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Abstract
There is great interest in understanding and constructing generally
intelligent systems approaching and ultimately exceeding human
intelligence. Universal AI is such a mathematical theory of machine
super-intelligence. More precisely, AIXI is an elegant parameter-free
theory of an optimal reinforcement learning agent embedded in an
arbitrary unknown environment that possesses essentially all aspects of
rational intelligence. The theory reduces all conceptual AI problems to
pure computational questions. After a brief discussion of its
philosophical, mathematical, and computational ingredients, I will give a
formal definition and measure of intelligence, which is maximized by
AIXI. AIXI can be viewed as the most powerful Bayes-optimal sequential
decision maker, for which I will present general optimality results. This
also motivates some variations such as knowledge-seeking and optimistic
agents, and feature reinforcement learning. Finally I present some recent
approximations, implementations, and applications of this modern
top-down approach to AI.
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Overview

Goal: Construct a single universal agent

that learns to act optimally in any environment.

State of the art: Formal (mathematical, non-comp.) definition

of such an agent.

Accomplishment: Well-defines AI. Formalizes rational intelligence.

Formal “solution” of the AI problem in the sense of ...

=⇒ Reduces the conceptional AI problem

to a (pure) computational problem.

Evidence: Mathematical optimality proofs

and some experimental results.
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Contents

• Universal Intelligence

• General Bayesian Agents

• Variations of Universal/Bayesian Agents

• Approximations & Applications

• Discussion
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UNIVERSAL INTELLIGENCE
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Agent Model
with Reward

Most if not all AI problems can be

formulated within the agent

framework! But how choose Agent?
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Foundations of Universal Artificial Intelligence
Ockhams’ razor (simplicity) principle
Entities should not be multiplied beyond necessity.

Epicurus’ principle of multiple explanations
If more than one theory is consistent with the observations, keep all theories.

Bayes’ rule for conditional probabilities
Given the prior belief/probability one can predict all future probabilities.
Posterior(H|D) ∝ Likelihood(D|H) × Prior(H).

Turing’s universal machine
Everything computable by a human using a fixed procedure can also be com-
puted by a (universal) Turing machine.

Kolmogorov’s complexity
The complexity or information content of an object is the length of its shortest
description on a universal Turing machine.

Solomonoff’s universal prior=Ockham+Epicurus+Bayes+Turing
Solves the question of how to choose the prior if nothing is known. ⇒
universal induction, formal Ockham. Prior(H) = 2−Kolmogorov(H)

Bellman equations
Theory of how to optimally plan and act in known environments.
Solomonoff + Bellman = Universal Artificial Intelligence.
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Optimal Agents in Known Environments

• (A,O,R) =(action,observation,reward) spaces.

ak=action at time k; xk:=okrk=perception at time k.

• Agent follows policy π : (A×O×R)∗ ; A

• Environment reacts with µ : (A×O×R)∗×A ; O×R

• Performance of agent π in environment µ

= expected cumulative reward = V π
µ := Eπ

µ[
∑∞

t=1 r
πµ
t ]

• There are various ways to regularize the infinite reward sum:

finite horizon, discounting, summability condition on µ.

• µ-optimal policy AIµ: pµ := argmaxπ V
π
µ
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Formal Definition of Intelligence

• Usually true environment µ unknown

⇒ average over wide range of environments

(all semi-computable chronological semi-measures MU )

• Ockham+Epicurus: Weigh each environment with its

Kolmogorov complexity K(µ) := minp{length(p) : U(p) = µ}

• Universal intelligence of agent π is Υ(π) :=
∑

µ∈MU
2−K(µ)V π

µ .

• Informal interpretation: Intelligence measures an

agent’s ability to perform well in a wide range of environments.

• Properties of Υ: valid, informative, wide range, general, dynamic,

unbiased, fundamental, formal, objective, fully defined, universal.

• AIXI = argmaxπ Υ(π) = most intelligent agent.
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Explicit AIXI Model in one Line
complete & essentially unique & limit-computable

AIXI: ak := argmax
ak

∑
okrk

...max
am

∑
omrm

[rk + ...+ rm]
∑

p :U(p,a1..am)=o1r1..omrm

2−length(p)

k=now, action, observation, reward, Universal TM, program, m=lifespan

AIXI is an elegant mathematical theory of general AI,

but incomputable, so needs to be approximated in practice.

Claim: AIXI is the most intelligent environmental independent, i.e.

universally optimal, agent possible.

Proof: For formalizations, quantifications, and proofs, see [Hut05].

Potential Applications: Intelligent Agents, Games, Optimization, Active

Learning, Adaptive Control, Robots, Philosophy of Mind, AI safety.
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Issues in RL and how UAI solves them

Kolmogorov complexity:

• generalization

• associative learning

• transfer learning [Mah09]

• knowledge representation

• abstraction

• similarity [CV05]

• regularization, bias-variance [Wal05]

Bayes:

• exploration-exploitation

• learning

History-based:

• partial observability

• non-stationarity

• long-term memory

• large state space

Expectimax:

• planning

UAI deals with these issues in a general and optimal way
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Particularly Interesting Problems

• Sequence Prediction, e.g. weather or stock-market prediction.

Strong result: V ∗
µ − V pξ

µ = O(
√

K(µ)
m ), m =horizon.

• Strategic Games: Learn to play well (minimax) strategic zero-sum

games (like chess) or even exploit limited capabilities of opponent.

• Optimization: Find (approximate) minimum of function with as few

function calls as possible. Difficult exploration versus exploitation

problem.

• Supervised learning: Learn functions by presenting (z, f(z)) pairs

and ask for function values of z′ by presenting (z′, ?) pairs.

Supervised learning is much faster than reinforcement learning.

AIXI quickly learns to predict, play games, optimize, and learn supervised
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Curious/Philosophical/Social Questions for AIXI

• Where do rewards come from if humans are not around

(see later, knowledge-seeing) agents [Ors11, OLH13]

• Will AIXI take drugs (wire-heading, hack reward system) [OR11]

• Will AIXI commit suicide [MEH16]

• Curiosity killed the cat and maybe AIXI [Sch07, Ors11, LHS13]

• Immortality can cause laziness [Hut05, Sec.5.7]

• Can self-preservation be learned or need parts be innate [RO11]
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GENERAL BAYESIAN AGENTS
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Agents in Probabilistic Environments

• Given history a1:kx<k, the probability that the environment leads to

perception xk in cycle k is (by definition) σ(xk|a1:kx<k).

• Abbr.: σ(x1:m|a1:m) = σ(x1|a1)·σ(x2|a1:2x1)· ... ·σ(xm|a1:mx<m)

• Value of policy p in environment σ is defined

as expected discounted future reward sum:

V pσ
kγ :=

1

Γk
lim

m→∞

∑
xk:m

(γkrk+...+γmrm)σ(xk:m|a1:mx<k)|a1:m=p(x<m)

• General discount sequence γ1, γ2, γ3, ... Normalizer Γk :=
∑∞

i=k γi

• The goal of the agent should be to maximize the value.

• σ-optimal policy AIσ: pσ := argmaxp V
pσ
kγ

• If true env. µ is known, choose σ = µ.
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The Bayes-Mixture Distribution ξ

Assumption: The true environment µ is unknown.

Bayesian approach: The true probability distribution µ is not learned

directly, but is replaced by a Bayes-mixture ξ.

Assumption: We know that the true environment µ is contained in some

known (finite or countable) set M of environments.

The Bayes-mixture ξ is defined as

ξ(x1:m|a1:m) :=
∑
ν∈M

wνν(x1:m|a1:m) with
∑
ν∈M

wν = 1, wν > 0 ∀ν

The weights wν may be interpreted as the prior degree of belief that the

true environment is ν.

Then ξ(x1:m|a1:m) could be interpreted as the prior subjective belief

probability in observing x1:m, given actions a1:m.
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Questions of Interest

• It is natural to follow the policy pξ which maximizes V p
ξ .

• If µ is the true environment the expected reward when following

policy pξ will be V pξ

µ .

• The optimal (but infeasible) policy pµ yields reward V pµ

µ ≡ V ∗
µ .

• Are there policies with uniformly larger value than V pξ

µ ?

• How close is V pξ

µ to V ∗
µ ?

• What is the most general class M and weights wν?

M = MU and wν = 2−K(ν) =⇒ AIξ =AIXI !
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Convergence of ξ to µ

Countable mixture ⇒ dominance ξ(x1:n|a1:n) ≥ wµµ(x1:n|a1:n) ⇒

Theorem 1 (multistep predictive ξ converges to µ)

ξ(xk:mk
|x<ka1:mk

)
k→∞−→ µ(xk:mk

|x<ka1:mk
) with µ prob. 1.

with rapid conv. for bounded horizon hk ≡ mk − k + 1 ≤ hmax < ∞

• Caveat: Convergence holds only for actions actually chosen.

• Does replacing µ with ξ lead to AIξ system with

asymptotically optimal behavior with rapid convergence?

• This looks promising from analogy to Sequence Prediction

but is much more subtle and tricky!
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Convergence of Universal to True Value

Theorem 2 (Convergence of universal to true value)

For a given policy p and history generated by p and µ, i.e. on-policy,

the future universal value V pξ
··· converges to the true value V pµ

··· :

V pξ
kγ

k→∞−→ V pµ
kγ i.m. for any γ.

If the history is generated by p = pξ, this implies V ∗ξ
kγ → V pξµ

kγ .

Hence the universal value V ∗ξ
kγ can be used to estimate the true value

V pξµ
kγ , without any assumptions on M and γ.

Nevertheless, maximization of V pξ
kγ may asymptotically differ from max.

of V pµ
kγ , since V pξ

kγ ̸→ V pµ
kγ for p ̸= pξ is possible (and also V ∗ξ

kγ ̸→ V ∗µ
kγ ).
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Results for Discounted Future Value

Theorem 3 (Properties of Discounted Future Value)

• V πρ
kγ is linear in ρ: V πξ

kγ =
∑

ν w
ν
k−1 V

πν
kγ .

• V ∗ρ
kγ is convex in ρ: V ∗ξ

kγ ≤
∑

ν w
ν
k−1 V

∗ν
kγ .

• where wν
k−1 := wν

ν(x<k|a<k)
ξ(x<k|a<k)

is the posterior belief in ν.

• pξ is Pareto-optimal in the sense that there is no other policy

π with V πν
kγ ≥ V pξν

kγ for all ν ∈ M and strict inequality for at

least one ν.

• If there exists a self-optimizing policy for M, then pξ is self-

optimizing in the sense that

If ∃π̃k∀ν : V π̃kν
kγ

k→∞−→ V ∗ν
kγ =⇒ V pξµ

kγ
k→∞−→ V ∗µ

kγ .



Marcus Hutter - 21 - Universal Artificial Intelligence

Environments w./ (Non)Self-Optimizing Policies
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Importance of the Right Discounting

Standard geometric discounting: γk = γk with 0 < γ < 1.

Problem: Most environments do not possess self-optimizing policies

under this discounting.

Reason: Effective horizon heff
k is finite (∼ ln 1

γ for γk = γk).

The analogue of m → ∞ is k → ∞ and heff
k → ∞ for k → ∞.

Result: Policy pξ is self-optimizing for the class of (lth order) ergodic

MDPs if γk+1

γk
→ 1.

Example discounting: γk = k−2 or γk = k−1−ε or γk = 2−K(k).

Horizon is of the order of the age of the agent: heff
k ∼ k.
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Is Bayesian RL Optimal?
• asymptotically optimal := self-optimizing on policy-induced history

• AIXI is not asymptotically optimal [Ors10]

• No policy can be asymptotically optimal for MU [LH11]

• There are finite M for which the Bayes-optimal policy pξ

is not asymptotically optimal (for any γ).

• For every (in)finite M there exist [LH14a, Lat14, LLOH16]

(weakly/mean) asymptotically optimal policies (see below)

• Jumping into a trap is asymptotically optimal.
It also has great PAC bound.

• Bayesian RL may still be (regarded as) “best”
(by construction, its Pareto-optimality,
Thompson sampling variation, ...)

⇒ further theoretical investigations of Bayesian RL
and alternatives are needed.
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VARIATIONS OF

UNIVERSAL/BAYESIAN AGENTS

• Knowledge-Seeking Agents

• Exploration Bursts

• Optimistic Agents

• Thompson Sampling
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Origin of Rewards and Universal Goals

• Where do rewards come from if we don’t (want to) provide them?

• Human interaction: reward the robot according to how well it solves

the tasks we want it to do.

• Autonomous: Hard-wire reward to predefined task:

E.g. Mars robot: reward = battery level & evidence of water/life.

• Is there something like a universal goal?

• Curiosity-driven learning [Sch07]

• Knowledge seeking agents [Ors11, OLH13]
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Universal Knowledge-Seeking Agent (KSA)
reward for exploration; goal is to learn the true environment [OLH13]

• wν
k := wν

ν(x1:k|a1:k)
ξ(x1:k|a1:k)

is the posterior belief in ν given history ax1:k.

• w
()
k summarizes the information contained in history ax1:k.

• w
()
k−1 ; w

()
k changes ⇔ xk given ax<k is informative about ν∈M.

• Information gain can be quantified by KL-divergence.

• Reward agent for gained information:

rk := KL(w
()
k ||w

()
k−1) ≡

∑
ν∈M wν

k log(w
ν
k/w

ν
k−1)
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Asymptotic Optimality of Universal KSA

Theorem 4 (Asymptotic Optimality of Universal KSA)

• Universal π∗
ξ converges to optimal π∗

µ. More formally:

• Pπ
ξ (·|ax<k) converges in (µ, π∗

ξ )-probability to Pπ
µ (·|ax<k)

uniformly for all π.

Def: Pπ
ρ (·|ax<k) is (ρ, π)-probability of future axk:∞ given past ax<k.

Note: On-policy agent π∗
ξ is able to even predict off-policy!

Remark: No assumption on M needed, i.e. Thm. applicable to MU .
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Bayesian RL with Extra Exploration Bursts
Combining Bayes-optimal and KSA policies we can achieve PAC bounds

and weak asymptotic optimality in arbitrary environment classes M.

BayesExp algorithm (Basic Idea)

If the Bayes-expected info-gain (see KSA) is small,

then “exploit” by following the Bayes optimal policy for 1 step

else explore by following a policy that maximises

the expected information gain for a couple of time-steps.

Results:

• Optimal minimax sample-complexity (PAC) bounds

in arbitrary finite class M of history-based environments. [LH14a]

• Weak asymptotic optimality in arbitrary countable class

of history-based environments, including MU . [Lat14]

• Inq algorithm: Similar and even strong asymptotic optimal [CCH19]
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Bayesian RL with Thompson Sampling

Thompson Sampling (TS) algorithm (Basic Idea)

• sample environment ν ∈ M from posterior probability wν
k ,

• follow ν-optimal policy π∗
ν for a couple of time-steps.

Important: Resample only after an effective horizon!

(Cf. Bayes-optimal policy maximizes the Bayesian mixture value, which

is the posterior average over the values of all environments in M.)

Results: [LLOH16]

• Mean asymptotic optimality in arbitrary countable class

of history-based environments, including MU .

• Given a recoverability assumption, also regret is sublinear.

Remarks: TS is more natural than Bayes with Exploration Bursts.

Thompson Sampling is a stochastic policy unlike Bayes-optimal policies.
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Optimistic Agents in Deterministic Worlds
act optimally w.r.t. the most optimistic environment

until it is contradicted [SH12]

• π◦ := π∗
k := argmaxπ maxν∈Mk−1

V πν
kγ (ax<k)

• Mk−1 := environments consistent with history ax<k.

• As long as the outcome is consistent with the optimistic prediction,

the return is optimal, even if the wrong environment is chosen.

Theorem 5 (Optimism is asymptotically optimal)

For finite M ≡ M0, where µ ∈ M is the true environment

• Asymptotic: V π◦µ
kγ = V ∗µ

kγ for all large k.

• Errors: For geometric discount, V π◦µ
kγ ≥ V ∗µ

kγ − ε (i.e. π◦ ε-sub-

optimal) for all but at most |M| log ε(1−γ)
log γ time steps k.
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Optimistic Agents for General Environments
• Generalization to stochastic environments: Likelihood criterion:
Exclude ν from Mk−1 if ν(x<k|a<k) < εk ·max

ν∈M
ν(x<k|a<k). [SH12]

• Generalization to compact classes M:
Replace M by centers of finite ε-cover of M in def. of π◦. [SH12]

• Use decreasing εk → 0 to get asymptotic optimality.

• There are non-compact classes for which asymptotic optimality is
impossible to achieve. [Ors10]

• Weaker asymptotic optimality in Cesaro sense possible
by starting with finite subset M0 ⊂ M
and adding environments ν from M over time to Mk. [SH15]

• Fazit: There exist (weakly) asymptotically optimal policies for
arbitrary (separable) /compact M.
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Optimism in MDPs and Beyond

• Let M be the class of all MDPs with |S| < ∞ states and |A| < ∞
actions and geometric discount γ.

• Then M is continuous but compact

=⇒ π◦ is asymptotically optimal by previous slide.

• But much better polynomial error bounds in this case are possible:

Theorem 6 (PACMDP bound) V π◦µ
kγ ≤ V ∗µ

kγ − ε for at most

Õ( |S|2|A|
ε2(1−γ)3 log

1
δ ) time steps k with probability 1− δ. [LH14b]

Similar bounds for General Optimistic Agents possible if environments

are generated by combining laws (of nature): Laws predict only some

feature (factorization) in some context (localization). [SH15]



Marcus Hutter - 33 - Universal Artificial Intelligence

APPROXIMATIONS & APPLICATIONS
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Towards Practical Universal AI

Goal: Develop efficient general-purpose intelligent agent

• Additional Ingredients: Main Reference (year)

• Universal search: Schmidhuber (200X) & al.

• Learning: TD/RL Sutton & Barto (1998) & al.

• Information: MML/MDL Wallace, Rissanen

• Complexity/Similarity: Li & Vitanyi (2008)

• Optimization: Aarts & Lenstra (1997)

• Monte Carlo: Fishman (2003), Liu (2002)
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Computational Issues: Universal Search
• Levin search: Fastest algorithm for [Lev73]

inversion and optimization problems.

• Theoretical application:
Assume somebody found a non-constructive
proof of P=NP, then Levin-search is a polynomial
time algorithm for every NP (complete) problem.

• Practical versions: OOPS and Levin Tree Search [Sch04, OHL23]

Appl.: Mazes, towers of Hanoi, robotics, Rubik’s cube, Sokoban, ...

• FastPrg: The asymptotically fastest and shortest algorithm for all
well-defined problems. [Hut02]

• Computable Approximations of AIXI: [HQC24]

AIξ, AIXItl, MDP-AIXI, MC-AIXI-CTW, Self-AIXI.

• Human Knowledge Compression Prize: (500’000C=)
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Computable Approximations of AIXI

• AIξ: Bayesian mixtures ξ over smaller classes M [Hut05]

• AIXItl: Search in proof and program space for provably optimal

policy within given time and length bound similar to FastPrg [Hut07]

• MDP-AIXI: AIξ for MDP class applied to 2x2 Matrix Games [PH06]

• MC-AIXI-CTW: AIξ for CTW class with MCTS planning [VNH+11]

• Self-AIXI: Avoids expensive planning by self-predicting its own

stream of action data [CGMH+23]

• PhiMDP: An alternative approach to Universal AI based on learning

reductions from histories to MDP states [Hut09b]

• ExSAgg: Extreme reduction of histories to surrogate MDPs [Hut16]

• AIXIjs: Implementation of various history-based RL agents [ALH17]
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A Monte-Carlo AIXI Approximation
Consider class of Variable-Order Markov Decision Processes.

The Context Tree Weighting (CTW) algorithm can efficiently mix

(exactly in essentially linear time) all prediction suffix trees.

Monte-Carlo approximation of expectimax tree:

Upper Confidence Tree (UCT) algorithm:

• Sample observations from CTW distribution.

• Select actions with highest upper confidence bound.

• Expand tree by one leaf node (per trajectory).

a1
a2

a3

o1 o2 o3 o4

future reward estimate

• Simulate from leaf node further down using (fixed) playout policy.

• Propagate back the value estimates for each node.

Repeat until timeout. [VNH+11]

Guaranteed to converge to exact value.

Extensions in many directions exist [VSH12, GBVB13]
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Monte-Carlo AIXI Applications
without providing any domain knowledge, the same agent is

able to self-adapt to a diverse range of interactive environments.
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Optimal
Cheese Maze
Tiger
4x4 Grid
TicTacToe
Biased RPS
Kuhn Poker
Pacman

[VNH+11]

www.youtube.com/watch?v=yfsMHtmGDKE
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Extensions of MC-AIXI-CTW [VSH12]
• Smarter than random playout policy, e.g. learnt CTW policy.

• Extend the model class to improve general prediction ability.
However, not so easy to do this in a comput. efficient manner.

• Predicate CTW: Context is vector of (general or problem-specific)
predicate=feature=attribute values.

• Convex Mixing of predictive distributions.
Competitive guarantee with respect to the best fixed set of weights.

• Switching: Enlarge base class by allowing switching between distr.
Can compete with best rarely changing sequence of models.

• Improve underlying KT Est.: Adaptive KT, Window KT, KT0, SAD

• Partition Tree Weighting technique for piecewise stationary sources
with breaks at/from a binary tree hierarchy.

• Mixtures of factored models such as quad-trees for images [GBVB13]

• Avoid MCTS by compression-based value estimation. [VBH+15]
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Feature Reinforcement Learning (FRL)

• Basic Idea: Learn best reduction Φ of history to an MDP [Hut09b]

• Theoretical guarantees: Asymptotic consistency. [SH10]

• Example Φ-class: As Φ choose class of suffix trees as in CTW.

• How to find/approximate Φbest:

- Exhaustive search for toy problems [Ngu13]

- Monte-Carlo (Metropolis-Hastings / Simulated Annealing)

for approximate solution [NSH11]

- Exact “closed-form” by CTM similar to CTW [NSH12]

• Experimental results: Comparable to MC-AIXI-CTW [NSH12]
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Feature Reinforcement Learning (ctd)

• Extensions/Improvements:

- Looping suffix trees for long-term memory [DSH12, DSH14a]

- Structured/Factored MDPs (Dynamic Bayesian Networks) [Hut09a]

- Extreme State Aggregation beyond MDPs [Hut16, MH19, MH21b]

- Exact Binarization of Huge Action Spaces [MH21a]

• Related:

- Q-Learning for History-Based Reinforcement Learning [DSH13]

- Convergence of Q-Learning Beyond MDPs [MH18]

- Non-Convergence of Temporal-Difference-Like Methods

with Linear Function Approximation [HYZM19]

- Reinforcement Learning with Value Advice [DSH14b]
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DISCUSSION
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Aspects of Intelligence
are all(?) either directly included in AIXI or are emergent

Trait of Intell. How included in AIXI
reasoning to improve internal algorithms (emergent)
creativity exploration bonus, randomization, ...
association for co-compression of similar observations
generalization for compression of regularities
pattern recognition in perceptions for compression
problem solving how to get more reward
memorization storing historic perceptions
planning searching the expectimax tree
achieving goals by optimal sequential decisions
learning Bayes-mixture and belief update
optimization compression and expectimax
self-preservation by coupling reward to robot components
vision observation=camera image (emergent)
language observation/action = audio-signal (emergent)
motor skills action = movement (emergent)
classification by compression
induction Universal Bayesian posterior (Ockham’s razor)
deduction Correctness proofs in AIXItl
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Relation of UAI to Deep Learning - Current
How LLMs can be regarded as approximations of AIXI

• Language modelling = minimizing log-loss = compression [DRD+24]

• In-context learning as implicit Bayesian inference [XRLM22, GDR+23]

• Meta-Learning on Algorithmic Data:

A step towards Solomonoff Induction [GMGH+24]

• Tree-of-Thought corresponds to MCTS planning [YYZ+23]

(In-context learning is the analog of CTW updates within MCTS)

• RLHF is a very crude form of RL (horizon 1) [ZSW+20]

• Multimodal Transformers: AIXI is universal and agnostic to the

meaning of the I/O bitstream, so automatically multimodal.
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Relation of UAI to Deep Learning - Future
What’s missing in LLMs: How to make them closer to AIXI

• Continual learning to “compile” new experiences from in-context

short-term memory to in-weight long-term memory [KRRP22]

• Learn a proper long-horizon value function

• Using this value function in chain-of-thought sampling should mimic

MCTS quite well

• Reasoning capabilities of current LLMs are still limited. Possibly new

NN architectures are needed, but maybe current architecture with

proper scaffolding (better Tree-of-Thought, Tool-Use, . . . ) suffices.

Fazit: Gold-standard AIXI can guide in which directions to develop LLMs.
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Recent Progress

• Dynamic Knowledge Injection for AIXI Agents [YZNH24]

• Transformers Learning Universal Predictors [GMGH+24]

• Self-Predictive Universal AI [CGMH+23]

• Language Modeling Is Compression [DRD+24]

• Universal Agent Mixtures & Geometry of Intelligence [AQDH23]

• AIXI intervenes in the provision of reward [CHO22, CH22]

• Binarization of Rewards, Actions, Observations [CHV22a, CHV22b]

• Reward-Punishment Symmetric Universal Intelligence [AH21]

• Quantum Computing Algorithms for Universal Prediction [CH20a]

• On the Computability of Solomonoff Induction and AIXI [LH18]

• Generalised Discount Functions applied to a Monte-Carlo AIµ

Implementation [LALH17]

• Loss Bounds and Time Complexity for Speed Priors [FLH16]

• Suitable versions of AIXI are limit-computable [LH15]
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ASI Safety

• Chances and Risks of Artificial Intelligence for Society [HH21]

• Curiosity Kills the Asymptotically Optimal Agent [CHC21]

• Unambitious AIXI with short horizon is Safe [CVH21, CVH20]

• Pessimism About Unknowns Inspires Conservatism [CH20b]

• The Alignment Problem for Universal AI [EH18, EKH19]

• Reinforcement Learning with a Corrupted Reward Channel [EKO+17]

• Avoiding Wireheading with Value Reinforcement Learning [EH16]

• Self-Modification of Policy and Utility in UAI [EFDH16]
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Outlook 1

• Find optimality notions for generally intelligent agents which are

strong enough to be convincing but weak enough to be satisfiable.

• More powerful and faster computational approximations of AIXI

• Social questions about AIXI or other Super-Intelligences:

socialization, rewards, drugs, suicide, self-improvement,

manipulation, attitude, curiosity, immortality, self-preservation.

• Training (sequence): To maximize informativeness of reward,

one should provide a sequence of simple-to-complex tasks to solve,

with the simpler ones helping in learning the more complex ones.
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Outlook 2

• Address the many open theoretical questions in [Hut05].

• Bridge the gap between (Universal) AI theory and AI practice.

• Explore what role logical reasoning, knowledge representation,

vision, language, etc. play in Universal AI.

• Determine the right discounting of future rewards.

• Develop the right nurturing environment for a learning agent.

• Consider embodied agents (e.g. internal↔external reward)

• Analyze AIXI in the multi-agent setting (done) [LTF16, FTC15]
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Thanks! Questions? Details:

A Unified View of Artificial Intelligence
= =

Decision Theory = Probability + Utility Theory

+ +

Universal Induction = Ockham + Bayes + Turing

Open research problems:

at www.hutter1.net/ai/uaibook.htm
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