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Motivation

e Universal RL (URL): making very weak assumptions about its
environment, what can an agent achieve, in principle?

e What is intelligent behavior?
o What is a useful optimality criterion?

@ Theoretically studied, but few to no experiments/reference
implementations to date
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Motivation

e Universal RL (URL): making very weak assumptions about its
environment, what can an agent achieve, in principle?

e What is intelligent behavior?
o What is a useful optimality criterion?

@ Theoretically studied, but few to no experiments/reference
implementations to date

@ Contribution: experiments, along with open-source demo platform for
several URL algorithms.
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Demo
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Agent-environment model

e Environment class: POMDPs (possibly non-ergodic)
@ Percepts (# states) are (observation, reward) pairs e, = (o, rk)

@ Interact to generate a history h; := aje1arer ... aré;.
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S Meorithms |
Al¢ (Hutter, 2005)
@ Non-parametric Bayesian mixture over some countable model class

M:
E(eelhe) = D w(vlh) v (ehe)

veM
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e The Bayes-optimal policy (Al{; Hutter, 2005) is
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@ In practice:

e Forward planning by MCTS

e Use manageable model class M
e [Video]
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[ssues

Problems:

e Not asymptotically optimal (Orseau, 2010)
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[ssues

Problems:

e Not asymptotically optimal (Orseau, 2010)

e Won't overcome the bias of bad priors, c.f. supervised learning (Leike
& Hutter, 2015)
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- Aeorthms
Knowledge-seeking agents (Orseau, 2013)

o Utility agents are intrinsically motivated, and don't need an extrinsic
reward signal.

e Knowledge-seeking agent (KSA) — motivated to reduce uncertainty

@ No exploration/exploitation tradeoff

Agent Utility function Description
Al¢ r Reward
Square-KSA —£ Entropy
Shannon-KSA —log [¢] Entropy

Kullback-Leibler-KSA  —AEnt [w(:)]  Information gain
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Utility agents are intrinsically motivated, and don't need an extrinsic
reward signal.

e Knowledge-seeking agent (KSA) — motivated to reduce uncertainty
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Experiments

@ Qualitative behavior is highly model-sensitive

@ KL-KSA outperforms entropy-seeking in stochastic environments
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. Experiments |
Outlook

@ Open-source online JavaScript demo: https://aslanides.io/aixijs

@ Used to run experiments for another IJCAI paper (Reinforcement
Learning with a Corrupted Reward Channel, Everitt et al. 2017)

@ Come and talk to me at the ANU booth downstairs :)
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