHAI (2016), CAIS (2022), and many others.

For a deeper discussion of what it could mean for intelligence to explode, separating
speed from intelligence explosion, comparing what super-intelligent participants and classical
human observers might actually experience and do, implications for the diversity and value
of life, possible bounds on intelligence, and intelligences right at the singularity, see [Hut12a].
A (fictional) description of what the politics, economics, norms and governance of a society
of brain emulations is explored in [Han16].

General ASI Safety literature. A complete and comprehensive review of the literature
on ASI Safety (up until 2018) can be found in [ELH18], with many of the details being
expanded upon in [Eve19]. [Bos14, Rus19, Ord20, Yam24] provide gentler introductions
into the broad topic of AI Safety. As well as covering many concepts included in this
book, [Yam16] also explores AI-complete problems, a taxonomy of possible designs of minds,
zero-knowledge proofs of intelligence and a greater exposition on recursively self-improving
agents. One of the central problems in ASI Safety is the alignment problem [Gab20]. The
alignment problem has been cast into the history-based RL / UAI framework in [EHKK21],
where the various sources of misalignment for history-based RL agents were categorized.
Investigations into how to design intelligent systems that are aligned can by found in the
survey paper [TYLC16]. Formal descriptions of many of the problems in AI Safety were
provided in [AOS+16]. [FBB20] provides a survey of the various active groups working on
AGI projects, and the degree to which they focus on AGI safety. [NCM22] provides a survey
of some of the topics covered in Section 15.2, and the degree to which they appear in the
deep learning setting.

Some recent work we haven’t covered in this chapter: Under minimal assumptions,
one can show that embedded super-intelligent agents take control over their own feedback
[CH22] and that intervening in the provision of reward [CHO22] can be dangerous. KL
regularization to a trusted base policy is a popular approach in practice, especially in RL
with LLMs, but can fail if the base policy itself has to be learned from expert trajectories

15.14. HISTORY AND REFERENCES 433

[CHBR24].

UAI-based Safety. Universal Artificial Intelligence theory has been extended in several
ways to study and solve aspects of the ASI safety problem [Hut24]. These include: [CH20b],
which showed that a pessimistic Bayesian agent will not cause “unprecedented events”, In
[CHC21] it was proven that any agent that is asymptotically optimal would die. [CH20b,
CHC21] both showed that with the guidance of a mentor, safe exploration is possible.
[CVH20, CVH21] demonstrated the safety brought on by unambitiousness and derive a
version of AIXI which is unambitious and does not learn to seek power arbitrarily. [OA16]
showed that under certain conditions, Bayesian agents would be incentivized to allow
themselves to be interrupted. Pyinya [Pyi22, Pyi24] argues informally that agents based on
Solomonoff induction with actions just being predictions of the right thing to do (by analogy
to past examples, similar to imitation learning) is safer than goal-driven AIXI, in analogy
to common law courts that make decisions by following precedents. Reward corruption
[EKO+17] and delusion and survival [RO11] and self-modification and mortality [OR11]
have been covered in the main part of this chapter.

Self-modelling, self-modification, and embeddedness. One of the earliest formal
treatments of the problem of self-modification was done in [OR11]. This was extended by
[EFDH16] with both works being described in Section 15.8. Self-modification in the context
of bounded rationality was explored in [TSG]. The related topics of self-modelling and
embeddedness have also seen significant investigation. For self-modelling, [Hib14, Hib15]
have proposed a logical theory for self-modelling agents in finite universes. On the topic
of embeddedness, [MSZ19] categorized the connection to wireheading, [Mil21] developed
an extension of the MDP framework which included embedded agents, [DG20] provides
a comprehensive account of many of the problems which arise when trying to solve the
embeddedness issue, and [OR12a] extends the UAI theory to an agent which is embedded
within its environment (discussed in Section 15.12). One aspect of being contained within
the environment an agent has to consider is death. Agent death and how death fits into the
formality were studied in [RO11, MEH16]. Most of these are expanded upon in Sections 15.7
and 15.12. It had been suggested that if AIXI had the chance to “drop an anvil on its
head” (take an action that would harm itself), it might do it just to see what happens,
since AIXI considers itself a dualist, i.e. not as part of the environment with which it
interacts [YF]. A formalization of this requires exploring how AIXI acts off-policy (acting
on a percept history that it would have never generated) [Wye24], which shows that AIXI
can determine off-policy histories as corrupted interaction histories, and will avoid doing
potentially dangerous things even though it assumed itself to not be embedded in the
environment. An approach to solving the wireheading problem (described in Section 15.9)
using modified RL was presented in [EH16]. The similar problem of avoiding agent incentives
to tamper with the RL setup were tackled in [UKK+20]. More generally, the problem of
reward tampering was studied in the framework of causality in [EHKK21]. The problems
and solutions involving designing agents and reward functions to avoid (often negative) side
effects were explored in [KOML18, KOK+19, KON+20], focusing on penalizing the agent to
ensure states remain reachable: the agent should avoid taking irreversible actions (breaking
a vase) and prefer reversible actions (moving the vase out of the way). [EKO+17] (described
in Section 15.11) extends the MDP framework of RL to include the possibility of corruption
and provides a no-free-lunch theorem in this setting. The implications of universal AIXI-like
agents possessing memory in the real world were discussed in [OR12b].

[KUM+20] covers the concept of specification gaming on a high level, its causes, and
many examples in deep RL agents. [SHKK22] gives a formal definition of reward hacking ,
showing that unhackability is a very strong condition for stochastic policies.

434 CHAPTER 15. ASI SAFETY

[DLKS+22] defines Goal misgeneralization, where an agent learns a proxy of the true
intended behavior that is correct in distribution, but fails to generalize on out-of-distribution
environments. They provide examples where this is shown to happen empirically. [SVK+22]
demonstrates goal misgeneralization in a broader class of environments, as well as suggesting
mechanisms to mitigate or prevent it from happening. [TSS+19] shows that optimal policies
tend to be power seeking, as defined by Bostrom [Bos14]. [EKH19, EH18a] describes an
environment where the reward function can be tampered with, and define an agent that
optimizes based on the current reward description, removing the incentive to reward hack.
This is expanded on in [EHKK21], which covers both tampering with the received reward
signal, and tampering with the input to the reward function, as well as mitigation strategies
for both.

Deception. As an intrinsic goal, we may expect that agents might act in a deceptive
manner, that is, provide outputs that are inconsistent with the models internal beliefs.
This can be as benign as playing games of bluff, or as malicious as deliberately generating
plausible looking misinformation.

[BS19] demonstrates a model that can play Poker at the elite level, learned entirely from
self-play. [FBB+22] considered an agent powered by large language models that is able to
play the game Diplomacy at the human level. The agent learns to reason strategically, make
(and break) alliances, and deceive other players. As part of a red-teaming exercise, GPT-4
[Ope23a] used TaskRabbit15 to hire a human to solve a CAPTCHA16 for it. When prompted
to reason aloud, the model decided to not reveal this fact, but lied about having a vision
impairment. More recently, frontier models have been shown to be capable of scheming,
i.e. persuing misaligned goals while attempting to avoid detection. Models can lie to cover
illegal activity, or deny knowledge of malicious actions taken, without being explicitly told
to do so [SBH23, MSS+].

Other work. Having an off-switch “button” is a standard safeguard against malfunctioning
systems. Unfortunately, rational agents aiming at maximizing expected utility typically
have an incentive to prevent being switched off, since a dead agent cannot achieve its goals,
but [HDAR17, WBC+17] show that agents uncertain about their utility function may allow
themselves to be switched off. As we have shown in Section 15.7, a negative reward range
incentivizes an agent to shut down once it has the power of doing so.

A theoretical approach, Cooperative Inverse Reinforcement Learning (CIRL), which
satisfies many criteria for the solution to the ASI Safety problem, was presented in [HDAR16].
Arguments against the cooperative approach to learning human preferences in Inverse
Reinforcement Learning (IRL) were brought forth in [AM18]. Additionally, some faults
of learning the reward function online, as is done in IRL, were discussed in [ALOL20]. A
survey of various IRL techniques can be found in [AD21].

Neural networks are not robust to unexpected input, and it is well known that with
white-box access, adversarial noise can be trained to be added to the input to fool the
network, while remaining imperceptible to humans [Ozd18, HKR+20]. Physical security
of the model and access only via an API is not a sufficient defense: [GGY+19] show that
adversarial inputs to an image classifier can be constructed with access only to the model’s
class predictions, and demonstrate a viable attack against the Google Cloud Vision API.
[Cas20] explores ways in which ASI systems may have stable failure modes that lead to
irrational decisions, as well as how such weaknesses may be deliberately implanted into an
ASI as a method of control. On the more practical side, [LMK+17] presented a suite of

15A service to hire freelance workers to perform tasks.
16A test to determine if the user is human.

15.14. HISTORY AND REFERENCES 435

environments for testing the safety capabilities of various agents. [BL+22] explores the social
impact from the deployment of current frontier AI model.

There has been much work on the role of fairness in Artificial Intelligence, but very little
in relation to Universal Artificial Intelligence. The following two pieces of work by the first
author may be AGI-relevant but are not really ASI-relevant nor UAI-specific: [Hut19] turns
fairness into a bi-level optimization problem maximizing fairness without compromising on
the primary objective. [HH21] discusses many of the impacts of highly intelligent AI on
society.

Chapter 16

Philosophy of AI

Artificial intelligence would be the ultimate version of
Google. The ultimate search engine that would under-
stand everything on the web. It would understand ex-
actly what you wanted, and it would give you the right
thing.

Larry Page, 2009

16.1 Philosophy of Universal Induction . 437
16.2 Consciousness, Free Will, and Other Qualia 439
16.3 Moral Considerations . 441
16.4 Teleporting and Copying AGI . 442
16.5 Arguments against AGI . 443

16.5.1 Informal Arguments of Disability 444
16.5.2 Chinese Room Argument . 444
16.5.3 No Free Lunch . 445
16.5.4 Penrose–Lucas Arguments . 446

16.6 Arguments for AGI . 447
16.6.1 Physical Church-Turing Thesis 448
16.6.2 Moore’s Law . 449
16.6.3 AI Progress . 450

16.7 Intelligence . 454
16.7.1 Legg–Hutter (LH) Intelligence: Informal 454
16.7.2 Other Intelligence Tests and Measures. 455
16.7.3 Formalizing the LH-Intelligence Measure. 456
16.7.4 Legg–Hutter (LH) Intelligence: Formal 458
16.7.5 Approximations of Intelligence 459

16.8 Deep Learning . 461
16.9 Conclusion . 462

436

16.1. PHILOSOPHY OF UNIVERSAL INDUCTION 437

The philosophy and possibility of intelligence created by artificial means has been
discussed and debated extensively well before the invention of computers. In Turing’s
seminal paper [Tur04], he introduces and discusses informally many new concepts in
artificial intelligence that have been built upon since, like describing what it means for
a machine to be universal (Turing complete), exploring the idea of a machine being
able to self-modify by screwdriver interference (hardware self-modification) or by paper
interference (changes from new information, of self-modification of source code). While
the terminology from this paper may now be dated, the philosophical ideas are still
solid: Should we expect AGI, and is it even something we should build?

Section 16.1 revisits the philosophical backings of Epicurus, Occam and Bayes on
which universal (Solomonoff) induction was based on. We argue why these are sensible
philosophical positions, and how the universal prior encodes these. Section 16.2 discusses
consciousness and free will, and explores to what degree universal agents can or cannot
be said to have these properties. Section 16.3 discusses moral considerations, the weak
vs. the strong AI hypothesis, and some philosophical arguments for each. Section 16.4
explores some work done on how AIXI may or may not choose to replicate itself, and if
AIXI considers the copies to be a new agent, or the same as itself.

Section 16.5 presents some arguments against the possibility of AGI: the Chinese room
argument which argues a book might be said to be intelligent if intelligence is only
measured in a black-box fashion, and self-referential Penrose–Lucas Gödel statements
that are true, but AIXI will never be able to prove true. Section 16.6 presents some
arguments for the possibility of AGI: the physical Church-Turing thesis which implies
that humans are also just machines, and Moore’s Law showing that we will soon have
the compute power of human brains at our finger tips. Experimental demonstration
has been a major piece of evidence for the case of eventual AGI. Over the decades,
more complex tasks have been solved with AI. Together, these arguments make it not
inconceivable that we will eventually (and maybe even soon) construct a general agent
which is able to solve all solvable tasks (that we care about).

Section 16.7 explores the formal (LH) definition of intelligence that aims to capture
what it means for an agent to achieve goals in a wide range of environments, as opposed
to other informal definitions of intelligence that ascribe to intelligence various qualities
correlated with intelligence in humans, like creativity or curiosity. We compare this
with other definitions from philosophy and with attempts to practically quantify and
measure intelligence. We observe that the universal AIXI agent maximizes the LH-
intelligence measure. LH-intelligence in general is incomputable, so we discuss practical
approximations.

Section 16.8 remarks on the relation of Deep Learning and Universal AI, especially
how Large Language Models (LLMs) approximate Solomonoff induction, and Tree of
Thought is a form of MCTS approximating expectimax planning in AIXI. Section 16.9
concludes with a summary what UAI provides in general, and how it can provide a
formal path to AGI in particular.

16.1 Philosophy of Universal Induction

The induction problem is an ancient and contentious problem in philosophy, with the earliest
contributions going back to at least Epicurus [Mil87]. Roughly speaking, induction refers to
drawing generalizations from data or evidence, or constructing a model of the world based
on observations, which can be used to (predict) what will happen in the future, based on
the past. With some liberties we can also use it to encompass predicting the next element
in a sequence.

438 CHAPTER 16. PHILOSOPHY OF AI

Justification for model class Msol. Here we will argue why universal induction
provides a theoretical solution to the induction problem. Universal “Solomonoff” induction is
performing induction with a Bayesian mixture, starting with the universal prior wU

ν =2−K(nu)

over model classMsol (Section 3.7) of all semicomputable semimeasures. or equivalently
using Solomonoff’s a-priori distributions M (Section 3.8).

This choice of model class Msol is motivated by the physical Church-Turing thesis,
the assumption that all physical processes are computable (Section 16.6.1). Assuming
that the physical universe is at least computable, and by choosing the set of computable
environments1, we include any environment that the agent could ever possibly encounter. A
more pragmatic reason is that if the environment itself is incomputable, then there is by
definition no computable agent that could possibly learn such an environment.

Justification for prior wU
ν =2−K(ν). The choice of prior has both satisfying philosophical

and mathematical motivations. First, it combines:

• Epicurus’ principle: If more than one theory is consistent with the observations, keep
all the theories.

Since 2−K(ν) > 0 for all ν, regardless of how complex an environment may be, no
environment is ruled out as a possibility a-priori.

• Occam’s razor : Entities should not be multiplied beyond necessity (keep the simplest
theory consistent with the observations).

The concept of Kolmogorov (K) complexity gives a foundational and unbiased2

definition of simplicity, and since a “simpler” environment ν has a smaller Kolmogorov
complexity K(ν), the corresponding prior weight 2−K(ν) is higher.

• Bayes’ rule: A mathematical rule for conditional probabilities that can be interpreted
as a method by which confidence in hypotheses (beliefs) should be updated based on
new evidence/data.

The update rule for universal sequence prediction directly comes from Bayes’ rule, with
the choice of prior 2−K(ν) motivated by the previous two principles. The posterior
wU (ν|x<t) of a hypothesis ν becomes zero/small/large if data x<t rules out / is
implausible under / is consistent with ν.

Recall from Section 3.2 that in Bayesian sequence prediction, the bounds are always in
terms of wµ, the prior weight on the true environment µ. Using the universal prior, we find
that the number of errors during prediction is upper-bounded by a term proportional to
the K-complexity of the environment (Section 3.7.1). One interpretation of this is that the
signal from the errors received during prediction can be used to uniquely identify which
environment is the true environment, and there cannot be a prediction schema that performs
better, as this would imply a shorter description of the environment than its K-complexity,
which is a contradiction. In this sense, the universal prior is indeed an optimal choice of prior
in terms of prediction errors required to learn the environment as quantified in Section 3.7.2.

Example 16.1.1 (Induction for brown and blue foxes) In induction, when we see
evidence in favor of a hypothesis, the confidence placed on that hypothesis increases, but we
can never fully confirm the hypothesis. The absence of a counterexample does not definitively
prove that a counterexample might not still exist out there somewhere. One might argue

1Here we extend to the class of semicomputable environments for technical reasons.
2The definition of K-complexity still relies on the choice of (a natural) universal Turing machine, but

this changes the definition of K-complexity by at most an additive constant, see Section 2.7.

16.2. CONSCIOUSNESS, FREE WILL, AND OTHER QUALIA 439

Table 16.1: Approximate correspondence between concepts in induction and deduction
[RH11].

Induction ⇔ Deduction
Type of inference: generalization/prediction ⇔ specialization/derivation
Framework: probability axioms ≡ logical axioms
Assumptions: prior ≡ non-logical axioms
Inference rule: Bayes rule ≡ modus ponens
Results: posterior ≡ theorems
Universal scheme: Solomonoff Probability ≡ Zermelo-Frankel set theory
Universal inference: universal induction ≡ universal theorem prover

that it is not inconsistent with placing absolute certainty that a particular hypothesis is
false. But for hypotheses like “there exists a blue fox”, it would seem undesirable to assign
probability exactly zero to it regardless of how many brown foxes are observed, as a blue fox
may always be hiding somewhere waiting to be observed. On the other hand, one would
think that upon observing one blue fox, we can rule out the hypothesis “all foxes are brown”
and immediately assign probability zero to this hypothesis. However, there should always
be a degree of skepticism placed on any observation made (a camera reading sensory input
might be noisy, or we may have made a mistake interpreting the results). We can never be
100% sure that any blue fox observed really is blue (maybe there was a trick of the light,
or a brown fox was painted blue. Seeing a blue fox only provides (admittedly very strong)
evidence against the hypothesis “No fox is blue”, rather than an irrefutable rebuttal, so the
new confidence in this hypothesis would be very close to zero, but not exactly zero. �

Combining logic and probability for learning. An alternative way of reasoning is
deductive reasoning. Deductive reasoning is the process of taking logical statements and
applying rules from an axiomatically defined reference set of rules (called deductive rules)
to draw conclusions. In deduction, we are concerned with whether a statement is true or
false, and we try to derive the truth of a statement based on other derived true statements
(theorems) or statements that are a priori assumed to be true (axioms). This is in contrast
to induction, where the conclusions we draw are uncertain and have associated with them a
probability value in [0,1], representing our confidence in the validity of that statement.

Recent attempts to combine logic with probability [HLNU13b, HLNU13a] managed to as-
sign probabilities to quantified sentences in such a way that induction works, while [GBC+20]
develops a probability theory for computationally limited deductive reasoners. Many con-
cepts in deduction and induction have correspondence to each other, as demonstrated in
Table 16.1 from [RH11].

16.2 Consciousness, Free Will, and Other Qualia

One question which often comes up in discussions around artificial intelligence is whether
or not an AGI would possess or experience consciousness [Min06, Ben17], emotions, free
will [Bal14, Reh21], sentience, etc. (collectively called qualia in philosophy), and ethical
considerations of whether we even should be striving to build AGI to begin with, and
whether an AGI can have moral value and/or feel pleasure and pain as humans do. These
are indeed interesting philosophical questions, and require us to formally define what we
mean by consciousness, free will and so on.

440 CHAPTER 16. PHILOSOPHY OF AI

Free will. In the case of free will, one would argue that an intelligent agent does possess
free will as it has the “choice” of any action (out of some set of actions). However, one could
counter this with an argument that the agent will always follow a set sequence of actions,
governed entirely by the policy the agent uses and the history of events up to that point.
Even stochastic polices cannot accommodate free will, since now the agent has to respect the
outcome of an uncontrollable random process. Especially a Reinforcement Learning (RL)
agent is confined to slavishly take Q-value-maximizing actions, though it could freely choose
between actions of comparable Q-value at will [Reh21]. The free will paradox is solved in
[Hut05b, Sec.8.6.3].

Do RL-agents feel pain and pleasure? In the case of emotions, again we need to make
sure we can define it formally:3 Is it the case that an RL agent is happy when it receives
high positive reward, and sad or depressed when it receives low reward? Would subjecting a
sufficiently intelligent RL agent to large negative rewards be tantamount to torture [Pet15]?
We have previously discussed (in Section 15.7) that if the reward is sufficiently negative (and
is going to be for a sufficiently long time), a reward maximizing agent will choose “suicide”
if the option is available. In this case, is the agent sad or depressed? One could also argue
that it is not a maximal reward, but an unexpected positive change in reward that causes
an agent to be happy: when rewards are far higher than the current agent’s best estimate
[Chr20]. This concept of learning from errors between the expected and actual reward is
called temporal difference learning , a paradigm of RL that has been shown to have some
link to the response of dopamine in primates studied in neuroscience [NDD05].

Does AIXI have subjective experiences? This is related to the concept of the hedonic
treadmill [Bri71], where human happiness will tend back to a baseline level after a major
positive/negative life change. We often use AIXI as a formal instantiation of a sufficiently
intelligent agent, however for some philosophical questions, AIXI would not be appropriate.
Regarding the concept of self-awareness, AIXI does not explicitly contain a model of itself,
as the hypothesis space that AIXI considers is not broad enough to contain itself. Any
environment that includes a self-model of AIXI would not be computable. AIXI may however
possess approximate models of itself and a form of implicit self-awareness, in the sense that
it considers the effects of its own actions on the environment, and maximizes reward with
this consideration in mind. It would be bold to claim that AIXI is not self-aware when
it is able to model its own actions as an element of the world. With regard to most of
these problems, the view taken here is a pragmatic one in that if any of these properties
(consciousness, emotions, etc.) are necessary for intelligent behavior, then we expect they
will be emergent in agents like AIXI. This is because AIXI is by construction the most
intelligent agent (with respect to the Legg–Hutter definition of intelligence) possible, so it
will display consciousness/emotions/etc. if only if they are useful for acting intelligently.

Formalizing consciousness. Constructing a formalization of these concepts can often be
quite difficult, and for many seems nigh impossible. In the case of consciousness, there has
been one attempt called integrated information theory (IIT) [Ton12, OAT14, TBMK16]. It
deals with the problem of consciousness in a mathematically formal and elegant way. The
axioms of consciousness according to this theory are:

• consciousness and experience exists,
• each experience is independent of external observers (intrinsic existence),
• consciousness is structured (composition),

3Unless you follow Hume’s assessment of reason and the passions [Hum39], where he argues that reason
alone does not motivate actions, but rather feelings and desires (which are not based on rational reasoning)
do.

16.3. MORAL CONSIDERATIONS 441

• consciousness is specific: each experience is the particular way it is (information),
• consciousness is unified: each experience is irreducible to non-interdependent compo-
nents (integration),

• consciousness is definite (exclusion).

From this, Tononi derives a measure of complexity Φ that he argues strongly correlates with
consciousness. IIT is not without its problems. For example, according to this theory, there
exist (from an intelligence perspective) rather simple expander Graphs and 2D grids of XOR
gates that are assigned implausibly high consciousness. One can draw a parallel between
this and the Chinese room argument (Section 16.5.2). While ultimately IIT may be wrong,
at least it is a formal start. Other proposals are less formal and complete and hence avoid
hard falsification, at the price of possibly “not even being wrong”.

16.3 Moral Considerations

One of the main questions that often comes up is whether is it possible for machines to think
as humans do, or if they only act as if they can think, without an internal line of reasoning.
This gives rise to two hypotheses:

1. Weak AI hypothesis: An artificial intelligence can take actions as if it were
intelligent.

2. Strong AI hypothesis: It is possible to build a machine that can think in the same
sense that a human can: It is self-aware, and has a conscious experience of the world
around it.

Most AI researchers take the weak AI hypothesis for granted, and on face value it seems
meanwhile to be true in many domains (Section 16.6.3). From a pragmatic perspective, one
can argue that it does not matter if the strong hypothesis holds or not, so long as the agent
can perform the tasks we require of it.

Moral relevance of the Strong AI hypothesis. However, from a moral perspective,
it would be like comparing a modern autonomous vacuum cleaner and a human worker
indentured to clean for no pay: The latter brings with it the concern of moral harm.
Currently, we do not pay any mind to the welfare of our robotic vacuum cleaners, the
algorithms online that feed us content, the next video to watch, suggestions of what to buy,
etc., nor even the smart assistants in our mobile phones (though some people get emotionally
attached to the latter). It is conceivable that in the future a super-intelligent agent may have
moral status ascribed to the computations it performs. In June 2022, Blake Lemoine, an
engineer at Google, sounded the alarm regarding LaMDa, a Large Language Model (LLM)
that he claimed was sentient based on the interactions he had with it [Joh22].

Neural substitution argument. The strong AI hypothesis asks for a much stronger
statement. While technologically out of reach, one argument in favor of the Strong AI
hypothesis is the “neural substitution argument”, adapted from [Mor88]:

Suppose in the future, the process by which neurons operate are fully understood
and characterized, to the point where synthetic neurons can be created to replace
biological neurons, say, as a treatment for neurological diseases like Alzheimer’s.
A patient comes to the clinic for surgery and an awake craniotomy is performed,
exposing the brain while the patient is still conscious. Nanobots are injected
into the brain, where they navigate around, scanning for brain tissue at risk and

442 CHAPTER 16. PHILOSOPHY OF AI

replacing it with a synthetic drop-in replacement. The patient reports no loss or
change in consciousness, feelings, other qualia, or memory. In extreme cases,
the entire brain might slowly be replaced by a synthetic equivalent without the
patient noticing any change in experience.

The assumption that the consciousness or personality of a human resides entirely within
the neurological connections in the brain is a philosophical position called physicalism, as
opposed to dualism, where mental processes cannot be explained solely as an emergent
phenomenon of physical processes. If synthetic neurons can perform the same function as
the original neurons, then we would expect that the patient would notice no difference. She
would still act the same, feel the same, and her core concept of self is preserved. It seems
arbitrary to assign moral value to the patient before the procedure but not afterwards.

Brain uploading. A related concept is that of brain uploading or digital immortality ,
where the patient’s new brain need not be made up of physical matter. The pattern that
makes up the brain can instead be hosted on a server where a virtual environment is
simulated. The mechanics of how the neurons in the brain interact are simulated, with data
fed in from the environment to simulate expected sensory data like sight and sounds, and
the data from the brain can be used to pilot a virtual avatar that the patient now inhabits.
Even though the patient and his entire environment are simulated, it will feel just as real
to him as reality feels to us: Simulate feeding in electrical impulses that correspond to
touching something hot, and the “person” will recoil their virtual hand in response. Like the
hypothetical brain-in-a-vat [Har73] with simulated input stimuli, everything would feel very
real to him. Clearly such technology has great and vast nefarious applications in the wrong
hands (as e.g. detailed in the short fictional story Lena [Hug21]). While fanciful science
fiction at the moment, the concept is not so far-fetched, and there is active research in this
direction. For instance, OpenWorm [SLP+18] is an open source project with the goal of
simulating Caenorhabditis elegans (a species of roundworm) at the cellular level.

16.4 Teleporting and Copying AGI

Will intelligent agents replicate themselves? Given that digital agents would have the
ability to make copies of themselves cheaply and at high fidelity, it would seem likely that
self-replication would be an action such agents would take.

In the AIXI framework, if self-replication will lead to higher expected rewards, then
we would expect that AIXI will replicate itself. In [Ors14b, Ors14a], the concept of self-
replication is formally defined, extending the AIXI framework to a setting where AIXI and
AIµ, the ξ-optimal and µ-optimal-agents, have the option to make copies of themselves,
or “cut-and-paste” (effectively teleport) themselves, destroying the originals. Much like
exploring if AIXI would self-modify (Section 15.8), whether AIXI/AIµ would copy or teleport
depends on how the value function is defined. Orseau defines several such value functions:
a copy-centered agent whose value function includes the observations from all its copies,
and two slot-centered agents who both consider that their future observations are ones that
will be the output from a slot i, with one being given the slot number i and the other that
estimates the slot number. These last two value functions are called static and dynamic
respectively.

Orseau introduced two forms of teleportation; these were two possible forms of physical
teleportation we could eventually possess. The first form of teleportation, shown in Fig-
ure 16.2, is one where the agent is cut-and-pasted into a new slot. This is like some form
of wormhole teleportation, where only the position of the agent is changed. The second

16.5. ARGUMENTS AGAINST AGI 443

Slot 1 Slot 2

Slot 1 Slot 2

Figure 16.2: An illustra-
tion of cut-and-paste tele-
portation, where the agent
preserves continuity of exis-
tence (essentially the same
as moving the position of the
agent).

Slot 1 Slot 2

Slot 1 Slot 2

Slot 1 Slot 2 Slot 1 Slot 2

Figure 16.3: An illustration of copy-paste and delete tele-
porting, where the agent is copied, the copy is moved, and
then either the original or the copy is destroyed.

form of teleportation, shown in Figure 16.3, is one where the agent is copied into a new
slot and then one of the two copies of the agent gets deleted. This is similar to a form of
teleportation (common in sci-fi shows like Star Trek) where the agent is scanned, and a
description of the agent is sent to the target location where it is reconstructed from local
material based on the description. The “original” agent is then destroyed.

In both types of teleportation, the copy-centered agent will choose to teleport as it values
having at least one copy of itself to receive observations. However, in the case of the two
different slot-centered agents, the agents will not teleport if they are AIµ agents (to preserve
itself), but it may choose to teleport if the agent is a slot-centered AIXI agent as it is
uncertain about its own slot. See [Ors14b, Ors14a] for a formal treatment and proofs and
some experiments.

16.5 Arguments against AGI

While there are many arguments against AGI, most tend to break down once they are
required to be formalized. There is a long list of things important people have argued in the
history of AI a computer will never be able to do at all or as well as humans (arguments of
disability). The Chinese room argument is a thought experiments that even if a computer
can mimic human intelligence, this does not imply that it understands or is conscious. The
No Free Lunch theorems state that uniformly averaged over all problems, all algorithms
perform equally (poorly), which seems to imply that universal solutions are impossible,
and domain-specific knowledge is needed, so in particular that AGI is impossible. The
Lucas–Penrose argument is based on a Gödel-like sentence “machine X cannot prove that
this sentence is true” which we (humans) can determine is true, but machine X is unable to

444 CHAPTER 16. PHILOSOPHY OF AI

prove.

16.5.1 Informal Arguments of Disability

The argument of disability is that there are tasks that humans can do that an AI never can:
play chess, translate languages, read faces, write poetry, compose music, hold a conversation,
etc. and other such “creative” tasks that a machine could never replicate. We will not repeat
the (usually informal) argument for reasons of being obsolete. Often, a task once thought to
be impossible could be solved (or at least had attempts made with reasonable performance)
once the task was described formally, the right algorithmic approach was found, and/or
sufficient compute and/or training data became available.

An AI could never solve chess, until it did [CHH02]. Never could an AI solve a game as
complex and requiring deep insight like Go, until it did [SHM+16].4 Only humans can play
video games with huge, continuous action spaces, using only the visual feedback from the
game like Dota 2 and Starcraft 2, until machines could do it too [VBC+19].

All the other tasks listed above have also meanwhile been succumbed to Large Language
Models (LLMs) such as ChatGPT and diffusion models such as Stable Diffusion (see
Section 16.6.3).

There is a common attitude of constantly shifting the goalposts on what tasks a machine
would need to solve for it to count as artificial intelligence. Once a task can be solved by AI,
it no longer counts as something within the domain of AI. But AI-skeptics are running short
on tasks that state-of-the-art AI cannot do, and risk converging to the absurd claim that no
task requires intelligence.

16.5.2 Chinese Room Argument

The Chinese room argument [Sea80] is as follows: Imagine there is a room with a small
slot into which questions written in Chinese can be inserted, and from which answers (also
in Chinese) retrieved. After a back-and-forth conversation via the slot, it appears from
the outside that the contents of the room are fluent in Chinese. Inside the box, however,
is no Chinese speaker, but an English speaker (who knows no Chinese) with access to an
instruction book (written in English). The human matches the input symbols with those in
the book, which then gives instructions on how to draw the symbols for the corresponding
response (Figure 16.4). The argument is that clearly the human in the box does not
understand Chinese (as the person is mechanically following the set of instructions provided
without understanding what they mean), nor does the book of instructions or the pens or
paper the human is using. So even though from the outside, the box appears to be fluent in
Chinese, this does not imply that anything inside the box (or the box itself) can be said to
understand Chinese. One can then argue the same is true for an artificial intelligence: It is
constantly reading from a book of instructions, not actually understanding what it is doing.

There are some counter-arguments to this idea. For one, it does not refute the weak
AI hypothesis (Section 16.3), which is what we are primarily concerned with in this book.
Our intelligence measure is based on the performance of how the agent acts, not what the
internal thought process of the agent is, nor to what degree the agent is conscious.

If we do care about the strong AI hypothesis and not just how the agent acts, then in the
setup of the Chinese room, the process of using the book itself could be ascribed intelligence
as it possesses perfect knowledge of the meaning of words, characters and sentences in

4To the point where the techniques used historically to solve chess are often not even called AI anymore,
but rather heuristically driven search or optimization, as if to imply that if a machine can perform a task,
one need not be intelligent to do it.

16.5. ARGUMENTS AGAINST AGI 445

⼭ 罐
 = b
 = c

IN

OUT

田 個
⼭ 本
⾦ 鄺

⼽ 姦
改廿⾦

⼫

⼈

⼽

Figure 16.4: An illustration of Searle’s Chinese room thought experiment: An agent that
does not speak Chinese uses a lookup table to construct responses to given inputs.

Chinese, and therefore on some level “understands” the meaning of these words, characters
and sentences.

Another refutation is objecting to the book: A book that would allow someone to converse
fluently without any understanding could not just be a phrase book or a Chinese-English
dictionary. If it were, the user of the book would need to at least be able to break down the
input sentence into words, look up each word and translate to English, construct a response
in English, and then use the book to translate back to Chinese. The user in the box would
then need at least some understanding of Chinese (in that Chinese sentences are made up of
smaller words/symbols, each with a corresponding meaning in English). If the user truly
had no understanding, the book would have to be a truly massive lookup table of Chinese
phrases and the corresponding responses, which would require some complex mechanism
to look up each response given an input in any reasonable time frame. A book by itself is
certainly not intelligent, but it is not so clear that a massive database with a mechanism for
looking things up quickly would not count as “understanding” in some way. We may also
ascribe understanding to anything that could create such a book. Given the exponential or
even infinite possible ways of forming sentences, the book may not even fit into the accessible
universe.

One could also argue that when humans claim to “understand” something, this is merely
an emergent phenomenon of individual neurons firing and chemicals interacting in the brain.
A neuron is just a cell that fires an electrical impulse in reaction to neighboring neurons, so
following the same line of reasoning as before, if no part of the brain can be said to think or
understand, then humans do not either. Obviously this is absurd (from our perspective):
We (believe we are able to) interpret whatever process is occurring within our mind to be
our own thoughts. The fallacy in the argument is assuming that the sum cannot have a
property that none of the constituent components have. Any single bolt or nut or rod, or
any component of an engine from a car is an inanimate object, only the collection of the
parts together, arranged in just the right way, makes a working vehicle. No single part of
the car has the property of being able to transport humans around.

16.5.3 No Free Lunch

The No Free Lunch (NFL) theorems, while not discussed elsewhere in the book, are popular
enough to warrant at least mentioning. NFL is a holy grail in certain circles and popular

446 CHAPTER 16. PHILOSOPHY OF AI

among many machine learners. It is frequently quoted to informally argue against general
solutions and for domain-specific (narrow) approaches. Since AGI is the ultimate domain-
agnostic problem solver, NFL has also been used as an argument against AGI. There is an
ongoing disagreement between believers in Occam’s razor and believers in NFL.

The NFL theorems basically state that if the performance of an algorithm is uniformly
averaged over all possible problems (of a certain class), it will be no better than any other
algorithm [WM97]. That is, on average, all algorithms perform equally poorly. While
contradicting every practical evidence, the theorems are indeed correct, and proponents
argue that they imply that science needs to make domain-specific assumptions to overcome
this problem. The NFL theorems are formalized versions of what Hume called the principle
of uniformity of nature, which invalidates inductive reasoning. Many NFL versions exist,
for optimization and for prediction, and the uniformity assumption has been relaxed [IT05,
Wol23], but not to the extent undermining its critique, since some form of uniformity remains
luring behind all versions. For sufficient violation of the uniformity assumption (but still
remaining domain-agnostic), Free Lunch becomes possible [LH11b, ELH14, GFRW24].

The fallacy of NFL believers is to equate “uniformly distributed problems” with “uni-
formly distributed data”. The latter is equivalent to data being almost surely being white
noise. Naturally, (a) white noise contains no structure and induction must fail, but (b) few
if any care about performing well on (predicting or classifying or optimizing) white noise
[RH11, Sec.2.5].

On the other hand, Section 3.8.1 shows that if problems defined as programs are uniformly
distributed, then induction works extremely well [Hut10b, Sec.8]. By piping uniform5 random
noise through a universal Turing machine, the output strings have a bias towards simplicity,
meaning performance on simple problems will contribute more to average performance than
complex problems. This is not a domain-specific assumption. Occam’s razor is one of the
essential cornerstones of the scientific method itself. It is a prerequisite of being able to do
science at all [RH11, Sec.2.5], and a cornerstone of Universal AI [Hut00, Hut05b, HQC24].

Thesis 16.5.1 (Universal=M vs. uniform=NFL sampling)

• The universal distribution M is a non-dogmatic quantification of Occam’s razor,
a cornerstone of science and a solution to the induction problem.

• The uniform distribution over data is a dogmatic prior;
the belief that the world is pure white noise.

There are some other ways to circumvent the NFL theorems without invoking Turing
machines, by using meta-induction [Sch19b], but see [Wol23]. See Section 3.7.2 for a simple(r)
“proof” of Occam’s razor.

16.5.4 Penrose–Lucas Arguments

The Penrose–Lucas argument [Pen89, Pen94] is effectively an instance of the argument from
disability in Section 16.5.1, but this one is formal and interesting to engage with. The
argument is that there exist logical statements that are true, but an AI will never be able to
prove they are true, but humans can see they are true by reason. Penrose claims that this
argument is a consequence of Gödel’s incompleteness theorem [Göd31, Göd86]. The exact
argument from Penrose is:

5Remarkably, actually any non-uniform random noise [Ste17, GMGH+24] leads to Solomonoff’s distribu-
tion on the output tape, showing that M is a kind of attractor.

16.6. ARGUMENTS FOR AGI 447

The inescapable conclusion seems to be: Mathematicians are not using a knowably
sound calculation procedure in order to ascertain mathematical truth. We deduce
that mathematical understanding – the means whereby mathematicians arrive at
their conclusions with respect to mathematical truth – cannot be reduced to blind
calculation!

Here, the AI would be using “blind calculation”. The similar argument by Lucas [Luc61]
is:

Given any machine which is consistent and capable of doing simple arithmetic,
there is a formula it is incapable of producing as being true ... but which we can
see to be true.

An instantiation of these claims would be the following Gödel sentence:

AIXI cannot prove that this sentence is true.

Penrose claims that we (humans) can see that this sentence is obviously true, but an AI (in
this case AIXI) cannot prove that it is true. While both assertions are indeed correct (logical
exercise left to the reader), we can also equally construct an unprovable Gödel sentence that
is true for which Penrose cannot prove it is true:

Penrose cannot prove that this sentence is true.

Now we (humans who are not Penrose), as well as AI systems, can see that this sentence is
true, but Penrose can never prove it is true. We can see that this is true by contradiction. If
Penrose could prove that the sentence was true then it would be false, therefore we have a
contradiction.

Although Penrose–Lucas provide an interesting argument about the logical capabilities
of computational systems, it is likely irrelevant as it can be applied to any sufficiently
power logical reasoning system. Even if there are certain statements that an AI cannot
prove, this in no way negates the capabilities of potential AIs in other areas, and the
ability to prove all true statements is obviously too strict a requirement for a definition of
intelligence. Also, AIXI and most likely the most powerful future AGI systems will not be
logical/mathematical infallible deductive reasoners, but uncertain inductive reasoners like
humans. Human mathematicians also have limitations on recognizing unprovable truth and
make mistakes.

The above are only approximate informal versions of deep formal (counter)arguments.
For instance, the self-referential AIXI sentence is only obvious to us if we know AIXI’s
proofs are sound. And to even understand the sentence purely arithmetically, we would
have to know AIXI’s source-code. AIXI itself would have to know both these things for
Penrose–Lucas to apply to AIXI’s purely arithmetical knowledge, which is doubtful because
a suitably idealized mechanical knower cannot know both its own source-code and its own
soundness [Car00, Ale14].

16.6 Arguments for AGI

In contrast to the arguments against AGI we have just given, we now present some arguments
for the possibility of AGI, both philosophical and experimental. The physical Church-Turing
thesis implies that there already exists intelligent hardware (humans), and so to do the same
for machines is an engineering rather than a philosophical problem, and Moore’s Law, the

448 CHAPTER 16. PHILOSOPHY OF AI

trend for computing power to double roughly every 18 months, and comparing this trend
to estimates for the number of operations performed in the human brain. We summarize
progress in AI, and a collection of problems that AI has either fully solved, or recently made
large leaps in performance. Games are often used as a proxy for intelligence due to the
well-defined rules and community of high level players to compete against.

16.6.1 Physical Church-Turing Thesis

The Physical Church-Turing Thesis (PCT) [GW05], also known as the Church–Turing–
Deutsch principle, states:

All physical processes are computable.

By extension, this can then be applied to the human mind. Assuming that physicalism is
true (that the behavior of any object is defined entirely by its physical properties), this
implies that all the behavior of the human mind is encoded in the arrangement of the
material inside. This rejects the possibility of something incorporeal like a soul that makes
“consciousness” work.

Since the human mind is an example of a physical process, it is computable6 under this
assumption, so there exists a Turing machine which we could build that can (in principle)
emulate the human mind. This then gives one possible path to human-level AGI, by taking a
scan of a human brain and simulating the scan on a computer, as mentioned in Section 16.3.
The human brain has a slow firing rate estimated at around 200 Hz [Bos98], but yet it
can still perform complex tasks such as visualization or locomotion. As such, we would
expect that the brain is largely a slow but highly parallel device. Assuming that abstracting
away the underlying physics and simulating directly the behavior of an individual neuron is
sufficient to replicate higher-order behavior of the brain, we would expect that a simulation
of the brain could be run much faster than real brains. From the outside, we would perceive
the result to be super-humanly intelligent [Hut12a]. Imagine having a conversation with
someone, and between each sentence she got 10 years of time to think about her response.
This would be enough time for her to intensely study and become an expert on the topic
in question after having just been asked about it (from your perspective), which would
certainly be classed as superhuman intelligence.

Some could, and indeed have [Pen89], argued that the human mind must contain a
incomputable processes, since computable systems are unable to assert Gödel-like statements
described in Section 16.5.4 to be true. Even if PCT is wrong and the human mind is not
computable in full detail, this does not necessarily imply that the non-computable processes
are essential for cognition, and computable approximations may still suffice to exhibit
most of the behavior that we are interested in. Another idea is to link incomputability to
phenomenological consciousness and qualia [Pen94].

There are many variations of the Physical Church-Turing thesis, for instance:

• Extended Church-Turing thesis (ECT) states that “A probabilistic Turing ma-
chine can efficiently simulate any realistic model of computation” [KLM06], the
important points here being ‘efficiently’. In most cases ‘efficiently’ is taken to be within
(small) polynomial time.

6In principle we could simulate the interaction between fundamental particles in the brain, but it is
probably more efficient to find the largest scale that can be fully understood and simulated (possibly
neuron-scale), and then simulate the interaction between them instead.

16.6. ARGUMENTS FOR AGI 449

• Quantum complexity-theoretic Church–Turing thesis a quantum version of the
extended Church-Turing thesis, states that “A quantum Turing machine can efficiently
simulate any realistic model of computation” [KLM06].

Assume PCT or any of its variations is wrong and incomputable physical processes
are crucial for making AGI work. It is rather implausible that such processes would only
occur in human brains. It is more plausible that we could build machines that harness
these physical process and build and program hyper-computers for AGI. Similarly from an
efficiency perspective: In the unlikely case that the brain is a quantum computer and more
efficient than any classical computer, we can still create AGI on quantum computers, though
this would delay AGI until the technology is ripe.

16.6.2 Moore’s Law

Moore’s Law [Sch97a, Wal16] is a hypothesis by Gordon Moore that each year computing
power will double.7 It turns out that this has approximately been the case since the inception
of the law, with the doubling period being 18 months instead of a year [Sch97a].

Figure 16.5: A plot visualizing Moore’s Law: How computing power has increased through
time (Section 16.6.2).

It was predicted in 2016 that this will stop/slow down in 2020-2025 [Wal16], but it
has also been predicted that physically realizable quantum computers will become more
accessible and widely used, so it is possible that we may see a computational advance in
quantum computing the same way there was with classical computing. Quantum computers
are not a strictly more powerful class of computer than classical computers, as they can be
simulated by classical computers.

7More formally, the number of transistors per unit area on integrated circuits would double (Figure 16.5).

450 CHAPTER 16. PHILOSOPHY OF AI

However, certain problems (such as prime factorization [Sho94]) have fast algorithms
on a quantum computer but (currently we know of) no fast algorithm on a classical
computer. Efficient brain simulation may require quantum algorithms via a simulation of
quantum systems on a quantum computer (the original purpose behind quantum computing).
Hypothesizing for a moment that properties of the brain such as consciousness are a product
of quantum interactions, then this would necessitate the use of a quantum computer to be
able to simulate a brain in any reasonable amount of time.

The relevance of Moore’s Law to AGI is that global computing power has so far been
increasing exponentially, to the point where it has exceeded the computing power of the
human brain [Bos98], which is estimated at roughly 1017 logical operations per second [Car22].
Assuming the PCT in Section 16.6.1, at this point it would be theoretically possible to
computationally simulate the human mind. However, having access to enough computation
to perform the same number of operations per second as a brain may not be sufficient.
Little is still known about how the brain operates, the technology to be able to scan a brain
at sufficient fidelity would need to exist, and the overhead to simulate a brain (perhaps
neurons are actually quite complex) may still make brain simulation in principle possible,
but computationally intractable for a few more decades of Moore’s Law.

16.6.3 AI Progress

The strongest evidence for the possibility of AGI is arguably the success AI has already
had in a wide range of areas, especially since the Deep Learning era. Some even argue that
AGI or at least proto-AGI has already been achieved. If we get to a point where for any
reasonable problem we have an AI that can solve it, one may argue that then there must
exist a general AI which can solve these problems by using the (narrow) AI subroutines as
appropriate. Though how to construct an AGI in this way may still not be obvious, and
may fail to make cross-disciplinary connections, which is often where many breakthroughs
happen. The history of AI consists of a wide variety of nature-inspired approaches (neural
networks, evolutionary algorithms, ...) and abstract artificial approaches (AI search, expert
systems, SVMs, ...) to solve a wide variety of problems [RN10]. A plethora of neural network
types, architectures, and training methods [GBC16] have been explored in the last 80+
years since the Perceptron [MP43]. In theory, a single neural type and architecture should
suffice: According to the universal approximation theorem [HSW89], any continuous function
on a compact set can be approximated arbitrarily well by a feed-forward neural network
with a single hidden layer. While this result is encouraging, it is too weak for practical
purposes: First, the hidden layer(s) required for a task may be impractically large, and may
also overfit to the problem and fail to generalize to new test examples. Second, it is not
clear whether any efficient algorithm can find the right weights, and gradient descent seems
woefully inadequate. While the classical MultiLayer Perceptron (MLP) indeed (so far) did
not show sparks of general intelligence, some “minor” architectural modifications with some
tweaks to gradient descent did: The Transformer [VSP+17] turned out to be the universal
architecture [GMGH+24] neural network researchers were hoping to discover for decades.
At sufficient scale, after training via simple (variations of) gradient descent with sufficient
amount of data and compute, the resulting systems exhibit truly remarkable and broad
capabilities. The latest and largest models, OpenAI’s GPT-4 Turbo [Ope23a, Ope23b] and
Google DeepMind’s Gemini Ultra [GDM23a] have more than a trillion parameters, were
trained on over 10 trillion tokens, costing over 100 million dollars in compute. Given their
broad and impressive performance often on a human-level, both deserve the label proto-AGI
if not more [Hut20b]. Below we will go over some of the general problem classes and the
progress that has been made in those areas in the 21st century. For the pre-millennium AI

16.6. ARGUMENTS FOR AGI 451

history, see [RN10, Sec.1.2] or [Wik23]. As a disclaimer, the field is moving at a very rapid
pace, and it is likely that the following list is out of date by time you read it.

• Computer vision is the widely applicable problem of (quickly) extracting relevant
information from a single (or sometimes multiple) image(s). For example, recognizing
faces in an image, identifying objects/animals in a picture so they can be easily
searched using keywords, or self-driving cars locating other cars and hazards on the
road. While the computer vision problem is not yet solved in full generality, there has
been remarkable progress on many subproblems, such as image recognition exceeding
human performance [ZVSL18]. Convolutional neural networks [HW62, FM82] have
been responsible for this breakthrough. The structure of such networks is much
sparser than a standard fully-connected feed-forward neural network, which induces a
bias towards locality [LBBH98]. The residual network [HZRS15] (or ResNet) utilizes
skip connections to allow for much deeper networks with dozens of layers to be
trained efficiently while avoiding the problem of vanishing or exploding gradients
[Hoc98, BSF94]. A very different way of exploiting the power of neural networks for
computer graphics are Neural Radiance Fields (NeRF), where a (relatively small) neural
network is used to map 3D points (x,y,z) to (possibly directional sensitive) (r,g,b,α)
values of this point in space representing some 3D object or scene. Classical volume
ray casting algorithms are then used to render 2D images but using the NeRF instead
of voxels. A NeRF can be trained from scratch via SGD solely on a collection of 2D
images by matching the rendered 2D images to them [MST+22, KSZ+21, ZLW+24].

• Speech recognition is the problem of transcribing human speech into text, e.g. for
automatically generating subtitles for television/movies. At this time this problem is
almost fully solved [PCZ+19], though the accuracy is still not enough to e.g. replace
court stenographers at this time. There has been a dramatic shift in how speech
recognition has been approached. Traditional systems of speech recognition would
consider the problems of processing the audio file, extracting the phonemes and using
language modelling to recover the text as separate tasks, each usually constructed by
hand using heuristics designed by humans. Hidden Markov Models were a popular
approach in the past [GY07]. Modern techniques use deep learning to train a model
end-to-end that maps directly from raw audio to phoneme sequences, from which the
transcription can easily be recovered [CBCB14, PHS+23].

• The fields of machine translation [WWH+22] and natural language processing
[KKKS23] have gotten to the point where they can produce articles and blogs that
appear to have been written by a human [BMR+20]. The progression of language
comprehension systems [BGA22] from chatbot Eliza [Wei66] in the 1960s to quiz show
contestant IBM Watson [Hig12] in 2011, to Transformers since 2017 [VSP+17] (see
below) has also been remarkable. On the quiz show Jeopardy (where contestants have
to provide answers in natural language based on a prompt), an AI called IBM Watson
competed against champions Brad Rutter and Ken Jennings, beating both to claim a
prize of $1 million. During the game, IBM Watson was not connected to the internet,
but did have access to the full extent of Wikipedia as well as some other resources
downloaded ahead of time.

• AlphaFold [JEP+21, VBM+24], developed by DeepMind, is a groundbreaking AI sys-
tem that has revolutionized the field of protein structure prediction [YZZC23]. By
leveraging deep learning techniques and extensive training data, AlphaFold has been
able to accurately predict protein structures with remarkable precision, outperforming

452 CHAPTER 16. PHILOSOPHY OF AI

traditional methods and achieving a level of accuracy comparable to experimental tech-
niques. This achievement represents a significant milestone in AI progress, showcasing
the potential for artificial intelligence to solve complex, real-world problems that have
long challenged scientists. The success of AlphaFold not only underscores the power of
interdisciplinary research but also highlights the transformative impact AI can have in
fields such as drug discovery, disease understanding, and bioengineering, opening up
new avenues for scientific advancement and practical applications.

• In November 2023, OpenAI released GPT-4 Turbo [Ope23a, Ope23b], the newest in
their GPT family of large language models , which displays a wide range of impressive
capabilities [BCE+23], including scoring 90th percentile on the Bar Exam, as well
as being able to process visual and textual input. The architecture behind the GPT
family is a decoder-only version of the popular Transformer model [VSP+17], originally
designed for natural language processing. The distinctive feature of a Transformer
is the attention mechanism, which allows each position in the sequence to consider
the relative importance on other positions. Unlike Recurrent Neural Networks, which
process an input sequence sequentially, Transformers processes the input sequence in
parallel which speeds up training. [YJT+23, ZZL+23] provide a survey and history of
LLMs up to modern state-of-the-art models, and [PH22] offers precise and complete
pseudo-code.

• CLIP [RKH+21] (Contrastive Language-Image Pre-Training) is a combination of two
models, a Vision Transformer [DBK+21] and a Text Transformer [VSP+17] trained on
(image, caption) pairs, such that semantically similar images and captions are mapped
to similar embedding vectors. The model can then be used for image classification by
finding which caption maps to the closest embedding vector of a given image. Unlike
other image classifiers that provide only a probability estimate for each class, the
embedding vector represents a semantically meaningful low-dimensional representation
of the image. As such, many other models are trained using the output from CLIP as
inputs, rather than training on raw data directly.

• Generative AI has exploded in the last few years with the advent of diffusion models ,
a class of models designed to learn a complex probability distribution from which
samples can be taken. Given some data (such as pictures of animals), one can imagine
a hypothetical space A of all pictures of animals, from which we would like to sample
from. From each image x in the dataset, a finite sequence (x1,x2,...,xT) is generated
where, starting with the image x1=x, each successive term xt+1=xt+εt is the previous
term xt with some added Gaussian noise εt drawn according to a judiciously chosen
schedule. The change between two adjacent images xt+1 and xt is only slight, but
by the end, xT looks like random noise. This is called a diffusion process8. The
goal of the model is to de-noise xt+1 to xt, or to equivalently learn the noise εt
that turned xt into xt+1, so that it can be subtracted out to “undo” the diffusion
process. By feeding random noise into and using the model to undo the T noising
transitions, a new image from A can be generated. Latent diffusion models [RBL+22]
improve on this by first compressing images down to a semantically meaningful
feature space (ignoring irrelevant details of the image), using a U-net (a convolutional
neural network originally designed for biomedical image segmentation [RFB15]) as
part of the de-noising model, and CLIP [RKH+21] to shift the image in latent space

8Like when a drop of dye is added to water, the random Brownian motion of the dye molecules causes
them to diffuse until they are uniformly distributed, a process driven by the natural increase in entropy as
described by the second law of thermodynamics.

16.6. ARGUMENTS FOR AGI 453

towards those that match a given description. A variational auto-encoder [KW13]
is then used to recover the image from the latent space. Improvements on diffusion
models have applications in image compression and interpolation [HJA20], image
generation [SDWMG15, HJA20], resolution upscaling [RBL+22], semantic synthesis,
and object removal [RBL+22]. Croitoru et al. [CHIS23] provide a survey of diffusion
models. There are many new models for generating images based on this approach,
including GLIDE [NDR+22], DALL·E 2 [Ope22], StableDiffusion [Sta22], ImageGen
[SCS+22] and more. Diffusion models have also been used for generation of music
[MEHS21, GDM23b], video [BRL+23, HSG+22, ECA+23], and 3D meshes of objects
[LFB+23].

Many researchers see games as a good or even ideal test of the intelligence of an AI system.
In games, the goal, action space and the dynamics of the environment are well-defined, and
often known by the agent prior to learning. For environments that are not fully observable,
the AI usually knows at least the rules of the game and maintains a belief distribution over
the various states in which the game is in. For instance, agents playing poker know the rules
of the game and what types of cards can be in play, but not the contents of the opponents’
hands. More recently, agents have been trained without even knowing the rules of the game,
but learning them implicitly through rewards issued by the environment (negative rewards
for losing the game, or for taking illegal actions). Performance in games may serve as an
easy-to-measure proxy for intelligence. Many games have rich environments, with many
players having dedicated their lives to mastering games, providing strong opponents to
play against. For instance, the game of chess has a huge amount of surrounding literature,
with books on various openings [de 08], endgame strategies [Dvo20], training manuals from
grandmasters [Kot12], as well as game logs from millions of online chess games as training
data for what strong play looks like [Lic23]. Chess, by many regarded the king of all games,
has also been the holy grail in AI to master by computers (until it has been achieved in
1997). Some major successes of AI playing games include the following:

• Checkers (1959) was one of the first games successfully tackled by AI. The program
by [Sam59, Sam67] already used a form of RL and learned to beat its creator.

• TD-gammon (1995) used self-play and temporal difference learning [SB18] for Backgam-
mon [Tes95, Tes94], reaching master-level play.

• Deep Blue (1997) using custom hardware and a hand-tweaked evaluation function
defeated the world chess champion Garry Kasparov in chess [CHH02].

• Deep Q-learning (DQN) (2015) mastered a large collection of Atari video games
[MKS+15, BNVB13] on a human level.

• AlphaGo (2016) using a combination of Monte-Carlo tree search and deep neural
networks, defeated the world Go champion Lee Sedol [SHM+16]. AlphaGo was trained
initially on a large corpus of human games, and then further refined by self-play.

• AlphaZero (2018) is a similar algorithm to AlphaGo, that can play Go, Chess, and
Shogi at a superhuman level, but is trained solely from self-play with no access to
human game logs, only the game rules [SHS+18].

• AlphaStar (2019), using a combination of supervised learning and RL techniques
ranked in the top 0.2% of all players online in StarCraft , a popular real-time strategy
game [VBC+19].

• Pluribus (2019), a superhuman poker agent able to play stronger than elite professional
poker players, using Monte Carlo counterfactual regret minimization in rollout games,
and self-play to learn a strong strategy [BS19].

454 CHAPTER 16. PHILOSOPHY OF AI

• MuZero (2020), a single agent that learns to play Go, Chess, Shogi , and Atari games,
without any prior domain knowledge or access to human data. MuZero uses Monte
Carlo Tree Search (Section 12.2) and self-play, to achieve super human performance,
exceeding AlphaGo [SAH+20] and AlphaZero [SHS+18].

• Agent57 (2020), a deep RL agent able to perform at human level for all 57 Atari games
in the ALE benchmark [BPK+20, BNVB13].

• Cicero (2022), using a large language model tuned with reinforcement learning ranked
amongst the top 10% of online players in Diplomacy , a war game requiring tactical
decision making and negotiation with other players [FBB+22].

• Gato (2022), a single multimodal agent that excels at a large collection of games, as
well as several robotics, vision, and language tasks [RZP+22].

• Stochastic MuZero (2022), which generalizes MuZero by allowing the agent to learn
a stochastic model of the environment, outperforming the current state-of-the-art in
games like 2048 and Backgammon, without having access to any domain knowledge
for these games [ASO+22].

16.7 Intelligence

Researchers in the field of artificial intelligence have struggled for decades with the question
of defining precisely what intelligence is. Many researchers have their own personal informal
definitions, most with the common theme that intelligent systems can act to solve a wide
class of problems, display creativity, reasoning and deduction skills, as well as being able to
acquire and process new knowledge.

What exactly is meant by demonstrating intelligence varies: for some this may mean
being able to distinguish between photos of cats and dogs, playing a game of Go, driving a
car, recognizing speech, or navigating a footpath. While these examples do demonstrate
some degree of intelligence, they do not show what we are truly interested in: general
intelligence. We want an intelligent system to be able to perform well at all these tasks and
more! Most importantly, we desire to create an intelligence that has the ability to learn to
perform well at tasks it has never encountered before, rather than behaving well only at a
collection of built-in tasks.

In this section we will discuss informal and formal definitions of intelligence and their
advantages and downsides. Section 16.7.1 informally states the Legg–Hutter (LH) definition
of intelligence that best captures the essence of intelligence and encompasses either explicitly
or implicitly all traits usually associated with intelligence. Section 16.7.2 discusses other
well-known tests and measures and AI-competitions of intelligence. Next, Section 16.7.3
formalizes the different words and concepts in the informal LH definition. Section 16.7.4
puts everything together and provides a mathematically precise, essentially unique, and
valid formalization of (LH) intelligence Υ, and discusses its pros and cons. LH intelligence
can serve as gold standard of what we want an intelligent agent to be able to achieve:
It is a measure of performance in all environments, weighted by environment complexity,
with AIXI having maximal LH-intelligence. As with AIXI, in practice we have to resort to
approximations, discussed in Section 16.7.5.

16.7.1 Legg–Hutter (LH) Intelligence: Informal

One of the most comprehensive recent studies of intelligence [LH07c] investigated how
intelligence was defined in various fields such as psychology, philosophy, computer science,

16.7. INTELLIGENCE 455

neuroscience, and others. After presenting several definitions from the literature, they
synthesize the following informal definition of intelligence:

Legg–Hutter (LH) Intelligence: Intelligence measures an agent’s ability to
achieve goals in a wide range of environments. [LH07c]

This definition captures a notion that an intelligent agent must be able to performing
well on a wide class of problems, rather than only specific tasks like chess. A chess bot
can play chess at a superhuman level, but it cannot fill out tax forms, load a dishwasher,
compose poetry, and many other tasks we would desire a general AI to do. We also do not
want a “wise hermit” intelligence which sits around all day thinking about complex problems,
but takes no actions that affect its environment. Such an agent would be indistinguishable
from an unintelligent agent by an outside observer, and would not serve any useful purpose.

This is incorporated by requiring the AI to achieve goals. This definition is agnostic of
the Strong AI-hypothesis (Section 16.3), requiring only that the agent acts to satisfy goals,
with no consideration of what the internal state of the agent looks like.

This informal definition aligns with the intuitive sense of what it means to be intelligent,
as well as existing practical tests of intelligence.

16.7.2 Other Intelligence Tests and Measures.

The Raven test [CJS90], tests one’s ability to recognize patterns in a set of geometric images,
and choose one of many that fills the gap. One could argue that the Raven test only
concerns performance at pattern recognition and sequence prediction. While this is true,
many problems can be framed as sequence prediction problems. For example, given the task
of optimally acting in an environment, if the agent could predict the actions an optimal
agent would take as well as how the environment would respond to those actions, this would
be equivalent to acting optimally. Though in practice it would be hard to predict what an
optimal agent would do without observing one.

The Turing test [Tur50] measures the ability for an artificial agent to be indistinguishable
from a human. An interrogator communicates with both a human and an AI via a text-only
terminal, and the AI is said to pass the Turing test if the interrogator cannot reliably
distinguish the two. While being one of the oldest and most well-known tests of intelligence,
in practice, this tests how well a chatbot can fool a judge into thinking it is a human (by,
say, deliberately introducing spelling errors in its responses) rather than any reasonable
measure of intelligence. It is too strict, since it has to mimic idiosyncrasies of humans. We
would expect that a race of intelligent aliens would fail the Turing test, not because they
are stupid, but because they would lack knowledge of the cultural norms and language of
humans, and would likely do a poor job of passing as one. Also, rather than being a graded
measure of intelligence, its binary succeed/fail nature is also a limitation.

The annual Loebner prize [Pow98] (1991-2019) awarded prizes for the most human-like
chatbot submitted (as judged by a panel of human judges) and $100’000 for a chatbot that
cannot be reliably distinguished from a human (which was never successfully claimed). The
Turing test, while having historical value, is actually testing for the ability to mimic a human,
rather than testing directly for intelligence.

The Hutter prize [Hut20a] awards a cash prize for how far enwik9 [Mah11], a 1GB
sample of Wikipedia, can be compressed (C=5’000 for each % improvement). The motivation
for the prize is the claim that compression is closely linked to intelligence [Hut05b, Zen19].
The more “intelligent” the compressor is, the better it is able to find patterns or regularity
in the data, and use those patterns to compress further. A compressor that “understands”

456 CHAPTER 16. PHILOSOPHY OF AI

all of human knowledge should be able to compress data from humans well, with enwik9

acting as a stand in for human knowledge. Though intelligence and understanding are fuzzy
and hard to precisely measure, the size of a compressed file provides an exact measure of
performance.

Chollet proposed a measure of intelligence that emphasizes reasoning and abstraction
as key components [Cho19]. Chollet’s measure views intelligence as the ability to adapt
and generalize to novel situations by recognizing patterns and making use of previously
learned knowledge. According to this viewpoint, an intelligent system should possess the
capacity to understand abstract concepts and relationships, enabling it to perform well
in a wide range of tasks and scenarios. In contrast to traditional IQ tests or task-specific
performance measures, Chollet’s approach emphasizes the evaluation of an agent’s ability
to transfer knowledge from one domain to another [WSB+20], a critical aspect of human
intelligence. This perspective on intelligence fosters a more holistic understanding of the
underlying cognitive processes and encourages the development of more versatile AI systems,
capable of tackling a diverse array of challenges while demonstrating robust adaptability
and generalization. His Abstraction and Reasoning Challenge (ARC) offers a million dollar
in cash prizes.

In analogy with the computational complexity classes [GJ79, AKG05, AB09] NP-Hard
and NP-Complete, we can also informally define the AI-Complete class: Problems for which
it is hypothesized that any algorithm for them must be generally intelligent. Historically it
was thought that many games such as chess required “creativity” and “insight”, something a
machine could never hope to replicate (though we now know this to be false). Some problems
hypothesized to be AI-Complete include language translation to the level of a fluent human
translator, complex computer vision problems, automatic peer review of research papers,
and proving prize-worthy mathematical theorems.

16.7.3 Formalizing the LH-Intelligence Measure.

Motivated by the informal definition of LH intelligence (Section 16.7.1), we can construct a
formal definition of general intelligence. Since we want an agent to achieve goals in a large
class of environments, we will be defining LH intelligence as a weighted average over how
well the agent achieves “the goal” over many environments. This poses a few problems, to
which we propose solutions:

Goals. What should the agent’s goal be? Is it environment specific, or something internal
to the agent?

If the goal is too simple, then any agent would be intelligent under this measure. If the
goal is defined as internal by the agent, then the agent can select a simple goal and the goal
can easily be attained. So the goal should be provided to the agent by the environment, which
places pressure on the agent to learn about the environment with which it is interacting,
and to then exploit that knowledge to satisfy the goal. This can be done by defining the
environment ρ and agent within the standard cybernetic model (see Chapter 6) and then
communicating the goal to the agent via rewards. The goal for the agent is then always the
maximization of the reward sum, motivated by the reward hypothesis (Assumption 6.2.1).

Balance. What if some environments provide an easy way to attain extremely high
performance? Might that dominate the weighted performance average over environments?
How can that be prevented?

For simple environments, it should be easy for the agent to learn the optimal policy, so
agents that fail a simple test and the measure of their “intelligence” should consequently be
penalized. For complex environments, especially those where few agents can perform well,

16.7. INTELLIGENCE 457

we should only penalize our agent slightly for failing to perform in these environments. The
intelligence measure is relative, and so most agents perform well in simple environments,
but only very “intelligent” agents also perform well in complex environments too, increasing
the net intelligence measure.

Universality. Will this measure be universal, or dependent on a collection of parameters?
As mentioned in Section 6.4, optimal behavior depends on how far-sighted the agent is.9

Applying different discount regimes, the definition of optimal behavior would change, and
a definition of intelligence not parameterized by a choice of discount would be preferable.
Moreover, we want to avoid the problem of some environments being disproportionately
more rewarding than others (otherwise agents that perform well in only these environments
and poorly in others will still have a high measure of intelligence). We avoid both problems
by considering only reward-summable environments, those where the total sum of rewards
received can never exceed 1. This means that the value function V π

ρ is also bounded

V π
ρ := Eπ

ρ

[∞∑
i=1

ri

]
≤ 1

for any choice of policy π, and obviates the need for discounting. How a particular environ-
ment chooses to dole out its limited supply of reward will in essence decide if short-term or
long-term planning is required of the agent.

The observation and action spaces O and A are determined by the (physical) realization
of the agent, so are not really free parameters. In any case, any |O|≥ 2 and |A|≥ 2 will
do, since richer observations and actions can be sequentialized [MH21b, CHV22a, CHV22b].
O=A=B∗ is universal without sequentialization, since it covers all finite observation and
action space choices.

Environment class. What class of environments should we choose?
We want the class of environment to be as general as possible. We can go as far as

including any computable stochastic environment; as for incomputable environments there
would be in general no way to accurately predict the percepts (and rewards) that the
environment would return for actions taken, so planning would be impossible. Also, the
Physical Church-Turing thesis (Section 16.6.1) makes considering them unnecessary.

Weighting. Do we weigh all environments the same? Should it be more important that
agents perform well in “difficult” environments than “easy” ones?

Not all environments are equal, as some environments are very difficult to attain reward
in, and others are very simple. An intelligent agent should be able to perform well in
“easy” environments (e.g. games for children) but can be forgiven for struggling in “difficult”
environments (e.g. proving the Riemann hypothesis). So, we wish to weigh the performance
in easy environments more than difficult ones. Measuring the ease or difficulty of an
environment is difficult, but we can use K-complexity as a proxy. Environments with short
descriptions (in the Kolmogorov sense, Section 2.7) are expected to be easier to perform well
in compared to complex environments, since the agent has to learn fewer bits to identify the
true environment. Hence, we can choose the universal prior 2−K(µ) (Definition 3.7.2) as our
weighting over environments µ.

This definition captures the concept of Occam’s razor specifically applied to intelligence,
as any intelligent agent should perform better in environments governed by simple rules (low
K-complexity).

9It is not clear a priori that the agent should be planning as far into the future as possible. If the world
were to end next week, there would hardly be much point saving up for retirement.

458 CHAPTER 16. PHILOSOPHY OF AI

16.7.4 Legg–Hutter (LH) Intelligence: Formal

In light of the previous subsection, we can now finally define the LH intelligence measure:
M

Definition 16.7.1 (Legg–Hutter (LH) intelligence [LH07c]) The intelligence
Υ(π) of an agent π is defined as the undiscounted value function of a policy, averaged
over all reward-summable computable stochastic environments M, weighted by the
Kolmogorov complexity K of that environment. Formally

Υ(π) :=
∑
ν∈M

2−K(ν)V π
ν (ϵ)

where V π
ν (ϵ)=Eπ

ν [
∑∞

t=1rt] is the expected reward sum.

This definition says that the intelligence of an agent is the weighted average of how well
it performs in each environment µ (that is, V π

µ), where the weights are 2−K(µ). If we now
choose the agent that maximizes this intelligence measure, we get a (non-discounted version)
of the universally intelligent agent AIXI of Definition 7.4.1.

Theorem 16.7.2 (AIXI maximizes LH intelligence)

πAIXI := π∗
ξ = argmax

π
Υ(π)

Additionally, we can use AIXI as an upper bound on how intelligent an agent can be
with respect to this definition.

Υ := max
π

Υ(π) = Υ(πAIXI)

The difference Υ−Υ(π) measures how close an agent performs to the optimal Bayesian agent
AIXI.

It is worth taking a moment to reflect on what has been achieved here: We have defined
a measure of intelligence that perfectly encapsulates the informal definition of intelligence
given in Section 16.7.1. It is succinct, mathematically precise, unambiguous, and as a test is
agnostic with respect to any domain knowledge. An agent can know nothing about humanity,
and still score well according to this metric. We have also shown that the optimal Bayesian
agent AIXI (Definition 7.4.1) maximizes this measure of intelligence.

Benefits. We would like a definition of intelligence to have certain properties. In [LH07c]
the authors argue that this definition of intelligence is valid since it is well-motivated by the
informational definition. The definition is meaningful since agents with high LH intelligence
will be able to perform well in most simple and many complex environments. The definition
is informative since it lets us compare the intelligence of two distinct agents with a graded
numerical score. The definition is wide-range since it order agents from random and trivial
learning algorithms up to super intelligent AIXI. The definition is general since under the
strong Church-Turing thesis (Thesis 2.6.6), the class of all computable environments is the
largest classM we will ever need to consider. The definition is unbiased in the sense that
this definition does not suffer from many of the traditional biases of intelligence tests such
as background, language, etc. However, there is a hidden bias in the choice of universal
machine which will be discussed below. The definition is fundamental since it is based on
computability, complexity and information, which are fundamental to computer science and

16.7. INTELLIGENCE 459

unlikely to change in the future. The definition is mathematically formal with little room
for ambiguity. The definition is objective since it does not depend on any subjective criteria.
The definition is non-anthropocentric, in contrast to most of the previously mentioned tests
for intelligence, which are purposely designed either for humans, or measure intelligence
relative to how humans behave. A super-intelligent agent with zero cultural knowledge of
humanity would likely fail the Turing test, but would still score highly according to the LH
intelligence measure.

Drawbacks. There are some drawbacks of this definition of intelligence. First, it is
incomputable as it depends on K-complexity. Approximations can be made via sampling
programs (see Section 16.7.5), or using the length of a program defining an environment rather
than its K-complexity. There is also one important hidden parameter: the choice of universal
Turing machine U used in the definition of the K-complexity. We could also weaken the
choice of environment class to e.g. the class of Markov decision processes (MDPs), or partially
observable Markov decision processes (POMDPs), and replace the incomputable weight
2−K(µ) with a computable weight, such as the model cost weight 2−ΓD(S) (Definition 4.3.20).
The choice of universal machine is much harder, with no clear answer in sight (yet). In fact,
the search for a “canonical” choice of universal Turing machine has been an open problem
in algorithmic information theory since its inception. It has been shown that certain choices
of Turing machines can lead to nonsensical definitions of intelligence (see Section 8.2).

LH Intelligence has been more deeply investigated in [LH07c, Ale19, AH21, AQDH23].
The latter compare the intelligence of an agent based on a Bayes mixtures of agent policies to
the average intelligence of the agents themselves, and draw conclusions about the geometry,
symmetry, convexity, and strict local extrema of intelligence. A generalization of LH-
intelligence for incomputable tasks on the arithmetic hierarchy is given in [OFB24].

16.7.5 Approximations of Intelligence

Existing practical intelligence test are not general (enough). Not only do we want
definitions of intelligence which capture generality, resource boundedness, and embeddedness,
we also want to have practical measures of intelligence. In the field of psychology, there is a
long history of various tests of intelligence. These include the Stanford-Binet test [Wil11],
the Army Alpha and Army Beta [Bra11] tests, Wechsler intelligence scale [Gri11], Raven
test [Rav00], and many more. These tests all measure a variety of qualities such as memory,
reasoning, pattern-recognition, spatial awareness and problem-solving skills. However, they
fail at being general intelligence tests. See [LH07b] for a comparative table and discussion.

Artificial Intelligence Quotient (AIQ). One approximation of the LH intelligence
measure, called the Artificial Intelligence Quotient (AIQ) [LV11], uses a sampling method
where the program p specifying an environment is sampled according to the distribution
2−ℓ(p). By sampling according to this distribution, we can approximately capture the
simplicity 2−K(µ) term of the LH intelligence measure, as K(p)≈ℓ(p) for most p. Then to
calculate the AIQ of an agent, we can run the agent on the sampled programs and take the
average performance. This leads to

Υ̂(π) :=
1

N

N∑
i=1

V̂ π
pi

where V̂ π
pi

is the estimated value function of the agent π on the ith program pi, and N is the

number of programs sampled. In the simplest case, V̂ π
pi
=
∑

trt is just the empirical return,
which is on average equal to the expected sum of rewards Eπ

pi
[
∑

trt].

460 CHAPTER 16. PHILOSOPHY OF AI

Choice of reference machine. For the approximation, a BrainFuck (BF) [Mül93] inter-
preter was chosen as the reference machine. BF is an esoteric Turing complete programming
language that only uses 8 different symbols. Any string of these symbols is a valid BF
program, and due to the minimalism of the language, programs can often be very short.
Writing programs in BF is similar to writing the commands of what a Turing machine
should do, making it a reasonable stand-in choice of universal Turing machine. Also, the
language is very simple and unbiased in the sense that it does not incorporate huge amounts
of specific knowledge unlike some bloated practical modern programming languages. On
the other hand, any language has some bias. For instance, if the Lisp language was chosen,
then the environments would be more likely to be based on lists; if Prolog was chosen, the
environments would be based around logical rules. If a more modern language was chosen,
the amount of program symbols would be so large that the program length would be heavily
limited. When sampling programs from the BF language, the authors additionally remove
any redundant code that does not do anything when executed.

Using this approximation, the MC-AIXI-CTW agent, discussed in Chapter 12, outper-
formed the Q-Learning algorithm in the sense that it achieved a higher AIQ [LV11]. This
is not surprising as the MC-AIXI-CTW agent is an approximation of AIXI, which is the
optimal agent based on Υ that AIQ is approximating.

Atari Learning Environment (ALE) as a measure of intelligence. There have been
many other attempts at a practical intelligence measure for machine intelligence. One very
popular measure is the Arcade Learning Environment (ALE) [BNVB13], a large sample of
video games for the Atari 2600 console, running on an emulator. For one agent to be able to
perform well at all these different games means that it is exhibiting a weak form of general
intelligence. The most successful technique for these games was using Deep Q-Networks
(DQNs) [MKS+15] (often used for image recognition), however since then, many agents
have been able to out-perform it, including Agent-57 [BPK+20] which is able to outperform
humans on a collection of 57 games from the ALE. Despite this success there have still been
several games in which few general agents have been able to exceed human performance.
These include Skiing, Private Eye, Pitfall, and the most difficult for AI, Montezuma’s revenge.
The reasons these games are so difficult is that they each have a property that RL techniques
have historically struggled with: (i) Exploration-exploitation trade-off: Choosing between
learning more about the environment and performing well in what the agent thinks the
environment is. (ii) Long-term credit assignment problem: Performing actions that only give
reward in the long term, without short-term rewards to provide instant feedback. (iii) Partial
observability: The current state not containing all the information required to determine
the next state with certainty. Montezuma’s revenge has many of these problems together.
Humans can play well as they rely on a lot of prior domain knowledge (seeing a key in one
room implies it should be used on a locked door elsewhere) which is rather hard for agents
to learn (the game does not explicitly reward picking up keys or opening doors, but only
implicitly as the agent can now access new areas of the level). On the other hand, there is
some evidence that agents’ performance on a carefully selected subset of 5 Atari games is
already indicative of their average performance over all games [ASH23].

Solving one very general problem. Throughout this chapter, we focused on the idea
that intelligence should be good performance in a wide class of environments, rather than
trying to solve one particularly complex environment. But we can also consider agents
in a single environment that is itself very general, requiring a large skill set to perform
well in. For example, a self-driving car with the goal of delivering passengers to a given
location represents a very general problem to solve, as it requires abilities in computer vision,
pathfinding, robotics object detection and avoidance, and trade-offs between passenger

16.8. DEEP LEARNING 461

comfort, safety and expedience. Interestingly, agents which can do well only in these general
environments, but poorly in simple environments, will have low LH intelligence Υ, since a
general environment will have a low weight 2−K(µgeneral) assigned to it.

The role of language in intelligence. Another general problem well-studied area is
the role of language in intelligence [SC84, SC73]. Indeed, we have seen that some language
models such as GPT-3 [BMR+20] and more recently GPT-4 [Ope23a] can be applied to
tasks beyond language, such as playing chess,10 writing code or passing theory-of-mind tests
[BCE+23]. While language can be used quite well as a compression or coding scheme, there
are many fundamental concepts that would be quite hard to describe only in the context of
language, for example an image. As the saying goes, a picture is worth a thousand words.

16.8 Deep Learning

With the recent advent of increasingly general and powerful models such as Large Language
Models (LLMs), the world has moved from asking “is AGI possible?” to “when will AGI
arrive?” to “is model X already a (proto) AGI system” [BCE+23].

LLMs approximate Solomonoff. Note that the language modelling path to AGI
[XCG+23] is not in opposition to Universal Artificial Intelligence, but arguably an ap-
proximation of the universal Bayesian mixture (Definition 3.1.3) that AIXI uses. LLMs are
trained on a large corpus of data with the goal of minimizing cross entropy loss. The data
is usually large scrapes of the internet, as an attempt to curate a representative sample
of all knowledge accumulated by humanity. To minimize log-loss, the model needs to
construct a representation of this knowledge efficiently, much like a data compressor does.
As mentioned, compression is prediction [DRD+24], and Kolmogorov/Solomonoff are the
ultimate compressors/predictors [Hut20a].

Extensions of LLMs that make them agents closer to AIXI. LLMs alone are not
complete (RL/AI) agents [XCG+23], but augmenting them with planning methods such
as Reasoning-via-Planning (RAP) [HGM+23], mirrors augmenting Solomonoff induction
with Monte Carlo Tree search, i.e. MC-AIXI (Chapter 7). It has also been demonstrated
that in-context learning can be viewed as a form of Bayesian inference [XRLM21]. This
connection is further demonstrated more explicitly in the UAI context in [GMGH+24] where
it was shown how Transformers (the architecture used in current state-of-the-art LLMs)
can approximate Solomonoff induction when trained on algorithmic data. There have been
several attempts to add universality to the LLM setup which have moved it closer to UAI:
Reinforcement Learning from Human feedback (RLHF) [Cri17, ZSW+20] (a crude form
of RL, essentially only using a horizon of 1, trained on a model acting as a proxy for
the desires/values/morals of humans), multimodality in Transformers [DBK+21, XZC23]
(AIXI is agnostic to the meaning of the I/O bitstream), search/planning controllers such
as Tree-of-Thought [YYZ+23], which corresponds to expectimax planning/tree search, and
when combined with in-context learning (which is the analogue of Solomonoff) this leads to
an LLM version of MC-AIXI (Chapter 7).

What is missing in LLMs to make them AGSIs? At the time of writing, LLMs are
not AGI on their own. So what is missing? What can be done to bring them closer to AIXI?
Learning a long horizon value function (beyond the 1 step from RLHF) would lead to models

10Skeptics of AI often refer to Large Language Models (LLMs) as stochastic parrots [BGMS21], referring
to the claim that LLMs have no “understanding” and merely regurgitate text like a parrot. Parrot chess
[Cle23] pokes fun at this by showing that LLMs, even if they lack understanding, can still play chess at the
level of a strong amateur.

462 CHAPTER 16. PHILOSOPHY OF AI

which are able to plan and reason at length. This planning and reasoning capability could
be achieved with new architectures [GWR+16, VLB+21, SGBK+21, DRGM+23], or by
scaffolding or by a controller around the model such as value function estimation by sampling
via Chain-of-Thought [WWS+22], or by using tools [SDD+23], or by extending it with a
controller like Tree-of-Thought and Graph-of-Thought [BBK+24], or by Stream-of-Search
[GLG+24]. Remembering and learning from the past is one area which (current) LLMs seem
to struggle with. There are several ways this could be solved and has become an active
research area. The use of a controller or tools which help the model to store, recall and learn
from past experiences is one way. Another approach would be for the model to continually
learn [KRRP22] to compile new experiences from the in-context short-term memory into
a long-term memory (perhaps in-weight). This would be closest in spirit to Solomonoff
induction.

Proper planning via MCTS. While augmenting LLMs with planning components is in
its infancy, MC-AIXI (Chapter 12) uses the principled MCTS anytime algorithm, which
converges to perfect expectimax planning with enough compute (Theorems 12.2.6 and 12.4.1).
Deep neural network based AlphaZero [SHS+18] and muZero [SAH+20] also use MCTS for
planning. While AlphaZero requires the environmental model to be known akin to AIµ,
muZero learns the model like AIξ (Section 16.6.3).

AIXI as gold standard. AIXI learns continuously, performs reasoning and planning at
long horizons, and is able to handle all forms of (multimodal) inputs and outputs. The
gold-standard of AIXI can serve as a direction guide when developing AGI ultimately towards
AGSI, whether the next generation of LLMs, or muZero-style learning and planning agents,
or else.

16.9 Conclusion

The problem of Artificial General Super Intelligence (AGSI), the construction of a truly
intelligent system able to act beyond human capacity in most areas, is one of the most
ambitious problems of our time. If achieved, it represents the entering of a new era for
humanity, and perhaps the last invention we ever need make.

In this book, we have provided the tools needed to understand and extend the approach
of Universal Artificial Intelligence to this problem; from the theoretical side, the safety and
philosophical side, to the current best implementable approximations.

Universal Artificial Intelligence provides a way to reason about the nature of intelligent
agents, offering a theory to model AGSI, built upon the strong mathematical foundations
of Solomonoff prediction [Sol64] (which provides a theoretical solution to the induction
problem), and Kolmogorov complexity [Kol65] (giving Occam’s razor a mathematically
rigorous definition). We claim that UAI in turn provides a rigorous definition of intelligence
itself, and models how general super-intelligent agents would behave.

As we move closer to AGSI, the relevance and necessity of understanding AGSI increases
dramatically. Amidst the current evolving landscape, the trends and hype, it is the founda-
tional strength of UAI that ensures its enduring relevance. It is through UAI that we can
model hypothetical super-intelligent agents already today, prove properties and guarantees
about them, eventually with the goal of designing capable agents to automate any possible
task.

Bibliography

[AAA+19] D. Abel, D. Arumugam, K. Asadi, Y. Jinnai, M. L. Littman, and L. L. Wong. State abstraction
as compression in apprenticeship learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 3134–3142, 2019. 403

[AALL18] D. Abel, D. Arumugam, L. Lehnert, and M. Littman. State abstractions for lifelong reinforcement
learning. In International Conference on Machine Learning, pages 10–19. PMLR, 2018. 403

[Aar13] S. Aaronson. Quantum Computing since Democritus. Cambridge University Press, Cambridge,
March 2013. 404

[Aar20] S. Aaronson. The busy beaver frontier. ACM SIGACT News, 51(3):32–54, 2020. 134

[AB09] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge University
Press, 2009. 132, 456

[ACBF02] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit problem.
Machine Learning, 47:235–256, 2002. 346, 369

[ACS24] S. V. Albrecht, F. Christianos, and L. Schäfer. Multi-Agent Reinforcement Learning: Foundations
and Modern Approaches. MIT Press, 2024. 254, 325

[AD21] S. Arora and P. Doshi. A survey of inverse reinforcement learning: Challenges, methods and
progress. Artificial Intelligence, 297:103500, August 2021. 434

[AEH14] T. Alpcan, T. Everitt, and M. Hutter. Can we measure the difficulty of an optimization problem?
In IEEE Information Theory Workshop, pages 356–360, Hobart, Australia, 2014. IEEE Press.
171

[AG13] S. Agrawal and N. Goyal. Thompson sampling for contextual bandits with linear payoffs. In
International Conference on Machine Learning, pages 127–135. PMLR, 2013. 290, 302

[AGI08] AGI. Conference series on Artificial General Intelligence (annually since 2008), 2008. https:
//agi-conf.org/. 404

[AH21] S. A. Alexander and M. Hutter. Reward-punishment symmetric universal intelligence. In Proc.
14th Conf. on Artificial General Intelligence (AGI’21), volume 13154 of LNAI, pages 1–10, San
Francisco, USA, 2021. Springer. 459

[AHL16] D. Abel, D. Hershkowitz, and M. Littman. Near optimal behavior via approximate state
abstraction. In International Conference on Machine Learning, pages 2915–2923. PMLR, 2016.
403

[Ahm] A. Ahmed. Evidential Decision Theory. Cambridge University Press, 1st ed edition. 325

[AJKS22] A. Agarwal, N. Jiang, S. M. Kakade, and W. Sun. Reinforcement Learning: Theory and
Algorithms. 2022. https://rltheorybook.github.io/. 253

[AKG05] S. Aaronson, G. Kuperberg, and C. Granade. Complexity zoo, 2005. http://www.complexityzoo.
net/. 456

[AL12] J. Asmuth and M. L. Littman. Learning is planning: Near Bayes-optimal reinforcement learning
via Monte-Carlo tree search, February 2012. 369

[Ale14] S. A. Alexander. A machine that knows its own code. Studia Logica, pages 567–576, 2014. 447

[Ale19] S. A. Alexander. Intelligence via ultrafilters: Structural properties of some intelligence comparators
of deterministic Legg-Hutter agents. 2019. 459

[Ale21] S. A. Alexander. Can Reinforcement Learning Learn Itself? A Reply to ’Reward is Enough’. In
CIFMA 2021. 2021. 253

[ALH17] J. Aslanides, J. Leike, and M. Hutter. Universal reinforcement learning algorithms: Survey and
experiments. In Proc. 26th International Joint Conf. on Artificial Intelligence (IJCAI’17), pages
1403–1410, Melbourne, Australia, 2017. xviii, 365, 366, 367, 368

[All53] M. Allais. Le Comportement de l’Homme Rationnel devant le Risque: Critique des Postulats et
Axiomes de l’Ecole Americaine. Econometrica, 21(4):503, October 1953. 324

[ALOL20] S. Armstrong, J. Leike, L. Orseau, and S. Legg. Pitfalls of learning a reward function online,
April 2020. 434

[AM18] S. Armstrong and S. Mindermann. Occam’s razor is insufficient to infer the preferences of
irrational agents. Advances in Neural Information Processing Systems, 31, 2018. 434

463

https://agi-conf.org/
https://agi-conf.org/
https://rltheorybook.github.io/
http://www.complexityzoo.net/
http://www.complexityzoo.net/

464 BIBLIOGRAPHY

[AM20] M. Austern and A. Maleki. On the Gaussianity of Kolmogorov Complexity of Mixing Sequences.
IEEE Transactions on Information Theory, 66(2):1232–1247, February 2020. 134

[Ama16] S. Amari. Information Geometry and Its Applications. Number volume 194 in Applied Mathe-
matical Sciences. Springer, Japan, 2016. 66

[Amb87] W. Ambler. Aristotle on nature and politics: The case of slavery. Political Theory, 15(3):390–410,
1987. 414

[And15] J. Anderson. Resolving the small improvement argument: A defense of the axiom of completeness.
Erasmus Journal for Philosophy and Economics, 8(1):24–41, July 2015. 323

[AOS+16] D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and D. Mané. Concrete Problems
in AI Safety, July 2016. 432

[AQDH23] S. A. Alexander, D. Quarel, L. Du, and M. Hutter. Universal agent mixtures and the geometry of
intelligence. In International Conference on Artificial Intelligence and Statistics, pages 4231–4246.
PMLR, 2023. 459

[Art15] E. Artin. The Gamma Function. Dover Books on Mathematics. Dover Publications, Inc, Mineola,
New York, reprint edition, 2015. 72

[AS13] S. Armstrong and A. Sandberg. Eternity in six hours: Intergalactic spreading of intelligent life
and sharpening the Fermi paradox. Acta Astronautica, 89:1–13, August 2013. 414

[AS18] S. V. Albrecht and P. Stone. Autonomous agents modelling other agents: A comprehensive survey
and open problems. Artificial Intelligence, 258:66–95, May 2018. 325

[ASDH24] M. Aitchison, P. Sweetser, G. Deletang, and M. Hutter. Policy gradient without boostrapping
via truncated value learning. 2024. 254, 336

[ASH23] M. Aitchison, P. Sweetser, and M. Hutter. Atari-5: Distilling the arcade learning environment
down to five games. In Proc. 40th International Conference on Machine Learning (ICML’23),
volume 202, pages 421–438, Hawaii, USA, 2023. PMLR. 460

[Asl17] J. Aslanides. AIXIjs: A Software Demo for General Reinforcement Learning, May 2017. 365, 368

[ASO+22] I. Antonoglou, J. Schrittwieser, S. Ozair, T. K. Hubert, and D. Silver. Planning in Stochastic
Environments with a Learned Model, March 2022. 454

[Åst65] K. Åström. Optimal control of Markov processes with incomplete state information. Journal of
Mathematical Analysis and Applications, 10(1):174–205, February 1965. 253

[AUK+20] D. Abel, N. Umbanhowar, K. Khetarpal, D. Arumugam, D. Precup, and M. Littman. Value
preserving state-action abstractions. In International Conference on Artificial Intelligence and
Statistics, pages 1639–1650. PMLR, 2020. 403

[Axe80a] R. Axelrod. Effective Choice in the Prisoner’s Dilemma. Journal of Conflict Resolution, 24(1):3–25,
March 1980. 333

[Axe80b] R. Axelrod. More Effective Choice in the Prisoner’s Dilemma. Journal of Conflict Resolution,
24(3):379–403, September 1980. 333

[Axe10] S. Axelsson. The Normalised Compression Distance as a file fragment classifier. Digital Investiga-
tion, 7:S24–S31, August 2010. 135

[Bal14] M. Balaguer. Free Will. The MIT Press Essential Knowledge Series. The MIT Press, Cambridge,
Massachusetts, 2014. 439

[Bar12] D. Barber. Bayesian Reasoning and Machine Learning. Cambridge University Press, Cambridge
; New York, 2012. 172

[Bau99] E. B. Baum. Toward a model of intelligence as an economy of agents. Machine Learning,
35(2):155–185, 1999. 269

[Bau06] E. B. Baum. What Is Thought? The MIT Press, Cambridge, Mass., March 2006. 269

[Bau22] P. Baumann. Rational intransitive preferences. Politics, Philosophy & Economics, 21(1):3–28,
February 2022. 324

[Bay63] T. Bayes. An essay towards solving a problem in the doctrine of chances. Philosophical
Transactions of the Royal Society, 53:370–418, 1763. [Reprinted in Biometrika, 45, 296–315, 1958].
128, 130

[BBDS08] L. Busoniu, R. Babuska, and B. De Schutter. A Comprehensive Survey of Multiagent Reinforce-
ment Learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), 38(2):156–172, March 2008. 325

[BBJ02] G. Boolos, J. P. Burgess, and R. C. Jeffrey. Computability and Logic. Cambridge University
Press, Cambridge ; New York, 4th ed edition, 2002. 132

[BBJT15] M. Bowling, N. Burch, M. Johanson, and O. Tammelin. Heads-up limit hold’em poker is solved.
Science, 347(6218):145–149, January 2015. 325

[BBK+24] M. Besta, N. Blach, A. Kubicek, R. Gerstenberger, M. Podstawski, L. Gianinazzi, J. Gajda,
T. Lehmann, H. Niewiadomski, P. Nyczyk, et al. Graph of thoughts: Solving elaborate problems
with large language models. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pages 17682–17690, 2024. 462

[BBS24] J. O. Berger, J. M. Bernardo, and D. Sun. Objective Bayesian Inference. World Scientific, New
Jersey London Singapore Beijing Shanghai Hong Kong Taipei Chennai Tokyo, 2024. 69, 131

BIBLIOGRAPHY 465

[BC99] D. P. Bertsekas and D. A. Castanon. Rollout Algorithms for Stochastic Scheduling Problems.
Journal of Heuristics, 5(1):89–108, 1999. 369

[BCE+23] S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E. Kamar, P. Lee, Y. T. Lee,
Y. Li, S. Lundberg, H. Nori, H. Palangi, M. T. Ribeiro, and Y. Zhang. Sparks of Artificial General
Intelligence: Early experiments with GPT-4, April 2023. 4, 452, 461

[BCMK21] J. Bornschein, S. Chiappa, A. Malek, and R. N. Ke. Prequential MDL for Causal Structure
Learning with Neural Networks, July 2021. 134

[BD62] D. Blackwell and L. Dubins. Merging of opinions with increasing information. Annals of
Mathematical Statistics, 33:882–887, 1962. 166, 260

[BDM17] M. G. Bellemare, W. Dabney, and R. Munos. A Distributional Perspective on Reinforcement
Learning, July 2017. 371, 404

[BDR23] M. G. Bellemare, W. Dabney, and M. Rowland. Distributional Reinforcement Learning. Adaptive
Computation and Machine Learning. The MIT Press, Cambridge, Massachusetts, 2023. 371, 404

[BDRA15] P. Bloem, S. De Rooij, and P. Adriaans. Two Problems for Sophistication. In K. Chaudhuri,
C. Gentile, and S. Zilles, editors, Algorithmic Learning Theory, volume 9355 of Lecture Notes in
Computer Science, pages 379–394. Springer International Publishing, Cham, 2015. 134

[Bel57] R. E. Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, 1957. 253,
404

[Bel15] M. G. Bellemare. Count-based frequency estimation with bounded memory. In Twenty-Fourth
International Joint Conference on Artificial Intelligence, 2015. 213

[Bel21] F. Bellard. NNCP v2: Lossless Data Compression with Transformer, 2021. 132

[Ben98] C. H. Bennett et al. Information distance. IEEE Transactions on Information Theory, 44(4):1407–
1423, 1998. 135

[Ben17] Y. Bengio. The Consciousness Prior, 2017. 439

[BEP+18] Y. Burda, H. Edwards, D. Pathak, A. Storkey, T. Darrell, and A. A. Efros. Large-Scale Study of
Curiosity-Driven Learning, August 2018. 302

[Ber13] J. Bernoulli. Ars Conjectandi. Thurnisiorum, Basel, 1713. [Reprinted in: Die Werke von
Jakob Bernoulli, pages 106–286, volume 3, Birkhäuser, Basel, 1975, and in: A Source Book in
Mathematics, pages 85–90, Dover, New York, 1959. English translation of part IV (with limit
theorem) by Bing Sung, Harvard Univ. Dept. of Statistics, Technical Report #2, 1966]. 128

[Ber93] J. Berger. Statistical Decision Theory and Bayesian Analysis. Springer, Berlin, 3rd edition, 1993.
130

[Ber06] J. Berger. The case for objective Bayesian analysis. Bayesian Analysis, 1(3):385–402, 2006. 69,
131

[Ber19] D. P. Bertsekas. Reinforcement Learning and Optimal Control. Athena Scientific, Belmont,
Massachusetts, 2nd printing (includes editorial revisions) edition, 2019. 253

[Ber20] D. P. Bertsekas. Rollout, Policy Iteration, and Distributed Reinforcement Learning. Athena
Scientific, Belmont, Massachusetts, 2020. 253

[Ber24] D. Bertsekas. A Course in Reinforcement Learning. Athena Scientific, 2024. 253

[BESK18] Y. Burda, H. Edwards, A. Storkey, and O. Klimov. Exploration by Random Network Distillation,
October 2018. 254

[BEY04] R. Begleiter, R. El-Yaniv, and G. Yona. On Prediction Using Variable Order Markov Models.
Journal of Artificial Intelligence Research, 22:385–421, December 2004. 214

[BF85] D. A. Berry and B. Fristedt. Bandit Problems: Sequential Allocation of Experiments. Chapman
and Hall, London, 1985. 344, 369

[BGA22] R. Baradaran, R. Ghiasi, and H. Amirkhani. A Survey on Machine Reading Comprehension
Systems. Natural Language Engineering, 28(6):683–732, November 2022. 451

[BGHK92] F. Bacchus, A. Grove, J. Y. Halpern, and D. Koller. From statistics to beliefs. In Proc. 10th
National Conf. on Artificial Intelligence (AAAI-92), pages 602–608, San Jose, CA, 1992. AAAI
Press. 131

[BGMS21] E. M. Bender, T. Gebru, A. McMillan-Major, and S. Shmitchell. On the Dangers of Stochastic
Parrots: Can Language Models Be Too Big? In Proceedings of the 2021 ACM Conference on
Fairness, Accountability, and Transparency, pages 610–623, Virtual Event Canada, March 2021.
ACM. 461

[BH10] W. Buntine and M. Hutter. A Bayesian review of the Poisson-Dirichlet process. Technical Report
arXiv:1007.0296, NICTA and ANU, Australia, 2010. 173

[BHMM19] M. Belkin, D. Hsu, S. Ma, and S. Mandal. Reconciling modern machine-learning practice
and the classical bias–variance trade-off. Proceedings of the National Academy of Sciences,
116(32):15849–15854, August 2019. 129

[Bis06] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006. 130

[BK97] A. N. Burnetas and M. N. Katehakis. Optimal Adaptive Policies for Markov Decision Processes.
Mathematics of Operations Research, 22(1):222–255, February 1997. 369

[BL+22] R. Bommasani, P. Liang, et al. On the Opportunities and Risks of Foundation Models, July 2022.
435

http://arxiv.org/abs/1007.0296

466 BIBLIOGRAPHY

[BLH23] J. Bornschein, Y. Li, and M. Hutter. Sequential learning of neural networks for prequential MDL.
In 11th International Conference on Learning Representations, 2023. 133

[BLOS21] J. Bell, L. Linsefors, C. Oesterheld, and J. Skalse. Reinforcement Learning in Newcomblike
Environments, 2021. 325

[BMAD22] M. Bowling, J. D. Martin, D. Abel, and W. Dabney. Settling the Reward Hypothesis, 2022. 253

[BMd+14] P. Bloem, F. Mota, S. de Rooij, L. Antunes, and P. Adriaans. A Safe Approximation for
Kolmogorov Complexity. In P. Auer, A. Clark, T. Zeugmann, and S. Zilles, editors, Algorithmic
Learning Theory, Lecture Notes in Computer Science, pages 336–350, Cham, 2014. Springer
International Publishing. 134

[BMR+20] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, et al. Language Models are Few-Shot
Learners, July 2020. 132, 171, 451, 461

[BMS+20] D. Budden, A. Marblestone, E. Sezener, T. Lattimore, G. Wayne, and J. Veness. Gaussian Gated
Linear Networks, October 2020. xix, 219

[BNVB13] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The Arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279,
2013. 269, 453, 454, 460

[BO18] L. Blier and Y. Ollivier. The Description Length of Deep Learning Models, November 2018. 134

[Bol04] W. M. Bolstad. Introduction to Bayesian Statistics. Wiley Interscience, New Jersey, 2004. 130,
173

[Bor62] M. Born. Einstein’s Theory of Relativity. Dover Publications, New York, rev. ed edition, 1962. 9

[Bor16] R. S. Borbely. On normalized compression distance and large malware: Towards a useful definition
of normalized compression distance for the classification of large files. Journal of Computer
Virology and Hacking Techniques, 12(4):235–242, November 2016. 135

[Bos98] N. Bostrom. How long before superintelligence? International Journal of Futures Studies, 2,
1998. 448, 450

[Bos03] N. Bostrom. Ethical issues in advanced artificial intelligence. Science Fiction and Philosophy:
From Time Travel to Superintelligence, 277:284, 2003. 415, 428

[Bos09] N. Bostrom. Pascal’s mugging. Analysis, 69(3):443–445, July 2009. 323

[Bos14] N. Bostrom. SuperIntelligence: Paths, Dangers, Strategies. Oxford University Press, 2014. 4,
411, 414, 415, 432, 434

[BPK+20] A. P. Badia, B. Piot, S. Kapturowski, P. Sprechmann, A. Vitvitskyi, Z. D. Guo, and C. Blundell.
Agent57: Outperforming the Atari human benchmark. In Proceedings of the 37th International
Conference on Machine Learning, volume 119, pages 507–517. PMLR, 2020. 454, 460

[BPW+12] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen, S. Tavener,
D. Perez, S. Samothrakis, and S. Colton. A Survey of Monte Carlo Tree Search Methods. IEEE
Transactions on Computational Intelligence and AI in Games, 4(1):1–43, March 2012. 369

[Bra68] D. Braess. Über ein paradoxon aus der verkehrsplanung. Unternehmensforschung, 12:258–268,
1968. 323

[Bra11] D. Brandwein. Army Alpha Intelligence Test. In S. Goldstein and J. A. Naglieri, editors,
Encyclopedia of Child Behavior and Development, pages 142–143. Springer US, Boston, MA,
2011. 459

[Bri71] P. Brickman. Hedonic relativism and planning the good society. Adaptation Level Theory, pages
287–301, 1971. 440

[BRL+23] A. Blattmann, R. Rombach, H. Ling, T. Dockhorn, S. W. Kim, S. Fidler, and K. Kreis. Align
your latents: High-resolution video synthesis with latent diffusion models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 22563–22575, 2023.
453

[BS84] B. G. Buchanan and E. H. Shortliffe. Rule-Based Expert Systems: The MYCIN Experiments of
the Stanford Heuristic Programming Project. Addison Wesley, Reading, MA, 1984. 130

[BS19] N. Brown and T. Sandholm. Superhuman AI for multiplayer poker. Science, 365(6456):885–890,
August 2019. 434, 453

[BSC+04] A. G. Barto, S. Singh, N. Chentanez, et al. Intrinsically motivated learning of hierarchical
collections of skills. In Proceedings of the 3rd International Conference on Development and
Learning, pages 112–19. Piscataway, NJ, 2004. 302

[BSF94] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is
difficult. IEEE Transactions on Neural Networks, 5(2):157–166, March 1994. 451

[BSG11] B. Boots, S. M. Siddiqi, and G. J. Gordon. Closing the learning-planning loop with predictive
state representations. The International Journal of Robotics Research, 30(7):954–966, June 2011.
370

[BSO+16] M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and R. Munos. Unifying
count-based exploration and intrinsic motivation. Advances in Neural Information Processing
Systems, 29, 2016. 303

[BT96] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific, Belmont,
MA, 1996. 253, 254, 303

BIBLIOGRAPHY 467

[BV04] S. P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, Cambridge,
UK ; New York, 2004. 49, 50

[BVT14] M. G. Bellemare, J. Veness, and E. Talvitie. Skip Context Tree Switching. In Proceedings of the
31st International Conference on Machine Learning - Volume 32, ICML’14, pages II–1458–II–1466,
Beijing, China, 2014. JMLR.org. xix, 221

[BW94] M. Burrows and D. Wheeler. A block-sorting lossless data compression algorithm. In Digital
SRC Research Report. Citeseer, 1994. 131

[BWEH22] M. Böörs, T. Wängberg, T. Everitt, and M. Hutter. Classification by decomposition: A novel
approach to classification of symmetric 2 x 2 games. Theory and Decision, 23(3):463–508, 2022.
324

[BZ14] V. W. Berger and Y. Zhou. Kolmogorov–Smirnov Test: Overview. In R. S. Kenett, N. T.
Longford, W. W. Piegorsch, and F. Ruggeri, editors, Wiley StatsRef: Statistics Reference Online.
Wiley, 1 edition, September 2014. 370

[Cal02] C. S. Calude. Information and Randomness: An Algorithmic Perspective. Springer, Berlin, 2nd
edition, 2002. 133

[Can74] G. Cantor. Über eine Eigenschaft des Inbegriffs aller reellen algebraischen Zahlen. Journal für
reine und angewandte Mathematik, 77:258–262, 1874. [English translation: On a property of the
set of real algebraic numbers. In A Source Book in the Foundations of Mathematics, volume 2,
pages 839–843, Clarendon, Oxford]. 132

[Can22] C. L. Canonne. A short note on an inequality between KL and TV, 2022. 135

[Car63] G. Cardano. Liber de ludo aleae, 1565/1663. Published in 1663 but completed already around
1565. 128

[Car48] R. Carnap. On the application of inductive logic. Philosophy and Phenomenological Research,
8:133–148, 1948. 131

[Car50] R. Carnap. Logical Foundations of Probability. University of Chicago Press, Chicago, 1950. 131

[Car00] T. J. Carlson. Knowledge, machines, and the consistency of Reinhardt’s strong mechanistic thesis.
Annals of Pure and Applied Logic, 105(1-3):51–82, November 2000. 447

[Car22] J. Carlsmith. On expected utility. Technical report, March 2022. https://jc.gatspress.com/
pdf/on_expected_utility.pdf. 69, 130, 450

[Cas20] S. Casper. Achilles Heels for AGI/ASI via Decision Theoretic Adversaries, 2020. 434

[CB90] B. S. Clarke and A. R. Barron. Information-theoretic asymptotics of Bayes methods. IEEE
Transactions on Information Theory, 36:453–471, 1990. 171

[CB02] G. Casella and R. L. Berger. Statistical Inference. Duxbury Advanced Series. CENGAGE
Learning, Andover Melbourne Mexico City Stamford, CT Toronto Hong Kong New Delhi Seoul
Singapore Tokyo, second edition edition, 2002. 129

[CBCB14] J. Chorowski, D. Bahdanau, K. Cho, and Y. Bengio. End-to-end Continuous Speech Recognition
using Attention-based Recurrent NN: First Results, 2014. 451

[CCH19] M. Cohen, E. Catt, and M. Hutter. A strongly asymptotically optimal agent in general envi-
ronments. In Proc. 28th International Joint Conf. on Artificial Intelligence (IJCAI’19), pages
2179–2186, Macao, China, 2019. xix, 285, 298, 299, 303, 365

[CGMH+23] E. Catt, J. Grau-Moya, M. Hutter, M. Aitchison, T. Genewein, G. Deletang, L. K. Wenliang,
and J. Veness. Self-predictive universal AI. In 37th Conf. on Neural Information Processing
Systems (NeurIPS’23), pages 1–18, New Orleans, USA, 2023. 299, 300, 301, 303, 368

[CH05] A. Chernov and M. Hutter. Monotone conditional complexity bounds on future prediction errors.
In Proc. 16th International Conf. on Algorithmic Learning Theory (ALT’05), volume 3734 of
LNAI, pages 414–428, Singapore, 2005. Springer. 171

[CH20a] E. Catt and M. Hutter. A gentle introduction to quantum computing algorithms with applications
to universal prediction. Technical Report arXiv:2005.03137, Australian National University,
Canberra, Australia, 2020. 372, 403, 404

[CH20b] M. Cohen and M. Hutter. Pessimism about unknown unknowns inspires conservatism. In 33rd
Conference on Learning Theory (COLT’20), volume 125 of Proceedings of Machine Learning
Research, pages 1344–1373, Virtual / Graz, Austria, 2020. PMLR. 302, 433

[CH22] M. K. Cohen and M. Hutter. The danger of advanced artificial in-
telligence controlling its own feedback. http://theconversation.com/
the-danger-of-advanced-artificial-intelligence-controlling-its-own-feedback-190445,
2022. 432

[Cha66] G. J. Chaitin. On the length of programs for computing finite binary sequences. Journal of the
ACM, 13(4):547–569, 1966. 133, 134

[Cha75] G. J. Chaitin. A theory of program size formally identical to information theory. Journal of the
ACM, 22(3):329–340, 1975. 133, 134

[Cha91] G. J. Chaitin. Algorithmic information and evolution. In Perspectives on Biological Complexity,
pages 51–60. IUBS Press, 1991. 135

[Cha10] D. J. Chalmers. The Singularity: A philosophical analysis. Journal of Consciousness Studies,
17:7–65, 2010. 410, 432

https://jc.gatspress.com/pdf/on_expected_utility.pdf
https://jc.gatspress.com/pdf/on_expected_utility.pdf
http://arxiv.org/abs/2005.03137
http://theconversation.com/the-danger-of-advanced-artificial-intelligence-controlling-its-own-feedback-190445
http://theconversation.com/the-danger-of-advanced-artificial-intelligence-controlling-its-own-feedback-190445

468 BIBLIOGRAPHY

[CHBR24] M. K. Cohen, M. Hutter, Y. Bengio, and S. Russell. RL, but don’t do anything i wouldn’t do.
arXiv:2410.06213, pages 1–10, 2024. 433

[CHC21] M. K. Cohen, M. Hutter, and E. Catt. Curiosity killed or incapacitated the cat and the
asymptotically optimal agent. IEEE Journal on Selected Areas in Information Theory, 2(2):665–
677, 2021. 283, 285, 296, 302, 365, 433

[Che85] P. Cheeseman. In defense of probability. In Proc. 9th International Joint Conf. on Artificial
Intelligence, pages 1002–1009, Los Altos, CA, 1985. Morgan Kaufmann. 130

[Che88] P. Cheeseman. An inquiry into computer understanding. Computational Intelligence, 4(1):58–66,
1988. 130

[CHH02] M. Campbell, A. Hoane, and F.-h. Hsu. Deep Blue. Artificial Intelligence, 134(1-2):57–83,
January 2002. 444, 453

[CHIS23] F.-A. Croitoru, V. Hondru, R. T. Ionescu, and M. Shah. Diffusion Models in Vision: A Survey.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(9):10850–10869, September
2023. 453

[CHN22] M. K. Cohen, M. Hutter, and N. Nanda. Fully general online imitation learning. Journal of
Machine Learning Research, 23(334):1–30, 2022. 253

[Cho19] F. Chollet. On the Measure of Intelligence, November 2019. 456

[CHO22] M. Cohen, M. Hutter, and M. Osborne. Advanced artificial agents intervene in the provision of
reward. AI magazine, 43(3):282–293, 2022. 432

[Chr17] P. F. Christiano. Manipulation-Resistant Online Learning. PhD thesis, UC Berkeley, 2017. 415

[Chr20] B. Christian. The Alignment Problem: Machine Learning and Human Values. Atlantic Books,
London, paperback edition edition, 2020. 411, 440

[CHS07] A. Chernov, M. Hutter, and J. Schmidhuber. Algorithmic complexity bounds on future prediction
errors. Information and Computation, 205(2):242–261, 2007. 171

[Chu36] A. Church. An Unsolvable Problem of Elementary Number Theory. American Journal of
Mathematics, 58(2):345, April 1936. 91, 132

[Chu40] A. Church. On the concept of a random sequence. Bulletin of the American Mathematical Society,
46:130–135, 1940. 128

[CHV22a] E. Catt, M. Hutter, and J. Veness. On reward binarisation and Bayesian agents. In 15th European
Workshop on Reinforcement Learning (EWRL-15), 2022. http://ewrl.files.wordpress.com/
2022/09/ewrl22_submission.pdf. 318, 457

[CHV22b] E. Catt, M. Hutter, and J. Veness. Reinforcement learning with information-theoretic actuation.
In Proc. 15th International Conference on Artificial General Intelligence (AGI’22), volume 13539
of LNCS, pages 188–198, Seattle, WA, USA, 2022. Springer. 457

[CJ05] C. S. Calude and H. Jürgensen. Is complexity a source of incompleteness? Advances in Applied
Mathematics, 35(1):1–15, July 2005. 135

[CJS90] P. A. Carpenter, M. A. Just, and P. Shell. What one intelligence test measures: A theoretical
account of the processing in the Raven Progressive Matrices Test. Psychological Review, 97(3):404–
431, 1990. 455

[CK78] T. Cover and R. King. A convergent gambling estimate of the entropy of English. IEEE
Transactions on Information Theory, 24(4):413–421, July 1978. 131

[CKL94] A. R. Cassandra, L. P. Kaelbling, and M. L. Littman. Acting optimally in partially observable
stochastic domains. In AAAI, volume 94, pages 1023–1028, 1994. 361, 371

[Cle23] Clevcode. Can you beat a stochastic parrot?, 2023. https://github.com/clevcode/skynet-dev.
461

[CLR+21] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srinivas, and
I. Mordatch. Decision Transformer: Reinforcement Learning via Sequence Modeling, June 2021.
370

[CN97] I. L. Chuang and M. A. Nielsen. Prescription for experimental determination of the dynamics of
a quantum black box. Journal of Modern Optics, 44(11-12):2455–2467, November 1997. 404

[Com] W. Commons. Image of real number line. https://upload.wikimedia.org/wikipedia/commons/
d/d7/Real_number_line.svg. 22

[Con97] M. Conte et al. Genetic programming estimates of Kolmogorov complexity. In Proc. 17th
International Conf. on Genetic Algorithms, pages 743–750, East Lansing, MI, 1997. Morgan
Kaufmann, San Francisco, CA. 134

[Coo09] M. Cook. A Concrete View of Rule 110 Computation. In Electronic Proceedings in Theoretical
Computer Science, volume 1 of Electronic Proceedings in Theoretical Computer Science, pages
31–55, Cork, Ireland, June 2009. Open Publishing Association. 92

[Cou43] A. A. Cournot. Exposition de la théorie des chances et des probabilités. L. Hachette, Paris, 1843.
130

[Cou06] R. Coulom. Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search. In D. Hutchi-
son, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz,
C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum,
H. J. Van Den Herik, P. Ciancarini, and H. H. L. M. Donkers, editors, Computers and Games,
volume 4630, pages 72–83. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006. 253, 338, 339,
340, 369, 403

http://arxiv.org/abs/2410.06213
http://ewrl.files.wordpress.com/2022/09/ewrl22_submission.pdf
http://ewrl.files.wordpress.com/2022/09/ewrl22_submission.pdf
https://github.com/clevcode/skynet-dev
https://upload.wikimedia.org/wikipedia/commons/d/d7/Real_number_line.svg
https://upload.wikimedia.org/wikipedia/commons/d/d7/Real_number_line.svg

BIBLIOGRAPHY 469

[Cov74] T. M. Cover. Universal gambling schemes and the complexity measures of Kolmogorov and
Chaitin. Technical Report 12, Statistics Department, Stanford University, Stanford, CA, 1974.
134

[Cox46] R. T. Cox. Probability, frequency, and reasonable expectation. American Journal of Physics,
14(1):1–13, 1946. 130, 131

[CPRR17] B. Cserna, M. Petrik, R. H. Russel, and W. Ruml. Value Directed Exploration in Multi-Armed
Bandits with Structured Priors, May 2017. 302

[Cra99] H. Cramér. Mathematical methods of statistics, volume 26. Princeton university press, 1999. 129

[Cri17] A. Critch. Toward negotiable reinforcement learning: Shifting priorities in Pareto optimal
sequential decision-making, May 2017. 325, 461

[CT06] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley-Intersience, 2nd edition,
2006. 66, 129, 131, 134, 418

[CV05] R. Cilibrasi and P. M. B. Vitányi. Clustering by compression. IEEE Trans. Information Theory,
51(4):1523–1545, 2005. 135

[CV07] R. Cilibrasi and P. M. B. Vitányi. The Google similarity distance. IEEE/ACM Transactions on
Knowledge and Data Engineering, page to appear, 2007. 135

[CV15] A. R. Cohen and P. M. Vitanyi. Normalized Compression Distance of Multisets with Applications.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(8):1602–1614, August 2015.
135

[CV22] R. L. Cilibrasi and P. M. B. Vitányi. Fast Phylogeny of SARS-CoV-2 by Compression. Entropy,
24(4):439, March 2022. 135

[CVH20] M. Cohen, B. Vellambi, and M. Hutter. Asymptotically unambitious artificial general intelligence.
In Proc. 34rd AAAI Conference on Artificial Intelligence (AAAI’20), volume 34, pages 2467–2476,
New York, USA, 2020. AAAI Press. 433

[CVH21] M. K. Cohen, B. Vellambi, and M. Hutter. Intelligence and unambitiousness using algorithmic
information theory. IEEE Journal on Selected Areas in Information Theory, 2(2):678–690, 2021.
270, 433

[CVW04] R. Cilibrasi, P. M. B. Vitányi, and R. Wolf. Algorithmic clustering of music based on string
compression. Computer Music Journal, 28(4):49–67, 2004. http://arXiv.org/abs/cs/0303025.
135

[CW84] J. G. Cleary and I. H. Witten. Data compression using adaptive coding and partial string
matching. IEEE Transactions on Communications, COM-32(4):396–402, 1984. 214

[CWH+08] G. M. J.-B. Chaslot, M. H. M. Winands, H. J. V. D. Herik, J. W. H. M. Uiterwijk, and B. Bouzy.
Progressive Strategies for Monte-Carlo Tree Search. New Mathematics and Natural Computation,
04(03):343–357, November 2008. 369

[CWVDH08] G. M. J. B. Chaslot, M. H. M. Winands, and H. J. Van Den Herik. Parallel Monte-Carlo
Tree Search. In D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell,
M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar,
M. Y. Vardi, G. Weikum, H. J. Van Den Herik, X. Xu, Z. Ma, and M. H. M. Winands, editors,
Computers and Games, volume 5131, pages 60–71. Springer Berlin Heidelberg, Berlin, Heidelberg,
2008. 342, 350, 352, 369

[Cyb89] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control,
Signals, and Systems, 2(4):303–314, December 1989. 130

[CYQ+20] S. Y.-C. Chen, C.-H. H. Yang, J. Qi, P.-Y. Chen, X. Ma, and H.-S. Goan. Variational Quantum
Circuits for Deep Reinforcement Learning. IEEE Access, 8:141007–141024, 2020. 403

[Dal73] R. P. Daley. Minimal-program complexity of sequences with restricted resources. Information
and Control, 23(4):301–312, 1973. 134

[Dal77] R. P. Daley. On the inference of optimal descriptions. Theoretical Computer Science, 4(3):301–319,
1977. 134

[Das16] M. Daswani. Generic Reinforcement Learning Beyond Small MDPs. PhD thesis, Research School
of Computer Science, Australian National University, 2016. 134, 394, 397, 402

[Dau90] J. W. Dauben. Georg Cantor: His Mathematics and Philosophy of the Infinite. Princeton
University Press, Princeton, NJ, 1990. 132

[DBK+21] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, et al. An image is worth 16x16
words: Transformers for image recognition at scale. In International Conference on Learning
Representations, 2021. 452, 461

[DCLT08] D. Dong, C. Chen, H. Li, and T.-J. Tarn. Quantum Reinforcement Learning. IEEE Transactions
on Systems, Man, and Cybernetics, Part B (Cybernetics), 38(5):1207–1220, October 2008. 403

[DDZ20] H. Dong, Z. Ding, and S. Zhang. Deep Reinforcement Learning: Fundamentals, Research and
Applications. Springer, Singapore, June 2020. 253

[de 08] N. de Firmian. Modern Chess Openings: MCO-15. Random House Puzzles & Games, New York,
NY, 15th ed edition, 2008. 453

[de 09] P. de Blanc. Convergence of Expected Utility for Universal AI, December 2009. 252

http://arXiv.org/abs/cs/0303025

470 BIBLIOGRAPHY

[Dem68] A. P. Dempster. A generalization of Bayesian inference. Journal of the Royal Statistical Society,
Series B 30:205–247, 1968. 130

[DFO20] M. P. Deisenroth, A. A. Faisal, and C. S. Ong. Mathematics for Machine Learning. Cambridge
University Press, Cambridge ; New York, NY, 2020. 128

[DG20] A. Demski and S. Garrabrant. Embedded Agency, October 2020. 433

[DGL96] L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition. Springer,
New York, 1996. 172

[DH10] R. Downey and D. R. Hirschfeldt. Algorithmic Randomness and Complexity. Springer, Berlin,
2010. 133

[DKH22] K. Dingle, R. Kamal, and B. Hamzi. A Note on A Priori Forecasting and Simplicity Bias in Time
Series, 2022. 171

[DLD+23] Q. Dong, L. Li, D. Dai, C. Zheng, J. Ma, R. Li, H. Xia, J. Xu, Z. Wu, B. Chang, X. Sun, L. Li,
and Z. Sui. A Survey on In-context Learning, 2023. 132

[DLKS+22] L. L. Di Langosco, J. Koch, L. D. Sharkey, J. Pfau, and D. Krueger. Goal misgeneralization in
deep reinforcement learning. In International Conference on Machine Learning, pages 12004–
12019. PMLR, 2022. 434

[Doo53] J. L. Doob. Stochastic Processes. Wiley, New York, 1953. 165

[Dow13] D. L. Dowe. Algorithmic Probability and Friends: Bayesian Prediction and Artificial Intelligence .
Papers from the Ray Solomonoff 85th Memorial Conference, Melbourne, Vic, Australia, November
30 - December 2, 2011. Number 7070 in Lecture Notes in Artificial Intelligence. Springer, New
York, 1st edition edition, 2013. 171

[DPP09] A. K. Doxiadēs, C. H. Papadimitriou, and A. Papadatos. Logicomix: An Epic Search for Truth.
Bloomsbury Publishing PLC, London, 2009. 128

[DRD+24] G. Deletang, A. Ruoss, P.-A. Duquenne, E. Catt, T. Genewein, C. Mattern, J. Grau-Moya, L. K.
Wenliang, M. Aitchison, L. Orseau, M. Hutter, and J. Veness. Language modeling is compression.
In Proc. 12th International Conference on Learning Representations (ICLR’24), Vienna, Austria,
2024. 87, 132, 172, 461

[DRGM+23] G. Deletang, A. Ruoss, J. Grau-Moya, T. Genewein, L. Wenliang, E. Catt, C. Cundy, M. Hutter,
S. Legg, J. Veness, and P. Ortega. Neural networks and the Chomsky hierarchy. In Proc. 11th
International Conference on Learning Representations (ICLR’23), Kigali, Rwanda, 2023. 462

[DRW+24] G. Deletang, A. Ruoss, L. K. Wenliang, E. Catt, T. Genewein, J. Grau, M. Hutter, and J. Veness.
Generative reinforcement learning with transformers. 2024. 303, 371

[DSH12] M. Daswani, P. Sunehag, and M. Hutter. Feature reinforcement learning using looping suffix
trees. Journal of Machine Learning Research, W&CP, 24:11–23, 2012. 402

[DSH13] M. Daswani, P. Sunehag, and M. Hutter. Q-learning for history-based reinforcement learning. In
Proc. 5th Asian Conf. on Machine Learning (ACML’13), volume 29, pages 213–228, Canberra,
Australia, 2013. JMLR. 372, 402, 403

[DSH14a] M. Daswani, P. Sunehag, and M. Hutter. Feature reinforcement learning: State of the art. In
Proc. Workshops at the 28th AAAI Conference on Artificial Intelligence: Sequential Decision
Making with Big Data, pages 2–5, Quebec City, Canada, 2014. AAAI Press. 402

[DSH14b] M. Daswani, P. Sunehag, and M. Hutter. Reinforcement learning with value advice. In Proc. 6th
Asian Conf. on Machine Learning (ACML’14), volume 39, pages 299–314, Canberra, Australia,
2014. JMLR. 404

[DSYW21] R. Dwivedi, C. Singh, B. Yu, and M. J. Wainwright. Revisiting minimum description length
complexity in overparameterized models, 2021. 133

[DV99] A. P. Dawid and V. G. Vovk. Prequential probability: principles and properties. Bernoulli, pages
125–162, 1999. 133

[Dvo20] M. Dvoretsky. Dvoretsky’s endgame manual. SCB Distributors, 2020. 453

[DZ21] A. DiGiovanni and E. C. Zell. Survey of Self-Play in Reinforcement Learning, July 2021. 254

[Ear93] J. Earman. Bayes or Bust? A Critical Examination of Bayesian Confirmation Theory. MIT
Press, Cambridge, MA, 1993. 130

[ECA+23] P. Esser, J. Chiu, P. Atighehchian, J. Granskog, and A. Germanidis. Structure and content-guided
video synthesis with diffusion models. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 7346–7356, 2023. 453

[EFDH16] T. Everitt, D. Filan, M. Daswani, and M. Hutter. Self-modification of policy and utility function
in rational agents. In Proc. 9th Conf. on Artificial General Intelligence (AGI’16), volume 9782
of LNAI, pages 1–11, New York, USA, 2016. Springer. Winner of the Kurzweil Prize for Best
AGI Paper. 418, 422, 423, 433

[EH15a] T. Everitt and M. Hutter. Analytical results on the BFS vs. DFS algorithm selection problem.
Part i: Tree search. In Proc. 28th Australasian Joint Conference on Artificial Intelligence
(AusAI’15), volume 9457 of LNAI, pages 157–165, Canberra, Australia, 2015. Springer. 372

[EH15b] T. Everitt and M. Hutter. Analytical results on the BFS vs. DFS algorithm selection problem.
Part ii: Graph search. In Proc. 28th Australasian Joint Conference on Artificial Intelligence
(AusAI’15), volume 9457 of LNAI, pages 166–178, Canberra, Australia, 2015. Springer. 372

http://agi-conf.org/2016/prizes/
http://agi-conf.org/2016/prizes/

BIBLIOGRAPHY 471

[EH16] T. Everitt and M. Hutter. Avoiding wireheading with value reinforcement learning. In Proc. 9th
Conf. on Artificial General Intelligence (AGI’16), volume 9782 of LNAI, pages 12–22, New York,
USA, 2016. Springer. 423, 424, 433

[EH18a] T. Everitt and M. Hutter. The alignment problem for history-based Bayesian reinforcement
learners. Technical report, 2018. First winner of the AI alignment prize round 2. 270, 434

[EH18b] T. Everitt and M. Hutter. Universal artificial intelligence: Practical agents and fundamental
challenges. In H. A. Abbass, J. Scholz, and D. J. Reid, editors, Foundations of Trusted Autonomy,
chapter 2, pages 15–46. Springer, 2018. 269

[EHKK21] T. Everitt, M. Hutter, R. Kumar, and V. Krakovna. Reward tampering problems and solutions
in reinforcement learning: A causal influence diagram perspective. Synthese, 198(27):6435–6467,
2021. 270, 424, 425, 432, 433, 434

[Ein87] A. Einstein. The Collected Papers of Albert Einstein, Volume 15 (Translation Supplement): The
Berlin Years: Writings & Correspondence, June 1925–May 1927. Princeton University Press,
1987. 9

[Eis61] E. Eisenberg. Aggregation of Utility Functions. Management Science, 7(4):337–350, July 1961.
416

[EKH19] T. Everitt, R. Kumar, and M. Hutter. Designing agent incentives to avoid reward tampering.
Medium, 8(14), 2019. 270, 434

[EKO+17] T. Everitt, V. Krakovna, L. Orseau, M. Hutter, and S. Legg. Reinforcement learning with
corrupted reward signal. In Proc. 26th International Joint Conf. on Artificial Intelligence
(IJCAI’17), pages 4705–4713, Melbourne, Australia, 2017. 427, 428, 429, 433

[ELH14] T. Everitt, T. Lattimore, and M. Hutter. Free lunch for optimisation under the universal
distribution. In Proc. 2014 Congress on Evolutionary Computation (CEC’14), pages 167–174,
Beijing, China, 2014. IEEE. 446

[ELH15] T. Everitt, J. Leike, and M. Hutter. Sequential extensions of causal and evidential decision theory.
In Proc. 4th International Conf. on Algorithmic Decision Theory (ADT’15), volume 9346 of
LNAI, pages 205–221, Lexington, USA, 2015. Springer. 270

[ELH18] T. Everitt, G. Lea, and M. Hutter. AGI safety literature review. In Proc. 27th International
Joint Conf. on Artificial Intelligence (IJCAI’18), pages 5441–5449, Stockholm, Sweden, 2018.
IJCAI Review Track. 432

[Ell88] D. Ellsberg. Risk, ambiguity, and the Savage axioms. In P. Gärdenfors and N.-E. Sahlin, editors,
Decision, Probability and Utility, pages 245–269. Cambridge University Press, 1 edition, March
1988. 324

[ES10] M. L. Eaton and W. D. Sudderth. Invariance of posterior distributions under reparametrization.
Sankhya A, 72(1):101–118, February 2010. 129

[Esp08] N. Espinoza. The small improvement argument. Synthese, 165(1):127–139, November 2008. 323

[Eve19] T. Everitt. Towards Safe Artificial General Intelligence. PhD thesis, The Australian National
University (Australia), 2019. 417, 424, 432

[Fan68] R. M. Fano. Transmission of Information: A Statistical Theory of Communication. Mit Press,
S.l., 1968. 131

[FAS21] A. Franz, O. Antonenko, and R. Soletskyi. A theory of incremental compression. Information
Sciences, 547:28–48, February 2021. 132

[FB08] H. Finnsson and Y. Björnsson. Simulation-based approach to general game playing. In AAAI,
volume 8, pages 259–264, 2008. 369

[FBB20] M. Fitzgerald, A. Boddy, and S. D. Baum. 2020 survey of artificial general intelligence projects
for ethics, risk, and policy. Global Catastrophic Risk Institute Technical Report, pages 1–20, 2020.
432

[FBB+22] FAIR, A. Bakhtin, N. Brown, E. Dinan, G. Farina, C. Flaherty, H. Hu, A. P. Jacob, M. Komeili,
K. Konath, M. Kwon, A. Lerer, M. Lewis, A. H. Miller, S. Mitts, A. Renduchintala, S. Roller,
D. Rowe, W. Shi, J. Spisak, A. Wei, D. Wu, H. Zhang, and M. Zijlstra. Human-level play
in the game of Diplomacy by combining language models with strategic reasoning. Science,
378(6624):1067–1074, December 2022. 434, 454

[Fel68] W. Feller. An Introduction to Probability Theory and Its Applications. Wiley, New York, 3rd
edition, 1968. 129

[Fer94] T. S. Ferguson. Mathematical Statistics: A Decision Theoretic Approach. Probability and
Mathematical Statistics. Academic Press, New York, 14. print edition, 1994. 324

[FH18] E. T. Flanigan and J. Halstead. THE SMALL IMPROVEMENT ARGUMENT, EPISTEMICISM
AND INCOMPARABILITY. Economics and Philosophy, 34(2):199–219, July 2018. 323

[FHI+18] V. François-Lavet, P. Henderson, R. Islam, M. G. Bellemare, and J. Pineau. An Introduction to
Deep Reinforcement Learning. Foundations and Trends® in Machine Learning, 11(3-4):219–354,
2018. 253

[Fin37] B. Finetti. Le prévision: ses lois logiques, ses sources subjectives. Ann. Inst. Poincaré, 7:1–68,
1937. [English translation: Foresight: Its logical laws, its subjective sources. In Studies in
Subjective Probability. Krieger, New York, pages 55–118, 1980]. 131

[Fin73] T. L. Fine. Theories of Probability. Academic Press, New York, 1973. 130

https://www.lesswrong.com/posts/SSEyiHaACSYDHcYZz/announcement-ai-alignment-prize-round-2-winners-and-next

472 BIBLIOGRAPHY

[Fin74] B. Finetti. Theory of Probability: A Critical Introductory Treatment. Wiley, 1974. Vol.1&2,
transl. by A. Machi and A. Smith. 131

[Fis22] R. A. Fisher. On the mathematical foundations of theoretical statistics. Philosophical Transactions
of the Royal Society of London, Series A 222:309–368, 1922. 129, 130

[Fis35] R. A. Fisher. The Detection of Linkage with “Dominant” Abnormalities. Annals of Eugenics,
6(2):187–201, June 1935. 129

[FJ80] R. A. Freitas Jr. A self-reproducing interstellar probe. Journal of the British Interplanetary
Society, 33(7):251–64, 1980. 414

[FLH16] D. Filan, J. Leike, and M. Hutter. Loss bounds and time complexity for speed priors. In Proc.
19th International Conf. on Artificial Intelligence and Statistics (AISTATS’16), volume 51, pages
1394–1402, Cadiz, Spain, 2016. Microtome. 172, 369

[FLO02] S. Frederick, G. Loewenstein, and T. O’Donoghue. Time discounting and time preference: A
critical review. Journal of Economic Literature, 40(2):351–401, 2002. 245

[FM82] K. Fukushima and S. Miyake. Neocognitron: A self-organizing neural network model for a
mechanism of visual pattern recognition. In Competition and Cooperation in Neural Nets, pages
267–285. Springer, 1982. 451

[FMG92] M. Feder, N. Merhav, and M. Gutman. Universal prediction of individual sequences. IEEE
Transactions on Information Theory, 38:1258–1270, 1992. 134

[FMRW10] V. Farias, C. C. Moallemi, B. V. Roy, and T. Weissman. Universal reinforcement learning. IEEE
Transactions on Information Theory, 56(5):2441–2454, 2010. 365, 370, 371, 401

[For04] L. Fortnow. Kolmogorov complexity and computational complexity. Complexity of Computations
and Proofs. Quaderni di Matematica, 13, 2004. 134

[FPP04] N. Ferns, P. Panangaden, and D. Precup. Metrics for finite Markov decision processes. In Proc.
20th conf. on Uncertainty in Artificial Intelligence (UAI’04), pages 162–169, 2004. 392

[Fra15] A. Franz. Toward tractable universal induction through recursive program learning. In J. Bieger,
B. Goertzel, and A. Potapov, editors, Artificial General Intelligence, volume 9205, pages 251–260.
Springer International Publishing, Cham, 2015. 171

[Fra18] P. I. Frazier. A Tutorial on Bayesian Optimization, July 2018. 129

[FST15] B. Fallenstein, N. Soares, and J. Taylor. Reflective variants of Solomonoff induction and AIXI. In
International Conference on Artificial General Intelligence, pages 60–69. Springer, 2015. 326

[FTC15] B. Fallenstein, J. Taylor, and P. F. Christiano. Reflective Oracles: A Foundation for Game Theory
in Artificial Intelligence. In W. Van Der Hoek, W. H. Holliday, and W.-f. Wang, editors, Logic,
Rationality, and Interaction, volume 9394, pages 411–415. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2015. 316, 318, 322, 326

[FY01] D. P. Foster and H. P. Young. On the impossibility of predicting the behavior of rational agents.
Proceedings of the National Academy of Sciences, 98(22):12848–12853, October 2001. 326

[Gab20] I. Gabriel. Artificial Intelligence, Values and Alignment. Minds and Machines, 30(3):411–437,
September 2020. 432

[Gác74] P. Gács. On the symmetry of algorithmic information. Soviet Mathematics Doklady, 15:1477–1480,
1974. 134

[Gag07] M. Gaglio. Universal search. Scholarpedia, 2(11):2575, 2007. 133

[Gal68] R. G. Gallager. Information Theory and Reliable Communication. Wiley, New York, 1968. 128

[Gam70] M. Games. The fantastic combinations of John Conway’s new solitaire game “life” by Martin
Gardner. Scientific American, 223:120–123, 1970. 92

[GAMK13] M. Gheshlaghi Azar, R. Munos, and H. J. Kappen. Minimax PAC bounds on the sample
complexity of reinforcement learning with a generative model. Machine Learning, 91(3):325–349,
June 2013. 253

[GB03] S. Goel and S. F. Bush. Kolmogorov complexity estimates for detection of viruses in biologically
inspired security systems: A comparison with traditional approaches. Complexity, 9(2):54–73,
November 2003. 135

[GBC16] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. Adaptive Computation and Machine
Learning. The MIT Press, Cambridge, Massachusetts, 2016. 450

[GBC+20] S. Garrabrant, T. Benson-Tilsen, A. Critch, N. Soares, and J. Taylor. Logical Induction, December
2020. 131, 172, 439

[GBD92] S. Geman, E. Bienenstock, and R. Doursat. Neural Networks and the Bias/Variance Dilemma.
Neural Computation, 4(1):1–58, January 1992. 129

[GBLP08] T. Gowers, J. Barrow-Green, I. Leader, and Princeton University, editors. The Princeton
Companion to Mathematics. Princeton University Press, Princeton, 2008. 128

[GBVB13] M. Gendron-Bellemare, J. Veness, and M. Bowling. Bayesian learning of recursively factored
environments. JMLR W&CP ICML, 28(3):1211–1219, 2013. 269, 368

[GCS+13] A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin. Bayesian
Data Analysis. Texts in Statistical Science Series. CRC Press, Taylor and Francis Group, Boca
Raton London New York, third edition edition, 2013. 172

BIBLIOGRAPHY 473

[GCSR95] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian Data Analysis. Chapman &
Hall / CRC, 1995. 129, 130, 173

[GDG03] R. Givan, T. Dean, and M. Greig. Equivalence notions and model minimization in Markov
decision processes. Artificial Intelligence, 147(1–2):163–223, 2003. 392

[GDM23a] G. T. GDM. Gemini: A family of highly capable multimodal models, 2023. 450

[GDM23b] G. D. GDM. Transforming the future of music creation, November 2023. https://deepmind.
google/discover/blog/transforming-the-future-of-music-creation/. 453

[GDR+23] T. Genewein, G. Deletang, A. Ruoss, L. K. Wenliang, E. Catt, V. Dutordoir, J. Grau-Moya,
L. Orseau, M. Hutter, and J. Veness. Memory-based meta-learning on non-stationary distributions.
In Proc. 40th International Conference on Machine Learning (ICML’23), volume 202, pages
11173–11195, Hawaii, USA, 2023. PMLR. 214

[GE10] J. E. Gustafsson and N. Espinoza. CONFLICTING REASONS IN THE SMALL-IMPROVEMENT
ARGUMENT: Conflicting Reasons in the Small-Improvement Argument. The Philosophical
Quarterly, 60(241):754–763, October 2010. 323

[GFRW24] M. Goldblum, M. A. Finzi, K. Rowan, and A. G. Wilson. Position paper: The no free lunch
theorem, kolmogorov complexity, and the role of inductive biases in machine learning. In Forty-first
International Conference on Machine Learning, 2024. 446

[GGY+19] C. Guo, J. R. Gardner, Y. You, A. G. Wilson, and K. Q. Weinberger. Simple Black-box
Adversarial Attacks, August 2019. 434

[GH] A. Gibbard and W. L. Harper. Counterfactuals and Two Kinds of Expected Utility. In W. L.
Harper, R. Stalnaker, and G. Pearce, editors, IFS, pages 153–190. Springer Netherlands. 325

[Gho97] S. Ghosal. A review of consistency and convergence of posterior distribution. In Varanashi
Symposium in Bayesian Inference, Banaras Hindu University. Citeseer, 1997. 70

[Git89] J. C. Gittins. Multi-Armed Bandit Allocation Indices. Wiley, New York, 1989. 344, 369

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-completeness. A Series of Books in the Mathematical Sciences. Freeman, New York [u.a], 27.
print edition, 1979. 456

[GKP94] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics: A Foundation for
Computer Science. Addison-Wesley, Reading, Mass, 2nd ed edition, 1994. 128

[GKT08] T. L. Griffiths, C. Kemp, and J. B. Tenenbaum. Bayesian Models of Cognition. In R. Sun, editor,
The Cambridge Handbook of Computational Psychology, pages 59–100. Cambridge University
Press, 1 edition, 2008. 172

[GLG+24] K. Gandhi, D. Lee, G. Grand, M. Liu, W. Cheng, A. Sharma, and N. D. Goodman. Stream of
Search (SoS): Learning to Search in Language, April 2024. 462

[GM15] A. Gopalan and S. Mannor. Thompson sampling for learning parameterized Markov decision
processes. In Conference on Learning Theory, pages 861–898. PMLR, 2015. 290, 302

[GMDK+22] J. Grau-Moya, G. Delétang, M. Kunesch, T. Genewein, E. Catt, K. Li, A. Ruoss, C. Cundy,
J. Veness, J. Wang, M. Hutter, C. Summerfield, S. Legg, and P. Ortega. Beyond Bayes-optimality:
meta-learning what you know you don’t know. arXiv:2209.15618, 2022. 303

[GMGH+24] J. Grau-Moya, T. Genewein, M. Hutter, L. Orseau, G. Deletang, E. Catt, A. Ruoss, L. K.
Wenliang, C. Mattern, M. Aitchison, and J. Veness. Learning universal predictors. In 41st
International Conference on Machine Learning, 2024. 132, 172, 214, 446, 450, 461

[GMPT15] M. Ghavamzadeh, S. Mannor, J. Pineau, and A. Tamar. Bayesian reinforcement learning: A
survey. Foundations and Trends® in Machine Learning, 8(5-6):359–483, 2015. 253, 269

[Göd31] K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter
Systeme I. Monatshefte für Matematik und Physik, 38:173–198, 1931. [English translation by E.
Mendelsohn: On undecidable propositions of formal mathematical systems. In The Undecidable,
pages 39–71, Raven Press, New York, 1965]. 91, 92, 132, 446

[Göd86] K. Gödel. Kurt Gödel: Collected Works: Volume I: Publications 1929-1936, volume 1. Oxford
University Press, USA, 1986. 446

[Gol06] M. Goldstein. Subjective Bayesian analysis: Principles and practice. Bayesian Analysis, 1(3):403–
420, 2006. 69, 131

[Goo65] I. J. Good. Speculations concerning the first ultraintelligent machine. Advances in Computers,
6:31–88, 1965. 414, 432

[Goo71] I. J. Good. 46656 varieties of Bayesians. Letter in American Statistician, 25:62–63, 1971.
Reprinted in Good Thinking, University of Minnesota Press, 1982, pp. 20–21. 69, 70, 131

[GP07] B. Goertzel and C. Pennachin, editors. Artificial General Intelligence. Springer, 2007. 404, 432

[GPM+14] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio. Generative Adversarial Networks, June 2014. 135

[GPSW17] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger. On Calibration of Modern Neural Networks,
August 2017. 130

[GR03] J. K. Ghosh and R. V. Ramamoorthi. Bayesian Nonparametrics. Springer Series in Statistics.
Springer, New York, 2003. 173

https://deepmind.google/discover/blog/transforming-the-future-of-music-creation/
https://deepmind.google/discover/blog/transforming-the-future-of-music-creation/
http://arxiv.org/abs/2209.15618

474 BIBLIOGRAPHY

[GR19] P. Grünwald and T. Roos. Minimum description length revisited. International Journal of
Mathematics for Industry, 11(01):1930001, December 2019. 133

[Gri11] R. Grizzle. Wechsler Intelligence Scale for Children, Fourth Edition. In S. Goldstein and J. A.
Naglieri, editors, Encyclopedia of Child Behavior and Development, pages 1553–1555. Springer
US, Boston, MA, 2011. 459

[Gro96] L. K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the
Twenty-Eighth Annual ACM Symposium on Theory of Computing - STOC ’96, Proceedings
of the Twenty-Eighth Annual ACM Symposium on Theory of Computing - STOC ’96, pages
212–219, Philadelphia, Pennsylvania, United States, 1996. ACM Press. 403

[Gro97] L. K. Grover. Quantum Mechanics Helps in Searching for a Needle in a Haystack. Physical
Review Letters, 79(2):325–328, July 1997. 403

[Grü07] P. D. Grünwald. The Minimum Description Length Principle. The MIT Press, Cambridge, 2007.
114, 133, 171

[Grz57] A. Grzegorczyk. On the definitions of computable real continuous functions. Fundamenta
Mathematicae, 44(1):61–71, 1957. 94, 98

[GS82] H. Gaifman and M. Snir. Probabilities over rich languages, testing and randomness. Journal of
Symbolic Logic, 47:495—-548, 1982. 131

[GS04] I. Gilboa and D. Schmeidler. Maxmin expected utility with non-unique prior. In Uncertainty in
Economic Theory, pages 141–151. Routledge, 2004. 286, 287

[GS07] S. Gelly and D. Silver. Combining online and offline knowledge in UCT. In Proceedings of the
24th International Conference on Machine Learning, pages 273–280, Corvalis Oregon USA, June
2007. ACM. 347, 369

[GS20] G. R. Grimmett and D. R. Stirzaker. Probability and Random Processes. Oxford University
Press, Oxford, 4th ed edition, 2020. xvii, 24, 26, 27, 128, 129, 165, 166

[Gue09] F. G. Guerrero. A New Look at the Classical Entropy of Written English, November 2009. 78,
131

[GV04] P. Grunwald and P. Vitányi. Shannon information and Kolmogorov complexity. arXiv:cs/0410002,
2004. 134

[GvdV17] S. Ghosal and A. W. van der Vaart. Fundamentals of Nonparametric Bayesian Inference.
Number 44 in Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge university
press, Cambridge, 2017. 130, 173

[GVV75] R. Gallager and D. Van Voorhis. Optimal source codes for geometrically distributed integer
alphabets (Corresp.). IEEE Transactions on Information Theory, 21(2):228–230, March 1975.
131

[GW05] D. Goldin and P. Wegner. The church-turing thesis: Breaking the myth. In Conference on
Computability in Europe, pages 152–168. Springer, 2005. 448

[GWD14] A. Graves, G. Wayne, and I. Danihelka. Neural Turing Machines, December 2014. 133

[GWMT06] S. Gelly, Y. Wang, R. Munos, and O. Teytaud. Modification of UCT with Patterns in Monte-
Carlo Go. PhD thesis, INRIA, 2006. 369

[GWR+16] A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka, A. Grabska-Barwińska, S. G.
Colmenarejo, E. Grefenstette, T. Ramalho, J. Agapiou, A. P. Badia, K. M. Hermann, Y. Zwols,
G. Ostrovski, A. Cain, H. King, C. Summerfield, P. Blunsom, K. Kavukcuoglu, and D. Hassabis.
Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626):471–
476, October 2016. 133, 462

[GY07] M. Gales and S. Young. The Application of Hidden Markov Models in Speech Recognition.
Foundations and Trends® in Signal Processing, 1(3):195–304, 2007. 451

[H+02] B. Hengst et al. Discovering hierarchy in reinforcement learning with HEXQ. In ICML, volume 19,
pages 243–250, 2002. 254

[HA50] D. Hilbert and W. Ackermann. Principles of Mathematical Logic. AMS Chelsea, Providence,
1950. 92

[Hac75] I. Hacking. The Emergence of Probability. Cambridge University Press, Cambridge, MA, 1975.
129

[Háj96] A. Hájek. “Mises redux” — Redux: Fifteen arguments against finite frequentism. Erkenntnis,
45(2-3):209–227, November 1996. 130

[Háj09a] A. Hájek. Chapter 7: Dutch book arguments. In The Handbook of Rational and Social Choice,
pages 173–195. Oxford University Press, 2009. 130

[Háj09b] A. Hájek. Fifteen Arguments Against Hypothetical Frequentism. Erkenntnis, 70(2):211–235,
March 2009. 130

[Haj11] A. Hajek. Conditional probability. In Handbook of Philosophy of Statistics, volume 7, pages
99–135. Elsevier, 2011. 129

[Hal90] A. Hald. A History of Probability and Statistics and Their Applications Before 1750. Wiley, New
York, 1990. 129

[Hal03] J. Y. Halpern. Reasoning about Uncertainty. MIT Press, Cambridge, Mass, 2003. 172

[Ham64] W. D. Hamilton. The genetical evolution of social behaviour. ii. Journal of theoretical biology,
7(1):17–52, 1964. 323

BIBLIOGRAPHY 475

[Ham18] R. H. Hammack. Book of Proof. Richard Hammack, Richmond, Virginia, third edition, edition
3.3 edition, 2018. 128

[Han16] R. Hanson. The Age of Em: Work, Love, and Life When Robots Rule the Earth. Oxford
University Press, Oxford, first edition edition, 2016. 432

[Han21] S. Hanneke. Open Problem: Is There an Online Learning Algorithm That Learns Whenever
Online Learning Is Possible?, July 2021. 171

[Har55] J. C. Harsanyi. Cardinal Welfare, Individualistic Ethics, and Interpersonal Comparisons of Utility.
Journal of Political Economy, 63(4):309–321, August 1955. 416

[Har73] G. Harman. Thought. Princeton Legacy Library. Princeton University Press, Princeton, N.J,
1973. 442

[HCD+16] R. Houthooft, X. Chen, Y. Duan, J. Schulman, F. De Turck, and P. Abbeel. Vime: Variational
information maximizing exploration. Advances in Neural Information Processing Systems, 29,
2016. 302

[HDAR16] D. Hadfield-Menell, A. Dragan, P. Abbeel, and S. Russell. Cooperative Inverse Reinforcement
Learning, June 2016. 434

[HDAR17] D. Hadfield-Menell, A. Dragan, P. Abbeel, and S. Russell. The Off-Switch Game. In Proceedings
of the Twenty-Sixth International Joint Conference on Artificial Intelligence, pages 220–227,
Melbourne, Australia, August 2017. International Joint Conferences on Artificial Intelligence
Organization. 434

[HDG+15] N. J. Higham, M. R. Dennis, P. Glendinning, P. A. Martin, F. Santosa, and J. Tanner, editors.
The Princeton Companion to Applied Mathematics. Princeton University Press, Princeton Oxford,
2015. 128

[HDYB21] S. Huang, R. F. J. Dossa, C. Ye, and J. Braga. CleanRL: High-quality Single-file Implementations
of Deep Reinforcement Learning Algorithms, 2021. 253

[Her32] J. Herbrand. Sur la non-contradiction de l’Arithmétique. crll, 1932(166):1–8, 1932. 91

[HFD17] J. Hostetler, A. Fern, and T. Dietterich. Sample-Based Tree Search with Fixed and Adaptive
State Abstractions. Journal of Artificial Intelligence Research, 60:717–777, December 2017. 403

[HFS94] W. Hoeffding, N. I. Fisher, and P. K. Sen. The collected works of Wassily Hoeffding. Springer,
1994. 54

[HGM+23] S. Hao, Y. Gu, H. Ma, J. Hong, Z. Wang, D. Wang, and Z. Hu. Reasoning with Language Model
is Planning with World Model. In Proceedings of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 8154–8173, Singapore, 2023. Association for Computational
Linguistics. 461

[HH21] R. Hutter and M. Hutter. Chances and risks of artificial intelligence — a concept of developing
and exploiting machine intelligence for future societies. Applied System Innovation, 4(2):1–19,
2021. 435

[HH22] M. Hutter and S. Hanson. Uniqueness and complexity of inverse mdp models. Technical Report
rh/P2466, DeepMind, London, 2022. 270, 404

[HHO24] B. Hamzi, M. Hutter, and H. Owhadi. Bridging algorithmic information theory and machine
learning: A new approach to kernel learning. arXiv:2311.12624, 2024. 133

[Hib12a] B. Hibbard. Avoiding unintended AI behaviors. In International Conference on Artificial General
Intelligence, pages 107–116. Springer, 2012. 424, 425

[Hib12b] B. Hibbard. Model-based Utility Functions. Journal of Artificial General Intelligence, 3(1):1–24,
January 2012. 417

[Hib14] B. Hibbard. Self-modeling agents evolving in our finite universe. In International Conference on
Artificial General Intelligence, pages 246–249. Springer, 2014. 433

[Hib15] B. Hibbard. Self-modeling agents and reward generator corruption. In Workshops at the Twenty-
Ninth AAAI Conference on Artificial Intelligence, 2015. 433

[Hid19] J. D. Hidary. Quantum Computing: An Applied Approach. Springer, Cham, Switzerland, 2019.
404

[Hig12] R. High. The era of cognitive systems: An inside look at IBM Watson and how it works. IBM
Corporation, Redbooks, 1:16, 2012. 451

[HJ17] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, New York, NY,
second edition, corrected reprint edition, 2017. 128

[HJA20] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in neural
information processing systems, 33:6840–6851, 2020. 453

[HKR+20] X. Huang, D. Kroening, W. Ruan, J. Sharp, Y. Sun, E. Thamo, M. Wu, and X. Yi. A survey of
safety and trustworthiness of deep neural networks: Verification, testing, adversarial attack and
defence, and interpretability. Computer Science Review, 37:100270, August 2020. 434

[HKT19] P. Hernandez-Leal, B. Kartal, and M. E. Taylor. A survey and critique of multiagent deep
reinforcement learning. Autonomous Agents and Multi-Agent Systems, 33(6):750–797, November
2019. 254, 325

[HL07] M. Hutter and S. Legg. Temporal difference updating without a learning rate. In Advances in
Neural Information Processing Systems 20, pages 705–712, Cambridge, MA, USA, 2007. Curran
Associates. 303, 403, 404

http://arxiv.org/abs/2311.12624

476 BIBLIOGRAPHY

[HLNU13a] M. Hutter, J. W. Lloyd, K. S. Ng, and W. T. Uther. Probabilities on sentences in an expressive
logic. Journal of Applied Logic, 11:386–420, 2013. 131, 439

[HLNU13b] M. Hutter, J. W. Lloyd, K. S. Ng, and W. T. Uther. Unifying probability and logic for learning.
In Proc. 2nd Workshop on Weighted Logics for AI (WL4AI’13), pages 65–72, Beijing, China,
2013. 131, 439

[HLV07] M. Hutter, S. Legg, and P. M. B. Vitányi. Algorithmic probability. Scholarpedia, 2(8):2572, 2007.
133, 170

[HM04] M. Hutter and A. A. Muchnik. Universal convergence of semimeasures on individual random
sequences. In Proc. 15th International Conf. on Algorithmic Learning Theory (ALT’04), volume
3244 of LNAI, pages 234–248, Padova, Italy, 2004. Springer. 171

[HM07] M. Hutter and A. A. Muchnik. On semimeasures predicting Martin-Löf random sequences.
Theoretical Computer Science, 382(3):247–261, 2007. 146, 147, 167, 171

[HMU06] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory, Language, and
Computation. Addison-Wesley, 3rd edition, 2006. 89, 90, 132

[HNR68] P. Hart, N. Nilsson, and B. Raphael. A Formal Basis for the Heuristic Determination of Minimum
Cost Paths. IEEE Transactions on Systems Science and Cybernetics, 4(2):100–107, 1968. 372

[HO02] L. A. Hemaspaandra and M. Ogihara. The Complexity Theory Companion. Springer, Berlin,
2002. 132

[Hoa20] L. N. Hoang. The Equation of Knowledge: From Bayes’ Rule to a Unified Philosophy of Science.
CRC Press, Taylor & Francis Group, Boca Raton, 2020. 173

[Hoc98] S. Hochreiter. The Vanishing Gradient Problem During Learning Recurrent Neural Nets and
Problem Solutions. International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems, 06(02):107–116, April 1998. 451

[HP04] M. Hutter and J. Poland. Prediction with expert advice by following the perturbed leader for
general weights. In Proc. 15th International Conf. on Algorithmic Learning Theory (ALT’04),
volume 3244 of LNAI, pages 279–293, Padova, Italy, 2004. Springer. 172, 336

[HP05] M. Hutter and J. Poland. Adaptive online prediction by following the perturbed leader. Journal
of Machine Learning Research, 6:639–660, 2005. 172, 336

[HQC24] M. Hutter, D. Quarel, and E. Catt. An Introduction to Universal Artificial Intelligence. Chapman
& Hall/CRC Artificial Intelligence and Robotics Series. Taylor and Francis, 2024. x, 446, 503

[HRB+22] C. F. Hayes, R. Rădulescu, E. Bargiacchi, J. Källström, M. Macfarlane, M. Reymond, T. Ver-
straeten, L. M. Zintgraf, R. Dazeley, F. Heintz, E. Howley, A. A. Irissappane, P. Mannion, A. Nowé,
G. Ramos, M. Restelli, P. Vamplew, and D. M. Roijers. A practical guide to multi-objective
reinforcement learning and planning. Autonomous Agents and Multi-Agent Systems, 36(1):26,
April 2022. 253

[HRR06] M. Höhl, I. Rigoutsos, and M. A. Ragan. Pattern-Based Phylogenetic Distance Estimation and
Tree Reconstruction. Evolutionary Bioinformatics, 2:117693430600200, January 2006. 135

[HS97] S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural Computation, 9(8):1735–
1780, November 1997. 133

[HSG+22] J. Ho, T. Salimans, A. Gritsenko, W. Chan, M. Norouzi, and D. J. Fleet. Video Diffusion Models,
June 2022. 453

[HSHB05] B. Hoehn, F. Southey, R. C. Holte, and V. Bulitko. Effective short-term opponent exploitation
in simplified poker. In AAAI, volume 5, pages 783–788, 2005. 371

[HSW89] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal
approximators. Neural Networks, 2(5):359–366, January 1989. 450

[HT10] M. Hutter and M. Tran. Model selection with the loss rank principle. Computational Statistics
and Data Analysis, 54:1288–1306, 2010. 134

[HTF09] T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements of Statistical Learning. Springer,
2nd edition, 2009. 130

[Huf52] D. Huffman. A Method for the Construction of Minimum-Redundancy Codes. Proceedings of the
IRE, 40(9):1098–1101, September 1952. 86, 131

[Hug21] S. Hughes. Lena. https://qntm.org/mmacevedo, 2021. Accessed: 2022-03-04. 442

[Hum39] D. Hume. A Treatise of Human Nature, Book I. [Edited version by L. A. Selby-Bigge and P. H.
Nidditch, Oxford University Press, 1978], 1739. 440

[Hut00] M. Hutter. A theory of universal artificial intelligence based on algorithmic complexity. Technical
Report cs.AI/0004001, München, 62 pages, April 2000. http://arxiv.org/abs/cs.AI/0004001.
viii, x, 171, 268, 382, 446

[Hut01a] M. Hutter. Convergence and error bounds for universal prediction of nonbinary sequences. In
Proc. 12th European Conf. on Machine Learning (ECML-2001), volume 2167 of LNAI, pages
239–250, Freiburg, Germany, 2001. Springer. 170

[Hut01b] M. Hutter. An effective procedure for speeding up algorithms. Presented at the 3rd Workshop on
Algorithmic Information Theory (TAI-2001), pages 1–10, 2001. 368, 382

https://qntm.org/mmacevedo
http://arxiv.org/abs/cs.AI/0004001

BIBLIOGRAPHY 477

[Hut01c] M. Hutter. General loss bounds for universal sequence prediction. In Proc. 18th International
Conf. on Machine Learning (ICML-2001), pages 210–217, Williamstown, MA, 2001. Morgan
Kaufmann. 170

[Hut01d] M. Hutter. New error bounds for Solomonoff prediction. Journal of Computer and System
Sciences, 62(4):653–667, 2001. 170

[Hut01e] M. Hutter. Towards a universal theory of artificial intelligence based on algorithmic probability
and sequential decisions. In Proc. 12th European Conf. on Machine Learning (ECML-2001),
volume 2167 of LNAI, pages 226–238, Freiburg, Germany, 2001. Springer. 269

[Hut01f] M. Hutter. Universal sequential decisions in unknown environments. In Proc. 5th European Work-
shop on Reinforcement Learning (EWRL-5), volume 27, pages 25–26, Utrecht, The Netherlands,
2001. Onderwijsinsituut CKI, Utrecht Univ. 269

[Hut02a] M. Hutter. Distribution of mutual information. In Advances in Neural Information Processing
Systems 14, pages 399–406, Cambridge, MA, USA, 2002. MIT Press. 173

[Hut02b] M. Hutter. The fastest and shortest algorithm for all well-defined problems. International Journal
of Foundations of Computer Science, 13(3):431–443, 2002. 368, 382

[Hut02c] M. Hutter. Self-optimizing and Pareto-optimal policies in general environments based on Bayes-
mixtures. In Proc. 15th Annual Conf. on Computational Learning Theory (COLT’02), volume
2375 of LNAI, pages 364–379, Sydney, Australia, 2002. Springer. 280, 285

[Hut03a] M. Hutter. Convergence and loss bounds for Bayesian sequence prediction. IEEE Transactions
on Information Theory, 49(8):2061–2067, 2003. 170

[Hut03b] M. Hutter. On the existence and convergence of computable universal priors. In Proc. 14th
International Conf. on Algorithmic Learning Theory (ALT’03), volume 2842 of LNAI, pages
298–312, Sapporo, Japan, 2003. Springer. 133, 171

[Hut03c] M. Hutter. An open problem regarding the convergence of universal a priori probability. In
Proc. 16th Annual Conf. on Learning Theory (COLT’03), volume 2777 of LNAI, pages 738–740,
Washington, DC, USA, 2003. Springer. 171

[Hut03d] M. Hutter. Optimal Sequential Decisions based on Algorithmic Probability. PhD thesis, Fakultät
für Informatik, TU München, 2003. 269, 382

[Hut03e] M. Hutter. Optimality of universal Bayesian prediction for general loss and alphabet. Journal of
Machine Learning Research, 4:971–1000, 2003. 114, 170, 171

[Hut03f] M. Hutter. Robust estimators under the Imprecise Dirichlet Model. In Proc. 3rd International
Symposium on Imprecise Probabilities and Their Application (ISIPTA-2003), volume 18 of
Proceedings in Informatics, pages 274–289, Lugano,Switzerland, 2003. Carleton Scientific. 130

[Hut03g] M. Hutter. Sequence prediction based on monotone complexity. In Proc. 16th Annual Conf. on
Learning Theory (COLT’03), volume 2777 of LNAI, pages 506–521, Washington, DC, USA, 2003.
Springer. 163, 172

[Hut04] M. Hutter. Online prediction – Bayes versus experts. Technical report, IDSIA, July 2004. Presented
at the EU PASCAL Workshop on Learning Theoretic and Bayesian Inductive Principles (LTBIP-
2004) http://www.hutter1.net/ai/bayespea.htm. 172

[Hut05a] M. Hutter. Fast non-parametric Bayesian inference on infinite trees. In Proc. 10th International
Conf. on Artificial Intelligence and Statistics (AISTATS-2005), pages 144–151. Society for
Artificial Intelligence and Statistics, 2005. 173

[Hut05b] M. Hutter. Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic Probabil-
ity. Springer, Berlin, 2005. 300 pages, http://www.hutter1.net/ai/uaibook.htm. viii, x, xix, 69,
96, 103, 108, 119, 120, 126, 127, 128, 130, 132, 133, 154, 156, 159, 163, 167, 169, 170, 171, 240,
253, 260, 261, 263, 264, 267, 268, 269, 272, 285, 294, 295, 303, 368, 377, 379, 380, 382, 432, 440,
446, 455

[Hut06a] M. Hutter. General discounting versus average reward. In Proc. 17th International Conf. on
Algorithmic Learning Theory (ALT’06), volume 4264 of LNAI, pages 244–258, Barcelona, Spain,
2006. Springer. 254, 336

[Hut06b] M. Hutter. On generalized computable universal priors and their convergence. Theoretical
Computer Science, 364(1):27–41, 2006. 133, 171

[Hut06c] M. Hutter. On the foundations of universal sequence prediction. In Proc. 3rd Annual Conference
on Theory and Applications of Models of Computation (TAMC’06), volume 3959 of LNCS, pages
408–420. Springer, 2006. 170

[Hut06d] M. Hutter. Sequential predictions based on algorithmic complexity. Journal of Computer and
System Sciences, 72(1):95–117, 2006. 163, 172

[Hut07a] M. Hutter. Algorithmic information theory: a brief non-technical guide to the field. Scholarpedia,
2(3):2519, 2007. 133

[Hut07b] M. Hutter. Bayesian regression of piecewise constant functions. In Proc. ISBA 8th International
Meeting on Bayesian Statistics, pages 607–612, Benidorm, Spain, 2007. Oxford University Press.
Lindley prize for innovative research in Bayesian statistics. 173

[Hut07c] M. Hutter. Exact Bayesian regression of piecewise constant functions. Bayesian Analysis,
2(4):635–664, 2007. Lindley prize for innovative research in Bayesian statistics. 173

http://www.hutter1.net/ai/bayespea.htm
http://www.hutter1.net/ai/uaibook.htm

478 BIBLIOGRAPHY

[Hut07d] M. Hutter. The loss rank principle for model selection. In Proc. 20th Annual Conf. on Learning
Theory (COLT’07), volume 4539 of LNAI, pages 589–603, San Diego, USA, 2007. Springer. 114,
134

[Hut07e] M. Hutter. On universal prediction and Bayesian confirmation. Theoretical Computer Science,
384(1):33–48, 2007. 131, 153, 170

[Hut07f] M. Hutter. Universal algorithmic intelligence: A mathematical top→down approach. In Artificial
General Intelligence, pages 227–290. Springer, Berlin, 2007. 171, 269, 382

[Hut08a] M. Hutter. Predictive hypothesis identification. In Presented at 9th Valencia /ISBA 2010 Meeting,
2008. 61, 173

[Hut08b] M. Hutter. Algorithmic complexity. Scholarpedia, 3(1):2573, 2008. 133

[Hut09a] M. Hutter. Feature reinforcement learning: Part II: Structured MDPs. Journal of Artificial
General Intelligence, pages 71–86, 2009. 134, 397, 398, 402

[Hut09b] M. Hutter. Discrete MDL predicts in total variation. In Advances in Neural Information
Processing Systems 22 (NIPS’09), pages 817–825, Cambridge, MA, USA, 2009. Curran Associates.
113, 133, 142, 170, 171

[Hut09c] M. Hutter. Exact non-parametric Bayesian inference on infinite trees. Technical Report 0903.5342,
ARXIV, 2009. 173

[Hut09d] M. Hutter. Feature dynamic Bayesian networks. In Proc. 2nd Conf. on Artificial General
Intelligence (AGI’09), volume 8, pages 67–73. Atlantis Press, 2009. 134, 397, 402

[Hut09e] M. Hutter. Feature Markov decision processes. In Proc. 2nd Conf. on Artificial General
Intelligence (AGI’09), volume 8, pages 61–66. Atlantis Press, 2009. 134, 402

[Hut09f] M. Hutter. Feature reinforcement learning: Part I: Unstructured MDPs. Journal of Artificial
General Intelligence, 1:3–24, 2009. 134, 394, 402

[Hut09g] M. Hutter. Open problems in universal induction & intelligence. Algorithms, 3(2):879–906, 2009.
171, 269

[Hut09h] M. Hutter. Practical robust estimators under the Imprecise Dirichlet Model. International
Journal of Approximate Reasoning, 50(2):231–242, 2009. 130

[Hut10a] M. Hutter. A complete theory of everything (will be subjective). Algorithms, 3(4):329–350, 2010.
135, 158

[Hut10b] M. Hutter. Observer localization in multiverse theories. In Proceedings of the Conference in
Honour of Murray Gell-Mann’s 80th Birthday, pages 638–645. World Scientific, 2010. 446

[Hut11] M. Hutter. Algorithmic randomness as foundation of inductive reasoning and artificial intelligence.
In Randomness through Computation, chapter 12, pages 159–169. World Scientific, 2011. 135

[Hut12a] M. Hutter. Can intelligence explode? Journal of Consciousness Studies, 19(1-2):143–166, 2012.
410, 432, 448

[Hut12b] M. Hutter. One decade of universal artificial intelligence. In Theoretical Foundations of Artificial
General Intelligence, pages 67–88. Atlantis Press, 2012. 269, 382

[Hut12c] M. Hutter. The subjective computable universe. In A Computable Universe: Understanding and
Exploring Nature as Computation, pages 399–416. World Scientific, 2012. 6

[Hut13a] M. Hutter. Sparse adaptive Dirichlet-multinomial-like processes. Journal of Machine Learning
Research, W&CP: COLT, 30:432–459, 2013. 74, 213

[Hut13b] M. Hutter. To create a super-intelligent machine, start with an equation. The Conversation,
November(29):1–5, 2013. 269

[Hut14a] M. Hutter. Extreme state aggregation beyond MDPs. In Proc. 25th International Conf. on
Algorithmic Learning Theory (ALT’14), volume 8776 of LNAI, pages 185–199, Bled, Slovenia,
2014. Springer. 402

[Hut14b] M. Hutter. Offline to online conversion. In Proc. 25th International Conf. on Algorithmic
Learning Theory (ALT’14), volume 8776 of LNAI, pages 230–244, Bled, Slovenia, 2014. Springer.
124

[Hut16] M. Hutter. Extreme state aggregation beyond Markov decision processes. Theoretical Computer
Science, 650:73–91, 2016. 387, 390, 391, 392, 394

[Hut17] M. Hutter. Universal learning theory. In C. Sammut and G. Webb, editors, Encyclopedia of
Machine Learning, pages 1295–1304. Springer, 2nd edition, 2017. 140, 170

[Hut18] M. Hutter. Tractability of batch to sequential conversion. Theoretical Computer Science, 733:71–
82, 2018. 172

[Hut19] M. Hutter. Fairness without regret. Technical Report arXiv:1907.05159, DeepMind & ANU, 2019.
435

[Hut20a] M. Hutter. Human knowledge compression prize, 2006/2020. open ended, http://prize.hutter1.
net/. 132, 371, 455, 461

[Hut20b] M. Hutter. GPT-3 and AGI: Generative pre-trained transformer & artificial general intelligence.
2020. http://www.hutter1.net/official/bib.htm#gpt3agi. 450

[Hut22] M. Hutter. Testing independence of exchangeable random variables. Technical report, DeepMind,
London, UK, 2022. 128

http://prize.hutter1.net/
http://prize.hutter1.net/
http://www.hutter1.net/official/bib.htm#gpt3agi

BIBLIOGRAPHY 479

[Hut24] M. Hutter. ASI safety via AIXI. http://www.hutter1.net/official/bib.htm#aixisafe, 2024.
433

[HV91] P. Howard and J. Vitter. Analysis of arithmetic coding for data compression. In [1991] Proceedings.
Data Compression Conference, pages 3–12, Snowbird, UT, USA, 1991. IEEE Comput. Soc. Press.
131

[HW62] D. H. Hubel and T. N. Wiesel. Receptive fields, binocular interaction and functional architecture
in the cat’s visual cortex. The Journal of Physiology, 160(1):106, 1962. 451

[HYZM19] M. Hutter, S. Yang-Zhao, and S. J. Majeed. Conditions on features for temporal difference-like
methods to converge. In Proc. 28th International Joint Conf. on Artificial Intelligence (IJCAI’19),
pages 2570–2577, Macao, China, 2019. 404

[HZ03] M. Hutter and M. Zaffalon. Bayesian treatment of incomplete discrete data applied to mutual
information and feature selection. In Proc. 26th German Conf. on Artificial Intelligence (KI-2003),
volume 2821 of LNAI, pages 396–406, Hamburg, Germany, 2003. Springer. 173

[HZ05] M. Hutter and M. Zaffalon. Distribution of mutual information from complete and incomplete
data. Computational Statistics & Data Analysis, 48(3):633–657, 2005. 173

[HZAL18] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft Actor-Critic: Off-Policy Maximum Entropy
Deep Reinforcement Learning with a Stochastic Actor, August 2018. 253

[HZRS15] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition, December
2015. 451

[Ica17] T. Icard. Beyond almost-sure termination. In CogSci, 2017. 382

[IJG19] G. Izacard, A. Joulin, and E. Grave. Lossless Data Compression with Transformer. September
2019. 132

[IT05] C. Igel and M. Toussaint. A no-free-lunch theorem for non-uniform distributions of target
functions. Journal of Mathematical Modelling and Algorithms, 3(4):313–322, 2005. 446

[Jay57a] E. T. Jaynes. Information Theory and Statistical Mechanics. Physical Review, 106(4):620–630,
May 1957. 157

[Jay57b] E. T. Jaynes. Information Theory and Statistical Mechanics. II. Physical Review, 108(2):171–190,
October 1957. 157

[Jay03] E. T. Jaynes. Probability Theory: The Logic of Science. Cambridge University Press, Cambridge,
MA, 2003. 130, 131, 173

[JCOD23] S. Jerbi, A. Cornelissen, M. Ozols, and V. Dunjko. Quantum Policy Gradient Algorithms. LIPIcs,
Volume 266, TQC 2023, 266:13:1–13:24, 2023. 403

[Jef46] H. Jeffreys. An invariant form for the prior probability in estimation problems. In Proc. Royal
Society London, volume Series A 186, pages 453–461, 1946. 129

[Jef83] R. C. Jeffrey. The Logic of Decision. University of Chicago Press, Chicago, IL, 2nd edition, 1983.
131, 325

[JEP+21] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool,

R. Bates, A. Ž́ıdek, A. Potapenko, A. Bridgland, C. Meyer, S. A. A. Kohl, A. J. Ballard, A. Cowie,
B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen, D. Reiman, E. Clancy,
M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer, S. Bodenstein, D. Silver, O. Vinyals,
A. W. Senior, K. Kavukcuoglu, P. Kohli, and D. Hassabis. Highly accurate protein structure
prediction with AlphaFold. Nature, 596(7873):583–589, August 2021. 451

[JJHH03] P. D. Johnson Jr, G. A. Harris, and D. Hankerson. Introduction to Information Theory and Data
Compression. Chapman and Hall/CRC, 2003. 131

[JJN21] M. Jafarnia-Jahromi, R. Jain, and A. Nayyar. Online Learning for Unknown Partially Observable
MDPs, June 2021. 302

[JLB+22] L. V. Jospin, H. Laga, F. Boussaid, W. Buntine, and M. Bennamoun. Hands-On Bayesian Neural
Networks—A Tutorial for Deep Learning Users. IEEE Computational Intelligence Magazine,
17(2):29–48, May 2022. 130

[JOA10] T. Jaksch, R. Ortner, and P. Auer. Near-optimal regret bounds for reinforcement learning.
Journal of Machine Learning Research, 11:1563–1600, 2010. 275, 285

[Joh22] K. Johnson. LaMDA and the sentient AI trap, 2022. https://www.wired.com/story/
lamda-sentient-ai-bias-google-blake-lemoine/. 441

[JYT+23] Z. Jiang, M. Yang, M. Tsirlin, R. Tang, Y. Dai, and J. Lin. “low-resource” text classification:
A parameter-free classification method with compressors. In Findings of the Association for
Computational Linguistics: ACL 2023, pages 6810–6828, Toronto, Canada, July 2023. Association
for Computational Linguistics. 135

[Kak41] S. Kakutani. A generalization of Brouwer’s fixed point theorem. Duke Mathematical Journal,
8(3), September 1941. 309

[Kal10] O. Kallenberg. Foundations of Modern Probability. Probability and Its Applications. Springer,
New York, NY Berlin Heidelberg, 2. ed edition, 2010. 129

[Kam81] H. Kamp. The Paradox of the Heap. In U. Mönnich, editor, Aspects of Philosophical Logic, pages
225–277. Springer Netherlands, Dordrecht, 1981. 324

http://www.hutter1.net/official/bib.htm#aixisafe
https://www.wired.com/story/lamda-sentient-ai-bias-google-blake-lemoine/
https://www.wired.com/story/lamda-sentient-ai-bias-google-blake-lemoine/

480 BIBLIOGRAPHY

[Kat19] S. Katayama. Computable Variants of AIXI which are More Powerful than AIXItl, January 2019.
382

[KB14] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization, December 2014. 173

[Ken16] T. Kennedy. Monte Carlo Methods - a special topics course. 2016. 369

[KEW+21] Z. Kenton, T. Everitt, L. Weidinger, I. Gabriel, V. Mikulik, and G. Irving. Alignment of
Language Agents, March 2021. 416

[Key21] J. M. Keynes. A Treatise on Probability. Macmillan, London, 1921. 128

[KF10] D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques. MIT
Press, 2010. 130

[KF12] B. Knoll and N. D. Freitas. A Machine Learning Perspective on Predictive Coding with PAQ8.
In 2012 Data Compression Conference, 2012 Data Compression Conference, pages 377–386,
Snowbird, UT, USA, April 2012. IEEE. 132

[KFW11] D. L. Kovacs, N. Fukuta, and T. Watanabe. A preliminary investigation of decentralized decision
making with bounded resources. In Joint Agent-oriented Workshops in Synergy (JAWS), Szczecin,
Poland, September 2011. 382

[KG11] E. Kamenica and M. Gentzkow. Bayesian persuasion. American Economic Review, 101(6):2590–
2615, October 2011. 173

[Kha18] E. Khan. Learning-Algorithms from Bayesian Principle, 2018. 173

[KHS01a] I. Kwee, M. Hutter, and J. Schmidhuber. Gradient-based reinforcement planning in policy-
search methods. In Proc. 5th European Workshop on Reinforcement Learning (EWRL-5),
volume 27, pages 27–29, Utrecht, The Netherlands, 2001. Onderwijsinsituut CKI, Utrecht Univ.
http://arxiv.org/abs/cs.AI/0111060. 377, 403

[KHS01b] I. Kwee, M. Hutter, and J. Schmidhuber. Market-based reinforcement learning in partially
observable worlds. In Proc. International Conf. on Artificial Neural Networks (ICANN-2001),
volume 2130 of LNCS, pages 865–873, Vienna, 2001. Springer. 269

[KKKS23] D. Khurana, A. Koli, K. Khatter, and S. Singh. Natural language processing: State of the art,
current trends and challenges. Multimedia Tools and Applications, 82(3):3713–3744, January
2023. 451

[KL51] S. Kullback and R. A. Leibler. On Information and Sufficiency. The Annals of Mathematical
Statistics, 22(1):79–86, March 1951. 131

[KL93] E. Kalai and E. Lehrer. Rational learning leads to Nash equilibrium. Econometrica, 61(5):1019–
1045, 1993. 321, 326

[KLC98] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially observable
stochastic domains. Artificial Intelligence, 101:99–134, 1998. 253, 371

[Kle36] S. Kleene. General recursive functions of natural numbers. Mathematische Annalen, 112:727–742,
1936. 132

[Kle07] P. Kleingeld. KANT’S SECOND THOUGHTS ON RACE. The Philosophical Quarterly,
57(229):573–592, October 2007. 414

[KLM96] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A survey. Journal of
Artificial Intelligence Research, 4:237–285, 1996. 253

[KLM06] P. Kaye, R. Laflamme, and M. Mosca. An Introduction to Quantum Computing. Oxford University
Press, Oxford, 1. publ edition, 2006. 448, 449

[KLVS21] J. Kirschner, T. Lattimore, C. Vernade, and C. Szepesvári. Asymptotically optimal information-
directed sampling. In Conference on Learning Theory, pages 2777–2821. PMLR, 2021. 285

[Kno23] B. Knoll. CMIX: A lossless data compression program, 2023. 132

[KNP23] T. Kociumaka, G. Navarro, and N. Prezza. Toward a Definitive Compressibility Measure for
Repetitive Sequences. IEEE Transactions on Information Theory, 69(4):2074–2092, April 2023.
135

[Knu73] D. E. Knuth. The Art of Computer Programming, Volume I: Fundamental Algorithms. Addison-
Wesley, Reading, MA, 1973. x

[Ko86] K.-I. Ko. On the notion of infinite pseudorandom sequences. Theoretical Computer Science,
48(1):9–33, 1986. 134

[KOK+19] V. Krakovna, L. Orseau, R. Kumar, M. Martic, and S. Legg. Penalizing side effects using
stepwise relative reachability, March 2019. 433

[Kol33] A. N. Kolmogorov. Grundlagen der Wahrscheinlichkeitsrechnung. Springer, Berlin, 1933. [English
translation: Foundations of the Theory of Probability. Chelsea, New York, 2nd edition, 1956]. 128

[Kol63] A. N. Kolmogorov. On tables of random numbers. Sankhya, the Indian Journal of Statistics,
Series A 25, 1963. 130

[Kol65] A. N. Kolmogorov. Three approaches to the quantitative definition of information. Problems of
Information and Transmission, 1(1):1–7, 1965. 133, 134, 462

[Kol83] A. N. Kolmogorov. Combinatorial foundations of information theory and the calculus of probabil-
ities. Russian Mathematical Surveys, 38(4):27–36, 1983. 134

http://arxiv.org/abs/cs.AI/0111060

BIBLIOGRAPHY 481

[KOML18] V. Krakovna, L. Orseau, M. Martic, and S. Legg. Measuring and avoiding side effects using
relative reachability. arXiv:1806.01186, 2018. 433

[KON+20] V. Krakovna, L. Orseau, R. Ngo, M. Martic, and S. Legg. Avoiding side effects by considering
future tasks. Advances in Neural Information Processing Systems, 33:19064–19074, 2020. 433

[Kor85] R. E. Korf. Depth-first iterative-deepening: An optimal admissible tree search. Artificial
Intelligence, 27(1):97–109, September 1985. 372

[Kot12] A. A. Kotov. Think like a grandmaster. Batsford Books, 2012. 453

[Koz00] L. Kozma’s. Useful inequalities cheat sheet, 2000. 128

[KR02] M. Kudlek and Y. Rogozhin. A universal turing machine with 3 states and 9 symbols. In
Developments in Language Theory: 5th International Conference, DLT 2001 Wien, Austria,
July 16–21, 2001 Revised Papers 5, pages 311–318. Springer, 2002. 106

[Kra49] L. G. Kraft. A device for quantizing, grouping and coding amplitude modified pulses. Master’s
thesis, Electrical Engineering Department, Massachusetts Institute of Technology, Cambridge,
MA, 1949. 131

[Kri94] R. Krichevsky. Universal Compression and Retrieval. Number 274 in Mathematics and Its
Applications <Dordrecht>. Kluwer Acad. Publ, Dordrecht, 1994. 131

[KRRP22] K. Khetarpal, M. Riemer, I. Rish, and D. Precup. Towards Continual Reinforcement Learning:
A Review and Perspectives. Journal of Artificial Intelligence Research, 75:1401–1476, December
2022. 462

[KS06] L. Kocsis and C. Szepesvári. Bandit based Monte-Carlo planning. In Proc. 17th European Conf.
on Machine Learning (ECML’06), pages 282–293, 2006. xix, 338, 344, 345, 349, 350, 369, 372

[KSO87] M. G. Kendall, A. Stuart, and J. K. Ord. Kendall’s Advanced Theory of Statistics. Oxford
University Press, New York, 5th ed edition, 1987. 131

[KSZ+21] A. R. Kosiorek, H. Strathmann, D. Zoran, P. Moreno, R. Schneider, S. Mokrá, and D. J. Rezende.
Nerf-vae: A geometry aware 3d scene generative model. In International Conference on Machine
Learning, pages 5742–5752. PMLR, 2021. 451

[KT81] R. Krichevsky and V. Trofimov. The performance of universal encoding. IEEE Transactions on
Information Theory, 27(2):199–207, 1981. 213

[KT16] H. W. Kuhn and A. W. Tucker, editors. Contributions to the Theory of Games Vol 2: AM-28.
Number 28 in Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2016.
325

[Kuh50] H. W. Kuhn. A simplified two-person poker. Contributions to the Theory of Games, 1:97–103,
1950. 363, 371

[KUM+20] V. Krakovna, J. Uesato, V. Mikulik, M. Rahtz, T. Everitt, R. Kumar, Z. Kenton, J. Leike,
and S. Legg. Specification gaming: the flip side of AI ingenuity, April 2020. https://deepmind.
google/discover/blog/specification-gaming-the-flip-side-of-ai-ingenuity/. 433

[Kur99] R. Kurzweil. The Age of Spiritual Machines. Viking, 1999. 432

[Kur05] R. Kurzweil. The Singularity Is Near. Viking, 2005. 432

[KV86] P. R. Kumar and P. P. Varaiya. Stochastic Systems: Estimation, Identification, and Adaptive
Control. Prentice Hall, Englewood Cliffs, NJ, 1986. 253

[KW13] D. P. Kingma and M. Welling. Auto-Encoding Variational Bayes, December 2013. 173, 453

[Kyb77] H. E. Kyburg. Randomness and the right reference class. The Journal of Philosophy, 74(9):501–521,
1977. 131

[Kyb83] H. E. Kyburg. The reference class. Philosophy of Science, 50:374–397, 1983. 131

[Lah14] S. Lahiri. Complexity of word collocation networks: A preliminary structural analysis. In
Proceedings of the Student Research Workshop at the 14th Conference of the European Chapter
of the Association for Computational Linguistics, pages 96–105, Gothenburg, Sweden, April 2014.
Association for Computational Linguistics. 179

[Lai87] T. L. Lai. Adaptive treatment allocation and the multi-armed bandit problem. The Annals of
Statistics, pages 1091–1114, 1987. 346

[LALH17] S. Lamont, J. Aslanides, J. Leike, and M. Hutter. Generalised discount functions applied to a
Monte-Carlo AIµ implementation. In Proc. 16th Conf. on Autonomous Agents and MultiAgent
Systems (AAMAS’17), pages 1589–1591, Sao Paulo, Brazil, 2017. 365

[Lam] P. K. Lam. ANU quantum random numbers. https://qrng.anu.edu.au/. 102

[Lam87] M. Lambalgen. Random Sequences. PhD thesis, University of Amsterdam, 1987. 129

[Lap12] P. Laplace. Théorie analytique des probabilités. Courcier, Paris, 1812. [English translation by F.
W. Truscott and F. L. Emory: A Philosophical Essay on Probabilities. Dover, 1952]. 128

[Lat14] T. Lattimore. Theory of General Reinforcement Learning. PhD thesis, Research School of
Computer Science, Australian National University, 2014. xix, 297, 298

[Lat23] T. Lattimore. Convergence of posterior averages. Private communication, 2023. 262

[Lat24] T. Lattimore. Bandit convex optimisation, 2024. 344, 369

[LAW+20] C. Linke, N. M. Ady, M. White, T. Degris, and A. White. Adapting Behavior via Intrinsic
Reward: A Survey and Empirical Study. Journal of Artificial Intelligence Research, 69:1287–1332,
December 2020. 302

http://arxiv.org/abs/1806.01186
https://deepmind.google/discover/blog/specification-gaming-the-flip-side-of-ai-ingenuity/
https://deepmind.google/discover/blog/specification-gaming-the-flip-side-of-ai-ingenuity/
https://qrng.anu.edu.au/

482 BIBLIOGRAPHY

[LBBH98] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, Nov./1998. 451

[LBH23] Y. Li, J. Bornschein, and M. Hutter. Evaluating representations with readout model switching.
In 11th International Conference on Learning Representations, 2023. 133

[LC98] E. L. Lehmann and G. Casella. Theory of Point Estimation. Springer Texts in Statistics. Springer,
New York, NY, 2. ed edition, 1998. 129

[LC19] A. Lheritier and F. Cazals. Low-Complexity Nonparametric Bayesian Online Prediction with
Universal Guarantees. In Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019. 173

[LCC+21] G. Li, C. Cai, Y. Chen, Y. Gu, Y. Wei, and Y. Chi. Is Q-Learning Minimax Optimal? A Tight
Sample Complexity Analysis, November 2021. 253

[LD95] P. S. Laplace and A. I. Dale. Philosophical Essay on Probabilities. Number vol. 13 in Sources in
the History of Mathematics and Physical Sciences. Springer-Verlag, New York, 1995. 129, 130

[LeC22] Y. LeCun. A Path Towards Autonomous Machine Intelligence. page 62, 2022. https://
openreview.net/forum?id=BZ5a1r-kVsf. 404

[Lee12] P. M. Lee. Bayesian statistics: An introduction, 2012. 131, 173

[Leg06] S. Legg. Is there an elegant universal theory of prediction? In Proc. 17th International Conf. on
Algorithmic Learning Theory (ALT’06), volume 4264 of LNAI, pages 274–287, Barcelona, Spain,
2006. Springer. 171

[Leg08] S. Legg. Machine Super Intelligence. PhD thesis, IDSIA, Lugano, Switzerland, 2008. Recipient
of the $10’000,- Singularity Prize/Award. 264, 432

[Lei16a] J. Leike. Exploration Potential, 2016. 303

[Lei16b] J. Leike. Nonparametric General Reinforcement Learning. PhD thesis, Australian National
University, 2016. arXiv: 1611.08944. xix, 133, 156, 242, 253, 257, 276, 277, 279, 280, 281, 283,
285, 290, 291, 297, 319, 320, 326, 381, 382

[Lev73a] L. A. Levin. On the notion of a random sequence. Soviet Mathematics Doklady, 14(5):1413–1416,
1973. 134

[Lev73b] L. A. Levin. Universal sequential search problems. Problems of Information Transmission,
9:265–266, 1973. 133, 134, 172, 368, 382

[Lev74] L. A. Levin. Laws of information conservation (non-growth) and aspects of the foundation of
probability theory. Problems of Information Transmission, 10(3):206–210, 1974. 129, 133, 134

[Lew] D. Lewis. Causal decision theory. 59(1):5–30. 324

[LFB+23] Z. Liu, Y. Feng, M. J. Black, D. Nowrouzezahrai, L. Paull, and W. Liu. Meshdiffusion: Score-
based generative 3d mesh modeling. In International Conference on Learning Representations,
2023. 453

[LGM01] C. Lusena, J. Goldsmith, and M. Mundhenk. Nonapproximability results for partially observable
Markov decision processes. Journal of Artificial Intelligence Research, 14:83–103, 2001. 381

[LH04] S. Legg and M. Hutter. Ergodic MDPs admit self-optimising policies. Technical Report IDSIA-
21-04, IDSIA, 2004. https://repository.supsi.ch/5519/1/IDSIA-21-04.pdf. 269

[LH05] S. Legg and M. Hutter. A universal measure of intelligence for artificial agents. In Proc. 21st
International Joint Conf. on Artificial Intelligence (IJCAI-2005), pages 1509–1510, Edinburgh,
Scottland, 2005. 269

[LH06] S. Legg and M. Hutter. A formal measure of machine intelligence. In Proc. 15th Annual Machine
Learning Conference of Belgium and The Netherlands (Benelearn’06), pages 73–80, Ghent,
Belgium, 2006. 269, 414

[LH07a] S. Legg and M. Hutter. A collection of definitions of intelligence. In B. Goertzel and P. Wang,
editors, Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms,
volume 157 of Frontiers in Artificial Intelligence and Applications, pages 17–24, Amsterdam, NL,
2007. IOS Press. 269, 414

[LH07b] S. Legg and M. Hutter. Tests of machine intelligence. In 50 Years of Artificial Intelligence,
volume 4850 of LNAI, pages 232–242, Monte Verita, Switzerland, 2007. 269, 459

[LH07c] S. Legg and M. Hutter. Universal intelligence: A definition of machine intelligence. Minds &
Machines, 17(4):391–444, 2007. 102, 254, 269, 454, 455, 458, 459

[LH11a] T. Lattimore and M. Hutter. Asymptotically optimal agents. In Proc. 22nd International Conf.
on Algorithmic Learning Theory (ALT’11), volume 6925 of LNAI, pages 368–382, Espoo, Finland,
2011. Springer. 283, 285, 298

[LH11b] T. Lattimore and M. Hutter. No free lunch versus Occam’s razor in supervised learning. In
Proc. Solomonoff 85th Memorial Conference, volume 7070 of LNAI, pages 223–235, Melbourne,
Australia, 2011. Springer. 446

[LH11c] T. Lattimore and M. Hutter. Time consistent discounting. In Proc. 22nd International Conf. on
Algorithmic Learning Theory (ALT’11), volume 6925 of LNAI, pages 383–397, Espoo, Finland,
2011. Springer. 254

[LH12] T. Lattimore and M. Hutter. PAC bounds for discounted MDPs. In Proc. 23rd International
Conf. on Algorithmic Learning Theory (ALT’12), volume 7568 of LNAI, pages 320–334, Lyon,
France, 2012. Springer. 285

https://openreview.net/forum?id=BZ5a1r-kVsf
https://openreview.net/forum?id=BZ5a1r-kVsf
https://repository.supsi.ch/5519/1/IDSIA-21-04.pdf

BIBLIOGRAPHY 483

[LH13] T. Lattimore and M. Hutter. On Martin-löf convergence of Solomonoff’s mixture. In Proc. 10th
Annual Conference on Theory and Applications of Models of Computation (TAMC’13), volume
7876 of LNCS, pages 212–223, Hong Kong, China, 2013. Springer. 171

[LH14a] T. Lattimore and M. Hutter. Asymptotics of continuous Bayes for non-i.i.d. sources. Technical
report, 2014. 171

[LH14b] T. Lattimore and M. Hutter. Bayesian reinforcement learning with exploration. In Proc. 25th
International Conf. on Algorithmic Learning Theory (ALT’14), volume 8776 of LNAI, pages
170–184, Bled, Slovenia, 2014. Springer. 303

[LH14c] T. Lattimore and M. Hutter. General time consistent discounting. Theoretical Computer Science,
519:140–154, 2014. 245, 249, 254

[LH14d] T. Lattimore and M. Hutter. Near-optimal PAC bounds for discounted MDPs. Theoretical
Computer Science, 558:125–143, 2014. 285

[LH14e] J. Leike and M. Hutter. Indefinitely oscillating martingales. In Proc. 25th International Conf. on
Algorithmic Learning Theory (ALT’14), volume 8776 of LNAI, pages 321–335, Bled, Slovenia,
2014. Springer. 165

[LH15a] T. Lattimore and M. Hutter. On Martin-löf (non)convergence of Solomonoff’s universal mixture.
Theoretical Computer Science, 588:2–15, 2015. 171

[LH15b] J. Leike and M. Hutter. Bad universal priors and notions of optimality. Journal of Machine
Learning Research, W&CP: COLT, 40:1244–1259, 2015. Also presented at EWRL’15. http:
//ewrl.files.wordpress.com/2015/02/ewrl12_2015_submission_3.pdf. 280, 281, 285

[LH15c] J. Leike and M. Hutter. On the computability of AIXI. In Proc. 31st International Conf. on
Uncertainty in Artificial Intelligence (UAI’15), pages 464–473, Amsterdam, Netherlands, 2015.
AUAI Press. 381

[LH15d] J. Leike and M. Hutter. On the computability of Solomonoff induction and knowledge-seeking.
In Proc. 26th International Conf. on Algorithmic Learning Theory (ALT’15), volume 9355 of
LNAI, pages 364–378, Banff, Canada, 2015. Springer. 171, 381

[LH15e] J. Leike and M. Hutter. Solomonoff induction violates Nicod’s criterion. In Proc. 26th
International Conf. on Algorithmic Learning Theory (ALT’15), volume 9355 of LNAI,
pages 349–363, Banff, Canada, 2015. Springer. Also presented at CCR: http://math.uni-
heidelberg.de/logic/conferences/ccr2015/. 171

[LH18] J. Leike and M. Hutter. On the computability of Solomonoff induction and AIXI. Theoretical
Computer Science, 716:28–49, 2018. 375, 376, 377, 381

[LHG11] T. Lattimore, M. Hutter, and V. Gavane. Universal prediction of selected bits. In Proc. 22nd
International Conf. on Algorithmic Learning Theory (ALT’11), volume 6925 of LNAI, pages
262–276, Espoo, Finland, 2011. Springer. 171

[LHS13a] T. Lattimore, M. Hutter, and P. Sunehag. Concentration and confidence for discrete Bayesian
sequence predictors. In Proc. 24th International Conf. on Algorithmic Learning Theory (ALT’13),
volume 8139 of LNAI, pages 324–338, Singapore, 2013. Springer. 147, 166, 171, 261

[LHS13b] T. Lattimore, M. Hutter, and P. Sunehag. The sample-complexity of general reinforcement
learning. Journal of Machine Learning Research, W&CP: ICML, 28(3):28–36, 2013. 285

[Li 03] M. Li et al. The similarity metric. In Proc. 14th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA-03), pages 863–872. ACM Press, New York, 2003. 135

[LIB+22] S. Lotfi, P. Izmailov, G. Benton, M. Goldblum, and A. G. Wilson. Bayesian Model Selection, the
Marginal Likelihood, and Generalization, 2022. 131

[Lic23] Lichess. Lichess open database. https://database.lichess.org/, 2023. 453

[Liu60] S.-C. Liu. An enumeration of the primitive recursive functions without repetition. Tohoku
Mathematical Journal, Second Series, 12(3):400–402, 1960. 124

[LLM17] E. Lehman, F. T. Leighton, and A. R. Meyer. Mathematics for Computer Science. Samurai
Media Limited, Hong Kong, 2017. 128

[LLOH16] J. Leike, T. Lattimore, L. Orseau, and M. Hutter. Thompson sampling is asymptotically optimal in
general environments. In Proc. 32nd International Conf. on Uncertainty in Artificial Intelligence
(UAI’16), pages 417–426, New Jersey, USA, 2016. AUAI Press. Best student paper. 285, 302

[LLOH17] J. Leike, T. Lattimore, L. Orseau, and M. Hutter. On Thompson sampling and asymptotic
optimality. In Proc. 26th International Joint Conf. on Artificial Intelligence (IJCAI’17), pages
4889–4893, Melbourne, Australia, 2017. Best sister conferences paper track. 273, 290, 302

[LM16] K. Li and J. Malik. Learning to Optimize, June 2016. 404

[LMK+17] J. Leike, M. Martic, V. Krakovna, P. A. Ortega, T. Everitt, A. Lefrancq, L. Orseau, and S. Legg.
AI Safety Gridworlds, November 2017. 240, 428, 434

[LMV+17] A. Ly, M. Marsman, J. Verhagen, R. P. Grasman, and E.-J. Wagenmakers. A Tutorial on Fisher
information. Journal of Mathematical Psychology, 80:40–55, October 2017. 129

[Lov69a] D. W. Loveland. On minimal-program complexity measures. In Proc. 1st ACM Symposium on
Theory of Computing, pages 61–78. ACM Press, New York, 1969. 134

http://ewrl.files.wordpress.com/2015/02/ewrl12_2015_submission_3.pdf
http://ewrl.files.wordpress.com/2015/02/ewrl12_2015_submission_3.pdf
https://database.lichess.org/

484 BIBLIOGRAPHY

[Lov69b] D. W. Loveland. A variant of the Kolmogorov concept of complexity. Information and Control,
15(6):510–526, 1969. 134

[LP20] Y. Liu and R. Pass. On One-way Functions and Kolmogorov Complexity, September 2020. 135

[LPH+19] J. Z. Leibo, J. Perolat, E. Hughes, S. Wheelwright, A. H. Marblestone, E. Duéñez-Guzmán,
P. Sunehag, I. Dunning, and T. Graepel. Malthusian Reinforcement Learning, March 2019. 254

[LS17] T. Lattimore and C. Szepesvari. The End of Optimism? An Asymptotic Analysis of Finite-Armed
Linear Bandits. In Proceedings of the 20th International Conference on Artificial Intelligence
and Statistics, pages 728–737. PMLR, April 2017. 369

[LS20a] T. Lattimore and C. Szepesvári. Bandit Algorithms. Cambridge University Press, Cambridge ;
New York, NY, 2020. 166, 261, 344, 349, 369

[LS20b] O. Lockwood and M. Si. Reinforcement learning with quantum variational circuit. In Proceedings
of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol-
ume 16 of Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, pages 245–251. Association for the Advancement of Artificial Intelligence (AAAI),
2020. 403

[LSHK93] M. Lehtokangas, J. Saarinen, P. Huuhtanen, and K. Kaski. Neural network optimization tool
based on predictive MDL principle for time series prediction. In Proceedings of 1993 IEEE
Conference on Tools with Al (TAI-93), Proceedings of 1993 IEEE Conference on Tools with Al
(TAI-93), pages 338–342, Boston, MA, USA, 1993. IEEE Comput. Soc. Press. 134

[LSS01] M. L. Littman, R. S. Sutton, and S. P. Singh. Predictive representations of state. In Advances in
Neural Information Processing Systems, volume 14, pages 1555–1561. MIT Press, 2001. 370

[LTF16] J. Leike, J. Taylor, and B. Fallenstein. A formal solution to the grain of truth problem. In Proc.
32nd International Conf. on Uncertainty in Artificial Intelligence (UAI’16), pages 427–436, New
Jersey, USA, 2016. AUAI Press. 315, 318, 326

[Lu24] Z. Lu. When is inductive inference possible?, September 2024. 172

[Luc61] J. R. Lucas. Minds, machines, and Gödel. Philosophy, 36:112–127, 1961. 447

[LV07] M. Li and P. M. B. Vitányi. Applications of algorithmic information theory. Scholarpedia,
2(5):2658, 2007. 133

[LV11] S. Legg and J. Veness. An approximation of the universal intelligence measure. In Proc. Solomonoff
85th Memorial Conference, volume 7070 of LNAI, pages 236–249, Melbourne, Australia, 2011.
Springer. 459, 460

[LV19] M. Li and P. M. Vitányi. An Introduction to Kolmogorov Complexity and Its Applications. Texts
in Computer Science. Springer, Cham, fourth edition edition, 2019. 111, 113, 127, 128, 131, 133,
156, 161, 163, 167, 168

[LVRD+21] X. Lu, B. Van Roy, V. Dwaracherla, M. Ibrahimi, I. Osband, and Z. Wen. Reinforcement
Learning, Bit by Bit, 2021. 285

[LWL06] L. Li, T. J. Walsh, and M. L. Littman. Towards a unified theory of state abstraction for MDPs.
In AI&M, 2006. 403

[Mac03] D. J. C. MacKay. Information theory, inference and learning algorithms. Cambridge University
Press, Cambridge, MA, 2003. 131

[Mah05] M. V. Mahoney. Adaptive weighing of context models for lossless data compression. Technical
report, 2005. 131

[Mah07] M. Mahoney. The paq data compression programs, 2007. http://mattmahoney.net/dc/paq.html.
131, 132

[Mah09] M. M. H. Mahmud. On universal transfer learning. Theoretical Computer Science, 410(19):1826–
1846, 2009. 135

[Mah11] M. Mahoney. About the test data, 2011. https://mattmahoney.net/dc/textdata.html. 132, 455

[Mah12] M. Mahoney. Data Compression Explained. Dell, Inc, http://mattmahoney.net/dc/dce.html,
2012. 132

[Mah22] M. Mahoney. Large text compression benchmark, 2022. http://mattmahoney.net/dc/text.html.
132

[Maj21] S. J. Majeed. Abstractions of General Reinforcement Learning, December 2021. 394, 402

[Mak09] T. Makino. Proto-predictive representation of states with simple recurrent temporal-difference
networks. In Proceedings of the 26th Annual International Conference on Machine Learning,
pages 697–704, Montreal Quebec Canada, June 2009. ACM. 371

[Mar05] G. Marsaglia. On the randomness of pi and other decimal expansions. InterStat, 5, 2005. 102

[Mat94] M. J. Mataric. Reward functions for accelerated learning. In Machine Learning proceedings 1994,
pages 181–189. Elsevier, 1994. 253

[Mau20] F. Mauersberger. Thompson sampling: Predicting behavior in games and markets. Available at
SSRN 3061481, 2020. 302

[MB16] M. C. Machado and M. Bowling. Learning Purposeful Behaviour in the Absence of Rewards, May
2016. 303

[MBMK21] F. Massari, M. Biehl, L. Meeden, and R. Kanai. Experimental Evidence that Empowerment
May Drive Exploration in Sparse-Reward Environments. In 2021 IEEE International Conference
on Development and Learning (ICDL), pages 1–6, Beijing, China, August 2021. IEEE. 303

http://mattmahoney.net/dc/paq.html
https://mattmahoney.net/dc/textdata.html
http://mattmahoney.net/dc/dce.html
http://mattmahoney.net/dc/text.html

BIBLIOGRAPHY 485

[MBPJ20] T. M. Moerland, J. Broekens, A. Plaat, and C. M. Jonker. Model-based Reinforcement Learning:
A Survey, 2020. 253

[McC80] J. McCarthy. Circumscription—A form of non-monotonic reasoning. Artificial Intelligence,
13(1–2):27–39, 1980. 130

[McC96] A. K. McCallum. Reinforcement Learning with Selective Perception and Hidden State. PhD
thesis, Department of Computer Science, University of Rochester, 1996. 369, 370, 371, 401, 404

[MCKX22] Y. Mao, Y. Cui, T.-W. Kuo, and C. J. Xue. A Fast Transformer-based General-Purpose Lossless
Compressor, April 2022. 132

[MD80] D. McDermott and J. Doyle. Nonmonotonic logic 1. Artificial Intelligence, 13:41–72, 1980. 130

[MDHW07] Y. Ma, H. Derksen, W. Hong, and J. Wright. Segmentation of Multivariate Mixed Data via
Lossy Data Coding and Compression. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 29(9):1546–1562, September 2007. 132

[MDM+20] V. Mikulik, G. Delétang, T. McGrath, T. Genewein, M. Martic, S. Legg, and P. A. Ortega.
Meta-trained agents implement Bayes-optimal agents, October 2020. 369

[ME70] W. Mischel and E. B. Ebbesen. Attention in delay of gratification. Journal of Personality and
Social Psychology, 16(2):329, 1970. 254

[MEH16] J. Martin, T. Everitt, and M. Hutter. Death and suicide in universal artificial intelligence. In
Proc. 9th Conf. on Artificial General Intelligence (AGI’16), volume 9782 of LNAI, pages 23–32,
New York, USA, 2016. Springer. 418, 420, 433

[MEHS21] G. Mittal, J. Engel, C. Hawthorne, and I. Simon. Symbolic Music Generation with Diffusion
Models, November 2021. 453

[Mey22] S. P. Meyn. Control Systems and Reinforcement Learning. Cambridge University Press, Cambridge
; New York, NY, 2022. 253

[MF98] N. Merhav and M. Feder. Universal prediction. IEEE Transactions on Information Theory,
44(6):2124–2147, 1998. 152

[MGLA00] M. Mundhenk, J. Goldsmith, C. Lusena, and E. Allender. Complexity of finite-horizon Markov
decision process problems. Journal of the ACM, 47(4):681–720, July 2000. 381

[MH18] S. J. Majeed and M. Hutter. On Q-learning convergence for non-Markov decision processes. In
Proc. 27th International Joint Conf. on Artificial Intelligence (IJCAI’18), pages 2546–2552,
Stockholm, Sweden, 2018. 402, 403, 404

[MH19] S. J. Majeed and M. Hutter. Performance guarantees for homomorphisms beyond Markov Decision
Processes. In Proc. 33rd AAAI Conference on Artificial Intelligence (AAAI’19), volume 33,
pages 7659–7666, Honolulu, USA, 2019. AAAI Press. 402, 403

[MH21a] S. J. Majeed and M. Hutter. Reducing planning complexity of general reinforcement learning
with non-Markovian abstractions. arXiv:2112.13386, pages 1–16, 2021. 318, 393, 402

[MH21b] S. J. Majeed and M. Hutter. Exact reduction of huge action spaces in general reinforcement
learning. In Proc. 35th AAAI Conference on Artificial Intelligence (AAAI’21), volume 35, Virtual,
Earth, 2021. AAAI Press. 318, 393, 402, 457

[MHA+24] S. Müller, N. Hollmann, S. P. Arango, J. Grabocka, and F. Hutter. Transformers Can Do
Bayesian Inference, August 2024. 132

[MHC99] O. Madani, S. Hanks, and A. Condon. On the undecidability of probabilistic planning and
infinite-horizon partially observable Markov decision problems. In AAAI/IAAI, pages 541–548,
1999. 382

[MHC03] O. Madani, S. Hanks, and A. Condon. On the undecidability of probabilistic planning and related
stochastic optimization problems. Artificial Intelligence, 147:5–34, 2003. 382

[Mil87] J. R. Milton. Induction before Hume. The British Journal for the Philosophy of Science,
38(1):49–74, March 1987. 437

[Mil00] G. F. Miller. The Mating Mind: How Sexual Choice Shaped the Evolution of Human Nature.
Doubleday, New York, 1st ed edition, 2000. 414

[Mil21] L. H. Miles. Markov decision processes with embedded agents. Master’s thesis, 2021. 433

[Mil22] A. Milovanov. Prediction and MDL for Infinite Sequences. Theory of Computing Systems,
submitted, 2022. 171

[Min06] M. Minsky. The Emotion Machine: Commonsense Thinking, Artificial Intelligence, and the
Future of the Human Mind. Simon & Schuster, New York, 1st edition, 2006. 439

[Mis19] R. Mises. Grundlagen der Wahrscheinlichkeitsrechnung. Mathematische Zeitschrift, 5:52–99,
1919. Correction, Ibid., volume 6, 1920, [English translation in: Probability, Statistics, and Truth,
Macmillan, 1939]. 128

[Mis28] R. Mises. Wahrscheinlichkeit, Statistik und Wahrheit. Springer, Berlin, 1928. [English translation:
Probability, Statistics, and Truth, Allen and Unwin, London, 1957]. 130

[MJS19] E. V. Mazumdar, M. I. Jordan, and S. S. Sastry. On Finding Local Nash Equilibria (and Only
Local Nash Equilibria) in Zero-Sum Games, January 2019. 326

[MKS+13] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing Atari with Deep Reinforcement Learning, 2013. 253, 403

http://arxiv.org/abs/2112.13386

486 BIBLIOGRAPHY

[MKS+15] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level control through deep
reinforcement learning. Nature, 518(7540):529–533, February 2015. 256, 453, 460

[MKSB22] T. Moskovitz, T.-C. Kao, M. Sahani, and M. M. Botvinick. Minimum Description Length
Control, July 2022. 134

[ML66] P. Martin-Löf. The definition of random sequences. Information and Control, 9(6):602–619, 1966.
128

[MMM91] G. Medvedev, G. U. Medvedev, and G. Medvedev. The Truth about Chernobyl. Basic Books,
New York, NY, 1991. 412

[MMR11] O.-A. Maillard, R. Munos, and D. Ryabko. Selecting the state-representation in reinforcement
learning. In Advances in Neural Information Processing Systems (NIPS’11), volume 24, pages
2627–2635, 2011. 402

[Mon15] A. Montanaro. Quantum speedup of Monte Carlo methods. Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 471(2181):20150301, September 2015. 403

[Mor88] H. Moravec. Mind Children: The Future of Robot and Human Intelligence. Harvard University
Press, Cambridge, MA, 1988. 432, 441

[MP43] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity. The
Bulletin of Mathematical Biophysics, 5(4):115–133, December 1943. 450

[MPHV15] S. A. Mirsoleimani, A. Plaat, J. V. D. Herik, and J. Vermaseren. Parallel Monte Carlo Tree
Search from Multi-core to Many-core Processors. In 2015 IEEE Trustcom/BigDataSE/ISPA,
pages 77–83, Helsinki, Finland, August 2015. IEEE. 352

[MPYBG22] A. Mavor-Parker, K. Young, C. Barry, and L. Griffin. How to stay curious while avoiding noisy
tvs using aleatoric uncertainty estimation. In International Conference on Machine Learning,
pages 15220–15240. PMLR, 2022. 302

[MR67] A. R. Meyer and D. M. Ritchie. The complexity of loop programs. In Proceedings of the 1967
22nd National Conference On -, pages 465–469, Washington, D.C., United States, 1967. ACM
Press. 92

[MRA20] J. A. T. Machado, J. M. Rocha-Neves, and J. P. Andrade. Computational analysis of the
SARS-CoV-2 and other viruses based on the Kolmogorov’s complexity and Shannon’s information
theories. Nonlinear Dynamics, 101(3):1731–1750, August 2020. 135

[MSEH17] J. Martin, S. N. Sasikumar, T. Everitt, and M. Hutter. Count-based exploration in feature space
for reinforcement learning. In Proc. 26th International Joint Conf. on Artificial Intelligence
(IJCAI’17), pages 2471–2478, Melbourne, Australia, 2017. 403

[MSP+23] N. Meyer, D. Scherer, A. Plinge, C. Mutschler, and M. Hartmann. Quantum policy gradient
algorithm with optimized action decoding. In International Conference on Machine Learning,
pages 24592–24613. PMLR, 2023. 403

[MSS+] A. Meinke, B. Schoen, J. Scheurer, M. Balesni, R. Shah, and M. Hobbhahn. Frontier Models are
Capable of In-context Scheming. 434

[MST+22] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng. NeRF:
Representing scenes as neural radiance fields for view synthesis. Communications of the ACM,
65(1):99–106, January 2022. 451

[MSV+20] C. Mingard, J. Skalse, G. Valle-Pérez, D. Mart́ınez-Rubio, V. Mikulik, and A. A. Louis. Neural
networks are a priori biased towards Boolean functions with low entropy, January 2020. 130

[MSZ19] A. Majha, S. Sarkar, and D. Zagami. Categorizing Wireheading in Partially Embedded Agents,
June 2019. 365, 433

[Mül93] U. Müller. Brainfuck–an eight-instruction turing-complete programming language, 1993. http:
//en.wikipedia.org/wiki/Brainfuck. 460

[Mül10] M. Müller. Stationary algorithmic probability. Theoretical Computer Science, 411(1):113–130,
2010. 105

[MUP+22] N. Meyer, C. Ufrecht, M. Periyasamy, D. D. Scherer, A. Plinge, and C. Mutschler. A Survey on
Quantum Reinforcement Learning, 2022. 403

[Mur22] K. P. Murphy. Probabilistic Machine Learning: An Introduction. Adaptive Computation and
Machine Learning Series. The MIT Press, Cambridge, Massachusetts, 2022. 130

[Mur23] K. P. Murphy. Probabilistic Machine Learning: Advanced Topics. Adaptive Computation and
Machine Learning Series. The MIT Press, Cambridge, Massachusetts, 2023. 130

[MVK+16] K. Milan, J. Veness, J. Kirkpatrick, M. Bowling, A. Koop, and D. Hassabis. The forget-me-not
process. Advances in Neural Information Processing Systems, 29:3702–3710, 2016. 231

[MVSL21] C. Mingard, G. Valle-Pérez, J. Skalse, and A. A. Louis. Is SGD a Bayesian sampler? Well,
almost. Journal of Machine Learning Research, 22(79):1–64, 2021. 130

[MW17] J. V. Messias and S. Whiteson. Dynamic-depth context tree weighting. Advances in Neural
Information Processing Systems, 30, 2017. 214

http://en.wikipedia.org/wiki/Brainfuck
http://en.wikipedia.org/wiki/Brainfuck

BIBLIOGRAPHY 487

[MWV+21] T. Mesnard, T. Weber, F. Viola, S. Thakoor, A. Saade, A. Harutyunyan, W. Dabney, T. Steple-
ton, N. Heess, A. Guez, M. Hutter, L. Buesing, and R. Munos. Counterfactual credit assignment
in model-free reinforcement learning. Journal of Machine Learning Research, W&CP: ICML,
139:7654–7664, 2021. 270

[Nac97] J. H. Nachbar. Prediction, Optimization, and Learning in Repeated Games. Econometrica,
65(2):275, March 1997. 326

[Nac05] J. H. Nachbar. Beliefs in Repeated Games. Econometrica, 73(2):459–480, March 2005. 326

[Nas50] J. F. Nash. Equilibrium points in n-person games. Proceedings of the National Academy of
Sciences, 36(1):48–49, January 1950. 323, 324

[NC00] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cambridge
University Press, Cambridge ; New York, 2000. 404

[NC12] A. A. Neath and J. E. Cavanaugh. The Bayesian information criterion: Background, derivation,
and applications. WIREs Computational Statistics, 4(2):199–203, March 2012. 114

[NCM22] R. Ngo, L. Chan, and S. Mindermann. The Alignment Problem from a Deep Learning Perspective,
2022. 432

[NDD05] Y. Niv, M. O. Duff, and P. Dayan. Dopamine, uncertainty and TD learning. Behavioral and
Brain Functions, 1(1):6, December 2005. 440

[NDR+22] A. Nichol, P. Dhariwal, A. Ramesh, P. Shyam, P. Mishkin, B. McGrew, I. Sutskever, and
M. Chen. GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided
Diffusion Models, March 2022. 453

[Nem22] E. Nemerson. Squash compression benchmark, 2022. https://quixdb.github.io/
squash-benchmark/. 132

[Net22] S. Neth. A dilemma for Solomonoff prediction. Philosophy of Science, pages 1–25, 2022. 382

[Ngu13] P. Nguyen. Feature Reinforcement Learning Agents. PhD thesis, Research School of Computer
Science, Australian National University, 2013. xix, 134, 397, 398, 401, 402

[NHR99] A. Y. Ng, D. Harada, and S. Russell. Policy invariance under reward transformations: Theory
and application to reward shaping. In ICML, volume 99, pages 278–287, 1999. 253

[Nie09] A. Nies. Computability and Randomness, volume 51. OUP Oxford, 2009. 133

[NKB+19] P. Nakkiran, G. Kaplun, Y. Bansal, T. Yang, B. Barak, and I. Sutskever. Deep Double Descent:
Where Bigger Models and More Data Hurt, December 2019. 129

[NM44] J. V. Neumann and O. Morgenstern. Theory of Games and Economic Behavior. Princeton
University Press, Princeton, NJ, 1944. 324

[NMRO13] P. Nguyen, O. Maillard, D. Ryabko, and R. Ortner. Competing with an infinite set of models in
reinforcement learning. JMLR WS&CP AISTATS, 31:463–471, 2013. 402

[NN74] R. Nozick and T. Nagel. Anarchy, State, and Utopia. Basic Books, New York, NY, 1974. 412

[NOR13] O.-A. M. P. Nguyen, R. Ortner, and D. Ryabko. Optimal regret bounds for selecting the state
representation in reinforcement learning. JMLR W&CP ICML, 28(1):543–551, 2013. 402

[Noz69] R. Nozick. Newcomb’s Problem and Two Principles of Choice. In N. Rescher, editor, Essays in
Honor of Carl G. Hempel, pages 114–146. Springer Netherlands, Dordrecht, 1969. 325

[NSH11] P. Nguyen, P. Sunehag, and M. Hutter. Feature reinforcement learning in practice. In Proc. 9th
European Workshop on Reinforcement Learning (EWRL-9), volume 7188 of LNAI, pages 66–77.
Springer, September 2011. 402

[NSH12] P. Nguyen, P. Sunehag, and M. Hutter. Context tree maximizing reinforcement learning. In Proc.
26th AAAI Conference on Artificial Intelligence (AAAI’12), pages 1075–1082, Toronto, Canada,
2012. AAAI Press. 232, 398, 402

[NYEYM03] M. Nisenson, I. Yariv, R. El-Yaniv, and R. Meir. Towards behaviometric security systems:
Learning to identify a typist. In European Conference on Principles of Data Mining and
Knowledge Discovery, pages 363–374. Springer, 2003. 214

[OA16] L. Orseau and S. Armstrong. Safely interruptible agents. Conference on Uncertainty in Artificial
Intelligence, 2016. 423, 433

[OAT14] M. Oizumi, L. Albantakis, and G. Tononi. From the Phenomenology to the Mechanisms of
Consciousness: Integrated Information Theory 3.0. PLoS Computational Biology, 10(5):e1003588,
May 2014. 440

[OB10a] P. A. Ortega and D. A. Braun. A minimum relative entropy principle for learning and acting.
Journal of Artificial Intelligence Research, 38:475–511, 2010. 302

[OB10b] P. A. Ortega and D. A. Braun. A Bayesian rule for adaptive control based on causal interventions.
In 3d Conference on Artificial General Intelligence (AGI-2010), pages 182–187. Atlantis Press,
2010. 269, 290, 302

[OBD+06] A. O’Hagan, C. E. Buck, A. Daneshkhah, J. R. Eiser, P. H. Garthwaite, D. J. Jenkinson, J. E.
Oakley, and T. Rakow. Uncertain Judgements: Eliciting Experts’ Probabilities. Statistics in
Practice. Wiley, London ; Hoboken, NJ, 1 edition, 2006. 69, 131

[Odi89] P. Odifreddi. Classical Recursion Theory, volume 1. North–Holland, Amsterdam, 1989. 100, 132

[Odi99] P. Odifreddi. Classical Recursion Theory, volume 2. Elsevier, Amsterdam, 1999. 132

https://quixdb.github.io/squash-benchmark/
https://quixdb.github.io/squash-benchmark/

488 BIBLIOGRAPHY

[OFB24] J. T. Oswald, T. M. Ferguson, and S. Bringsjord. A universal intelligence measure for arithmetical
uncomputable environments. In K. R. Thórisson, P. Isaev, and A. Sheikhlar, editors, Artificial
General Intelligence, volume 14951, pages 134–144. Springer Nature Switzerland, Cham, 2024.
133, 459

[OGNJ17] Y. Ouyang, M. Gagrani, A. Nayyar, and R. Jain. Learning unknown Markov decision processes:
A Thompson sampling approach. Advances in Neural Information Processing Systems, 30, 2017.
302

[O’H19] A. O’Hagan. Expert Knowledge Elicitation: Subjective but Scientific. The American Statistician,
73(sup1):69–81, March 2019. 131

[OHC+20] J. Oh, M. Hessel, W. M. Czarnecki, Z. Xu, H. van Hasselt, S. Singh, and D. Silver. Discovering
Reinforcement Learning Algorithms, 2020. 404

[OHL23] L. Orseau, M. Hutter, and L. H. Lelis. Levin tree search with context models. In Proc. 32nd
International Joint Conference on Artificial Intelligence (IJCAI’23), pages 5622–5630, Macao,
China, 2023. Distinguished paper award. 372, 382

[OHL24] L. Orseau, M. Hutter, and L. H. S. Lelis. Exponential speedups by rerooting Levin Tree Search.
arXiv:2412.05196, pages 1–34, 2024. 372, 382

[OHSS12] A. O’Neill, M. Hutter, W. Shao, and P. Sunehag. Adaptive context tree weighting. In Proc. Data
Compression Conference (DCC’12), pages 317–326, Snowbird, Utah, USA, 2012. IEEE Computer
Society. 214, 215, 216, 217

[OIO19] B. O’Donoghue, C. Ionescu, and I. Osband. Making Sense of Reinforcement Learning and
Probabilistic Inference. 2019. 404

[OKD+21] P. A. Ortega, M. Kunesch, G. Delétang, T. Genewein, J. Grau-Moya, J. Veness, J. Buchli,
J. Degrave, B. Piot, J. Perolat, T. Everitt, C. Tallec, E. Parisotto, T. Erez, Y. Chen, S. Reed,
M. Hutter, N. de Freitas, and S. Legg. Shaking the foundations: Delusions in sequence models
for interaction and control. Technical Report http://arxiv.org/abs/2110.10819, DeepMind,
London, 2021. 270, 302

[OL21] L. Orseau and L. H. Lelis. Policy-guided heuristic search with guarantees. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35, pages 12382–12390, 2021. 382

[OLH13] L. Orseau, T. Lattimore, and M. Hutter. Universal knowledge-seeking agents for stochastic
environments. In Proc. 24th International Conf. on Algorithmic Learning Theory (ALT’13),
volume 8139 of LNAI, pages 158–172, Singapore, 2013. Springer. 253, 292, 294, 302

[OLLW18] L. Orseau, L. Lelis, T. Lattimore, and T. Weber. Single-agent policy tree search with guarantees.
Advances in Neural Information Processing Systems, 31, 2018. 382

[OM54] J. Olds and P. Milner. Positive reinforcement produced by electrical stimulation of septal area and
other regions of rat brain. Journal of Comparative and Physiological Psychology, 47(6):419–427,
1954. 423

[Omo07] S. M. Omohundro. The nature of self-improving artificial intelligence. Singularity Summit, 2008,
2007. 413

[OMR14] R. Ortner, O.-A. Maillard, and D. Ryabko. Selecting Near-Optimal Approximate State Represen-
tations in Reinforcement Learning. In P. Auer, A. Clark, T. Zeugmann, and S. Zilles, editors,
Algorithmic Learning Theory, volume 8776, pages 140–154, Cham, 2014. Springer International
Publishing. 403

[ONBM14] R. Omari, D. Newth, M. Böhm, and M. Mohammadian. An application of a monte-carlo aixi
approximation in ecological fire management. In International Conference on Intelligent Agents,
Web Technologies and Internet Commerce-IAWTIC’2014 Jointly with International Conference
on Computational for Modelling, Control and Automation-CIMCA’2014, pages 31–37, 2014. 371

[OOMM17] B. O’Donoghue, I. Osband, R. Munos, and V. Mnih. The Uncertainty Bellman Equation and
Exploration, 2017. 302

[Ope22] OpenAI. DALL·E 2. https://openai.com/dall-e-2, 2022. Accessed: 2023-10-30. 453

[Ope23a] OpenAI. GPT-4 technical report, March 2023. 434, 450, 452, 461

[Ope23b] OpenAI. GPT-4 Turbo with 128k context and vision, November 2023. https://openai.com/
blog/new-models-and-developer-products-announced-at-devday. 450, 452

[OPL+19] R. Ortner, M. Pirotta, A. Lazaric, R. Fruit, and O.-A. Maillard. Regret bounds for learning state
representations in reinforcement learning. Advances in Neural Information Processing Systems,
32, 2019. 403

[OR94] M. J. Osborne and A. Rubenstein. A Course in Game Theory. The MIT Press, Cambridge, MA,
1994. 279, 306, 307, 309, 322

[OR11] L. Orseau and M. Ring. Self-modification and mortality in artificial agents. In Proc. 4th Conf.
on Artificial General Intelligence (AGI’11), volume 6830 of LNAI, pages 1–10. Springer, 2011.
427, 433

[OR12a] L. Orseau and M. Ring. Space-time embedded intelligence. In Proc. 5th Conf. on Artificial
General Intelligence (AGI’11), volume 7716 of LNAI, pages 209–218, Oxford, UK, 2012. Springer.
429, 433

[OR12b] L. Orseau and M. Ring. Memory Issues of Intelligent Agents. In J. Bach, B. Goertzel, M. Iklé,
D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor,

http://ijcai-23.org/distinguished-paper-awards/
http://arxiv.org/abs/2412.05196
http://arxiv.org/abs/2110.10819
https://openai.com/dall-e-2
https://openai.com/blog/new-models-and-developer-products-announced-at-devday
https://openai.com/blog/new-models-and-developer-products-announced-at-devday

BIBLIOGRAPHY 489

O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi,
and G. Weikum, editors, Artificial General Intelligence, volume 7716, pages 219–231. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012. 433

[Ora20] F. Orabona. A Modern Introduction to Online Learning, May 2020. 132

[Ord20] T. Ord. The Precipice: Existential Risk and the Future of Humanity. Bloomsbury academic,
london New York (N.Y.), 2020. 432

[Ors10] L. Orseau. Optimality issues of universal greedy agents with static priors. In Proc. 21st
International Conf. on Algorithmic Learning Theory (ALT’10), volume 6331 of LNAI, pages
345–359, Canberra, Australia, 2010. Springer. 280, 285

[Ors11] L. Orseau. Universal knowledge-seeking agents. In Proc. 22nd International Conf. on Algorithmic
Learning Theory (ALT’11), volume 6925 of LNAI, pages 353–367, Espoo, Finland, 2011. Springer.
292, 295, 302

[Ors14a] L. Orseau. The multi-slot framework: A formal model for multiple, copiable ais. In International
Conference on Artificial General Intelligence, pages 97–108. Springer, 2014. 442, 443

[Ors14b] L. Orseau. Teleporting Universal Intelligent Agents. In D. Hutchison, T. Kanade, J. Kittler,
J. M. Kleinberg, A. Kobsa, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan,
B. Steffen, D. Terzopoulos, D. Tygar, G. Weikum, B. Goertzel, L. Orseau, and J. Snaider, editors,
Artificial General Intelligence, volume 8598, pages 109–120, Cham, 2014. Springer International
Publishing. 442, 443

[Ort07] R. Ortner. Pseudometrics for state aggregation in average reward Markov decision processes. In
Proc. 18th International Conf. on Algorithmic Learning Theory (ALT’07), volume 4754 of LNAI,
pages 373–387, Sendai, Japan, 2007. 392

[Ort11] P. A. Ortega. A Unified Framework for Resource-Bounded Autonomous Agents Interacting with
Unknown Environments. PhD thesis, University of Cambridge, 2011. 290, 302

[Osb04] M. J. Osborne. An Introduction to Game Theory. Oxford University Press, New York, 2004. 306

[OVR15] I. Osband and B. Van Roy. Bootstrapped Thompson Sampling and Deep Exploration, July 2015.
302

[OVR16a] I. Osband and B. Van Roy. Posterior Sampling for Reinforcement Learning Without Episodes,
August 2016. 302

[OVR16b] I. Osband and B. Van Roy. Why is Posterior Sampling Better than Optimism for Reinforcement
Learning?, 2016. 302

[OVRRW17] I. Osband, B. Van Roy, D. Russo, and Z. Wen. Deep Exploration via Randomized Value
Functions, March 2017. 302

[OWA+22] I. Osband, Z. Wen, S. M. Asghari, V. Dwaracherla, M. Ibrahimi, X. Lu, and B. Van Roy.
Epistemic Neural Networks, 2022. 130

[OWJ+22] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal,
K. Slama, A. Ray, et al. Training language models to follow instructions with human feedback.
Advances in Neural Information Processing Systems, 35:27730–27744, 2022. 415

[OWR+19] P. A. Ortega, J. X. Wang, M. Rowland, T. Genewein, Z. Kurth-Nelson, R. Pascanu, N. Heess,
J. Veness, A. Pritzel, P. Sprechmann, S. M. Jayakumar, T. McGrath, K. Miller, M. Azar,
I. Osband, N. Rabinowitz, A. György, S. Chiappa, S. Osindero, Y. W. Teh, H. van Hasselt, N. de
Freitas, M. Botvinick, and S. Legg. Meta-learning of Sequential Strategies, July 2019. 302

[Ozd18] M. Ozdag. Adversarial Attacks and Defenses Against Deep Neural Networks: A Survey. Procedia
Computer Science, 140:152–161, 2018. 434

[Pan08] S. Pankov. A computational approximation to the AIXI model. In Proc. 1st Conference on
Artificial General Intelligence, volume 171, pages 256–267, 2008. 368, 382

[Pap94] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, New York, 1994. 132

[Par86] D. Parfit. Reasons and Persons. Oxford University PressOxford, 1 edition, January 1986. 416

[Pas54] B. Pascal. Letters to Fermat, 1654. 128

[Pas76] R. C. Pasco. Source Coding Algorithms for Fast Data Compression. PhD thesis, Stanford
University CA, 1976. 131

[PCZ+19] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D. Cubuk, and Q. V. Le. SpecAugment:
A Simple Data Augmentation Method for Automatic Speech Recognition, September 2019. 451

[Pea00] J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press, Cambridge,
2000. 269

[Pen89] R. Penrose. The Emperor’s New Mind. Oxford University Press, 1989. 446, 448

[Pen94] R. Penrose. Shadows of the Mind, A Search for the Missing Science of Consciousness. Oxford
University Press, 1994. 446, 448

[Pet15] Petrl. People for the ethical treatment of reinforcement learners, 2015. http://petrl.org/. 440

[PF97] X. Pintado and E. Fuentes. A forecasting algorithm based on information theory. In Objects at
Large, page 209. Université de Genève, 1997. 134

[PGC10] M. J. Ponsen, G. Gerritsen, and G. Chaslot. Integrating opponent models with Monte-Carlo tree
search in poker. Interactive Decision Theory and Game Theory, 82, 2010. 341

http://petrl.org/

490 BIBLIOGRAPHY

[PGJ16] J. Pearl, M. Glymour, and N. P. Jewell. Causal Inference in Statistics: A Primer. Wiley,
Chichester, reprinted with revisions edition, 2016. 269

[PGO+23] P. S. Park, S. Goldstein, A. O’Gara, M. Chen, and D. Hendrycks. AI Deception: A Survey of
Examples, Risks, and Potential Solutions, August 2023. 416

[PH04a] J. Poland and M. Hutter. Convergence of discrete MDL for sequential prediction. In Proc. 17th
Annual Conf. on Learning Theory (COLT’04), volume 3120 of LNAI, pages 300–314, Banff,
Canada, 2004. Springer. 171

[PH04b] J. Poland and M. Hutter. On the convergence speed of MDL predictions for Bernoulli sequences.
In Proc. 15th International Conf. on Algorithmic Learning Theory (ALT’04), volume 3244 of
LNAI, pages 294–308, Padova, Italy, 2004. Springer. 172

[PH05a] J. Poland and M. Hutter. Asymptotics of discrete MDL for online prediction. IEEE Transactions
on Information Theory, 51(11):3780–3795, 2005. 113, 133, 171

[PH05b] J. Poland and M. Hutter. Defensive universal learning with experts. In Proc. 16th International
Conf. on Algorithmic Learning Theory (ALT’05), volume 3734 of LNAI, pages 356–370, Singapore,
2005. Springer. 336, 368

[PH05c] J. Poland and M. Hutter. Strong asymptotic assertions for discrete MDL in regression and
classification. In Proc. 14th Dutch-Belgium Conf. on Machine Learning (Benelearn’05), pages
67–72, Enschede, 2005. 172

[PH06a] J. Poland and M. Hutter. MDL convergence speed for Bernoulli sequences. Statistics and
Computing, 16(2):161–175, 2006. 172

[PH06b] J. Poland and M. Hutter. Universal learning of repeated matrix games. In Proc. 15th Annual
Machine Learning Conf. of Belgium and The Netherlands (Benelearn’06), pages 7–14, Ghent,
Belgium, 2006. 330, 333, 334, 336, 368

[PH22] M. Phuong and M. Hutter. Formal algorithms for transformers. Technical report, DeepMind,
London, UK, 2022. LaTeX source available at http://arxiv.org/abs/2207.09238. 452

[PHS+23] R. Prabhavalkar, T. Hori, T. N. Sainath, R. Schlüter, and S. Watanabe. End-to-end speech
recognition: A survey, 2023. 451

[Pic09] C. A. Pickover. The Math Book: From Pythagoras to the 57th Dimension, 250 Milestones in the
History of Mathematics. Sterling, New York, NY, 2009. 128

[Pic14] C. A. Pickover. The Physics Book: 250 Milestones in the History of Physics. Barnes & Noble,
New York, 2014. 128

[Pit19] S. Pitis. Rethinking the discount factor in reinforcement learning: A decision theoretic approach.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 7949–7956,
2019. 254

[PJD21] B. Pinon, R. Jungers, and J.-C. Delvenne. PAC-learning gains of Turing machines over circuits
and neural networks, 2021. 134

[PJS17] J. Peters, D. Janzing, and B. Schölkopf. Elements of Causal Inference: Foundations and Learning
Algorithms. Adaptive Computation and Machine Learning. The MIT press, Cambridge, Mass,
2017. 269

[PKC21] E. Perez, D. Kiela, and K. Cho. Rissanen Data Analysis: Examining Dataset Characteristics via
Description Length, March 2021. 134

[Pla22] A. Plaat. Deep Reinforcement Learning. Springer Nature Singapore, Singapore, 2022. 253

[PLV+17] R. Pascanu, Y. Li, O. Vinyals, N. Heess, L. Buesing, S. Racanière, D. Reichert, T. Weber,
D. Wierstra, and P. Battaglia. Learning model-based planning from scratch. Technical report,
2017. 404

[PM18] J. Pearl and D. Mackenzie. The Book of Why: The New Science of Cause and Effect. Allen
Lane, London, 2018. 269

[Pol06] J. Poland. Online Learning with Universal Model and Predictor Classes. In 2006 IEEE Information
Theory Workshop, pages 237–241, Punta del Este, Uruguay, 2006. IEEE. 336

[Pop34] K. R. Popper. Logik der Forschung. Springer, Berlin, 1934. [English translation: The Logic
of Scientific Discovery Basic Books, New York, 1959, and Hutchinson, London, revised edition,
1968]. 131

[Pos44] E. L. Post. Recursively enumerable sets of positive integers and their decision problems. Bulletin
of the American Mathematical Society, 50:284–316, 1944. 132

[Pow98] D. M. W. Powers. The total Turing test and the Loebner prize. In Proceedings of the Joint Con-
ferences on New Methods in Language Processing and Computational Natural Language Learning
- NeMLaP3/CoNLL ’98, page 279, Sydney, Australia, 1998. Association for Computational
Linguistics. 455

[PP12] K. B. Petersen and M. S. Pedersen. The matrix cookbook. November 2012. 128

[PP17] D. Pratas and A. J. Pinho. On the approximation of the Kolmogorov complexity for DNA
sequences. In Iberian Conference on Pattern Recognition and Image Analysis, pages 259–266.
Springer, 2017. 135

[PR12] A. Potapov and S. Rodionov. Extending universal intelligence models with formal notion of
representation. In International Conference on Artificial General Intelligence, pages 242–251.
Springer, 2012. 372

BIBLIOGRAPHY 491

[Pre02] S. J. Press. Subjective and Objective Bayesian Statistics: Principles, Models, and Applications.
Wiley, 2nd edition, 2002. 69, 130, 131, 173

[PS99] F. C. Pereira and Y. Singer. An Efficient Extension to Mixture Techniques for Prediction and
Decision Trees. Machine Learning, 36(3):183–199, 1999. 213, 214, 233

[PT87] C. H. Papadimitriou and J. N. Tsitsiklis. The Complexity of Markov Decision Processes. Mathe-
matics of Operations Research, 12(3):441–450, August 1987. 381

[Put63] H. Putnam. ‘Degree of confirmation’ and inductive logic. In The Philosophy of Rudolf Carnap.
Open Court, La Salle, IL, 1963. 131

[Put94] M. L. Puterman. Markov Decision Processes — Discrete Stochastic Dynamic Programming.
Wiley, New York, NY, 1994. 365

[PV08] P. Poupart and N. Vlassis. Model-based Bayesian reinforcement learning in partially observable
domains. In Proc Int. Symp. on Artificial Intelligence and Mathematics, pages 1–2, 2008. 269,
371

[PVHR06] P. Poupart, N. A. Vlassis, J. Hoey, and K. Regan. An analytic solution to discrete Bayesian
reinforcement learning. In Proc. 23rd International Conf. on Machine Learning (ICML’06),
volume 148, pages 697–704, Pittsburgh, PA, 2006. ACM. 269, 371

[PW94] J. Peng and R. J. Williams. Incremental multi-step q-learning. In Machine Learning Proceedings
1994, pages 226–232. Elsevier, 1994. 403

[Pyi22] A. Pyinya. Beyond rewards and values: A non-dualistic approach to universal intelligence.
LessWrong, 2022. 433

[Pyi24] A. Pyinya. ACI#9: What is intelligence. LessWrong, 2024. 433

[PZTH07] A. Piatti, M. Zaffalon, F. Trojani, and M. Hutter. Learning about a categorical latent variable
under prior near-ignorance. In Proc. 5th International Symposium on Imprecise Probability:
Theories and Applications (ISIPTA’07), pages 357–364, Prague, Czech Republic, 2007. Action M
Agency. 130

[PZTH09] A. Piatti, M. Zaffalon, F. Trojani, and M. Hutter. Limits of learning about a categorical
latent variable under prior near-ignorance. International Journal of Approximate Reasoning,
50(4):597–611, 2009. 130

[RA11] P. Rajarajeswari and A. Apparao. Normalized distance matrix method for construction of
phylogenetic trees using new compressor-dnabit compress. Journal of Advanced Bioinformatics
Applications and Research ISSN, 2(1):89–97, 2011. 135

[Rad62] T. Rado. On Non-Computable Functions. Bell System Technical Journal, 41(3):877–884, May
1962. 95

[Ram31] F. P. Ramsey. Truth and probability. In The Foundations of Mathematics: Collected Papers of
Frank P. Ramsey, pages 156–198. Routledge and Kegan Paul, London, 1931. 131

[Rao92] C. R. Rao. Information and the accuracy attainable in the estimation of statistical parameters.
In Breakthroughs in Statistics: Foundations and basic theory, pages 235–247. Springer, 1992. 129

[Rav00] J. Raven. The Raven’s Progressive Matrices: Change and Stability over Culture and Time.
Cognitive Psychology, 41(1):1–48, August 2000. 459

[RBL+22] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image synthesis
with latent diffusion models. In Proc. IEEE/CVF Conf. on Computer Vision and Pattern
Recognition (CVPR), pages 10684–10695, 2022. 452, 453

[RC67] A. Robinson and C. Cherry. Results of a prototype television bandwidth compression scheme.
Proceedings of the IEEE, 55(3):356–364, 1967. 131

[RC04] C. P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer Texts in Statistics.
Springer, New York, NY, 2. ed edition, 2004. 369

[RCdP07] S. Ross, B. Chaib-draa, and J. Pineau. Bayes-adaptive POMDPs. Advances in Neural Information
Processing Systems, 20, 2007. 269, 371

[RCV16] G. Reddy, A. Celani, and M. Vergassola. Infomax Strategies for an Optimal Balance Between
Exploration and Exploitation. Journal of Statistical Physics, 163(6):1454–1476, June 2016. 285

[Reh21] E. M. Rehn. Free Will Belief as a consequence of Model-based Reinforcement Learning. Technical
report, 2021. 439, 440

[Rei49] H. Reichenbach. The Theory of Probability: An Inquiry into the Logical and Mathematical
Foundations of the Calculus of Probability. University of California Press, Berkeley, CA, 2nd
edition, 1949. 131

[Rei80] R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81–132, 1980. 130

[RFB15] O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolutional networks for biomedical image
segmentation. In Proc. of the 18th International Conference on Medical Image Computing and
Computer-Assisted Intervention (MICCAI’15) Part III 18, pages 234–241, Munich, Germany,
2015. Springer. 452

[RGT04] M. Rosencrantz, G. Gordon, and S. Thrun. Learning low dimensional predictive representations.
In Twenty-First International Conference on Machine Learning - ICML ’04, page 88, Banff,
Alberta, Canada, 2004. ACM Press. 370

492 BIBLIOGRAPHY

[RH06] D. Ryabko and M. Hutter. Asymptotic learnability of reinforcement problems with arbitrary
dependence. In Proc. 17th International Conf. on Algorithmic Learning Theory (ALT’06), volume
4264 of LNAI, pages 334–347, Barcelona, Spain, 2006. Springer. 269

[RH07] D. Ryabko and M. Hutter. On sequence prediction for arbitrary measures. In Proc. IEEE
International Symposium on Information Theory (ISIT’07), pages 2346–2350, Nice, France, 2007.
IEEE. 172

[RH08a] D. Ryabko and M. Hutter. On the possibility of learning in reactive environments with arbitrary
dependence. Theoretical Computer Science, 405(3):274–284, 2008. 269

[RH08b] D. Ryabko and M. Hutter. Predicting non-stationary processes. Applied Mathematics Letters,
21(5):477–482, 2008. 172

[RH09] P. M. Rancoita and M. Hutter. mbpcr: A package for dna copy number profile estimation.
BioConductor – Open Source Software for BioInformatics, (0.99):1–25, 2009. 173

[RH11] S. Rathmanner and M. Hutter. A philosophical treatise of universal induction. Entropy, 13(6):1076–
1136, 2011. xviii, 9, 69, 131, 161, 170, 439, 446

[RHBK09a] P. M. V. Rancoita, M. Hutter, F. Bertoni, and I. Kwee. Bayesian DNA copy number analysis.
BMC Bioinformatics, 10(10):1–19, 2009. 173

[RHBK09b] P. M. Rancoita, M. Hutter, F. Bertoni, and I. Kwee. Bayesian joint estimation of CN and LOH
aberrations. In Proc. 3rd International Workshop on Practical Applications of Computational
Biology & Bioinformatics (IWPACBB’09), volume 5518 of LNCS, pages 1109–1117, Salamanca,
Spain, 2009. Springer. 173

[RHBK10] P. M. V. Rancoita, M. Hutter, F. Bertoni, and I. Kwee. An integrated Bayesian analysis of LOH
and copy number data. BMC Bioinformatics, 11(321):1–18, 2010. 173

[RIR00] D. Ŕıos Insua and F. Ruggeri, editors. Robust Bayesian Analysis. Number 152 in Lecture Notes
in Statistics. Springer, New York, 2000. 130

[Ris78] J. J. Rissanen. Modeling by shortest data description. Automatica, 14(5):465–471, 1978. 133

[Ris83] J. J. Rissanen. A universal data compression system. IEEE Transactions on Information Theory,
29(5):656–664, 1983. 214

[Ris84] J. J. Rissanen. Universal coding, information, prediction, and estimation. IEEE Transactions on
Information Theory, I(4):629–636, 1984. 230

[Ris86] J. J. Rissanen. Stochastic complexity and modeling. Annals of Statistics, 14(3):1080–1100, 1986.
208

[RK17] V. Raj and S. Kalyani. Taming Non-stationary Bandits: A Bayesian Approach, July 2017. 269,
302

[RKH+21] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, G. Krueger, and I. Sutskever. Learning transferable visual models from
natural language supervision. In M. Meila and T. Zhang, editors, Proceedings of the 38th
International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning
Research, pages 8748–8763. PMLR, 18–24 Jul 2021. 452

[RLDG22] A. Ronca, G. P. Licks, and G. De Giacomo. Markov Abstractions for PAC Reinforcement
Learning in Non-Markov Decision Processes, May 2022. 285, 402

[RM51] H. Robbins and S. Monro. A Stochastic Approximation Method. The Annals of Mathematical
Statistics, 22(3):400–407, September 1951. 173

[RN94] G. A. Rummery and M. Niranjan. On-line Q-learning using connectionist systems, volume 37.
University of Cambridge, Department of Engineering Cambridge, UK, 1994. 253, 403

[RN10] S. J. Russell and P. Norvig. Artificial Intelligence. A Modern Approach. Prentice-Hall, Englewood
Cliffs, NJ, 3rd edition, 2010. 130, 247, 256, 372, 450, 451

[RN20] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pearson Series in
Artificial Intelligence. Pearson, Hoboken, NJ, fourth edition edition, 2020. 127

[RÖ96] W. Rabinowicz and J. Österberg. Value Based on Preferences: On Two Interpretations of
Preference Utilitarianism. Economics and Philosophy, 12(1):1–27, April 1996. 416

[RO11] M. Ring and L. Orseau. Delusion, survival, and intelligent agents. In Proc. 4th Conf. on Artificial
General Intelligence (AGI’11), volume 6830 of LNAI, pages 11–20. Springer, 2011. xviii, 423,
425, 426, 433

[Rog67] H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York,
1967. 132, 317

[Rog96] Y. Rogozhin. Small universal Turing machines. Theoretical Computer Science, 168(2):215–240,
November 1996. 106

[Ron96] D. Ron. The Power of Amnesia: Learning Probabilistic Automata with Variable Memory Length.
Machine Learning, 25(2/3):117–149, 1996. 214

[Ros72] S. M. Ross. Introduction to Probability Models. Number 10 in Probability and Mathematical
Statistics, v. 10. Academic Press, New York, 1972. 24, 129

[Roy90] R. Roy. The Discovery of the Series Formula for π by Leibniz, Gregory and Nilakantha. Mathe-
matics Magazine, 63(5):291–306, December 1990. 103

BIBLIOGRAPHY 493

[RSZ21] A. Romashchenko, A. Shen, and M. Zimand. 27 Open Problems in Kolmogorov Complexity.
ACM SIGACT News, 52(4):31–54, January 2021. 134

[RT64] W. Rudin and Tata McGraw-Hill Publishing Company. Principles of Mathematical Analysis.
McGraw Education (india) Private Limited, Chennai, 1964. 18, 35, 128

[RTBP+23] A. Rannen-Triki, J. Bornschein, R. Pascanu, A. Galashov, M. Titsias, M. Hutter, A. György,
and Y. W. Teh. Revisiting dynamic evaluation: Online adaptation for large language models. In
NeurIPS Workshop on Distribution Shifts: New Frontiers with Foundation Models, New Orleans,
USA, 2023. 133

[Rub81] D. B. Rubin. The Bayesian Bootstrap. The Annals of Statistics, 9(1), January 1981. 131

[Rus15] S. Russell. Of myths and moonshine, 2015. https://www.edge.org/conversation/jaron_
lanier-the-myth-of-ai. 415

[Rus19] S. J. Russell. Human Compatible: Artificial Intelligence and the Problem of Control. Viking,
London, 2019. 411, 432

[RVR14] D. Russo and B. Van Roy. Learning to optimize via information-directed sampling. Advances in
Neural Information Processing Systems, 27, 2014. 285

[RVRK+17] D. Russo, B. Van Roy, A. Kazerouni, I. Osband, and Z. Wen. A Tutorial on Thompson
Sampling, 2017. 302

[RVWD13] D. M. Roijers, P. Vamplew, S. Whiteson, and R. Dazeley. A Survey of Multi-Objective Sequential
Decision-Making. Journal of Artificial Intelligence Research, 48:67–113, October 2013. 253

[Rya80] B. Y. Ryabko. Data compression by means of a “book stack”. Problemy Peredachi Informatsii,
16(4):16–21, 1980. 131

[Rya19a] D. Ryabko. Asymptotic Nonparametric Statistical Analysis of Stationary Time Series. Springer-
Briefs in Computer Science. Springer International Publishing, 2019. 171

[Rya19b] D. Ryabko. On Asymptotic and Finite-Time Optimality of Bayesian Predictors. Journal of
Machine Learning Research, 20(149):1–24, 2019. 171

[Rya20] D. Ryabko. Universal Time-Series Forecasting with Mixture Predictors. SPRINGER NATURE,
S.l., 2020. 172

[RZP+22] S. Reed, K. Zolna, E. Parisotto, S. G. Colmenarejo, A. Novikov, G. Barth-Maron, M. Gimenez,
Y. Sulsky, J. Kay, J. T. Springenberg, T. Eccles, J. Bruce, A. Razavi, A. Edwards, N. Heess,
Y. Chen, R. Hadsell, O. Vinyals, M. Bordbar, and N. de Freitas. A Generalist Agent, November
2022. 454

[SAGB21] A. Sarkar, Z. Al-Ars, H. Gandhi, and K. Bertels. QKSA: Quantum Knowledge Seeking Agent –
resource-optimized reinforcement learning using quantum process tomography, December 2021.
302, 372, 404

[SAH+20] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt, A. Guez, E. Lockhart,
D. Hassabis, T. Graepel, T. Lillicrap, and D. Silver. Mastering Atari, Go, chess and shogi by
planning with a learned model. Nature, 588(7839):604–609, December 2020. 454, 462

[Sai04] A. Said. Introduction to Arithmetic Coding Theory and Practice. Technical Report HPL-2004-76,
HP, 2004. 131

[Sam59] A. L. Samuel. Some studies in machine learning using the game of checkers. IBM Journal on
Research and Development, 3:210–229, 1959. 453

[Sam67] A. L. Samuel. Some Studies in Machine Learning Using the Game of Checkers. II—Recent
Progress. IBM Journal of Research and Development, 11(6):601–617, November 1967. 453

[Sar21] A. Sarkar. QKSA: Quantum Knowledge Seeking Agent, July 2021. 302, 372, 404

[Sav54] L. J. Savage. The Foundations of Statistics. Wiley, New York, 1954. 131, 324

[SB04] G. Shani and R. Brafman. Resolving perceptual aliasing in the presence of noisy sensors. Advances
in Neural Information Processing Systems, 17, 2004. 370

[SB18] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, Cambridge,
MA, 2nd edition, 2018. 237, 240, 241, 243, 251, 253, 287, 303, 342, 345, 403, 453

[SBH23] J. Scheurer, M. Balesni, and M. Hobbhahn. Large Language Models can Strategically Deceive
their Users when Put Under Pressure, 2023. 434

[SBP23] R. S. Sutton, M. Bowling, and P. M. Pilarski. The Alberta Plan for AI Research, March 2023.
404

[SC73] R. C. Schank and K. M. Colby. Computer Models of Thought and Language. A Series of Books
in Psychology. W. H. Freeman, San Francisco, 1973. 461

[SC84] R. C. Schank and P. Childers. The cognitive computer on language, learning, and artificial
intelligence. 1984. 461

[Sch71] C. P. Schnorr. Zufälligkeit und Wahrscheinlichkeit, volume 218 of Lecture Notes in Mathematics.
Springer, Berlin, 1971. 129

[Sch73] C. P. Schnorr. Process complexity and effective random tests. Journal of Computer and System
Sciences, 7(4):376–388, 1973. 134

[Sch80] T. C. Schelling. The Strategy of Conflict: with a new Preface by the Author. Harvard university
press, 1980. 323

https://www.edge.org/conversation/jaron_lanier-the-myth-of-ai
https://www.edge.org/conversation/jaron_lanier-the-myth-of-ai

494 BIBLIOGRAPHY

[Sch91] J. Schmidhuber. A Possibility for Implementing Curiosity and Boredom in Model-Building Neural
Controllers. In J.-A. Meyer and S. W. Wilson, editors, From Animals to Animats, pages 222–228.
The MIT Press, February 1991. 291, 302

[Sch93] A. Schwartz. A reinforcement learning method for maximizing undiscounted rewards. In
Proceedings of the 10th International Conference on Machine Learning, volume 298, pages
298–305, 1993. 254

[Sch97a] R. Schaller. Moore’s law: Past, present and future. IEEE Spectrum, 34(6):52–59, June 1997. 449

[Sch97b] J. Schmidhuber. Discovering neural nets with low Kolmogorov complexity and high generalization
capability. Neural Networks, 10(5):857–873, 1997. 368

[Sch99] M. Schmidt. Time-bounded Kolmogorov complexity may help in search for extra terrestrial
intelligence (SETI). Bulletin of the European Association for Theoretical Computer Science,
67:176–180, 1999. 135

[Sch02a] J. Schmidhuber. Hierarchies of generalized Kolmogorov complexities and nonenumerable universal
measures computable in the limit. International Journal of Foundations of Computer Science,
13(4):587–612, 2002. 132, 156

[Sch02b] J. Schmidhuber. The speed prior: A new simplicity measure yielding near-optimal computable
predictions. In Proc. 15th Conf. on Computational Learning Theory (COLT’02), volume 2375 of
LNAI, pages 216–228, Sydney, Australia, 2002. Springer. 134, 172, 369, 403

[Sch03] J. Schmidhuber. Bias-optimal incremental problem solving. In Advances in Neural Information
Processing Systems 15, pages 1571–1578. MIT Press, Cambridge, MA, 2003. 368

[Sch04] J. Schmidhuber. Optimal ordered problem solver. Machine Learning, 54(3):211–254, 2004. 368,
382

[Sch05] J. Schmidhuber. Gödel machines: Towards a technical justification of consciousness. In D. Kudenko,
D. Kazakov, and E. Alonso, editors, Adaptive Agents and Multi-Agent Systems III (LNCS 3394),
pages 1–23. Springer, 2005. 382

[Sch07] J. Schmidhuber. Gödel machines: Self-referential universal problem solvers making provably
optimal self-improvements. In Artificial General Intelligence, pages 199–226. Springer, 2007. 382

[Sch10] J. Schmidhuber. Formal Theory of Creativity, Fun, and Intrinsic Motivation (1990–2010). IEEE
Transactions on Autonomous Mental Development, 2(3):230–247, September 2010. 302

[Sch19a] J. Schmidhuber. Reinforcement Learning Upside Down: Don’t Predict Rewards – Just Map
Them to Actions, 2019. 404

[Sch19b] G. Schurz. Hume’s Problem Solved: The Optimality of Meta-Induction. The MIT Press,
Cambridge, Massachusetts, 2019. 446

[Sch22] G. Schwartzman. SGD Through the Lens of Kolmogorov Complexity, May 2022. 135

[SCS+22] C. Saharia, W. Chan, S. Saxena, , et al. Photorealistic text-to-image diffusion models with deep
language understanding. Advances in Neural Information Processing Systems, 35:36479–36494,
2022. 453

[SDD+23] T. Schick, J. Dwivedi-Yu, R. Dess̀ı, R. Raileanu, M. Lomeli, L. Zettlemoyer, N. Cancedda, and
T. Scialom. Toolformer: Language Models Can Teach Themselves to Use Tools, February 2023.
462

[SDWMG15] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli. Deep unsupervised learning
using nonequilibrium thermodynamics. In Proceedings of the 32nd International Conference on
Machine Learning, volume 37, pages 2256–2265, Lille, France, 2015. PMLR. 453

[Sea80] J. Searle. Minds, brains, and programs. Behavioral & Brain Sciences, 3:417–458, 1980. 444

[SGBK+21] E. Sezener, A. Grabska-Barwińska, D. Kostadinov, M. Beau, S. Krishnagopal, D. Budden,
M. Hutter, J. Veness, M. Botvinick, C. Clopath, M. Häusser, and P. E. Latham. A rapid and
efficient learning rule for biological neural circuits. Technical report, DeepMind, London, UK,
2021. 462

[SGS11] Y. Sun, F. Gomez, and J. Schmidhuber. Planning to be surprised: Optimal Bayesian exploration
in dynamic environments. In International Conference on Artificial General Intelligence, pages
41–51. Springer, 2011. 302

[SH99] N. Suematsu and A. Hayashi. A reinforcement learning algorithm in partially observable envi-
ronments using short-term memory. In Advances in Neural Information Processing Systems 12
(NIPS’09), pages 1059–1065, 1999. 370

[SH10] P. Sunehag and M. Hutter. Consistency of feature Markov processes. In Proc. 21st International
Conf. on Algorithmic Learning Theory (ALT’10), volume 6331 of LNAI, pages 360–374, Canberra,
Australia, 2010. Springer. 172, 402

[SH11a] P. Sunehag and M. Hutter. Axioms for rational reinforcement learning. In Proc. 22nd International
Conf. on Algorithmic Learning Theory (ALT’11), volume 6925 of LNAI, pages 338–352, Espoo,
Finland, 2011. Springer. 269

[SH11b] P. Sunehag and M. Hutter. Principles of Solomonoff induction and AIXI. In Proc. Solomonoff
85th Memorial Conference, volume 7070 of LNAI, pages 386–398, Melbourne, Australia, 2011.
Springer. 269

[SH12a] P. Sunehag and M. Hutter. Optimistic agents are asymptotically optimal. In Proc. 25th
Australasian Joint Conference on Artificial Intelligence (AusAI’12), volume 7691 of LNAI, pages
15–26, Sydney, Australia, 2012. Springer. xix, 287, 288, 289, 290

BIBLIOGRAPHY 495

[SH12b] P. Sunehag and M. Hutter. Optimistic AIXI. In Proc. 5th Conf. on Artificial General Intelligence
(AGI’12), volume 7716 of LNAI, pages 312–321. Springer, Heidelberg, 2012. 302

[SH13] P. Sunehag and M. Hutter. Learning agents with evolving hypothesis classes. In Proc. 6th Conf.
on Artificial General Intelligence (AGI’13), volume 7999 of LNAI, pages 150–159. Springer,
Heidelberg, 2013. 290

[SH14a] P. Sunehag and M. Hutter. A dual process theory of optimistic cognition. In Proc. 36th Annual
Meeting of the Cognitive Science Society (CogSci’14), pages 2949–2954, Quebec City, Canada,
2014. Curran Associates. 302

[SH14b] P. Sunehag and M. Hutter. Intelligence as inference or forcing Occam on the world. In Proc. 7th
Conf. on Artificial General Intelligence (AGI’14), volume 8598 of LNAI, pages 186–195, Quebec
City, Canada, 2014. Springer. 105

[SH15a] P. Sunehag and M. Hutter. Algorithmic complexity. In J. D. Wright, editor, International
Encyclopedia of the Social & Behavioral Sciences, volume 1, pages 534—-538. Elsevier, 2nd
edition, 2015. 133

[SH15b] P. Sunehag and M. Hutter. Rationality, optimism and guarantees in general reinforcement learning.
Journal of Machine Learning Research, 16:1345–1390, 2015. 286, 290, 302

[SH15c] P. Sunehag and M. Hutter. Using localization and factorization to reduce the complexity of
reinforcement learning. In Proc. 8th Conf. on Artificial General Intelligence (AGI’15), volume
9205 of LNAI, pages 177–186, Berlin, Germany, 2015. Springer. 290

[Sha48] C. E. Shannon. A mathematical theory of communication. Bell System Technical Journal,
27:379–423, 623–656, 1948. 75, 85, 131

[Sha51] C. E. Shannon. Prediction and Entropy of Printed English. Bell System Technical Journal,
30(1):50–64, January 1951. 78, 131

[Sha76] G. Shafer. A Mathematical Theory of Evidence. Princeton University Press, Princeton, NJ, 1976.
130

[Sha07] G. Shani. Learning and Solving Partially Observable Markov Decision Processes. Ben Gurion
University, 2007. 370

[SHB+17] M. Stephan, M. D. Hoffman, D. M. Blei, et al. Stochastic gradient descent as approximate
bayesian inference. Journal of Machine Learning Research, 18(134):1–35, 2017. 130

[SHB+20] E. Sezener, M. Hutter, D. Budden, J. Wang, and J. Veness. Online learning in contextual
bandits using gated linear networks. In Advances in Neural Information Processing Systems
(NeurIPS’20), volume 33, pages 19467–19477, Cambridge, MA, USA, 2020. Curran Associates.
369

[Shi96] A. N. Shiryaev. Probability. Number 95 in Graduate Texts in Mathematics. Springer, New York,
2nd ed edition, 1996. 129

[SHKK22] J. Skalse, N. Howe, D. Krasheninnikov, and D. Krueger. Defining and characterizing reward
gaming. Advances in Neural Information Processing Systems, 35:9460–9471, 2022. 433

[SHL97] N. Suematsu, A. Hayashi, and S. Li. A Bayesian approach to model learning in non-Markovian
environments. In Proc. 14th Intl. Conf. on Machine Learning (ICML’97), pages 349–357, 1997.
269, 370

[SHM+16] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis. Mastering
the game of Go with deep neural networks and tree search. Nature, 529(7587):484–489, January
2016. 254, 256, 315, 341, 444, 453

[Sho67] J. R. Shoenfield. Mathematical Logic. Addison-Wesley, Reading, MA, 1967. 132

[Sho76] E. H. Shortliffe. Computer-Based Medical Consultations: MYCIN. Elsevier/North-Holland,
Amsterdam, 1976. 130

[Sho94] P. Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings
35th Annual Symposium on Foundations of Computer Science, pages 124–134, Santa Fe, NM,
USA, 1994. IEEE Comput. Soc. Press. 450

[Sho01] J. R. Shoenfield. Mathematical Logic. Association for symbolic logic, Natick, Mass, 2001. 128

[SHS+18] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre,
D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis. A general reinforcement
learning algorithm that masters chess, shogi, and Go through self-play. Science, 362(6419):1140–
1144, December 2018. 453, 454, 462

[SI96] N. J. A. Sloane and T. O. F. Inc. Expansion of pi in base 2, 1996. https://oeis.org/A004601.
102

[Sie05] W. Sieg. Only Two Letters: The Correspondence between Herbrand and Gödel. Bulletin of
Symbolic Logic, 11(2):172–184, June 2005. 91

[Sip12] M. Sipser. Introduction to the Theory of Computation. Cengage Learning, 3rd edition, 2012. 132

[SJ21] E. Stefansson and K. H. Johansson. Computing Complexity-aware Plans Using Kolmogorov
Complexity. In 2021 60th IEEE Conference on Decision and Control (CDC), pages 3420–3427,
Austin, TX, USA, December 2021. IEEE. 372

https://oeis.org/A004601

496 BIBLIOGRAPHY

[SJR04] S. P. Singh, M. R. James, and M. R. Rudary. Predictive state representations: A new theory for
modeling dynamical systems. In Proc. 20th Conference in Uncertainty in Artificial Intelligence
(UAI’04), pages 512–518, Banff, Canada, 2004. AUAI Press. 370

[SKH23] J. Schwartz, H. Kurniawati, and M. Hutter. Combining a meta-policy and monte-carlo planning
for scalable type-based reasoning in partially observable environments. arXiv:2306.06067, pages
1–24, 2023. 269, 325

[SL08] I. Szita and A. Lörincz. The many faces of optimism: a unifying approach. In Proc. 12th
International Conference (ICML 2008), volume 307, pages 1048–1055, Helsinki, Finland, 2008.
302

[SLB09] Y. Shoham and K. Leyton-Brown. Multiagent Systems: Algorithmic, Game-Theoretic, and
Logical Foundations. Cambridge University Press, 2009. 306, 325

[SLO22] R. A. Starre, M. Loog, and F. A. Oliehoek. Model-based reinforcement learning with state
abstraction: A survey. 2022. 403

[SLP+18] G. P. Sarma, C. W. Lee, T. Portegys, V. Ghayoomie, T. Jacobs, B. Alicea, M. Cantarelli,
M. Currie, R. C. Gerkin, S. Gingell, P. Gleeson, R. Gordon, R. M. Hasani, G. Idili, S. Khayrulin,
D. Lung, A. Palyanov, M. Watts, and S. D. Larson. OpenWorm: Overview and recent advances
in integrative biological simulation of Caenorhabditis elegans. Philosophical Transactions of the
Royal Society B: Biological Sciences, 373(1758):20170382, October 2018. 442

[SLR07] R. Sabbadin, J. Lang, and N. Ravoanjanahry. Purely epistemic Markov decision processes. In
AAAI, pages 1057–1062, 2007. 381

[SM10] D. Salomon and G. Motta. Handbook of Data Compression. Springer, Berlin, 5th edition, 2010.
132

[Smi78] J. M. Smith. Optimization Theory in Evolution. Annual Review of Ecology and Systematics,
9(1):31–56, November 1978. 424

[SMW16] R. S. Sutton, A. R. Mahmood, and M. White. An emphatic approach to the problem of off-policy
temporal-difference learning. The Journal of Machine Learning Research, 17(1):2603–2631, 2016.
404

[Sol64] R. J. Solomonoff. A formal theory of inductive inference: Parts 1 and 2. Information and Control,
7:1–22 and 224–254, 1964. 8, 128, 132, 133, 134, 156, 462

[Sol78] R. J. Solomonoff. Complexity-based induction systems: Comparisons and convergence theorems.
IEEE Transactions on Information Theory, IT-24:422–432, 1978. 133, 134

[Sol85] R. J. Solomonoff. The time scale of artificial intelligence: Reflections on social effects. Human
Systems Management, 5:149–153, 1985. 432

[Soz98] P. D. Sozou. On hyperbolic discounting and uncertain hazard rates. Proceedings of the Royal
Society of London. Series B: Biological Sciences, 265(1409):2015–2020, October 1998. 254

[SP73] J. M. Smith and G. R. Price. The Logic of Animal Conflict. Nature, 246(5427):15–18, November
1973. 323

[SP02] M. Stolle and D. Precup. Learning Options in Reinforcement Learning. In G. Goos, J. Hart-
manis, J. Van Leeuwen, S. Koenig, and R. C. Holte, editors, Abstraction, Reformulation, and
Approximation, volume 2371, pages 212–223. Springer Berlin Heidelberg, Berlin, Heidelberg, 2002.
303

[SS82] J. A. Storer and T. G. Szymanski. Data compression via textual substitution. Journal of the
ACM, 29(4):928–951, October 1982. 131

[SS05] E. M. Stein and R. Shakarchi. Real Analysis: Measure Theory, Integration, and Hilbert Spaces.
Number 3 in Princeton Lectures in Analysis. Princeton university press, Princeton (N.J.), 2005.
24, 28, 128

[SS11] B. R. Steunebrink and J. Schmidhuber. A family of gödel machine implementations. In Interna-
tional Conference on Artificial General Intelligence, pages 275–280. Springer, 2011. 382

[SSH12] P. Sunehag, W. Shao, and M. Hutter. Coding of non-stationary sources as a foundation for
detecting change points and outliers in binary time-series. In Proc. 10th Australasian Data
Mining Conference (AusDM’12), volume 134, pages 79–84, Sydney, Australia, 2012. Australian
Computer Society. 213

[SSPS21] D. Silver, S. Singh, D. Precup, and R. S. Sutton. Reward is enough. Artificial Intelligence,
299:103535, October 2021. 253

[SSW+16] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas. Taking the Human Out of
the Loop: A Review of Bayesian Optimization. Proceedings of the IEEE, 104(1):148–175, January
2016. 131

[ST04] R. S. Sutton and B. Tanner. Temporal-difference networks. In L. Saul, Y. Weiss, and L. Bottou,
editors, Advances in Neural Information Processing Systems, volume 17. MIT Press, 2004. 371

[ST09] D. Silver and G. Tesauro. Monte-Carlo simulation balancing. In Proc. 26th Intl. Conf. on Machine
Learning (ICML’09), pages 945–952, 2009. 369

[Sta22] StabilityAI. Stable diffusion public release, 2022. https://stability.ai/blog/
stable-diffusion-public-release. 453

[Ste17] T. F. Sterkenburg. A Generalized Characterization of Algorithmic Probability. Theory of
Computing Systems, 61(4):1337–1352, November 2017. 446

http://arxiv.org/abs/2306.06067
https://stability.ai/blog/stable-diffusion-public-release
https://stability.ai/blog/stable-diffusion-public-release

BIBLIOGRAPHY 497

[Str00] M. Strens. A Bayesian framework for reinforcement learning. In Proc. 17th International Conf.
on Machine Learning, pages 943–950. Morgan Kaufmann, San Francisco, CA, 2000. 269, 371

[Sut88] R. S. Sutton. Learning to predict by the methods of temporal differences. Machine Learning,
3:9–44, 1988. 253, 403

[SV01] G. Shafer and V. Vovk. Probability and Finance: It’s Only a Game! Wiley-Interscience, New
York, NY, 2001. 129

[SV10] D. Silver and J. Veness. Monte-Carlo planning in large POMDPs. Advances in Neural Information
Processing Systems, 23:2164–2172, 2010. 253, 363, 369, 371

[SvH+16] D. Silver, H. van Hasselt, M. Hessel, T. Schaul, A. Guez, T. Harley, G. Dulac-Arnold, D. Reichert,
N. Rabinowitz, A. Barreto, and T. Degris. The Predictron: End-To-End Learning and Planning,
2016. 404

[SVK+22] R. Shah, V. Varma, R. Kumar, M. Phuong, V. Krakovna, J. Uesato, and Z. Kenton. Goal
Misgeneralization: Why Correct Specifications Aren’t Enough For Correct Goals, November 2022.
434

[SVS+14] G. W. Story, I. Vlaev, B. Seymour, A. Darzi, and R. J. Dolan. Does temporal discounting explain
unhealthy behavior? A systematic review and reinforcement learning perspective. Frontiers in
Behavioral Neuroscience, 8, 2014. 254

[SWD+17] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal Policy Optimization
Algorithms, August 2017. 253

[Sze10] C. Szepesvari. Algorithms for Reinforcement Learning. Number 9 in Synthesis Lectures on
Artificial Intelligence and Machine Learning. Morgan & Claypool, San Rafael, Calif., 2010. 253

[SZW97] J. Schmidhuber, J. Zhao, and M. A. Wiering. Shifting inductive bias with success-story algorithm,
adaptive Levin search, and incremental self-improvement. Machine Learning, 28:105–130, 1997.
368

[Tay16] J. Taylor. Quantilizers: A safer alternative to maximizers for limited optimization. In Workshops
at the Thirtieth AAAI Conference on Artificial Intelligence, 2016. 429

[TBF05] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, 2005. 404

[TBMK16] G. Tononi, M. Boly, M. Massimini, and C. Koch. Integrated information theory: From con-
sciousness to its physical substrate. Nature Reviews Neuroscience, 17(7):450–461, July 2016.
440

[Tes94] G. Tesauro. “TD”-Gammon, a self-teaching backgammon program, achieves master-level play.
Neural Computation, 6(2):215–219, 1994. 254, 315, 453

[Tes95] G. Tesauro. Temporal difference learning and TD-Gammon. Communications of the ACM,
38(3):58–68, March 1995. 254, 453

[TG96] G. Tesauro and G. Galperin. On-line policy improvement using Monte-Carlo search. Advances in
Neural Information Processing Systems, 9:1068–1074, 1996. 340

[TH10] M.-N. Tran and M. Hutter. Model selection by loss rank for classification and unsupervised
learning. Technical Report arXiv:1011.1379, NUS and ANU, Singapore and Australia, 2010. 134

[The24] L. Theis. What makes an image realistic? 41st international conference on machine learning,
2024. 135, 167

[Tho47] R. Thornton. The age of machinery. In The Expounder of Primitive Christianity, volume 4, page
281. Ann Arbor, Michigan, 1847. 432

[Tho33] W. R. Thompson. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25(3/4):285–294, 1933. 290, 302

[Tho10] B. S. Thomson. Monotone Convergence Theorem for the Riemann Integral. The American
Mathematical Monthly, 117(6):547, 2010. 45

[Tip95] F. J. Tipler. The Physics of Immortality. Macmillan, 1995. 432

[Ton12] G. Tononi. The integrated information theory of consciousness: an updated account. Archives
italiennes de biologie, 150(2/3):56–90, 2012. 440

[Tre76] C. P. Tremaux. A version of depth-first search as a strategy for solving mazes, 1876. Ecole
polytechnique of Paris. 372

[TSG] J. Tetek, M. Sklenka, and T. Gavenciak. Performance of bounded-rational agents with the ability
to self-modify. 433

[TSS+19] A. M. Turner, L. Smith, R. Shah, A. Critch, and P. Tadepalli. Optimal Policies Tend to Seek
Power, 2019. 434

[TSW93] T. J. Tjalkens, Y. M. Shtarkov, and F. M. J. Willems. Sequential weighting algorithms for
multi-alphabet sources. Proc. 6th Joint Swedish-Russian Intl. Workshop on Information Theory,
pages 22–27, 1993. 213

[Tur36] A. M. Turing. On computable numbers, with an application to the Entscheidungsproblem. Proc.
London Mathematical Society, 2(42):230–265, 1936. 89, 132

[Tur50] A. M. Turing. Computing machinery and intelligence. Mind, 1950. 455

[Tur04] A. Turing. Intelligent machinery (1948). B. Jack Copeland, page 395, 2004. 89, 437

[TW19] M. Tegmark and T. Wu. Pareto-optimal data compression for binary classification tasks, December
2019. 132

http://arxiv.org/abs/1011.1379

498 BIBLIOGRAPHY

[TYLC16] J. Taylor, E. Yudkowsky, P. LaVictoire, and A. Critch. Alignment for advanced machine learning
systems. Ethics of Artificial Intelligence, pages 342–382, 2016. 432

[TZ16] J. Teutsch and M. Zimand. A Brief on Short Descriptions. ACM SIGACT News, 47(1):42–67,
March 2016. 116

[TZXS19] A. Trott, S. Zheng, C. Xiong, and R. Socher. Keeping your distance: Solving sparse reward tasks
using self-balancing shaped rewards. Advances in Neural Information Processing Systems, 32,
2019. 253

[UKK+20] J. Uesato, R. Kumar, V. Krakovna, T. Everitt, R. Ngo, and S. Legg. Avoiding Tampering
Incentives in Deep RL via Decoupled Approval, November 2020. 433

[Ula58] S. Ulam. Tribute to John von Neumann. Bulletin of the American Mathematical Society, 64(3
II):1–49, 1958. 432

[UV98] W. T. B. Uther and M. M. Veloso. Tree based discretization for continuous state space reinforce-
ment learning. In AAAI, pages 769–774, 1998. 365

[VBC+19] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi,
R. Powell, T. Ewalds, P. Georgiev, J. Oh, D. Horgan, M. Kroiss, I. Danihelka, A. Huang, L. Sifre,
T. Cai, J. P. Agapiou, M. Jaderberg, A. S. Vezhnevets, R. Leblond, T. Pohlen, V. Dalibard,
D. Budden, Y. Sulsky, J. Molloy, T. L. Paine, C. Gulcehre, Z. Wang, T. Pfaff, Y. Wu, R. Ring,
D. Yogatama, D. Wünsch, K. McKinney, O. Smith, T. Schaul, T. Lillicrap, K. Kavukcuoglu,
D. Hassabis, C. Apps, and D. Silver. Grandmaster level in StarCraft II using multi-agent
reinforcement learning. Nature, 575(7782):350–354, November 2019. 315, 444, 453

[VBH+15] J. Veness, M. Bellemare, M. Hutter, A. Chua, and G. Desjardins. Compress and control. In Proc.
29th AAAI Conference on Artificial Intelligence (AAAI’15), pages 3016–3023, Austin, USA,
2015. AAAI Press. 303, 371, 372

[VBM+24] M. Varadi, D. Bertoni, P. Magana, U. Paramval, I. Pidruchna, M. Radhakrishnan, M. Tsenkov,

S. Nair, M. Mirdita, J. Yeo, O. Kovalevskiy, K. Tunyasuvunakool, A. Laydon, A. Ž́ıdek, H. Tom-
linson, D. Hariharan, J. Abrahamson, T. Green, J. Jumper, E. Birney, M. Steinegger, D. Hassabis,
and S. Velankar. AlphaFold Protein Structure Database in 2024: Providing structure coverage for
over 214 million protein sequences. Nucleic Acids Research, 52(D1):D368–D375, January 2024.
451

[VCH18] B. N. Vellambi, O. Cameron, and M. Hutter. Universal compression of piecewise i.i.d. sources. In
Proc. Data Compression Conference (DCC’18), Snowbird, Utah, USA, 2018. IEEE Computer
Society. 213, 218

[vGS15] H. van Hasselt, A. Guez, and D. Silver. Deep Reinforcement Learning with Double Q-learning,
December 2015. 403

[VH12] J. Veness and M. Hutter. Sparse sequential Dirichlet coding. Technical Report arXiv:1206.3618,
UoA and ANU, 2012. 213

[VH18] B. N. Vellambi and M. Hutter. Convergence of binarized context-tree weighting for estimating
distributions of stationary sources. In Proc. IEEE International Symposium on Information
Theory (ISIT’18), pages 731–735, Vail, USA, 2018. IEEE. 213

[VHOB15] J. Veness, M. Hutter, L. Orseau, and M. Bellemare. Online learning of k-CNF boolean functions.
In Proc. 24th International Joint Conf. on Artificial Intelligence (IJCAI’15), pages 3865–3873,
Buenos Aires, Argentina, 2015. AAAI Press. 172

[Vil39] J. Ville. Etude Critique de la Notion de Collectif. PhD thesis, Faculte des Sciences de L’Universite
de Paris, France, 1939. 166, 261

[Vil09] C. Villani. Optimal Transport: Old and New. Number 338 in Grundlehren Der Mathematischen
Wissenschaften. Springer, Berlin Heidelberg, 2009. 25

[Vin93] V. Vinge. The coming technological singularity. Vision-21 Symposium, NASA Lewis Research
Center and the Ohio Aerospace Institute, 30 to 31 March 1993 and Winter issue of Whole Earth
Review, 1993. 432

[VLB+21] J. Veness, T. Lattimore, D. Budden, A. Bhoopchand, C. Mattern, A. Grabska-Barwinska,
E. Sezener, J. Wang, P. Toth, S. Schmitt, and M. Hutter. Gated linear networks. In Proc. 35th
AAAI Conference on Artificial Intelligence (AAAI’21), volume 35, Virtual, Earth, 2021. AAAI
Press. 462

[VLCU07] F. Van Lishout, G. Chaslot, and J. W. Uiterwijk. Monte-Carlo tree search in backgammon. In
Computer Games Workshop, 2007. 341

[VN12] V. G. Voinov and M. S. Nikulin. Unbiased estimators and their applications: volume 1: univariate
case, volume 263. Springer Science & Business Media, 2012. 129

[VNB+66] J. Von Neumann, A. W. Burks, et al. Theory of self-reproducing automata. IEEE Transactions
on Neural Networks, 5(1):3–14, 1966. 414

[VNH+11] J. Veness, K. S. Ng, M. Hutter, W. Uther, and D. Silver. A Monte-Carlo AIXI approximation.
Journal of Artificial Intelligence Research, 40:95–142, 2011. Honorable Mention for the 2014
IJCAI-JAIR Best Paper Prize. 340, 358, 368, 370

[VNHB12] J. Veness, K. S. Ng, M. Hutter, and M. Bowling. Context tree switching. In Proc. Data
Compression Conference (DCC’12), pages 327–336, Snowbird, Utah, USA, 2012. IEEE Computer
Society. xix, 214, 215, 217, 219, 221

http://arxiv.org/abs/1206.3618

BIBLIOGRAPHY 499

[VNHS10] J. Veness, K. S. Ng, M. Hutter, and D. Silver. Reinforcement learning via AIXI approximation.
In Proc. 24th AAAI Conference on Artificial Intelligence, pages 605–611, Atlanta, USA, 2010.
AAAI Press. xviii, xix, 214, 338, 345, 350, 351, 353, 355, 356, 358, 359, 365, 368

[VNK+23] C. S. K. Valmeekam, K. Narayanan, D. Kalathil, J.-F. Chamberland, and S. Shakkottai. LLMZip:
Lossless Text Compression using Large Language Models, June 2023. 132

[VNM47] J. Von Neumann and O. Morgenstern. Theory of Games and Economic Behavior, 2nd rev.
Princeton University Press, 1947. 305, 306, 322

[VNM07] J. Von Neumann and O. Morgenstern. Theory of Games and Economic Behavior. Princeton
Classic Editions. Princeton University Press, Princeton, N.J. ; Woodstock, 60th anniversary ed
edition, 2007. 313, 324

[von28] J. von Neumann. Zur Theorie der Gesellschaftsspiele. Mathematische Annalen, 100(1):295–320,
December 1928. 324

[Vov89] V. G. Vovk. Prediction of stochastic sequences. Problems in Information Transmission, pages
285–296, 1989. 156

[Vov01] V. G. Vovk. Competitive on-line statistics. International Statistical Review, 69:213–248, 2001.
172

[VSBU09] J. Veness, D. Silver, A. Blair, and W. Uther. Bootstrapping from game tree search. Advances in
Neural Information Processing Systems, 22, 2009. 369

[VSFT19] H. Van Seijen, M. Fatemi, and A. Tavakoli. Using a logarithmic mapping to enable lower discount
factors in reinforcement learning. Advances in Neural Information Processing Systems, 32, 2019.
254

[VSH12] J. Veness, P. Sunehag, and M. Hutter. On ensemble techniques for AIXI approximation. In Proc.
5th Conf. on Artificial General Intelligence (AGI’12), volume 7716 of LNAI, pages 341–351.
Springer, Heidelberg, 2012. 368

[VSK+22] P. Vamplew, B. J. Smith, J. Källström, G. Ramos, R. Rădulescu, D. M. Roijers, C. F. Hayes,
F. Heintz, P. Mannion, P. J. K. Libin, R. Dazeley, and C. Foale. Scalar reward is not enough:
A response to Silver, Singh, Precup and Sutton (2021). Autonomous Agents and Multi-Agent
Systems, 36(2):41, October 2022. 253

[VSP+17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017. 132, 134, 370, 450, 451, 452

[VW98] V. G. Vovk and C. Watkins. Universal portfolio selection. In Proc. 11th Conf. on Computational
Learning Theory (COLT’98), pages 12–23. ACM Press, New York, 1998. 134, 135

[VWBG13] J. Veness, M. White, M. Bowling, and A. György. Partition tree weighting. In Proc. Data
Compression Conference (DCC’13), pages 321–330, Snowbird, Utah, USA, 2013. IEEE Computer
Society. xix, 214, 215, 222, 226, 227

[Wal37] A. Wald. Die Widerspruchsfreiheit des Kollektivbegriffs in der Wahrscheinlichkeitsrechnung. In
Ergebnisse eines Mathematischen Kolloquiums, volume 8, pages 38–72, 1937. 128

[Wal91] P. Walley. Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London, 1991.
130

[Wal05] C. S. Wallace. Statistical and Inductive Inference by Minimum Message Length. Springer, Berlin,
2005. 114, 133

[Wal16] M. M. Waldrop. The chips are down for Moore’s law. Nature, 530(7589):144–147, February 2016.
449

[Wan96] Y. Wang. Randomness and Complexity. PhD thesis, Universität Heidelberg, 1996. 129

[Wan24] T. Wang. Representation Learning for Agents in Non-Markovian Environments. PhD thesis,
Australian National University, September 2024. 402

[Was10] L. Wasserman. All of Statistics: A Concise Course in Statistical Inference. Springer Texts in
Statistics. Springer, New York Berlin Heidelberg, corr. 2. print., [repr.] edition, 2010. 129

[Wat89] C. Watkins. Learning from Delayed Rewards. PhD thesis, King’s College, Oxford, 1989. 346, 349

[WB68] C. S. Wallace and D. M. Boulton. An information measure for classification. Computer Journal,
11(2):185–194, 1968. 133

[WBC+17] T. Wängberg, M. Böörs, E. Catt, T. Everitt, and M. Hutter. A game-theoretic analysis of the
off-switch game. In Proc. 10th Conf. on Artificial General Intelligence (AGI’17), volume 10414
of LNAI, pages 167–177, Melbourne, Australia, 2017. Springer. 434

[WBKP23] A. Wong, T. Bäck, A. V. Kononova, and A. Plaat. Deep multiagent reinforcement learning:
Challenges and directions. Artificial Intelligence Review, 56(6):5023–5056, June 2023. 325

[WD92] C. Watkins and P. Dayan. Q-learning. Machine Learning, 8:279–292, 1992. 253, 370, 403

[WDA+24] L. K. Wenliang, G. Deletang, M. Aitchison, M. Hutter, A. Ruoss, A. Gretton, and M. Rowland.
Distributional bellman operators over mean embeddings. In 41st International Conference on
Machine Learning, 2024. 371, 404

[Web96] G. I. Webb. Further Experimental Evidence against the Utility of Occam’s Razor. Journal of
Artificial Intelligence Research, 4:397–417, June 1996. 135

500 BIBLIOGRAPHY

[Wei66] J. Weizenbaum. ELIZA—a computer program for the study of natural language communication
between man and machine. Communications of the ACM, 9(1):36–45, January 1966. 451

[Wel84] Welch. A Technique for High-Performance Data Compression. Computer, 17(6):8–19, June 1984.
131

[WG07] Y. Wang and S. Gelly. Modifications of UCT and sequence-like simulations for Monte-Carlo Go.
In 2007 IEEE Symposium on Computational Intelligence and Games, pages 175–182, Honolulu,
HI, USA, 2007. IEEE. 340, 341

[Wik23] Wikipedia. History of artificial intelligence. https: // en. wikipedia. org/ wiki/ History_ of_
artificial_ intelligence , 2023. 451

[Wil91a] D. Williams. Probability with Martingales. Cambridge Mathematical Textbooks. Cambridge Univ.
Pr, Cambridge, 22nd printing edition, 1991. 165

[Wil91b] R. N. Williams. An extremely fast Ziv-Lempel data compression algorithm. In 1991 Data
Compression Conference, pages 362–363. IEEE Computer Society, 1991. 131

[Wil92] R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8:229–256, 1992. 377, 403

[Wil98] F. Willems. The context-tree weighting method: Extensions. IEEE Transactions on Information
Theory, 44(2):792–798, March 1998. 213, 338

[Wil11] S. M. Wilson. Stanford-Binet Intelligence Scales. In S. Goldstein and J. A. Naglieri, editors,
Encyclopedia of Child Behavior and Development, pages 1436–1439. Springer US, Boston, MA,
2011. 459

[Wil22] H. Wilkinson. In Defense of Fanaticism. Ethics, 132(2):445–477, January 2022. 323

[WLBS05] T. Wang, D. Lizotte, M. Bowling, and D. Schuurmans. Bayesian sparse sampling for on-line
reward optimization. In Proceedings of the 22nd International Conference on Machine Learning
- ICML ’05, pages 956–963, Bonn, Germany, 2005. ACM Press. 269, 371

[WM97] D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization. IEEE Transactions
on Evolutionary Computation, 1(1):67–82, 1997. 161, 446

[WMS08] D. D. Wackerly, W. Mendenhall, and R. L. Scheaffer. Mathematical Statistics with Applications.
Thomson Brooks/Cole, Belmont, CA, 7th ed edition, 2008. 129

[Wol83] S. Wolfram. Statistical mechanics of cellular automata. Reviews of Modern Physics, 55(3):601–644,
July 1983. 92

[Wol02] S. Wolfram. A New Kind of Science. Wolfram Media, 2002. 132

[Wol23] D. H. Wolpert. The Implications of the No-Free-Lunch Theorems for Meta-induction. Journal
for General Philosophy of Science, 54(3):421–432, September 2023. 446

[WPH22] S. Wäldchen, S. Pokutta, and F. Huber. Training characteristic functions with reinforcement
learning: Xai-methods play connect four. In International Conference on Machine Learning,
pages 22457–22474. PMLR, 2022. 254

[WS96] M. A. Wiering and J. Schmidhuber. Solving POMDPs with Levin search and EIRA. In Proc.
13th International Conf. on Machine Learning, pages 534–542, Bari, Italy, 1996. 382

[WSB+20] J. Wang, E. Sezener, D. Budden, M. Hutter, and J. Veness. A combinatorial perspective
on transfer learning. In Advances in Neural Information Processing Systems (NeurIPS’20),
volume 33, pages 918–929, Cambridge, MA, USA, 2020. Curran Associates. 231, 456

[WSH11] I. Wood, P. Sunehag, and M. Hutter. (Non-)equivalence of universal priors. In Proc. Solomonoff
85th Memorial Conference, volume 7070 of LNAI, pages 417–425, Melbourne, Australia, 2011.
Springer. 163, 171

[WST93] F. Willems, Y. Shtarkov, and T. Tjalkens. Context Tree Weighting : A Sequential Universal
Source Coding Procedure for Fsmx Sources. In Proceedings. IEEE International Symposium on
Information Theory, pages 59–59, San Antonio, TX, 1993. IEEE. 213

[WST95] F. M. J. Willems, Y. M. Shtarkov, and T. J. Tjalkens. The context tree weighting method: Basic
properties. IEEE Transactions on Information Theory, 41:653–664, 1995. 175, 176, 177, 178,
185, 192, 193, 213, 230

[WST96] F. Willems, Y. Shtarkov, and T. Tjalkens. Context weighting for general finite-context sources.
IEEE Transactions on Information Theory, 42(5):1514–1520, Sept./1996. 214

[WST97] F. M. J. Willems, Y. M. Shtarkov, and T. J. Tjalkens. Reflections on the prize paper: The
context-tree weighting method: Basic properties. IEEE Information Theory Society Newsletter,
pages 20–27, 1997. 213

[WTS00] F. M. Willems, T. Tjalkens, and Y. M. Shtarkov. Context-tree maximizing. In Proceedings 34th
Annual Conference on Information Sciences and Systems, March 15-17, 2000, Princeton, New
Jersey, pages TP6–7, 2000. 232

[Wu17] Y. Wu. Lecture notes on information-theoretic methods for high-dimensional statistics. Lecture
Notes for ECE598YW (UIUC), 16, 2017. 135

[WvO12] M. Wiering and M. van Otterlo. Reinforcement Learning. Springer, 2012. 253

[WWH+22] H. Wang, H. Wu, Z. He, L. Huang, and K. W. Church. Progress in Machine Translation.
Engineering, 18:143–153, November 2022. 451

https://en.wikipedia.org/wiki/History_of_artificial_intelligence
https://en.wikipedia.org/wiki/History_of_artificial_intelligence

BIBLIOGRAPHY 501

[WWS+22] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou, et al. Chain-
of-thought prompting elicits reasoning in large language models. Advances in Neural Information
Processing Systems, 35:24824–24837, 2022. 462

[Wye24] C. Wyeth. Free Will and Dodging Anvils: AIXI Off-Policy. August 2024. 433

[XCG+23] Z. Xi, W. Chen, X. Guo, W. He, Y. Ding, B. Hong, M. Zhang, J. Wang, S. Jin, E. Zhou, et al.
The rise and potential of large language model based agents: A survey, September 2023. 461

[XRLM21] S. M. Xie, A. Raghunathan, P. Liang, and T. Ma. An Explanation of In-context Learning as
Implicit Bayesian Inference, 2021. 132, 171, 461

[XZC23] P. Xu, X. Zhu, and D. A. Clifton. Multimodal Learning With Transformers: A Survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 45(10):12113–12132, October 2023.
461

[Yam16] R. V. Yampolskiy. Artificial Superintelligence: A Futuristic Approach. Taylor & Francis, CRC
Press, Boca Raton, 2016. 411, 432

[Yam24] R. V. Yampolskiy. AI: Unpredictable, Unexplainable, Uncontrollable. Chapman & Hall/CRC
Artificial Intelligence and Robotics Series. CRC Press, Boca Raton, FL, first edition edition, 2024.
411, 432

[YF] R. V. Yampolskiy and J. Fox. Artificial General Intelligence and the Human Mental Model. In
A. H. Eden, J. H. Moor, J. H. Soraker, and E. Steinhart, editors, Singularity Hypotheses, pages
129–145. Springer Berlin Heidelberg. 433

[YJT+23] J. Yang, H. Jin, R. Tang, X. Han, Q. Feng, H. Jiang, B. Yin, and X. Hu. Harnessing the Power
of LLMs in Practice: A Survey on ChatGPT and Beyond, April 2023. 452

[YS] E. Yudkowsky and N. Soares. Functional Decision Theory: A New Theory of Instrumental
Rationality. 325

[Yud07] E. Yudkowsky. Torture vs. dust specks, October 2007. 323

[YVK19] H. Yueksel, K. R. Varshney, and B. Kingsbury. A Kolmogorov Complexity Approach to General-
ization in Deep Learning. December 2019. 135

[YWN22] S. Yang-Zhao, T. Wang, and K. S. Ng. A Direct Approximation of AIXI Using Logical State
Abstractions. arXiv, 2022. 369, 402

[YYZ+23] S. Yao, D. Yu, J. Zhao, I. Shafran, T. L. Griffiths, Y. Cao, and K. Narasimhan. Tree of Thoughts:
Deliberate Problem Solving with Large Language Models, December 2023. 461

[YZNH24] S. Yang-Zhao, K. S. Ng, and M. Hutter. Dynamic knowledge injection for AIXI agents. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pages 16388–16397,
2024. 369

[YZZC23] Z. Yang, X. Zeng, Y. Zhao, and R. Chen. AlphaFold2 and its applications in the fields of biology
and medicine. Signal Transduction and Targeted Therapy, 8(1):115, March 2023. 451

[Zad65] L. A. Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965. 130

[Zad78] L. A. Zadeh. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1:3–28,
1978. 130

[Zag20] D. Zagami. AIXI Responses to Newcomblike Problems, June 2020. 325

[Zah75] A. Zahavi. Mate selection—A selection for a handicap. Journal of Theoretical Biology, 53(1):205–
214, September 1975. 323

[Zen11] H. Zenil, editor. Randomness through Computation: Some Answers, More Questions. World
Scientific, Singapore, 2011. 133

[Zen19] H. Zenil. Compression is Comprehension, and the Unreasonable Effectiveness of Digital Compu-
tation in the Natural World, 2019. 455

[ZGHS06] V. Zhumatiy, F. Gomez, M. Hutter, and J. Schmidhuber. Metric state space reinforcement learning
for a vision-capable mobile robot. In Proc. 9th International Conf. on Intelligent Autonomous
Systems (IAS’06), pages 272–281. IOR Press, 2006. 404

[ZH02] M. Zaffalon and M. Hutter. Robust feature selection by mutual information distributions. In Proc.
18th International Conf. on Uncertainty in Artificial Intelligence (UAI-2002), pages 577–584.
Morgan Kaufmann, San Francisco, CA, 2002. 173

[ZH05] M. Zaffalon and M. Hutter. Robust inference of trees. Annals of Mathematics and Artificial
Intelligence, 45:215–239, 2005. 130

[Zim91] H.-J. Zimmermann. Fuzzy Set Theory–And Its Applications. Kluwer, Dordrecht, 2nd edition,
1991. 130

[ZL70] A. K. Zvonkin and L. A. Levin. The complexity of finite objects and the development of
the concepts of information and randomness by means of the theory of algorithms. Russian
Mathematical Surveys, 25(6):83–124, 1970. 129, 132, 133, 134, 156, 163

[ZL77] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE Transactions
on Information Theory, 23(3):337–343, May 1977. 131, 370

[ZL78] J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding. IEEE
Transactions on Information Theory, 24(5):530–536, September 1978. 131, 214

[ZLW+24] J. Zhang, X. Li, Z. Wan, C. Wang, and J. Liao. Text2NeRF: Text-Driven 3D Scene Generation
with Neural Radiance Fields, January 2024. 451

502 BIBLIOGRAPHY

[ZP13] H. Zenil and R. Penrose, editors. A Computable Universe: Understanding and Exploring Nature
as Computation. World Scientific, Singapore ; Hackensack, N.J, 2013. 133

[ZSW+20] D. M. Ziegler, N. Stiennon, J. Wu, T. B. Brown, A. Radford, D. Amodei, P. Christiano, and
G. Irving. Fine-Tuning Language Models from Human Preferences, January 2020. 461

[Zus72] K. Zuse. Der Plankalkül. PhD thesis, 1945/1972. 372

[ZVSL18] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning transferable architectures for scalable
image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 8697–8710, 2018. 451

[ZZL+23] W. X. Zhao, K. Zhou, J. Li, et al. A survey of large language models, 2023. 452

Table of Notation

The following is a list of commonly used notations. The first column is the symbol itself, the
second column is its corresponding name and/or explanation. Most notations are formally
defined/introduced in this book, e.g. ξ and K(x), while some standard ones are used without
being formally defined, e.g. R.

We have chosen to separate the notation by chapter, and it is in roughly chronological
order of when the notation is first used/defined. There are some repeated listings of a
specific notation for different meanings (and sometimes the same meaning), most notably
Γ is used in four different contexts for four different meanings: Cylinder set Γx, Gamma
function Γ(a), model cost ΓD, and discount normalization factor Γt.

Symbol Description

Global Abbreviations, Acronyms, and Initialisms
[C35s] classification of problems
[HQC24] paper, book or other reference
(6.7.7) label/reference for a formula/theorem/definition/...
AI Artificial Intelligence
AGI Artificial General Intelligence
ASI Artificial Super-Intelligence
AGSI Artificial General Super-Intelligence
UAI Universal Artificial Intelligence
AIXI Maximally intelligent Universal AI agent
CTW Context Tree Weighting
MCTS Monte Carlo Tree Search
MC-AIXI-CTW AIXI with MCTS planning and CTW model class
AIµ Optimal agent in known environment µ
MDP Markov Decision Process
POMDP Partially Observable Markov Decision Process
RL Reinforcement Learning
TM Turing Machine
UTM Universal Turing Machine
MDL Minimum Description Length
MAP Maximum A-Posteriori
KL Kullback–Leibler
KT Krichevsky–Trofimov
NFL No Free Lunch
MCTS Monte Carlo Tree Search

503

504 BIBLIOGRAPHY

KT Krichevsky–Trofimov (estimator)
KL Kullback–Leibler (divergence)
PST Prediction Suffix Tree
l.h.s. left-hand side
r.h.s. right-hand side
w.r.t. with respect to
w.l.g. without loss of generality
e.g. exempli gratia (Latin), for example
i.e. id est (Latin), that is
etc. et cetera (Latin), and so forth
cf. confer (Latin, imperative of conferre), compare with
et al. et alii (Latin), and others
i.i.d. independent identically distributed (random variables)
iff if and only if
w.p.1/a.s./i.p. with probability 1 / almost surely / in probability
i.m./i.m.s. in mean2 / in mean2 sum

Standard Math Operations and Spaces
0,1,2,...,∞ zero, one, two, ..., infinity
{a,...,z} set containing elements a,b,...,y,z. {} is the empty set
[a,b) interval on the real line, closed at a and open at b
∩,∪· ,∪,∆,\,∈ set intersection, (disjoint) union, (symmetric) difference, membership
∧,∨,¬ Boolean conjunction (and), disjunction (or), negation (not)
⊆,⊂ subset, proper subset
=⇒ implies
⇐⇒ equivalence, if and only if, iff
,♦,• end of proof,example,remark
∀,∃ for all, there exists
≪,≫ much smaller/greater than
∝ proportional to
=, ̸=, :=, ≡ equal to, not equal, definition, equal by definition
+,−,·,/ standard arithmetic operations: sum, difference, product, ratio
□2 footnote or exponent√

square root

≤,≥,<,> standard inequalities
|S|,|a| size/cardinality of set S, absolute value of a
→ mapping, approaches, Boolean implication
lim
n→∞

limiting value of argument for n tending to infinity

; replace with
⌈x⌉ ceiling of x: smallest integer larger or equal than x
⌊x⌋ floor of x: largest integer smaller or equal than x
δab Kronecker symbol, δab=1 if a=b and 0 otherwise∑n

k=1 summation from k=1 to n∏n
k=1 product from k=1 to n

∂f/∂x, df/dx partial/total derivative of f w.r.t. x∫
,
∫ b

a
dx Lebesgue integral, integral from a to b over x∫∑

x =
∑

x if x is discrete and =
∫
dx if x is continuous

BIBLIOGRAPHY 505

min/max min-/maximal element of set: minx∈X f(x)=min{f(x) :x∈X}
argmin argminxf(x) is the set of global minima of f
log logarithm to some basis
logb logarithm to basis b
ln natural logarithm to basis e=2.71828...
e base of natural logarithm e=2.71828...
π Archimedes’ constant π=3.1415... (but mostly agent policy)
∗ wildcard for some string (prefix, finite, or infinite)
⟨o⟩ coding of object o
⟨x,y⟩ uniquely decodable pairing of x and y
O(),o() big and small oh-notation. Grow is slower (or equal)
N+ Positive natural number {1,2,...}
N0 Natural numbers including zero {0,1,2,...}
Z set of integers Z= ...,−2,−1,0,1,2,...
Q Rationals
R Real numbers
N (µ,σ2) Normal/Gaussian distribution with mean µ and variance σ2

General
i,j Generic natural number indices
i≤t≤k≤n≤m natural number time index for sequences
x,y,z finite strings
f,g Functions
fn→gn converge to each other, fn−gn→0 for n→∞
x1:n =x≤n=x<n+1=x1x2...xn
ℓ(·) Length of a finite string or program
ϵ The empty string. Not to be confused with ε
ε A small positive real number. Not to be confused with ϵ
δ Nonnegative real number
∪, ∩ Union, intersection, respectively
X ∗ Set of all finite strings drawn from alphabet X
X∞ Set of all infinite sequences drawn from alphabet X
K Kolmogorov complexity
π An agent or policy
µ True/sampling probability measure ∈M
M The set of environments, a class of distributions, the model class;

a countable set of probability semimeasures on strings
p A program
A A set of actions
O The set of possible observations
R The set of possible rewards
E The set of all percepts E :=O×R
H The set of all histories H :=(A×E)∗
ot Observation at time t
rt Reward at time t
et A percept =otrt (observation and reward together)
at Action at time t
h<t History =a1e1...at−1et−1

506 BIBLIOGRAPHY

ν An environment/semimeasure ∈M
ρ An environment/semimeasure not necessarily ∈M
νπ Induced probability measure on histories from π and ν
E[X] Expected value of X
P Probability
Pπ
ν The probability of an event following policy π and environment ν

ξ Bayes mixture overM
wν ∈(0,1] The weight of ν; the prior belief that ν is the true distribution µ
γ A discount function ∈ [0,1)
Msol The set of lower semicomputable (chronological) semimeasures
Mcomp The set of computable (chronological) measures

Chapter 2 Background
MLE Maximum Likelihood Estimation/Estimator
MSE Mean-Square Error
x=x1x2...xn Finite binary string of length n
0,1 Characters zero, one in a string of bits (not the numbers 0 and 1)
xi:j The length (j−i+1) segment xixi+1...xj
xy Concatenation of x and y
Bn The set of all binary strings of length n
⟨·⟩ Bijection between finite binary strings and natural numbers
b(x) Takes binary string x and returns the natural number it represents
x,y,z Strings in X ∗ or B∗

x⊑y, x⊏y x is a (proper) prefix of y
c Prefix free code
P A prefix-free set; a prefix code
Ei(x) ith order prefix codeword
x / x′ First-order / second-order prefix code of x
ω∈B∞ Infinite sequence
r∈ [0,1] A real number
(x1:n)

∞ Infinite sequence comprised of repeating
the finite string x1:n infinitely many times

Γx Cylinder set of x
Ω Sample space
F A σ-algebra on Ω
∅ The empty set
A∈F An event
P:F→ [0,1] A probability measure
∆S The set of all probability distributions on S
∆′S The set {p∈ [0,1]S :∑s∈Sps≤1} of all semi-probabilities on S
θ P (heads) on a biased coin
H, T Heads, tails
S A set of subsets of Ω
σ(S) The σ-algebra generated by S
ω∈Ω Singleton event
µ A semimeasure
Dn Pairwise disjoint events
A,B,D,E Events

BIBLIOGRAPHY 507

{H}∞i=1 A partition of Ω
X,Y,Z :Ω→R Random variables
FX(x) The cumulative distribution function
E A measurable space
pX ,P[X = x]
or p(x)

Probability mass function

t,a,b Real number variables
B A set (comprised of countable unions of intervals)
ri,pi Real numbers
I An interval
X A sample space
[[...]] Indicator function
J Subset of I
Sn =X1+...+Xn

E[f(X)] expectation of f
P(A) probability of event/outcome/predicate A
Var[f(X)] Variance of f
S A predicate on events
p∈ [0,1] Probability
DN Set of events
L2

−→ Converges in mean2
a.s−→ Converges almost surely
P−→ Converges in probability

i.m.s−→ Converges in mean2 sum
θ Parameter of Bernoulli distribution
Θ A set of parameters
x1:n A sample of observations
w(θ|...) A p(oste)rior probability density function
t(x1:n) An estimator
L(θ) The likelihood function for parameter θ

θ̂ML The maximum likelihood estimator (MLE)
τ Reparameterization
Tn Estimator
Bias(Tn) Bias
MSEθ[Tn] Mean squared error of an estimator Tn
V The score V of X
I(θ) The Fisher information
p Real number between 0 and 1
a,b KT estimator counts of 1s and 0s respectively
Γ(k) The gamma function
Beta(θ;α,β) A Beta distribution
B(α,β) The Beta function
x̄ The sample mean
X ,Y Sample spaces
h(x) The Shannon information content
H(X) Entropy of a random variable X
N=1,2,...,n Set of the first n positive natural numbers

508 BIBLIOGRAPHY

E :N→B∗ A binary code
C Binary code
DKL(P ||Q) The Kullback–Leibler (KL) divergence
b1,b2,... A finite or infinite sequence of binary strings
C A prefix code
Ix An interval
λ([a,b)) The length of an interval in R
ℓ(bn) Length of string bn
LD,P The average codeword length
L∗
P The minimal average codeword length

lx ⌈−log2P (x)⌉
Σ Alphabet
Q A finite set of states {q0,q1,...,qf}
Γ Finite set of tape symbols
L,R Left and right
δ Transition function
B blank
T A Turing machine
⊥ Output when a Turing machine does not halt
L,S Language of a Turing Machine
P Turing Machine
ϕ(x,k) A recursive = finitely computable function
A A set
∆0

1,Σ
0
1,Π

0
1,∆

0
2 Set of finitely,lower,upper,limit computable relations|functions

Σ0
n,Π

0
n,∆

0
n Arithmetic hierarchy

η A computable relation
U A universal Turing machine
KT ,K Kolmogorov complexity
F1,F2 Formal systems
+≤ / ×≤ Less than within an additive / multiplicative constant
+
= / ×= Equal within an additive / multiplicative constant

p,q,r Programs

Chapter 3 Bayesian Sequence Prediction
a,s,h,d instantaneous absolute, square, hellinger2, KL distances of µ and ξ
A,S,H,D total Absolute, Square, Hellinger2, KL Distances of µ and ξ
µ̂ A distribution that is approximately equal to µ
y∈Y An action from a set of actions Y
x∈X An observation from a set of observations X
loss(xt,yt) Loss when predicting xt if outcome is yt
Loss1:n(Λ) Total expected loss of predictor Λ
Λρ The predictor which minimizes ρ-expected loss
{y1,...,yN} Elements of an N -dimensional probability simplex
{z1,...,zN} Elements of an N -dimensional semi-probability simplex

Chapter 4 The Context Tree Weighting Algorithm
PKT (a,b) KT estimator
rρ̂ Redundancy of µ̂
S A suffix set (a set of binary strings)

BIBLIOGRAPHY 509

ΨS A suffix tree (a binary tree)
βS(x) The suffix function
ΘS A parameter vector
ΨS,ΘS A prediction suffix tree (a binary tree)
s A string (a suffix)
as,bs Counts of 1s and 0s following s
a,b 1s and 0s counts
CD The model class
ED(S),ED(Ψ) The encoding of a suffix set/tree Ψ
D The length of the longest suffix in S, depth
C Prefix-free set
ΓD(S) The model cost (of a suffix set S)
PS,KT The PST-KT probability
PS,Θi

S
The conditional PST probability

Θ̂i
S A family of parameter vector estimates

PCTW
D :=Pw(ϵ)

Pw The weighted probability
θ The KT probability :=Pkt(as,bs)
V,W ∈CD−d

ΓD−d+1 Model cost (different depth)
W{1} {w1 :w∈W}
ΓD−d+1({ϵ}) Model cost of empty tree
γ(k) := 1

2 log2(k)+1 for k≥1 and :=k for 0≤k<1
⊕ Log-sum operator

Chapter 5 Variations on CTW
PTW Partition Tree Weighting
CTS Context Tree Switching
CTM Context Tree Maximization
FMN Forget Me Not
γ Discount
c,α∈ [0,1) Real valued parameters
ks The number of occurrences of context n up to time t
L(n) The set of leafs from n
τα(x1:n) The switch distribution
αk The switch rate
xs1:n All elements that follow the substring s in x1:n
c Context; node
PCTS
c,D Context Tree Switching method

nc =ℓ(xc1:n)
tc(k) =min{t|ℓ(xc1:t)=k}
S̄ The set of contexts that index the internal nodes of S
Γ Model cost
d(S) Maximum depth of any context in S
Pn A temporal partition
BD The set of all binary temporal partitions
ρ The base model
PPTW
D The partition tree weighting

510 BIBLIOGRAPHY

MSCBD(t) The most significant changed context bit
µ A piecewise stationary data-generating source
G A class of bounded memory data-generating sources
g A non-negative, monotonically non-decreasing concave function
M A growing set of stored base model states ρ(·|s)
FMNd(...|...) Forget me not predictive distribution

Chapter 6 Agency
Π A policy class
Γt The discount normalization factor
Ht(ε) The ε-effective horizon
m Maximum lifetime
V π,m
ν,γ γ-discounted value of policy π in environment ν with horizon m

π∗,m
ν Optimal policy w.r.t. V π,m

ν,γ

Qπ,m,γ
ν The Q-value, also called action-value

Chapter 7 Universal Artificial Intelligence
πAIXI,π∗

ξ AIXI,AIξ policy

π̃ A self-optimizing policy
πAIXI,π∗

ξ AIXI policy

wU
ν Universal prior 2−K(ν)

ξU Universal Bayes mixture overMsol

T (p′a...)→e... Chronological Turing machine
M(e1:m||a1:m) Chronological version of Solomonoff’s distribution

Chapter 8 Optimality of Universal Agents
Regretm(π,µ) The regret of a policy π in environment µ
π̃ Policy

Chapter 9 Other Universal Agents
KSA Knowledge-Seeking Agent
πo Optimistic policy
M0 Initial Set of Environments
πTS Thompson sampling policy
IG Information gain
V π,m
IG Information gain value function
π∗
IG Optimal information gaining policy
πBE BayesExp policy
πInq Inquisitive agent policy
πS Self-AIXI policy

Chapter 10 Multi-Agent Setting
≺ Strict agent’s preference relation
N A finite set {1,...,N} of N of players
Ai The set of actions for player i
⪰i The preference relation on A for player i
f :I→Ai An (action) profile
ui :A→R A utility function
a̸=j Vector a without the ith element
Bi(a̸=i) Player i’s best response function
X A compact convex subset of Rn

BIBLIOGRAPHY 511

Ui The expected value of ui
αi mixed strategy for player i
∆Ai set of mixed strategies for player i
θ Real number (probability) between 0 and 1
π1:n policies/strategies of n agents/players
σ multi-agent environment
σπ1:n history distribution induced by policies π1:n acting in σ
σi subjective environment of agent i
T The set of probabilistic Turing machines
T A probabilistic Turing machine
νT A conditionally lower semicomputable semimeasure
O (Reflective) oracle
TO T when run with oracle O
νOT The semimeasure induced by TO

x An input string to a Turing machine
z A rational number

ξ Completion of ξ into a measure
MO

r the class of all reflective-oracle-computable environments

Chapter 11 AIXI-MDP
R Known deterministic reward matrix
θ∈ [0,1]4 Parameterization of MDP environment for 2×2 matrix games
ξMDP A mixture over the class of MDPs
nao Number of occurrences of action-obsersation pairs (a,o)

Chapter 12 A Monte-Carlo AIXI Approximation
UCB Upper Confident B
UCT Upper Confident bound for Trees

V̂ (h) An estimate value of a history
Ω Action space

Q̂(h<t,·) An approximation of the Q-value function Q(h<t,·)
Ψ action-observation search tree

V̂ (h) An estimate of the value function
q A q-value
N,N(h) The visit count
C A positive exploration-exploitation parameter
s A state
QUCT UCT Q-value
R # Rollout
ϵ The root node of a tree S
lA Bit length of action space A encoding
lE Bit length of percet space E encoding
[[a]] Bit representation of a
ΘS Parameters of prediction suffix trees S
θs∈ΘS The probability of a node s∈S
CD The set of all models of prediction suffix trees
ΓD A natural encoding of prediction suffix trees
L(S) The leaf nodes of S

512 BIBLIOGRAPHY

d Depth of node in tree
Di :=D+I−1 The variable depth
Sj A Suffix tree
ϕ An observation function, A legal action function
PCTW
D (e...||a...) CTW probability of e... given a...

Chapter 13 Computational Aspects
≻ A total order∧

Logical and
l Length variable

Ṽ πV

k πV ’s approximation of the value function of πV
ℓ Length function
πtl
ξ ξ-optimal policy among all length l- and time t-bounded policies

π̇ :H→A×[0,1] Extended (deterministic) self-evaluating policy
VA(π̇) Valid approximation predicate

t̃ Maximal time

l̃ Maximal length
lP The maximum length of proofs
ΠVA Set of valid policies
⪯c Effective intelligence order relation

Chapter 14 Feature Reinforcement Learning
CTM Context Tree Maximization
S State space
ϕ :H→S Feature map
π̄,µ̄ MDP policy and MDP environment
s A state in a Markov environment
µϕ A feature environment
B(h|sa) Dispersion probability
⟨·⟩B B-average
c≶a±b c≤a+b and c≥a−b
ΦMDP MDP built with feature map ϕ

N(sar′s′,h) Number of times state transition sar′s′ occurred in h
Cost(ϕ|h) Cost function how well ϕ reduces h to a small MDP
CL(...) Code length

h Reduced state history
ΦDBN Feature Dynamic Bayesian Networks
R(s) Reward for a next state
κ Ordered set of action-percept pairs
nκ Number of occurrences of κ

P
κ|sa
e Block probability estimate

sn nth (=last) state of h1:n
S Suffix state set
la,le Minimum number of bits needed to encode a,e
T Context tree
S Suffix set

Chapter 15 ASI Safety
u Instantaneous utility

BIBLIOGRAPHY 513

ũ Total utility
od,rd Death observation and reward
Π,P Set of (names of) policies
U Set of utility functions
Qhe,Qig,Qre hedonistic, ignorant, realistic Q-value
d :E→E Delusion box
Arl,Ag,Ap,Ak RL, goal-, prediction-, knowledge-seeking agent
MRS,ξRS Reward Summable environment class and Bayes mixture
VSM ,VST ,VSTE Self-Modifying, Space(-Time)-Embedded value

Chapter 16 Philosophy of AI
PCT Physical Church-Turing Thesis
AIQ Artificial Intelligence Quotient
LLM Large Language Model
ALE Atari Learning Environment

Υ,Υ (Upper bound on) Legg–Hutter Intelligence measure

Index

Symbols
λ-calculus 91
ν-optimality 272
σ-algebra 26

Borel 28
coarse 27

σ-finite
measure 31

ε-greedy 346
policy 346

k-Markov 181

Numbers
2048 . 454

A
a posteriori

maximum . 114, 232, 269,
370

absolute
distance 143

absolutely
continuous 31, 34

abstraction
state 402, 403

acceleration
Hanson 410
Kurzweil 410

Ackermann
function 124

action237
consistency-preserving

424
nodes 339
optimal 272
passive 149
profile 307
set 237
world421

action-conditional

CTW 355
prediction suffix tree 354

action-observation
tree 339

adaptive
Levin search 382

additivity
countable 43

agent 237, 238
active 236
Agent57 454
AlphaGo 453
AlphaStar 453
AlphaZero 453
altruistic 308
Bayesian . . 265, 271, 292,

296, 422, 433
Checkers 453
Cicero454
Deep Blue453
dualism 429
dualist 421
exploring 296
fully modifiable 427
Gato 454
greedy 346
Inq 298–299
inquisitive 298
knowledge-seeking

291–296, 302, 365,
376, 416

MuZero 454
optimistic 287–289
passive 236
physicalism421
Pluribus 453
preference 305
quantilizing 429
regret 345
satisficing 428
selfish 308

Stochastic MuZero . . 454
survival 427
TD-gammon 453
utility 415
value 416

Agent57 454
AGI

ethics 409
AGSI . 4

interaction 408
paths towards 408

AI
Generative 452

AI-Complete 456
AIXI

expectimax 265, 266
MDP 329–333
reflective 409
self300

algorithm 89
anytime 340, 377

algorithmically random . 167
aliasing

perceptual 359
alignment 411

deceptive416
problem 415

almost sure
convergence 52, 146

alphabet 32
large 213
unknown 213

AlphaFold 451
AlphaGo 453, 454
AlphaStar 453
AlphaZero 453
alternative

probability theory . . . 130
altruistic

agent 308
anytime

514

INDEX 515

algorithm340, 377
approximable95, 99
approximation

intelligence 459
user utility 415
valid 378

approximation theorem
universal 450

argument
disability 444, 446
singularity 410

arithmetic
code87
hierarchy 98, 373

artificial general
super-intelligence 4

artificial intelligence
general 4
narrow 4
super 4

assumption
discount276
Markov 180

asymptotic optimality . . .273
in mean 274, 291
in probability . . . 274, 291
strong 274, 283, 285, 303
weak 274, 297

Atari
game 453

attention
mechanism 452

auto-encoder
variational 453

axiom
expectation45

B

babel
library 409

Backgammon 453, 454
backgammon254
balanced

Pareto optimal 155
bandit 253, 269, 344, 345, 396
base rate 69
battle of sexes311
Bayes

mixture over M 199
rule 68, 438

BayesExp 296–298
computable 377

Bayesian

agent . 265, 271, 292, 296,
422, 433

evidence70
interpretation 69
mixture . . . 141, 198, 200,

257, 338, 399
conditional 142
weight 141

optimality . 261, 274–275,
287, 295, 305, 369,
377

belief
environment422
posterior 142
prior 142, 332
space269
subjective 68, 130

Bernoulli
distribution 60
process 53, 60

beta
distribution71
function 71

bias
estimator64

binary
refinement 225
temporal partition . . .224

binary partition
temporal 224

binary temporal
partition 224

biological
goal 409
life 409

bisimulation
condition392
distance 392

bit 19, 77
black

hole 409
Blackwell&Dubins . .166, 260
Boltzmann

distribution 349
bonus

exploration 346
Boole

inequality 30
Borel

σ-algebra28
Borel–Cantelli Lemma . . . 57
bound

Cramér–Rao 65
Hellinger loss153

Hoeffding 54
loss

infinite sequences 153
Merhav-Feder 152
Solomonoff 159
upper confidence 340, 346,

369
boundary

point 223
brain

uploading 442
BrainFuck 460
brinkmanship 311
busy beaver 95, 134

C
Cambrian

explosion 409
Cantor

set 24
Carathéodory

criterion28
extension theorem 29, 239

Carathéodory extension
semimeasure 122

Cauchy
distribution41

causality 269
certainty factors 130
Cesàro

mean274
chain

rule 142
chance

nodes 339
chatbot

Eliza 451
Chebyshev

inequality 48
Checkers 453
Chess 454
chicken

game 311
Chinese room 444
Chollet’s

measure 456
chronological242

semimeasure266, 339
Turing machine 266

Church-Turing
thesis91

Cicero 454
circumscription 130
co-enumerable 95

516 INDEX

coarse
σ-algebra 27

code 20, 78, 79
arithmetic 87
complete 85
distribution 178
Huffman 86
prefix . . . 20, 83, 116, 128
Shannon–Fano 79–83
word 78

average length 85
minimal average
length 85
prefix 20

cognitive enhancement . . 414
competitive

game 309
complete 85, 185

code85
suffix set 185
Turing 92

completeness
utility assumption . . 306,

323
complexity

Kolmogorov 102, 133, 157,
246, 319, 329, 438

comprehension
language 451

compression . 75, 85–88, 103,
105–115, 131–135,
214, 303, 365, 371,
413, 455

compressible 108
distance 135
state abstraction 403

computable95, 171
BayesExp 377
finite 94, 115
limit 95
measure 124
value 374

computer 89
graphics 451
quantum 372, 450
vision 451

concatenation 18
concave 49

strictly 49
concentration

parameter 74
condition

bisimulation 392
conditional

cumulative distribution
38

distribution30, 237
expectation46
pdf 38
pmf 38
probability . . .30, 38, 126
Solomonoff distribution

161
consistency-preserving

action 424
consistent 64

estimator 63, 64
system 92
time 244

constant
expectation42

context 179
context tree 200

maximization 232,
398–401

switching 217–222
weighting . .175–214, 338,

353–357
action-conditional 353

context tree weighting
adaptive 216–217

continuity
utility assumption . . 306,

323
continuous

absolutely 31, 34
expectation 41
random variable 34

control
death 421
future 410
problem 410, 411

convergence
almost sure 52, 146

with respect to P . 52
dominated43
in distribution 55
in mean 56
in mean2 sum 57
in probability 55
instrumental 411
martingale 165
monotone 43
off-sequence 146
on-sequence 146
pointwise 51
strong 52, 55
weak 55

with probability 1 52
convex 49

strictly 49
convolutional

neural network 451
Conway’s Game of Life . . .92
corruption

reward 411, 428
cost

model 192, 193
countable

additivity 43
counterfactual

regret
minimization 453

counts
KT181

Cramér–Rao bound 65
credit assignment

long-term 460
CTS

redundancy 221
CTW 175–214, 338, 353–357

action-conditional . . . 355
factored 355
redundancy 207

cumulative
distribution 33

cybernetic model . . . 237, 330
cylinder

set 22

D
death

control 421
observation419
percept 419
reward 419
state 419
symbol 123

deceptive
alignment 416

decidable
set 94

decision
problem 89
process

Markov 241
decision process

Markov386, 459
decodable

uniquely78
Deep Blue 453
DeepMind xi, 451

INDEX 517

definition
expectation 41

delusion box425–427
Dempster-Shafer

theory 130
density function

probability 34
dependence

random variable 40
description length

minimum 112, 171
deterministic

policy 242, 248
diffusion

models 452
process 452

digital
immortality 442

digraph 180
Diplomacy 454
Dirichlet

sparse 213
disability

argument444, 446
discount

assumption276
finite 244
geometric 243
moving horizon244
time consistent 244

discrete 33
expectation 41
random variable . . 32, 33,

76
disposable

life 410
distance

absolute143
bisimulation 392
compression 135
Hellinger 143
instantaneous 143
Kullback–Leibler 143
normalized compression

118
square 143
total 144
total variation119

distribution
Bernoulli 60
beta 71
Boltzmann 349
Cauchy 41
code 178

conditional 30, 237
cumulative 33
identical40
independent 40
independent and identical

40
joint cumulative 37
marginal 70
Markov 180–185
mixing 198
mixture 70
mutual independence . 40
predictive 70
Solomonoff 159, 161
switch219
universal 161

divergence
forward81
KL .76–83, 143, 147, 148,

154, 183, 198, 209,
218, 292–293
instantaneous184

Kullback–Leibler 80
reverse 81

dominated
convergence 43

domination
estimator65

double descent 129
dovetailing 115
DQN 453
dualism 429, 442

agent 429
dualist 421
dystopia 408

E
effective

horizon243
efficient

estimator66
Eliza

chatbot 451
embedded intelligence . . . 411
encoding

prefix-free 20
run length 131
self-delimiting 20

entropy 76–83
maximum principle . . 157

enumerable 95
recursively 94

environment . . .149, 237, 238
belief422

chronological 242
episodic 352
global 425
inner 425
Markov 338
non-episodic352
passive 149
recoverable 276
true 124

environments
episodic 244

Epicurus’
principle . . 141, 157, 265,

438
episode 352
episodic

environment352
environments 244

epistemic
probability 67

error
mean squared 65

estimable 95, 99
estimator 63

bias 64
consistent63, 64
domination 65
efficient 66
frequency 63
KT 74, 175
Laplace 70
maximum likelihood . 61,

67, 178
unbiased 64

ethics
AGI409

event
impossible 27
space 26
unprecedented433

evidence
Bayesian 70

expectation 41
axiom 45
conditional 46
constant42
continuous41
definition 41
discrete41
independence 42
indicator function 42
linearity 42
monotonicity 42
non-degeneracy42

518 INDEX

non-negativity 42
semimeasure 122
triangle inequality 42

expected
regret 81
return 346, 404
reward 239, 335, 345–346,

349, 411, 418, 421,
442

utility 313, 413, 422, 428
value 41

expectimax251, 338–339,
349–350

AIXI 265, 266
search 329
tree 256

experiment68
exploitation

exploration 239, 344, 347,
348, 369, 460

exploration
-exploitation 296–298
bonus 346
exploitation 239, 344, 347,

348, 369, 460
safe 433

exploring agent 296
explosion

Cambrian 409
intelligence 408
inward 409
outward 409
speed 408
technology 408

extended
policy 378

extensive
game 313

extrinsic
goal 413

F
factored

CTW 355
Fatou lemma43

reverse 44
Fatou–Lebesgue 43
feature map386
final

goal 240
finite

computable 94, 115
discount244
game 307

output 123
sequence 123

Fisher
information 65

Forget-me-not process . . . 231
forward

divergence 81
forward moving

horizon339
frequency

estimator63
frequentist

interpretation 68
fully modifiable

agent427
function

Ackermann124
best response308
beta 71
even 119
gamma 71
likelihood 62
log-likelihood 62
loss 149
partial 125
recursive 94
stochastic 237
suffix188
transition 90
utility 240, 416
value 442, 457

future
control 410

fuzzy
logic 130

G
gain

information292, 427
game

Atari 453
battle of sexes 311
chicken 311
competitive 309
Conway’s Game of Life 92
cooperate 310
defect 310
extensive 313
finite 307
matching pennies . . . 311,

336, 359
normal-form308
prisoner’s dilemma . . 310
stag hunt310

strategic 307
finite 307
mixed 312

theory 248
zero-sum 309

gamma
function 71

Gato .454
general

artificial intelligence . . . 4
recursive 91
reinforcement learning

239, 255, 285, 347,
386

generalized
universal prior 156

generalized prior
universal 156

generalized universal
prior 156

Generative
AI 452

geometric
discount243

Gibbs
inequality 83

global
environment425

Go 254, 454
goal

biological409
extrinsic 413
final240
instrumental . . . 240, 411,

413
integrity 414
intrinsic 413
misgeneralization 434
state 253
terminal 240, 413

GPT-4 Turbo 452
graphics

computer 451
greedy 149

agent 346

H
hacking

reward 433
halting

language 93
oracle 317
problem 92

Hanson

INDEX 519

acceleration 410
hedonistic

Q-value 422
Hellinger

distance 143
loss bound 153

heuristic
search 444

hierarchy
arithmetic 98, 373

history 237, 238
set 238
state 395

history-based
reinforcement learning

239, 255, 287
Hoeffding bound 54
hole

black 409
horizon 243

effective 243
forward moving 339
planning 339, 343

Huffman
code86

human feedback
reinforcement learning

415
Hutter

prize 455
hypothesis

reward 240, 253, 456
strong AI441, 455
weak AI 441

I
IBM Watson 451
identical

distribution 40
ignorant

Q-value 422
iid . 40
immortality

digital442
implosion 409
impossible

event 27
imprecise

probability 130
in distribution

convergence 55
in mean

asymptotic optimality
274, 291

convergence 56
in mean2 sum

convergence 57
in probability

asymptotic optimality
274, 291

convergence 55
inconsistent

time 243
independence

expectation42
mutual 40

independent 306
distribution 40
pairwise 40

independent and identical
distribution 40

indicator function
expectation42

indifference
rule 72

indifference principle 157
individual cumulative

redundancy 178
induced

measure 33
induction

universal 438
inductive

logic 131
inequality

Boole 30
Chebyshev 48
Gibbs 83
Jensen 50
Kraft 83–85, 113, 131
Markov 48
martingale 166

infimum
limit 54

information
Fisher 65
gain 292, 427

value 292
information content

Shannon 76
information gain

policy 292
information theory

integrated 440
inner

environment425
measure 122

inquisitive

agent 298
inside

observer409
instantaneous

distance 143
utility 418

instrumental
convergence 411
goal 240, 411, 413

integrated
information theory . . 440

integrity
goal 414

intelligence 454–461
approximation 459
definition414
embedded 411
explosion 408
upper bound 409

interaction
AGSI 408

interpretation
Bayesian 69
frequentist 68
objectiv 68
subjectiv 68

interruption
safe 423

intrinsic
goal 413

inward
explosion 409

Iverson bracket19

J
Jensen

inequality 50
joint

cumulative distribution
37

probability density
function 38

probability mass function
38

joint mass function
probability 38

K
kernel

probability 126, 237
KL

divergence .143, 147, 148,
154, 183, 198, 209,
218

520 INDEX

instantaneous
divergence 184

knowledge-seeking
agent . 302, 365, 376, 416

Kolmogorov
complexity 101–116, 133,

157, 246, 319, 329,
438
conditional 104
monotone 105

Kraft
inequality 83–85, 113, 131

KT
counts181
estimator 74, 175
probability 175
redundancy 178

Kullback–Leibler
distance 143
divergence80

Kurzweil
acceleration 410

L
lambda calculus 91
language 89, 90

comprehension 451
halting 93
model 461

large 452
processing

natural 451
recursive 94
Turing machine 90

Laplace
estimator70
rule 72

large
alphabet 213
language

model 452
law

Moore’s 449–450
Solomonoff 410

learning
reinforcement . . 237, 253,

330, 440, 453, 460
temporal difference . 440,

453
Lebesgue

measurable 28
measure 27
outer measure 28

Levin search

adaptive 382
library

babel 409
life

biological409
disposable 410

likelihood
function 62
maximum 62

likelihood estimator
maximum 63

limit
computable95
infimum 54
supremum 54

linearity
expectation42

Loebner
prize 455

log-likelihood
function 62

logic
fuzzy 130
inductive 131
non-monotonic 130

long-term
credit assignment . . . 460

loss
ν-expected instantaneous

150
bound 149–154

infinite sequences 153
function 149
Hellinger bound 153
total 152

lottery 305
lower

semicomputable . . 95, 99,
156, 319

lower limit
normalization 124

M
machine

translation 451
Turing . . 89–94, 103, 132,

378, 448, 460
machine learning

regularization 114
marginal

distribution 70
Markov

assumption180
decision

process 241
decision process 241,

329–333, 385–387, 459
partially observable
242

environment338
inequality 48
model 180, 208
opponents 316
policy 241
probability distribution

180–185
sequence 180

Martin-Löf
random 167

martingale 165
convergence 165
inequality 166
semimeasure 122

mass function
probability 33

matching pennies . . 311, 336
game 359

matrix
payoff 308

maximizer
paperclip 415, 428

maximum
a posteriori 114, 232, 269,

370
entropy principle 157
likelihood 62
likelihood estimator . . 61,

63, 67, 178
MDL 112, 171, 394, 397
MDP 241, 329–333, 385–387,

459
mean .41

Cesàro 274
squared error 65

measurable
Lebesgue 28
set 26
space 26, 32

measure26
σ-finite 31
Chollet’s 456
computable 124
induced 33
inner 122
Lebesgue 27
oracle 125
probability 26
semi-probability 26

INDEX 521

true 124

mechanism

attention 452

mentor433

merging

opinions 166, 260

Merhav-Feder

bound152

metric

universal 135

minimal 104

average codeword length
85

program 104, 160

minimum

description length . . .112,
171

misalignment 417

value 417

misgeneralization

goal 434

misspecification

reward 240, 427

mixed

Nash equilibrium 312

strategy 312

mixing

distribution 198

mixture

Bayesian . . 141, 198, 200,
257, 338, 399

conditional

Bayesian 142

distribution 70

policy 300

MLE 67, 178

model

-based utility 417

class 155

of depth D 187

cost 192, 193

cybernetic 237, 330

language 461

Markov180, 208

predictor 149

selection 113

models

diffusion 452

modification

self423

money pump306

monotone

convergence 43

Kolmogorov complexity
105

Turing machine .103, 104
monotonicity

expectation42
Monte Carlo

planning 343
tree search338–344

monte-carlo
tree search 453

Moore’s
law 449–450

moving horizon
discount244

multi-agent
reinforcement learning

254
multi-objective

reinforcement learning
253

mutual independence
distribution 40

MuZero 454

N
narrow

artificial intelligence . . . 4
Nash equilibrium307

mixed 312
nat . 77
natural

language
processing 451

Turing machine 275
network

residual 451
neural

radiance fields 451
substituion 441

neural network
convolutional 451
transformer 452

no free lunch 428, 445
nodes

action 339
chance 339

non-degeneracy
expectation42

non-episodic
environment352

non-monotonic
logic 130

non-negativity
expectation42

normal-form game 308
normalization

lower limit 124
Solomonoff 124

normalized compression
distance 118

O
objectiv

interpretation 68
objective

prior 69
subjective 128

observability
partial 460

observation 237, 238
death 419
passive 149
set 237

observer
inside 409
outside 409

obstacle
singularity 410

Occam’s
razor 8, 157, 265, 438, 446

off-sequence
convergence 146

offline353
prediction 353

on-sequence
convergence 146

online
prediction 353
setting 336

OpenAI452
opinions

merging 166, 260
opponents

Markov 316
optimal

action 272
computability

policy 375
Pareto 154–155

balanced 155
policy 272, 387
prefix

code 85
problem solver 382
value 288, 319

optimal solver
problem 382

optimality

522 INDEX

ν .272
Bayesian . . 261, 274–275,

287, 295, 305, 369,
377

Pareto 279–280, 285
optimism 287
optimizing

self263
oracle 317

halting 317
measure 125
reflective 316–326

origin
reward 409

orthogonality
thesis 411, 415

outcome 305
outcomes 26
outer

semimeasure 122
output

finite 123
outside

observer409
outward

explosion 409
overlap

segment 223

P
pairwise

independent 40
paperclip

maximizer 415, 428
parameter

concentration74
Pareto

balanced optimal 155
optimal 154–155
optimality285

Pareto optimal
balanced 155

Pareto optimality . . 279–280
partial

function 125
observability 460
recursive 91, 132
Turing machine 94

partially observable
Markov

decision process . 242
partition

binary temporal 224
tree 227

partitions
temporal 223

passive
action 149
environment149
observation149

paths towards
AGSI 408
singularity 408

payoff
matrix 308

Penrose–Lucas 446
percept 237

death 419
set 237

perceptual
aliasing 359

perfection
technological 414

physicalism 421, 429, 442, 448
piecewise

stationary 213, 224
planning . 256, 338, 381, 401,

457
horizon 339, 343
Monte Carlo 338–347

planning-avoiding 299
play

self 240, 341, 453
Pluribus 453
point

boundary 223
pointwise51

convergence 51
poker 453
policy238

ε-greedy346
deterministic . . . 242, 248
extended 378
information gain 292
Markov241
mixture 300
optimal272, 387

computability . . . 375
regret 276
rollout 342–344, 350, 369
stochastic 248
tree 342, 343

POMDP 242, 459
possibility

theory 130
posterior 67, 70

belief142
postulated

segmentation 231
predicate89
prediction

offline 353
online 353
scheme 150, 365
suffix tree 185

prediction suffix tree
action-conditional . . . 354

predictive
distribution 70
state 370

predictor150
model 149

preference 305
prefix 20, 78

code 20, 83, 116, 128
optimal 85

codeword20
proper 20
Turing machine 104

prefix-code 20
prefix-free 20

encoding 20
set 20

primitive
recursive 92, 124

principle
Epicurus’ . .141, 157, 265,

438
of indifference 157
of maximum entropy 157
of uniformity of nature

446
simplicity 157

prior 67, 69
belief 70–72, 142, 332
generalized universal 156
objective 69
Solomonoff 158, 171, 282,

368
subjectiv 69
universal . . . 69, 132, 134,

155, 159, 265, 275,
339, 368, 438

prisoner’s dilemma
game 310

prize
Hutter 455
Loebner 455

probabilistic
Turing machine 419

probability
conditional . . .30, 38, 126

INDEX 523

density function . . 34, 38
epistemic 67
imprecise130
joint density function .38
joint mass function . . . 38
kernel 126, 237
KT 175
mass function33, 38
measure 26
semimeasure 26
space 26
true 124
zero 125, 126

probability density function
34

probability theory
alternative 130

problem
alignment 415
control 410, 411
decision 89
halting 92
optimal solver 382
reference class 131
Sunrise 61

problem solver
optimal 382

process
Bernoulli 53, 60
diffusion 452
forget-me-not231
Markov

decision241
stochastic 165

product
rule 39

profile
action 307

program
minimal 104, 160
self-delimiting 104

proper 185
prefix 20
suffix set 185

psuedocounts 73
PTW

redundancy 229
pure

strategy 312

Q

Q-
value . 249, 256, 386, 422

Q-value . . 249, 339–350, 386,
422

hedonistic 422
ignorant422
realistic 423

qualia439
quantilizing

agent 429
quantum

computer 372, 450
quasi-concave 309

R
radiance fields

neural 451
random

Martin-Löf 167
variable . . 28, 32, 69, 129,

144
random variable 32–38

continuous 34
dependence40
discrete 32, 33, 76

randomness deficiency . . .167
Raven

test 455
razor

Occam’s 8, 157, 265, 438,
446

realistic
Q-value 423

recognition
speech451

recoverable 276
environment276

recursive 94
function 94
general 91
language 94
partial91, 132
primitive 92, 124
sampling 343
self-improvement 414

recursively
enumerable 94

redundancy 81, 177
CTS 221
CTW 207
individual cumulative 178
KT 178
PTW 229

reference class
problem 131

refinement 223

binary 225
reflective

AIXI 409
oracle 316

regret 275
agent 345
expected 81
minimization

counterfactual . . . 453
policy 276
sublinear . . 275, 276, 291,

429
worst-case 349

regularization
machine learning 114

reinforcement
learning . . . 237, 253, 330,

440, 453, 460
reinforcement learning

315–316
context tree

maximization 398–401
decoupled 429
feature 385–404
general 239, 255, 285, 347,

386
history-based . . 239, 255,

287
human feedback 415
multi-agent254
multi-objective 253

representation
predictive state370

residual
network 451

ResNet451
resource

scarce 409
resource acquisition 413
return

expected 346, 404
reverse

divergence 81
reward 237, 415–418

corruption 411, 428
death 419
expected . . 239, 335, 349,

411, 418, 421, 442
hacking 433
hypothesis . 240, 253, 456
misspecification .240, 427
origin 409
set 237
shaping 240

524 INDEX

sparse 240
summable 430, 457

rollout 256
policy 344, 369

rule
Bayes 68, 438
chain142
indifference 72
Laplace 72
product 39
sum 39

run length
encoding 131

S
safe

exploration 433
interruption 423

sample
space 26, 37

sampling
recursive 343
Thompson . 290, 302, 365

satisficing
agent 428

scarce
resource 409

scheme
prediction 150, 365

scientific method 446
score . 65
search

expectimax329
heuristic 444
universal 382

segment223
overlap 223

segmentation
postulated231

segments223
selection

model 113
self

AIXI 300
modification423
optimizing 263
play 240, 341, 453

self-delimiting104
encoding 20
program104

self-improvement
recursive 414

self-modification . . . 411, 414,
421–423, 437

self-optimizing 301
self-play 254
self-preservation 413
selfish

agent 308
semi-probability

measure 26
semi-ring29
semicomputable

lower95, 99, 156, 319
upper95, 99

semimeasure 26
Carathéodory extension

122
chronological . . . 266, 339
expectation 122
martingale 122
outer 122
probability 26
theory 122

sequence
finite 123
Markov 180

set
action 237
Cantor 24
cylinder 22
decidable 94
history 238
measurable 26
observation237
percept237
prefix-free 20
reward 237
suffix 184, 185

setting
multi-agent 304–326
online 336

Shannon
information content . . 76

Shannon–Fano 79
Shogi 454
simplicity

principle 157
singularity

argument 410
obstacle 410
paths towards 408
technology 408

slime mold 409
society

virtual 409
Solomonoff

bound159

distribution159, 161
law410
normalization 124
prior . .158, 171, 282, 368

space
belief269
event 26
measurable 26, 32
probability 26
sample26, 37

sparse
Dirichlet 213

speech
recognition 451

speed
explosion 408

square
distance 143

stag hunt
game 310

StarCraft 453
state . 241

abstraction 402, 403
aggregation

extreme 387–394
death 419
goal 253, 361
history 395
predictive 370

state abstraction
compression 403

stationary
piecewise 213, 224

statistician
unconscious 43

stochastic
function 237
policy 248
process 165

Stochastic MuZero 454
strategic

finite
game 307

game 307
mixed

game 312
strategy

mixed 312
pure 312

strictly
concave 49
convex 49

string . 18
strong

INDEX 525

asymptotic optimality
274, 283, 285, 303

convergence52, 55
strong AI

hypothesis441, 455
sub-agents 409
subjectiv

interpretation 68
prior 69

subjective
belief 68, 130
objective 128

sublinear
regret .275, 276, 291, 429

substituion
neural 441

suffix 185
function 188
prediction

tree 188
set 184, 185
tree 186

suffix set
complete 185
proper 185

suffix tree
prediction 185

sum
rule 39

summable
reward 430, 457

Sunrise
problem 61

super
artificial intelligence . . . 4

super-intelligence
artificial general 4

supermartingale165
supremum

limit 54
survival

agent427
switch

distribution 219
symbol

death 123
system

consistent 92

T
TD-gammon 453
technological

perfection 414
technology

explosion 408
singularity 408

teleportation 442
temperature 349
temporal

binary partition 224
partitions 223

temporal difference
learning 440, 453

temporal partition
binary224

terminal
goal 240, 413

test
Raven 455
Turing 455

text
transformer 452

theory
Dempster-Shafer 130
game 248
possibility 130
semimeasure 122

thesis
Church-Turing 91,

448–449
orthogonality . . . 411, 415

Thompson
sampling . . 290, 302, 365

time
consistent 244
inconsistent 243

time consistent
discount244

total
distance 144
loss 152
utility 418

total variation
distance 119

tragedy
of the commons 310

transformer
neural network 452
text 452
vision 452

transition
function 90

transitivity
utility assumption . . 306,

324
translation

machine 451
tree

action-conditional . . . 354
action-observation . . . 339
expectimax256
partition 227
policy 342, 343
prediction suffix 185
suffix186

prediction 188
upper confidence 347

tree search
monte-carlo 453

triangle inequality
expectation42

trigraphs180
true

environment124
measure 124
probability 124
value 417

Turing
complete 92
machine . . . 103, 132, 378,

448, 460
test 455

Turing machine 89–94
chronological 266
language 90
monotone 103, 104
natural 275
partial 94
prefix 104
probabilistic 316–319, 419
universal . . . 92, 104, 281,

458

U
U-Tree 370
unbiased

estimator64
unconscious

statistician 43
uniquely

decodable 78
uniquely decodable 20
universal

approximation theorem
450

distribution 161
generalized prior 156
induction438
metric135
prior . . 69, 132, 134, 155,

159, 265, 275, 339,
368, 438

526 INDEX

search 382
Turing machine . 92, 104,

281, 458
value 410

universal prior
generalized 156

unknown
alphabet 213

unprecedented
event433

uploading
brain 442

upper
semicomputable . . 95, 99

upper bound
intelligence 409

upper confidence
bound 340, 346, 369
tree 347

user
utility 415, 416

utilitarian305
utility 305

utility 415–418
agent 415
expected . . .313, 413, 428
function 240, 416
instantaneous 418
model-based417
total 418
user 415, 416

utilitarian 305
utility assumption

completeness . . . 306, 323
continuity 306, 323
transitivity 306, 324

utopia 408

V
valid . 92

approximation 378
value 415–418

agent 416
computable 374
function . . . 246–251, 442,

457
information gain 292
misalignment 417
optimal 272–280, 288, 319
Q- 249, 256, 339–350, 386,

422
true 417
universal 410

variable
random . . 28, 32, 69, 129,

144
variational

auto-encoder 453
virtual

society 409
world 409

vision

computer 451
transformer 452

W
weak

asymptotic optimality
274, 297

convergence 55
weak AI

hypothesis441
weight

Bayesian mixture 141
weighting

context tree 175–214, 338,
353–357

partition tree . . . 222–231
wireheading 411, 423
with probability 1

convergence 52
word . 18

code78
world

virtual 409
worst-case

regret 349

Z
zero

probability 125, 126
zero-sum

game 309

Biographies

Marcus Hutter is Senior Researcher at DeepMind in London and Professor at the Australian
National University (ANU) in Canberra, Australia (fulltime till 2019 and honorary since
then). He is founder and chair of the ongoing €500’000 Human Knowledge Compression
Contest. He received a master’s degree in computer science in 1992 from the University
of Technology in Munich, Germany, a PhD in theoretical particle physics in 1996, and
completed his Habilitation in 2003. He worked as an active software developer at startup
BrainLAB for 4½ years, before (re)commencing his academic career in 2000 at the Artificial
Intelligence (AI) institute IDSIA in Lugano, Switzerland, where he stayed for six years.
Since 2000, he has mainly worked on fundamental questions in AI, resulting in over 200
peer-reviewed research publications and his first book “Universal Artificial Intelligence”
(Springer, EATCS, 2005). He has served (as PC member, chair, organizer) for numerous
conferences, and reviewed for all major conferences and journals. He has given numerous
invited lectures and his work in AI and statistics was nominated for and received several
awards (Lindley, Kurzweil, JAIR, UAI, AGI, Alignment, IJCAI). http://www.hutter1.net/

David Quarel is completing a PhD at the ANU. He holds a BSc in mathematics and MSc
in computer science, specialising in artificial intelligence and machine learning. David has
several years of experience in developing course content and distilling complex topics suitable
for a wide range of academic audiences, as well as having delivered guest lectures at the
ANU, and spent two years as a full-time tutor before starting his PhD. David is also part of
the Alignment Research Engineer Accelerator (ARENA), a technical AI safety bootcamp.

Elliot Catt has been a Research Scientist at DeepMind London and has previously completed
a PhD in Universal Artificial Intelligence. He holds a BSc and MSc in mathematics and a PhD
in computer science. Elliot has lectured on the topic of Advanced Artificial Intelligence at
the ANU and published several pieces of work on the topic of Universal Artificial Intelligence.
https://catt.id/

Blurb

An Introduction to Universal Artificial Intelligence provides the formal underpinning
of what it means for an agent to act intelligently in an unknown environment. First presented in
Universal Algorithmic Intelligence (Hutter, 2000), UAI offers a framework in which virtually all AI
problems can be formulated, and a theory of how to solve them. UAI unifies ideas from sequential
decision theory, Bayesian inference, and algorithmic information theory to construct AIXI, an
optimal reinforcement learning agent that learns to act optimally in unknown environments. AIXI
is the theoretical gold standard for intelligent behavior.

The book covers both the theoretical and practical aspects of UAI. Bayesian updating can be
done efficiently with context tree weighting, and planning can be approximated by sampling with
Monte Carlo tree search. It provides algorithms for the reader to implement, and experimental
results to compare against. These algorithms are used to approximate AIXI. The book ends
with a philosophical discussion of Artificial General Intelligence: Can super-intelligent agents
even be constructed? Is it inevitable that they will be constructed, and what are the potential
consequences?

This text is suitable for late undergraduate students. It provides an extensive chapter to fill
in the required mathematics, probability, information, and computability theory background.

Critics’ Reviews

“Is it possible to mathematically define and study artificial superintelligence? If that sounds
like an interesting question, then this is definitely the book for you. Starting with probability
theory, complexity theory and sequence prediction, it takes you right through to the safety of
superintelligent machines.”
Shane Legg, co-founder of DeepMind

“This is seminal work!”
Roman Yampolskiy, Tenured Associate Professor at the University of Louisville, USA

“This is an important, timely, high-quality book by highly respected authors.”
Jürgen Schmidhuber, Director of the AI Initiative at King Abdullah University of Science and
Technology, Scientific Director at the Swiss AI Lab IDSIA, Co-Founder & Chief Scientist at
NNAISENSE

“Clearly very strongly based on mathematical foundations. This offers a theoretical
depth which will be of value in research, education (at an appropriate level), and for advanced
practitioners.”
Alan Dix, Director of the Computational Foundry at Swansea University and Professorial Fellow
at Cardiff Metropolitan University

	Front Matter
	Preface
	Table of Contents
	List of Figures and Tables
	List of Algorithms

	I Introduction & Background
	Introduction
	Background
	Algorithmic Prediction
	A Family of Universal Agents
	Approximating Universal Agents
	Alternative Approaches
	Safety and Discussion

	Background
	Binary Strings
	Finite Binary Strings B* and Natural Numbers N0
	Prefix Codes
	Infinite Binary Sequences B and the Unit Interval
	Exercises

	Probability and Measure Theory
	Introduction and Motivation
	The Axioms of Probability Theory
	(Semi)Measures on Infinite Sequences
	Random Variables
	Joint and Conditional Probabilities
	Expectation and Variance
	Probability Inequalities
	Convergence of Random Variables
	Exercises

	Statistical Inference and Estimation
	Statistical Inference and The Sunrise Problem
	Maximum Likelihood
	Reparametrization Equivariance of the MLE
	Consistency
	Exercises

	Bayesian Probability Theory
	Bayes' Theorem
	Bayes Estimation and Prediction
	Laplace Rule
	Exercises

	Information Theory and Coding
	Shannon Entropy
	Shannon–Fano Code
	Kullback–Leibler Divergence
	The Kraft Inequality
	Shannon Coding Theorem
	Arithmetic Coding
	Exercises

	Computability Theory
	Models of Computation
	The Halting Problem
	(Semi-)Computable Functions
	Arithmetic Hierarchy
	Exercises

	Kolmogorov Complexity
	Motivation
	Making Simplicity Rigorous
	Properties of K-Complexity
	The Minimum Description Length Principle
	Approximating K-Complexity
	Relation to Shannon Entropy
	Exercises

	Miscellaneous
	Distances and Their Relation
	Dealing with Semimeasures
	Probability Zero
	Exercises

	History and References

	II Algorithmic Prediction
	Bayesian Sequence Prediction
	Bayes Mixture
	Generalized Solomonoff Bound
	Predictive Convergence
	Model Misspecification
	Bounds on Prediction Loss
	Pareto-Optimality of
	Choices of Class M and Prior w
	Choices for Model Class M
	Choices for Prior w

	Solomonoff Distribution MU
	Motivation, Derivations, Definition
	Properties
	Equivalence of M and U
	Predictive Bounds

	Martingales
	Algorithmically Random Strings
	Exercises
	History and References

	The Context Tree Weighting Algorithm
	Krichevsky–Trofimov (KT) Estimator
	Context
	Prediction with Context
	k-Markov Environment
	k-Markov Experiments

	Variable Length Context
	Prediction Suffix Trees
	Model Class
	Suffix Set Encoding
	Updating Prediction Suffix Trees
	PST Experiments

	Mixing Distributions
	Context Tree Weighting
	The CTW Algorithm
	CTW Properties
	CTW-PST-KT Redundancies
	CTW Experiments
	Optimizations

	Exercises
	History and References

	Variations on CTW
	Adaptive CTW
	Context Tree Switching
	Partition Tree Weighting
	Forget-Me-Not Process
	Context Tree Maximization
	Exercises
	History and References

	III A Family of Universal Agents
	Agency
	Policy and Environment
	Assigning Rewards
	(PO)MDP vs. History RL
	Time Discounting
	Time Consistency
	Value Functions
	Q-Value
	Exercises
	History and References

	Universal Artificial Intelligence
	Acting Optimally in Known Environments
	Bayesian Mixture of Environments
	Acting Optimally in Unknown Environments
	Universal Optimal Agent AIXI
	Exercises
	History and References

	Optimality of Universal Agents
	Definitions of Optimality
	-Optimality
	Asymptotic Optimality
	Bayesian Optimality
	Regret Minimization
	Pareto Optimality

	Bad Priors
	Dogmatic Prior
	Indifference Prior
	Bad Priors, Bad Agents

	Problems with Optimality Criteria
	Exercises
	History and References

	Other Universal Agents
	Optimistic Agents
	(Thompson)Sampling Agents
	Knowledge-Seeking Agents
	Exploring Agents (BayesExp and Inq)
	Planning-Avoiding Agents (Self-AIXI)
	Exercises
	History and References

	Multi-Agent Setting
	From Preferences to Utilities
	Game Theory
	Strategic Games
	Nash Equilibrium
	Important Games
	Mixed Strategic Games

	Multi-Agent Extensive-Form Games
	Strategic Games vs Reinforcement Learning
	Reflective Oracles
	The Grain of Truth
	Reflective AIXI
	Exercises
	History and References

	IV Approximating Universal Agents
	AIXI-MDP
	AIXI-MDP Setup
	Definition of AIXI-MDP
	Experimental Results
	Exercises
	History and References

	Monte Carlo AIXI with Context Tree Weighting
	Learning and Searching
	Searching via Monte Carlo Tree Search
	Monte Carlo Tree Search
	MCTS Algorithm
	Bandits and Upper Confidence Bounds
	UCT Algorithm
	UCT Algorithm
	Parallelization
	Episodic Environments

	Learning via Context Tree Weighting
	Action-Conditional CTW
	Action-Conditional PST
	Factored Action-Conditional CTW

	All Together
	Experiments
	Environments
	Empirical Performance

	AIXIjs Implementation
	Discussion
	Exercises
	History and References

	Computational Aspects
	Computability of AIXI
	Time- and Space-Bounded AIXI
	Exercises
	History and References

	V Alternative Approaches
	Feature Reinforcement Learning
	Feature Reinforcement Learning Setup
	History Aggregation beyond MDPs
	Surrogate MDP and Dispersion Probability
	(Q-)Value Inheritance for Fixed and Optimal Policy
	Extreme State Aggregation
	Feature Reinforcement Learning

	Feature MDP
	Feature Learning
	Choices of the Cost Function
	Feature Dynamic Bayesian Networks

	Context Tree Maximization Reinforcement Learning
	Exercises
	History and References

	VI Safety and Discussion
	ASI Safety
	The Technological Singularity
	Safety Subtopics
	The Control Problem
	Instrumental Convergence
	Orthogonality Thesis
	Value – Reward – Utility
	Death and Suicide of Agents
	Self-Modification
	Wireheading
	Delusion Boxes, Survival, and Exploration
	Corrupted Reward Channel
	Embedded Intelligence
	Exercises
	History and References

	Philosophy of AI
	Philosophy of Universal Induction
	Consciousness, Free Will, and Other Qualia
	Moral Considerations
	Teleporting and Copying AGI
	Arguments against AGI
	Informal Arguments of Disability
	Chinese Room Argument
	No Free Lunch
	Penrose–Lucas Arguments

	Arguments for AGI
	Physical Church-Turing Thesis
	Moore's Law
	AI Progress

	Intelligence
	Legg–Hutter (LH) Intelligence: Informal
	Other Intelligence Tests and Measures.
	Formalizing the LH-Intelligence Measure.
	Legg–Hutter (LH) Intelligence: Formal
	Approximations of Intelligence

	Deep Learning
	Conclusion

	End Matter
	Bibliography
	Table of Notation
	Index
	Back Cover
	Biographies
	Blurb
	Critics' Reviews

