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Abstract
Humans and many other intelligent systems (have to) learn from experience, build

models of the environment from the acquired knowledge, and use these models for
prediction. In philosophy this is called inductive inference, in statistics it is called
estimation and prediction, and in computer science it is addressed by machine
learning.

I will first review unsuccessful attempts and unsuitable approaches towards a
general theory of induction, including Popper’s falsificationism and denial of
confirmation, frequentist statistics and much of statistical learning theory, subjective
Bayesianism, Carnap’s confirmation theory, the data paradigm, eliminative induction,
and deductive approaches. I will also debunk some other misguided views, such as
the no-free-lunch myth and pluralism.

I will then turn to Solomonoff’s formal, general, complete, and essentially unique
theory of universal induction and prediction, rooted in algorithmic information theory
and based on the philosophical and technical ideas of Ockham, Epicurus, Bayes,
Turing, and Kolmogorov.

This theory provably addresses most issues that have plagued other inductive
approaches, and essentially constitutes a conceptual solution to the induction
problem. Some theoretical guarantees, extensions to (re)active learning, practical
approximations, applications, and experimental results are mentioned in passing, but
they are not the focus of this talk.

I will conclude with some general advice to philosophers and scientists interested in
the foundations of induction.
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Induction/Prediction Examples
Hypothesis testing/identification: Does treatment X cure cancer?
Do observations of white swans confirm that all ravens are black?

Model selection: Are planetary orbits circles or ellipses?
How many wavelets do I need to describe my picture well?
Which genes can predict cancer?

Parameter estimation: Bias of my coin. Eccentricity of earth’s orbit.

Sequence prediction: Predict weather/stock-quote/... tomorrow,
based on past sequence. Continue IQ test sequence like 1,4,9,16,?

Classification can be reduced to sequence prediction:
Predict whether email is spam.

Question: Is there a general & formal & complete & consistent theory
for induction & prediction?

Beyond induction: active/reward learning, fct. optimization, game theory.
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The Need for a Unified Theory
Why do we need or should want a unified theory of induction?

• Finding new rules for every particular (new) problem is cumbersome.

• A plurality of theories is prone to disagreement or contradiction.

• Axiomatization boosted mathematics&logic&deduction and so
(should) induction.

• Provides a convincing story and conceptual tools for outsiders.

• Automatize induction&science (that’s what machine learning does)

• By relating it to existing narrow/heuristic/practical approaches we
deepen our understanding of and can improve them.

• Necessary for resolving philosophical problems.

• Unified/universal theories are often beautiful gems.

• There is no convincing argument that the goal is unattainable.
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Math ⇔ Words

“There is nothing that can be said by mathematical

symbols and relations which cannot also be said by

words.

The converse, however, is false.

Much that can be and is said by words

cannot be put into equations,

because it is nonsense.”

(Clifford A. Truesdell, 1966)
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Math ⇔ Words

“There is nothing that can be said by mathematical

symbols and relations which cannot also be said by

words.

The converse, however, is false.

Much that can be and is said by words

cannot be put into equations,

because it is nonsensexxxxx-science.”
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Induction ⇔ Deduction
Approximate correspondence between

the most important concepts in induction and deduction.

Induction ⇔ Deduction

Type of inference: generalization/prediction ⇔ specialization/derivation

Framework: probability axioms =̂ logical axioms

Assumptions: prior =̂ non-logical axioms

Inference rule: Bayes rule =̂ modus ponens

Results: posterior =̂ theorems

Universal scheme: Solomonoff probability =̂ Zermelo-Fraenkel set theory

Universal inference: universal induction =̂ universal theorem prover

Limitation: incomputable =̂ incomplete (Gödel)

In practice: approximations =̂ semi-formal proofs

Operation: computation =̂ proof

The foundations of induction are as solid as those for deduction.
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Critique
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Popper’s Philosophy of Science is Flawed
• Popper was good at popularizing philosophy
of science outside of philosophy.

• Popper’s appeal: simple ideas, clearly expressed.
Noble and heroic vision of science.

• This made him a pop star among many scientists.

• Unfortunately his ideas (falsificationism, corroboration) are seriously
flawed.

• Further, there have been better philosophy/philosophers before,
during, and after Popper (but also many worse ones!)

• Fazit: It’s time to move on and change your idol.

• References: Godfrey-Smith (2003) Chp.4, Gardner (2001),

Salmon (1981), Putnam (1974), Schilpp (1974).
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Popper’s Falsificationism

• Demarcation problem: What is the difference between a scientific

and a non-scientific theory?

• Popper’s solution: Falsificationism: A hypothesis is scientific if and

only if it can be refuted by some possible observation.

Falsification is a matter of deductive logic.

• Problem 1: Stochastic models can never be falsified in Popper’s

strong deductive sense, since stochastic models can only become

unlikely but never inconsistent with data.

• Problem 2: Falsificationism alone cannot prefer to use a well-tested

theory (e.g. how to build bridges) over a brand-new untested one,

since both have not been falsified.



Marcus Hutter - 12 - Foundations of Induction

Popper on Simplicity

• Why should we a-priori prefer to investigate “reasonable” theories

over “obscure” theories.

• Popper prefers simple over complex theories because he believes

that simple theories are easier to falsify.

• Popper equates simplicity with falsifiability, so is not advocating a

simplicity bias proper.

• Problem: A complex theory with fixed parameters is as easy to

falsify as a simple theory.
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Popper’s Corroboration / (Non)Confirmation
• Popper0 (fallibilism): We can never be completely certain about
factual issues (X)

• Popper1 (skepticism): Scientific confirmation is a myth.

• Popper2 (no confirmation): We cannot even increase our confidence
in the truth of a theory when it passes observational tests.

• Popper3 (no reason to worry):
Induction is a myth, but science does not need it anyway.

• Popper4 (corroboration): A theory that has survived many attempts
to falsify it is “corroborated”, and it is rational to choose more
corroborated theories.

• Problem: Corroboration is just a new name for confirmation or
meaningless.
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The No Free Lunch (NFL) Theorem/Myth
• Consider algorithms for finding the maximum of a function, and
compare their performance uniformly averaged over all functions
over some fixed finite domain.

• Since sampling uniformly leads with (very) high probability to a
totally random function (white noise), it is clear that on average no
optimization algorithm can perform better than exhaustive search.

....

⇒ All reasonable optimization algorithms
are equally good/bad on average.

Free!

• Conclusion correct, but obviously no practical implication, since
nobody cares about the maximum of white noise functions.

• Uniform and universal sampling are both
(non)assumptions, but only universal sampling
makes sense and offers a free lunch.

Free!*

*Subject to computation fees
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Problems with Frequentism

• Definition: The probability of event E is the limiting relative

frequency of its occurrence. P (E) := limn→∞ #n(E)/n.

• Circularity of definition: Limit exists only with probability 1.

So we have explained “Probability of E” in terms of “Probability 1”.

What does probability 1 mean? [Cournot’s principle can help]

• Limitation to i.i.d.: Requires independent and identically distributed

(i.i.d) samples. But the real world is not i.i.d.

• Reference class problem: Example: Counting the frequency of some

disease among “similar” patients. Considering all we know

(symptoms, weight, age, ancestry, ...) there are no two similar

patients. [Machine learning via feature selection can help]
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Statistical Learning Theory

• Statistical Learning Theory predominantly considers i.i.d. data.

• E.g. Empirical Risk Minimization, PAC bounds, VC-dimension,

Rademacher complexity, Cross-Validation is mostly developed for

i.i.d. data.

• Applications: There are enough applications with data close to i.i.d.

for Frequentists to thrive, and they are pushing their frontiers too.

• But the Real World is not (even close to) i.i.d.

• Real Life is a single long non-stationary non-ergodic trajectory of

experience.
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Limitations of Other Approaches
• Subjective Bayes: No formal procedure/theory to get prior.

• Objective Bayes: Right in spirit, but limited to small classes
unless community embraces information theory.

• MDL/MML: practical approximations of universal induction.

• Pluralism is globally inconsistent.

• Deductive Logic: not strong enough to allow for induction.

• Non-monotonic reasoning, inductive logic, default reasoning
do not properly take uncertainty into account.

• Carnap’s confirmation theory: Only for exchangeable data.
Cannot confirm universal hypotheses.

• Data paradigm: data may be more important than algorithms for
“simple” problems, but a “lookup-table” AGI will not work.

• Eliminative induction: ignores uncertainty and information theory.
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Summary

The criticized approaches

cannot serve as a general foundation of induction.

Conciliation

Of course most of the criticized approaches

do work in their limited domains, and

are trying to push their boundaries towards more generality.

And What Now?

Criticizing others is easy and in itself a bit pointless.

The crucial question is whether there is something better out there.

And indeed there is, which I will turn to now.
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Universal Induction
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Foundations of Universal Induction
Ockhams’ razor (simplicity) principle
Entities should not be multiplied beyond necessity.

Epicurus’ principle of multiple explanations
If more than one theory is consistent with the observations, keep
all theories.
Bayes’ rule for conditional probabilities
Given the prior belief/probability one can predict all future prob-
abilities.
Turing’s universal machine
Everything computable by a human using a fixed procedure can
also be computed by a (universal) Turing machine.
Kolmogorov’s complexity
The complexity or information content of an object is the length
of its shortest description on a universal Turing machine.
Solomonoff’s universal prior=Ockham+Epicurus+Bayes+Turing
Solves the question of how to choose the prior if nothing is known.
⇒ universal induction, formal Occam,AIT,MML,MDL,SRM,...
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Science ≈ Induction ≈ Occam’s Razor

• Grue Emerald Paradox:

Hypothesis 1: All emeralds are green.

Hypothesis 2: All emeralds found till y2020 are green,

thereafter all emeralds are blue.

• Which hypothesis is more plausible? H1! Justification?

• Occam’s razor: take simplest hypothesis consistent with data.
is the most important principle in machine learning and science.

• Problem: How to quantify “simplicity”? Beauty? Elegance?

Description Length!

[The Grue problem goes much deeper. This is only half of the story]
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Turing Machines & Effective Enumeration
• Turing machine (TM) = (mathema-
tical model for an) idealized computer.

• See e.g. textbook [HMU06]

Show Turing Machine in Action: TuringBeispielAnimated.gif

• Instruction i: If symbol on tape
under head is 0/1, write 0/1/-
and move head left/right/not
and goto instruction=state j.

• {partial recursive functions }
≡ {functions computable with a TM}.

• A set of objects S = {o1, o2, o3, ...} can be (effectively) enumerated
:⇐⇒ ∃ TM machine mapping i to ⟨oi⟩,
where ⟨⟩ is some (often omitted) default coding of elements in S.
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Information Theory & Kolmogorov Complexity

• Quantification/interpretation of Occam’s razor:

• Shortest description of object is best explanation.

• Shortest program for a string on a Turing machine

T leads to best extrapolation=prediction.

KT (x) = min
p

{ℓ(p) : T (p) = x}

• Prediction is best for a natural universal Turing machine U .

Kolmogorov-complexity(x) = K(x) = KU (x) ≤ KT (x) + cT
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Bayesian Probability Theory

Given (1): Models P (D|Hi) for probability of

observing data D, when Hi is true.

Given (2): Prior probability over hypotheses P (Hi).

Goal: Posterior probability P (Hi|D) of Hi,

after having seen data D.

Solution:

Bayes’ rule: P (Hi|D) =
P (D|Hi) · P (Hi)∑
i P (D|Hi) · P (Hi)

(1) Models P (D|Hi) usually easy to describe (objective probabilities)

(2) But Bayesian prob. theory does not tell us how to choose the prior

P (Hi) (subjective probabilities)
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Algorithmic Probability Theory

• Epicurus: If more than one theory is consistent

with the observations, keep all theories.

• ⇒ uniform prior over all Hi?

• Refinement with Occam’s razor quantified

in terms of Kolmogorov complexity:

P (Hi) := wU
Hi

:= 2−KT/U (Hi)

• Fixing T we have a complete theory for prediction.

Problem: How to choose T .

• Choosing U we have a universal theory for prediction.

Observation: Particular choice of U does not matter much.

Problem: Incomputable.
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Inductive Inference & Universal Forecasting

• Solomonoff combined Occam, Epicurus, Bayes, and

Turing into one formal theory of sequential prediction.

• M(x) = probability that a universal Turing

machine outputs x when provided with

fair coin flips on the input tape.

• A posteriori probability of y given x is M(y|x) = M(xy)/M(x).

• Given x1, .., xt−1, the probability of xt is M(xt|x1...xt−1).

• Immediate “applications”:

- Weather forecasting: xt ∈ {sun,rain}.
- Stock-market prediction: xt ∈ {bear,bull}.
- Continuing number sequences in an IQ test: xt ∈ IN .

• Optimal universal inductive reasoning system!
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Some Prediction Bounds for M
M(x) = universal distribution. hn :=

∑
xn

(M(xn|x<n)− µ(xn|x<n))
2

µ(x) = unknown true comp. distr. (no i.i.d. or any other assumptions)

• Total bound:
∑∞

n=1 E[hn] ≤ K(µ) ln 2, which implies
Convergence: M(xn|x<n) → µ(xn|x<n) w.µ.p.1.

• Instantaneous i.i.d. bounds: For i.i.d. M with continuous, discrete, and
universal prior, respectively:
E[hn]

×≤ 1
n
lnw(µ)−1 and E[hn]

×≤ 1
n
lnw−1

µ = 1
n
K(µ) ln 2.

• Bounds for computable environments: Rapidly M(xt|x<t) → 1 on every
computable sequence x1:∞ (whichsoever, e.g. 1∞ or the digits of π or e),
i.e. M quickly recognizes the structure of the sequence.

• Weak instantaneous bounds: valid for all n and x1:n and x̄n ̸= xn:

2−K(n) ×≤ M(x̄n|x<n)
×≤ 22K(x1:n∗)−K(n)

• Magic instance numbers: e.g. M(0|1n) ×=2−K(n) → 0, but spikes up for
simple n. M is cautious at magic instance numbers n.

• Future bounds / errors to come: If our past observations ω1:n contain a
lot of information about µ, we make few errors in future:∑∞

t=n+1 E[ht|ω1:n]
+≤ [K(µ|ω1:n)+K(n)] ln 2
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Some other Properties of M
• Problem of zero prior / confirmation of universal hypotheses:

P[All ravens black|n black ravens]

{≡ 0 in Bayes-Laplace model
fast−→ 1 for universal prior wU

θ

• Reparametrization and regrouping invariance: wU
θ = 2−K(θ) always

exists and is invariant w.r.t. all computable reparametrizations f .
(Jeffrey prior only w.r.t. bijections, and does not always exist)

• The Problem of Old Evidence: No risk of biasing the prior towards
past data, since wU

θ is fixed and independent of model class M.

• The Problem of New Theories: Updating of M is not necessary,
since universal class MU includes already all.

• M predicts better than all other mixture predictors based on any
(continuous or discrete) model class and prior, even in
non-computable environments.
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More Stuff / Critique / Problems

• Prior knowledge y can be incorporated by using “subjective” prior

wU
ν|y = 2−K(ν|y) or by prefixing observation x by y.

• Additive/multiplicative constant fudges and U -dependence is often

(but not always) harmless.

• Incomputability: K and M can serve as “gold standards” which

practitioners should aim at, but have to be (crudely) approximated

in practice (MDL [Ris89], MML [Wal05], LZW [LZ76], CTW [WSTT95],

NCD [CV05]).
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Universal

Artificial Intelligence
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Induction→Prediction→Decision→Action

Having or acquiring or learning or inducing a model of the environment

an agent interacts with allows the agent to make predictions and utilize

them in its decision process of finding a good next action.

Induction infers general models from specific observations/facts/data,

usually exhibiting regularities or properties or relations in the latter.

Example

Induction: Find a model of the world economy.

Prediction: Use the model for predicting the future stock market.

Decision: Decide whether to invest assets in stocks or bonds.

Action: Trading large quantities of stocks influences the market.
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Sequential Decision Theory

Setup: For t = 1, 2, 3, 4, ...

Given sequence x1, x2, ..., xt−1

(1) predict/make decision yt,

(2) observe xt,

(3) suffer loss Loss(xt, yt),

(4) t → t+ 1, goto (1)

Goal: Minimize expected Loss.

Greedy minimization of expected loss is optimal if:

Important: Decision yt does not influence env. (future observations).

Loss function is known.

Problem: Expectation w.r.t. what?

Solution: W.r.t. universal distribution M if true distr. is unknown.
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Agent Model
with Reward

if actions/decisions a

influence the environment q

r1 | o1 r2 | o2 r3 | o3 r4 | o4 r5 | o5 r6 | o6 ...

a1 a2 a3 a4 a5 a6 ...

work
Agent

p
tape ... work

Environ-

ment q
tape ...

������ HHHHHY

�������1PPPPPPPq
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Universal Artificial Intelligence
Key idea: Optimal action/plan/policy based on the simplest world
model consistent with history. Formally ...

AIXI: ak := argmax
ak

∑
okrk

...max
am

∑
omrm

[rk + ...+ rm]
∑

p :U(p,a1..am)=o1r1..omrm

2−length(p)

k=now, action, observation, reward, Universal TM, program, m=lifespan

AIXI is an elegant, complete, essentially unique,
and limit-computable mathematical theory of AI.

Claim: AIXI is the most intelligent environmental
independent, i.e. universally optimal, agent possible.

Proof: For formalizations, quantifications, proofs see ⇒
Problem: Computationally intractable.

Achievement: Well-defines AI. Gold standard to aim at.
Inspired practical algorithms. Cf. infeasible exact minimax. [H’00-05]
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Applications &

Approximations
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Approximations

• Exact computation of probabilities often intractable.

• Approximate the solution, not the problem!

• Cheap surrogates will fail in critical situations.

• Any heuristic method should be gauged

against Solomonoff/AIXI gold-standard.

• Established/good approximations:

MDL, MML, CTW, Universal search, Monte Carlo, ...

• AGI needs anytime algorithms powerful enough to

approach Solomonoff/AIXI in the limit of infinite comp.time.
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The Minimum Description Length Principle

• Approximation of Solomonoff,

since M is incomputable:

• M(x) ≈ 2−KU (x) (quite good)

• KU (x) ≈ KT (x) (very crude)

• Predict y of highest M(y|x) is approximately same as

• MDL: Predict y of smallest KT (xy).
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Universal Clustering

• Question: When is object x similar to object y?

• Universal solution: x similar to y
⇔ x can be easily (re)constructed from y
⇔ K(x|y) := min{ℓ(p) : U(p, y) = x} is small.

• Universal Similarity: Symmetrize&normalize K(x|y).

• Normalized compression distance: Approximate K ≡ KU by KT .

• Practice: For T choose (de)compressor like lzw or gzip or bzip(2).

• Multiple objects ⇒ similarity matrix ⇒ similarity tree.

• Applications: Completely automatic reconstruction (a) of the
evolutionary tree of 24 mammals based on complete mtDNA, and
(b) of the classification tree of 52 languages based on the
declaration of human rights and (c) many others. [Cilibrasi&Vitanyi’05]
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Universal Search
• Levin search: Fastest algorithm for
inversion and optimization problems.

• Theoretical application:
Assume somebody found a non-constructive
proof of P=NP, then Levin-search is a polynomial
time algorithm for every NP (complete) problem.

• Practical (OOPS) applications (J. Schmidhuber)
Maze, towers of hanoi, robotics, ...

• FastPrg: The asymptotically fastest and shortest algorithm for all
well-defined problems.

• Computable Approximations of AIXI:
AIXItl and AIξ and MC-AIXI-CTW and ΦMDP.

• Human Knowledge Compression Prize: (50’000C=)
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A Monte-Carlo AIXI Approximation
based on Upper Confidence Tree (UCT) search for planning
and Context Tree Weighting (CTW) compression for learning
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Conclusion
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Summary

• Conceptually and mathematically the problem of induction is solved.

• Computational problems and some philosophical questions remain.

• Ingredients for induction and prediction:

Ockham, Epicurus, Turing, Bayes, Kolmogorov, Solomonoff

• For decisions and actions: Include Bellman.

• Mathematical results: consistency, bounds, optimality, many others.

• Most Philosophical riddles around induction solved.

• Experimental results via practical compressors.

Induction ≈ Science ≈ Machine Learning ≈
Ockham’s razor ≈ Compression ≈ Intelligence.
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Advice
to philosophers and scientists interested in the foundations of induction

• Accept Universal Induction (UI) as the best conceptual solution of

the induction problem so far.

• Stand on the shoulders of giants like Bayes, Shannon, Turing,

Kolmogorov, Solomonoff, Wallace, Rissanen, Bellman.

• Work out defects / what is missing, and try to improve UI, or

• Work on alternatives but then benchmark your approach against

state of the art UI.

• Cranks who have not understood the giants and try to reinvent the

wheel from scratch can safely be ignored.

Never trust a theory if it is not supported by an experiment=== =====
experiment theory
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When it’s OK to ignore UI

• if your pursued approaches already works sufficiently well

• if your problem is simple enough (e.g. i.i.d.)

• if you do not care about a principled/sound solution

• if you’re happy to succeed by trial-and-error (with restrictions)

Information Theory

• Information Theory plays an even more significant role for induction

than this presentation might suggest.

• Algorithmic Information Theory is superior to Shannon Information.

• There are AIT versions that even capture Meaningful Information.
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Outlook

• Use compression size as general performance measure

(like perplexity is used in speech)

• Via code-length view, many approaches become comparable, and

may be regarded as approximations to UI.

• This should lead to better compression algorithms which in turn

should lead to better learning algorithms.

• Address open problems in induction within the UI framework.
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