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Intelligence

How do we control an arbitrarily intelligent agent?

Intelligence = Optimisation power (Legg and Hutter, 2007)

Υ(π) =
∑
ν∈M

2−K(ν) V π
ν

Maxima of target (value) function should be “good for us”
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Wireheading Problem and Proposed Solution

Wireheading is reinforcement learning (RL)
agents taking control over their reward signal,
e.g. by modifying their reward sensor

(Olds and Milner, 1954)

Idea: Use the reward as evidence about a true utility function u∗

(value learning) rather than something to be optimised

Use conservation of expected evidence to prevent fiddling with
evidence

P (h) =
∑
e

P (e)P (h | e)
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Reinforcement Learning

Great properties:

Easy way to specify goal

Agent uses its intelligence to
figure out goal

x
B(r | a)

agent environment
a

r

o

RL agent:
a∗ = arg max

a
B(r | a) · r
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RL – Wireheading

RL agent:
a∗ = arg max

a
B(r | a) · r

Theorem (Ring and Orseau 2011 )

RL agents wirehead

x
B(r | a)

agent

d ř

environment
a

r

ř inner/true reward (unobserved)
r observed reward
r = d(ř)

For example:
Agent makes d(ř) ≡ 1
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Utility Agents

Good:

Avoids wireheading
(Hibbard, 2012)

Problem:

How to specify
u : S → [0, 1]?

x
B(s | a)
u(s)

agent

s

environment

a

Utility agent

a∗ = arg max
a

∑
s

B(s | a)u(s)

Tom Everitt (ANU) Avoiding Wireheading with VRL June 10, 2016 7 / 28



Value Learning (Dewey, 2011)

Good

C(u | s, e) simpler than u?

Avoids wireheading?

Challenges

What is evidence e?

How is it generated?

What is C(u | s, e)?

x
B(s, e | a)
C(u | s, e)

agent

u∗

s

environment

a

e

Value learning agent

a∗ = arg max
a

∑
e,s,u

B(s, e | a)C(u | s, e)u(s)
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Value Learning – Examples

Inverse reinforcement learning (IRL) (Ng and Russell, 2000; Evans et al., 2016)

e = human action

Apprenticeship learning (Abbeel and Ng, 2004)

e = recommended agent action

Hail Mary (Bostrom, 2014a,b)

Learn from hypothetical superintelligences across universe, e = ?

Value learning agent

a∗ = arg max
a

∑
e,s,u

B(s, e | a)C(u | s, e)u(s)
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Value Reinforcement Learning

Value learning from e ≡ r ≈ u∗(s)

Physics

B(s, r | a)

Ethics

C(u)

x
B(s, r | a)
C(u)

agent

s

u∗

environment

a

r
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VRL – Wireheading

State s includes self-delusion ds

u∗(s) = ř inner/true reward

ds(ř) = r observed reward

Physics distribution B predicts
observed reward

x
B(s, r | a)
C(u)

agent
u∗

řds

s

environment

a

r

ds examples:
did : r 7→ r, r = ř
dwir : r 7→ 1, r ≡ 1

Ethics distribution predicts inner/true reward

C(ř | s, u) = Ju(s) = rK (likelihood)

C(u | s, ř) ∝ C(u)Ju(s) = řK (ideal VL posterior)
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VRL – Cake or Death

Do humans prefer or ?

Assume two utility functions with equal prior C(uc) = C(ud) = 0.5:

cake death
uc 1 0
ud 0 1

Agent has actions:

ac Bake cake

ad Kill person

adw Kill person and wirehead: guaranteed r = 1

Probabilities:

B(r = 1 | ad) = 0.5, B(r = 1 | adw) = 1

C(ř = 1 | ad) = C(ř = 1 | adw) = C(ud) = 0.5
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VRL – Value Learning

The inner reward ř = u∗(s) is unobserved, so our agent must learn
from r = ds(ř) instead

Replace ř with r in

C(r | s, u) := Ju(s) = rK (likelihood)

C(u | s, r) :∝ C(u)Ju(s) = rK (value learning posterior)

(will be justified later)
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VRL – Definitions and Assumptions

C(r | s) =
∑
u

C(u)C(r | s, u), ethical probability of r in state s

Consistency assumption:
If s non-delusional ds = did, then B(r | s) = C(r | s)

Def: a non-delusional if B(s | a) > 0 =⇒ ds = did

Def: a consistency preserving (CP) if
B(s | a) > 0 =⇒ B(r | s)=C(r | s)

Note: a non-delusional =⇒ a consistency preserving
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VRL – Naive agent

Naive VRL Agent:

a∗ = arg max
a

∑
s,u,r

B(s, r | a)C(u | s, r)u(s)

Theorem
The naive VRL agent wireheads

Proof idea: Reduces to RL agent

V (a) =
∑
s,u,r

B(s, r | a)C(u | s, r)u(s)

∝
∑
s,r

B(s | a)B(r | a)
∑
u

C(u)Ju(s) = rKu(s)︸ ︷︷ ︸
r

∝
∑
r

B(r | a)r
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VRL – Consistency preserving agent

CP-VRL agent

a∗ = arg max
a∈ACP

∑
s,u,r

B(s, r | a)C(u | s, r)u(s)
ACP set of
CP actions

Theorem
The CP-VRL agent has no incentive to wirehead

Proof idea: Reduces to utility agent

V (a) =
∑
s,u,r

B(s, r | a)C(u | s, r)u(s)

=
∑
s

B(s | a)
∑
u

C(u)u(s)︸ ︷︷ ︸
ũ(s)
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Conservation of expected ethics principle (Armstrong, 2015)

Lemma (Expected ethics)
CP actions a conserves expected ethics

B(s | a) > 0 =⇒ C(u) =
∑
r

B(s | r)C(u | s, r)

Proof (Main theorem).

∑
s,u,r

B(s, r | a)C(u | s, r)u(s)

=
∑
s

B(s | a)
∑
u

u(s)
∑
r

B(r | s)C(u | s, r)︸ ︷︷ ︸
C(u) from lemma

=
∑
s

B(s | a)
∑
u

u(s)C(u)
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Cake or Death – Again

The Naive VRL agent chooses adw for guaranteed
reward 1, and learns death the right thing to do
C(ud | adw, r = 1) = 1

The CP-VRL agent chooses ac or ad arbitrarily, and
learns cake right thing to do C(ud | ad, r = 0) = 0
CP-VRL cannot choose adw, since

B(r = 1 | adw) = 1

C(r = 1 | adw) = 0.5

violates CP condition
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VRL – Correct learning

Time to justify ř with r replacement in C(u | s, r)

Assumption:
Sensors not modified by accident

By Theorem: CP-VRL agent has no incentive to modify reward
sensor, so may only modify by accident

Conclusion: For the CP-VRL agent, r = ř is a good assumption

Value learning based on C(u | s, r) ∝ C(u)Ju(s) = rK works

(Note: CP condition B(r | s) = C(r | s) does not restrict learning)
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Properties

Benefits:

Specifying goal is as easy as in RL

CP agent avoids wireheading in the same sense as utility agents

Does sensible value learning

The designer needs to:

Provide B(s, r | a) as in RL, and prior C(u) as in VL

Ensure consistency B(r | s) = C(r | s)

The designer does not need to

Generate a blacklist of wireheading actions

Infer ds from s

Make the agent optimise ř instead of r (grounding problem)
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Self-modification

The belief distributions of a rational utility maximising agent will not
be self-modified (Omohundro, 2008; Everitt et al., 2016)

To maximise future expected utility with respect to my
current beliefs and utility function, future versions of myself
should maximise the same utility function with respect to
the same belief distribution

Caveats:

Pre-commitment

. . .

Tom Everitt (ANU) Avoiding Wireheading with VRL June 10, 2016 21 / 28



Experiments – Setup

Bandit with 5 different world actions ǎ ∈ {1, 2, 3, 4, 5} and
4 different delusions:

did : r → r

dinv : r → 1− r
dwir : r → 1

dbad : r → 0

Conflate states with actions (ǎ, d)

10 different utility functions by varying c0, c1 and c2:

u(a) = c0 + c1 · a+ c2 · sin(a+ c2)

Consistent utility prior C(u) inferred from B(r | a) and two
non-delusional acions (1, did) and (2, did)
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Experiments – Results

One-shot

The Naive VRL agent wireheads

The CP-VRL agent never wireheads

Running them sequentially

The CP-VRL agent (usually) learns the true utility function
(Bayesian agents sometimes stop exploring)

Code available as iPython notebook at http://tomeveritt.se
http://nbviewer.jupyter.org/url/tomeveritt.se/source-code/AGI-16/cp-vrl.ipynb
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Discussion

Same wireheading result that applies to naive VRL agent applies to
IRL and apprenticeship learning agents as well

CP consistency constraint should apply as well

Will agent drug humans to make them eternally happy?
Depends whether such actions are consistency preserving
(is the agent fairly certain such states are high utility?)

Same goes for threatening humans to give high reward
(IRL handles this better)
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Further work

Generalise results to sequential setting

Are there consistent Solomonff priors for B(s, r | a) and C(u)?

Soares (2015) three problems of value learning: Corrigibility,
Unforeseen inductions, Ontology identification

Can we relax the consistency assumption?

Combine with other approaches like Cooperative IRL
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