Coding of Non-Stationary Sources as a Foundation for Detecting Change Points and Outliers in Binary Time-Series

Peter Sunehag, Wen Shao, Marcus Hutter

Research School of Information Science and Engineering Australian National University Canberra, ACT, 0200, Australia

{peter.sunehag, wen.shao, marcus.hutter}@anu.edu.au

Highlights

"Life is changing everyday, in every possible way."

The Cranberries

"You have to be **fast** on your feet and **adaptive** or else a strategy is useless."

Charles de Gaulle

Provided theoretical justifications for adaptive schemes in non-stationary cases as a foundation for detecting change points and outliers in binary timeseries and many other applications.

Motiving Application

Detecting change points and outliers in time series

- Outliers in transactions (fraud)
- Outliers in network access log (criminal and suspicious activities)
- Changes in sales of Wal-Mart Stores (global economics changes)
- Changes in health data (pandemic)

Online and adaptive to non-stationary data sources

Preliminaries

KT estimator: a simple method of estimating the probability distribution of the next bit in a (binary) sequence, by assuming a particular Dirichlet prior on the parameter(s) in the Bernoulli distribution.

$$P(x_{n+1} = 1 \mid x_{1:n}) = \frac{\#1 + 1/2}{\#1 + \#0 + 1}$$

Pros

- Simple calculation, only counts of #0 and #1 need to be stored.
- For stationary cases, asymptotically optimal (worst-case redundancy).

Cons

Non-adaptive, i.e. slow to adapt to a change in the source.

Adaptive Schemes

Results Redundancy Bound

General one step prediction redundancy, loosely speaking

$$R_m = E[\underbrace{your_code_len}(x_{m+1}|x_{1:m}) - \underbrace{optimal_code_len}(x_{m+1}|x_{1:m})]$$

Theorem

- ▶ $x_{1:m}$ from a non-stationary Bernoulli process with x_i being sampled according to θ_i .
- with a KT estimator with a moving window of size n < m.
- ▶ i is such that $m-n+1 \le i \le m+1$, $\theta_i \in [\theta_L, \theta_R]$, $\theta_L, \theta_R \in (0,1)$ and $\theta_L \le \theta_R$.

$$R(n) \le \frac{1 + o(1)}{n} + \max\{KL(\theta_L||\theta_R), KL(\theta_R||\theta_L)\} + O(\frac{1}{n})$$

Results Redundancy Bound

Problem with the previous bound

Last term grows unboundedly when the parameters tend to 0 or 1.

Corollary

- ▶ $x_{1:m}$ from a non-stationary Bernoulli process with x_i being sampled according to $\theta_i \in [L,R]$ $(0 < L \le R < 1)$.
- with a KT estimator with a moving window of size n < m.
- ▶ i is such that $m-n+1 \leq i \leq m+1$, $\theta_i \in [\theta_L, \theta_R]$, $\theta_L, \theta_R \in [L, R]$ and $\theta_L \leq \theta_R$.

$$R_m(n) \le \max\{KL(\theta_L||\theta_R), KL(\theta_R||\theta_L)\} + \frac{C}{n}$$

where C does depend on L and R but not on θ_L or θ_R .

Geometrically drifting sources

Suppose a sequence $x_{1:\infty}$ is generated by a non-stationary Bernoulli process, identified by $\theta_{1:\infty}$ ($\theta_1 \in (0,1)$) with each x_i sampled according to θ_i . We say that the source is geometrically drifting if and only if $1 \leq \max\{\frac{\theta_i}{\theta_{i+1}}, \frac{1-\theta_i}{1-\theta_{i+1}}\} \leq c$ for all i and some constant $c \geq 1$.

Slowly drifting

Ratio matters; difference not

Application - Compression

Total redundancy for Context Tree Weight algorithm (for sources with finite dependency).

- Model redundancy (finding the right structure)
- 2. Parameter redundancy (KT estimator)
- Coding redundancy (Arithmetic coding)

Thank you