Thompson Sampling is Asymptotically Optimal in General Environments

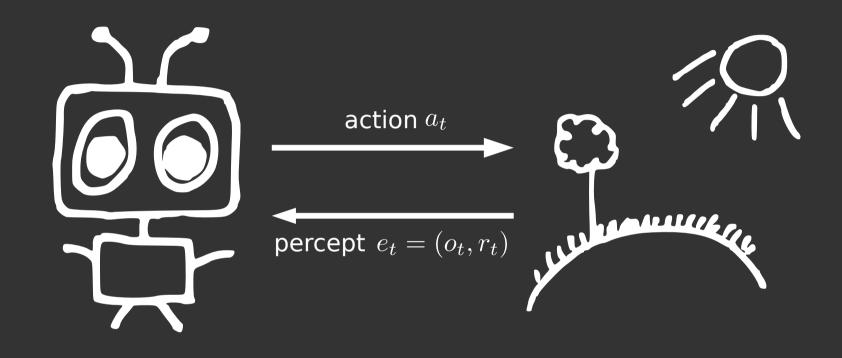
Jan Leike, Tor Lattimore, Laurent Orseau, <u>Marcus Hutter</u>

Australian National University

Atari 2600

- Fully observable
- Ergodic
- ε-exploration works

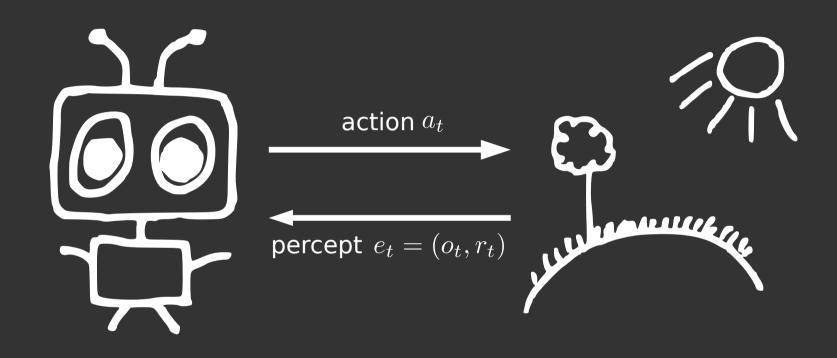
The General RL Problem



Goal: maximize $\sum_{t=1}^{\infty} \gamma_t r_t$

where $\gamma:\mathbb{N} o\mathbb{R}^{\geq 0}$ and $\overline{\sum_{t=1}^\infty}\gamma_t<\infty$

The General RL Problem



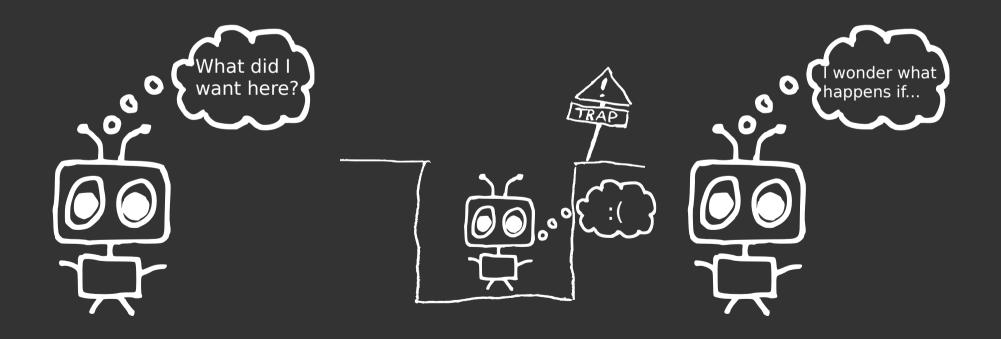
History: $a_{< t} = a_1 e_1 \dots a_{t-1} e_{t-1}$

Value function:

$$V^{\pi}(\mathbf{x}_{< t}) := \frac{1}{\sum_{k=t}^{\infty} \gamma_k} \mathbb{E}^{\pi} \left[\sum_{k=t}^{\infty} \gamma_k r_k \right] \mathbf{x}_{< t}$$

General Environments

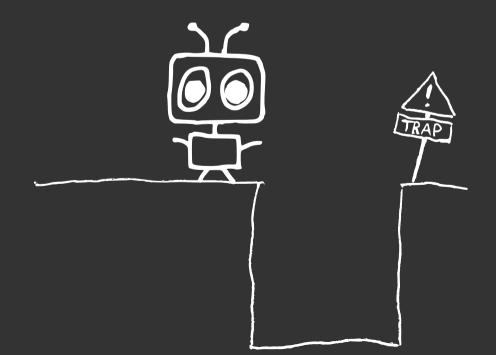
- Partially observable
- Non-ergodic
 Difficult to
 - explore



Asymptotic Optimality

$$V^*(\mathbf{x}_{< t}) - V^{\pi}(\mathbf{x}_{< t}) \to 0$$

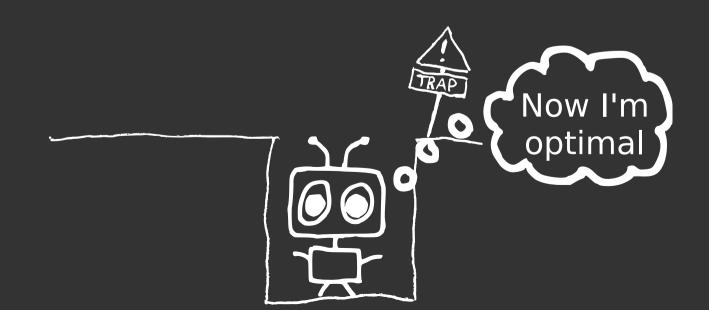
on histories generated by μ and π



Asymptotic Optimality

$$V^*(\mathbf{x}_{< t}) - V^{\pi}(\mathbf{x}_{< t}) \to 0$$

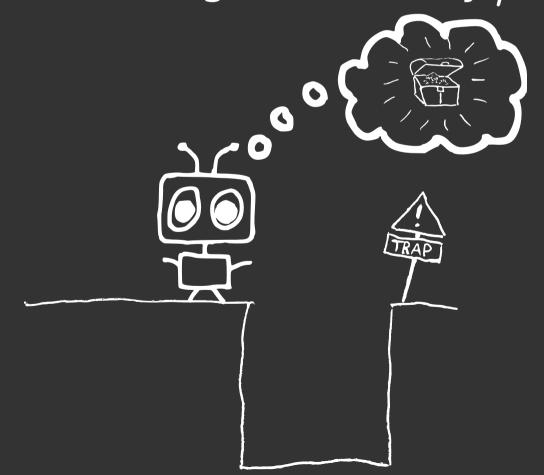
on histories generated by μ and π



Asymptotic Optimality

$$V^*(\mathbf{x}_{< t}) - V^{\pi}(\mathbf{x}_{< t}) \to 0$$

on histories generated by μ and π

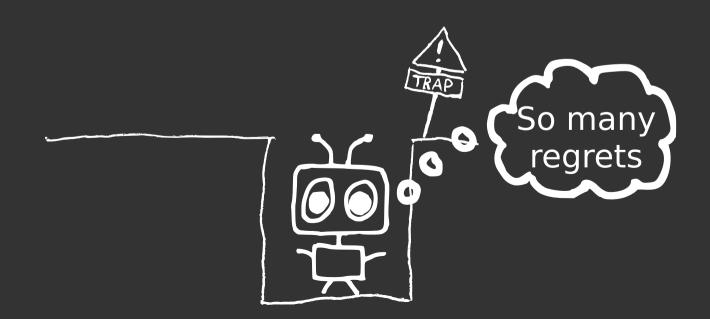


Regret

$$\sup_{\pi'} \mathbb{E}^{\pi'} \left[\sum_{t=1}^m r_t \right] - \mathbb{E}^{\pi} \left[\sum_{t=1}^m r_t \right]$$
No regret so far

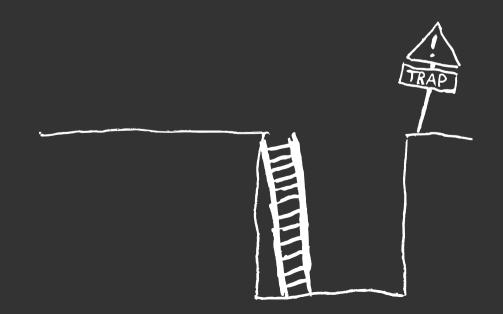
Regret

$$\sup_{\pi'} \mathbb{E}^{\pi'} \left[\sum_{t=1}^{m} r_t \right] - \mathbb{E}^{\pi} \left[\sum_{t=1}^{m} r_t \right]$$



Regret

$$\sup_{\pi'} \mathbb{E}^{\pi'} \left[\sum_{t=1}^{m} r_t \right] - \mathbb{E}^{\pi} \left[\sum_{t=1}^{m} r_t \right]$$



Recoverability

recoverability

$$\sup_{\pi,\pi'} \left| \mathbb{E}^{\pi} [V^*(\mathbf{x}_{< t})] - \mathbb{E}^{\pi'} [V^*(\mathbf{x}_{< t})] \right| \to 0$$

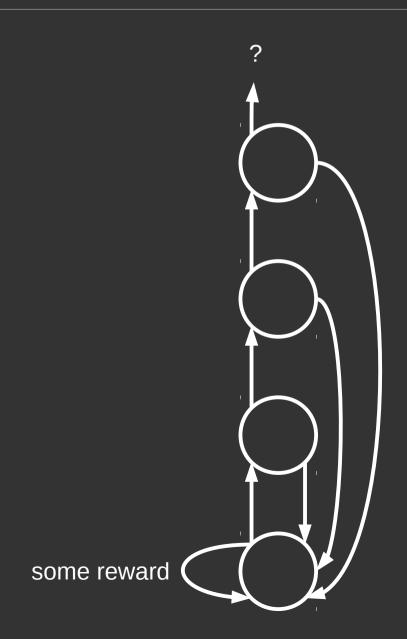
- + asymptotic optimality
- + some assumptions on γ
- ⇒ regret is sublinear

Thompson Sampling vs. Bayes

Important: resample after an effective horizon! (Strens, 2000)

	recommends	posterior
environment 1	action A	1/3
environment 2 environment 3 mompson samplin	action B	1/6
environment 3 mompson	action B	1/15
environment 4	action C	1/16
Bayes: weighted average		

Targeted Exploration



Thompson Sampling is Pretty Good™

- Good empirical performance in bandits (Chapelle and Li, 2011)
- Optimal regret in bandits (Agrawal and Goyal, 2011; Kaufmann et al., 2012)
- Near-optimal regret in MDPs (Osband et al., 2013; Gopalan and Mannor, 2015)
- New: Asymptotic optimality in general environments

$$\mathbb{E}^{\pi} \left[V^*(\mathbf{z}_{< t}) - V^{\pi}(\mathbf{z}_{< t}) \right] \to 0$$

Application to Game Theory

- Game theory = RL in partially observable domains
- asymptotic optimality = convergence to best response
- Need the grain of truth assumption: environment + other players are in the environment class
 - ⇒ TS converges to Nash equilibrium in any game

Summary

- Traps are problematic for optimality
- Bayes is not a.o. (Orseau, 2013)
- Bayes can be Very Bad[™] (Leike and Hutter, 2015)
- Thompson sampling is a.o.
- Recoverability + assumptions on γ + a.o.
 - ⇒ sublinear regret

https://jan.leike.name/

https://www.hutter1.net/

