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Background (Legg & Hutter 2007)

• Legg/Hutter (2007) distilled the essence of intelligence into a 
universal form of RL.

• Agent 𝜋𝜋’s universal intelligence ϒ(𝜋𝜋) is its average reward over all 
suitable environments, where each environment μ has weight 2−𝐾𝐾(𝜇𝜇)

where K is Kolmogorov complexity.

• Note K depends on the choice of a Universal Turing Machine.



Background (Leike & Hutter 2015)

• Leike/Hutter (2015) noted that ϒ(𝜋𝜋)’s dependence on UTM choice is 
non-trivial. Different UTMs yield radically different universal 
intelligence measures.

• They posed an open question:
“What are other desirable properties of a UTM?”

Alexander/Hutter (2021) made progress by considering how 
intelligence should change if rewards and punishments are swapped.



Preliminaries: Ambient Space

• A is a finite nonempty set of actions
• O is a finite nonempty set of observations
• R is a finite nonempty set of rewards, rational numbers from [-1,1], 

symmetric about 0 (i.e., -r is a valid reward whenever r is).

Note: In Legg/Hutter 2007, R is only allowed to contain nonnegative 
rewards.



Definition 1: RL Framework

• Define (ORA)* and (ORA)*OR using regex. E.g., (ORA)* contains all 
sequences (obs, reward, action, ..., obs, reward, action).

• An agent is a function 𝜋𝜋 assigning rational probability 𝜋𝜋(a|s) for all a
in A, s in (ORA)*OR.

• An environment is a function 𝜇𝜇 assigning rational probability 𝜇𝜇(o,r|s) 
for all o in O, r in R, s in (ORA)*.

• 𝑉𝑉𝜇𝜇𝜋𝜋 is the expected total reward 𝜋𝜋 would obtain from 𝜇𝜇.

This is a very universal form of RL, like in 17.3 of Sutton & Barto.







Definition 2: Well-behaved environments

Environment 𝜇𝜇 is well-behaved if:
1. 𝜇𝜇 is computable.
2. For all 𝜋𝜋, −1 ≤ 𝑉𝑉𝜇𝜇𝜋𝜋 ≤ 1.

Note: This is a more universal way to achieve what some authors 
contrive with tricks like discount factors, etc.



Definition 3: Dual Agents/Environments

• For history 𝑠𝑠 in (ORA)* or (ORA)*OR, 𝑠̅𝑠 is the result of multiplying all 
rewards by -1.

• For agent 𝜋𝜋, �𝜋𝜋 is the agent who confuses rewards and punishments:
�𝜋𝜋 𝑎𝑎 𝑠𝑠 = 𝜋𝜋 𝑎𝑎 ̅𝑠𝑠

• For environment 𝜇𝜇, 𝜇̅𝜇 is the environment which switches rewards and 
punishments:

𝜇̅𝜇 𝑜𝑜, 𝑟𝑟 𝑠𝑠 = 𝜇𝜇(o,−r|𝑠̅𝑠)



Reward/Punishment Algebra

Lemma 4: 𝑥̿𝑥 = 𝑥𝑥 (for any agent, environment, or history 𝑥𝑥).

Theorem 5: 𝑉𝑉�𝜇𝜇�𝜋𝜋 = −𝑉𝑉𝜇𝜇𝜋𝜋

Corollary 6: 𝑉𝑉�𝜇𝜇𝜋𝜋 = −𝑉𝑉𝜇𝜇�𝜋𝜋

Corollary 7: 𝜇𝜇 is well-behaved iff 𝜇̅𝜇 is well-behaved.





An Axiom about Symmetry

Suppose ϒ(𝜋𝜋) is the intelligence of 𝜋𝜋, measured as expected 
performance averaged (somehow) over all well-behaved environments.

�𝜋𝜋 uses all 𝜋𝜋’s ingenuity to seek punishment, so it seemed natural to 
suggest as an axiom:

ϒ �𝜋𝜋 = −ϒ 𝜋𝜋 .

As further justification, we’ll argue this full symmetry axiom is implied 
by a weaker symmetry assumption.



Justification Step 1: Weak Symmetry

• Assume ϒ measures intelligence as average performance.
• Say ϒ is weak symmetric if: whenever ϒ(𝜋𝜋) ≠ 0 then ϒ(𝜋𝜋) ≠ ϒ �𝜋𝜋 .

Weak symmetry is a reasonable/natural requirement: Say ϒ(𝜋𝜋)>0. This 
should mean 𝜋𝜋 is intelligent: 𝜋𝜋 uses ingenuity to get positive rewards. 
By def., �𝜋𝜋 uses that same ingenuity to obtain punishments. So it would 
be strange for �𝜋𝜋 to get the exact same average rewards as 𝜋𝜋!



Step 2: Weak Symmetry implies Symmetry

Let 𝜋𝜋 be any agent. Assume ϒ is weak symmetric and measures 
intelligence as average performance.
Let 𝜌𝜌 be an agent who, at the start of every environment, flips a coin 
and thereafter plays as 𝜋𝜋 if HEADS, �𝜋𝜋 if TAILS.

Since ϒ measures avg. performance, ϒ 𝜌𝜌 = ϒ 𝜋𝜋 +ϒ �𝜋𝜋
2

.
Define 𝜌𝜌′ the same but swap HEADS and TAILS. 𝜌𝜌 seems 
indistinguishable from 𝜌𝜌′ so ϒ 𝜌𝜌 = ϒ 𝜌𝜌𝜌 . Swapping HEADS and TAILS 
is the same as swapping 𝜋𝜋 and �𝜋𝜋, thus 𝜌𝜌′= 𝜌̅𝜌. Thus ϒ 𝜌𝜌 = ϒ 𝜌̅𝜌 . By 
weak symmetry, ϒ 𝜌𝜌 = 0.
Thus ϒ �𝜋𝜋 = −ϒ 𝜋𝜋 !



Toward symmetric Legg-Hutter intelligence

• Legg-Hutter intelligence depends on the choice of a UTM.
• Can we choose the UTM so as to make LH intelligence symmetric?

Actually ... LH intelligence also depends on how RL is encoded.
This is usually suppressed.
We need to make it explicit to answer the above question.



Definition 9: RL-Encodings

Legg-Hutter intelligence takes place in a context where computable 
functions map finite binary strings to finite binary strings.

Definition 9: An RL-encoding is a function Π (w/prefix-free range, see 
next slide) sending RL environment inputs/outputs to binary strings. 

A computable function    (taking binary strings to binary strings) 
encodes RL environment 𝜇𝜇 if: 



Some technical details

In the Legg-Hutter intelligence context, computable functions’ domains 
are prefix-free (a set is prefix-free if it contains no p,p’ such that p is a 
strict initial segment of p’).

So an RL-encoding needs to have prefix-free range so it can be 
composed with computable functions.

Further...  Definition 9 (part 2): RL-encoding Π is suffix-free if its range 
never includes p,p’ such that p is a strict terminal segment of p’.



Example Prefix-Free Suffix-Free RL-Encoding

Encode histories as strings defining Python arrays (and convert to 
binary using ASCII):

Encode probability distributions on 𝑂𝑂 × 𝑅𝑅 as strings defining Python 
dictionaries (and convert to binary using ASCII):

Prefix-free: Code ends with ] or }, and ] or } occur nowhere else
Suffix-free: Code starts with [ or {, and [ or { occur nowhere else



Definition 10: Kolmogorov Complexity

Let U be a prefix-free UTM (PFUTM), i.e., a UTM with prefix-free 
domain. Let Π be an RL-encoding.
• For each computable environment 𝜇𝜇, the Kolmogorov Complexity of 
𝜇𝜇 according to U and Π, written              , is the length of the smallest 
U-computer program defining a function that encodes 𝜇𝜇.

• U is Π-symmetric if for all 𝜇𝜇,                                  .



Theorem 11: For every suffix-free RL-
encoding Π, there is a Π-symmetric PFUTM.
Proof: Let U0 be some PFUTM. Let U be the PFUTM with U(1X)= U0(X) 
and with U(0X) defined as follows:

• If X is U0 -program “plug history s into function F to get rational 
probability distribution 𝜇𝜇(•|s)”, then instead plug 𝑠̅𝑠 into F. If this 
yields a rational probability distribution 𝑚𝑚 on 𝑂𝑂 × 𝑅𝑅, then U(0X)= �𝑚𝑚, 
where �𝑚𝑚 𝑜𝑜, 𝑟𝑟 = 𝑚𝑚(𝑜𝑜,−𝑟𝑟). Else, U(0X) diverges.

By construction, whenever 0X is a U-code for 𝜇𝜇, then 1X is a U-code for 
𝜇̅𝜇, & vice versa. So U is Π-symmetric. Suffix-freeness is used to show U 
is prefix-free.



Existence Theorem Illustrated
Assume A={“a”}, O={“o”}, R={1,-1}

U: U0=Python:



Implicit Bias in RL

Our existence proof works by removing bias.

RL researchers have arbitrarily decided “positive good, negative bad”.
It would be just as valid to decide “negative good, positive bad”.

The proof of Theorem 11 can be thought of as constructing a 
programming language where every program must begin with a bit 
specifying which of these two conventions the program uses.





Thm 14: If U is Π-symmetric then ϒ𝑈𝑈
Π(�𝜋𝜋)=−ϒ𝑈𝑈Π(𝜋𝜋).





Exercise: Permutations

Say a PFUTM is Π-permutable if for each permutation P of the action-
set A, whenever 𝜇𝜇’ is the environment obtained from 𝜇𝜇 by permuting 
actions using P, then K(𝜇𝜇’)=K(𝜇𝜇).

By similar reasoning as above, if Π is suffix-free, then Π-permutable 
PFUTMs exist. In the corresponding Legg-Hutter universal intelligence 
measure, action permutations preserve agents’ intelligence.

Likewise for permutations of the observation-space.



Whether to take absolute values

• If a subject scores 0% on a 1000-question True-False IQ test, are they 
highly intelligent or highly unintelligent?

• Legg & Hutter measure intelligence purely as average performance: as 
if to say, the above subject is highly unintelligent. This is contrary to 
certain everyday intuitions.

• An alternate intelligence measure would average 𝑉𝑉𝜇𝜇𝜋𝜋 instead of 𝑉𝑉𝜇𝜇𝜋𝜋.

Then “ϒ �𝜋𝜋 = −ϒ 𝜋𝜋 ” would become “ϒ �𝜋𝜋 = ϒ 𝜋𝜋 ”.



Our stance on abs values

• Taking abs values or not taking abs values yields two different 
intelligence measures with different properties.

• Neither is more “valid” than the other (as far as we know). One 
measures raw average performance, the other measures ability to 
consistently extremize performance (whether in the good-
performance direction or the bad-performance direction).

Arguably, the debate traces back to Plato’s “Lesser Hippias”. Socrates 
initially seems pro-abs-values, then in a plot-twist he turns his logic 
against itself (dualizes it?), making him anti-abs-values apparently...



Conclusion

• The dual of an agent (resp. environment) is the version of that agent 
(resp. environment) which swaps rewards/punishments.

• Legg-Hutter intelligence satisfies ϒ �𝜋𝜋 = −ϒ 𝜋𝜋 provided the 
background UTM is symmetric, i.e., that K 𝜇̅𝜇 = K 𝜇𝜇 .

• This symmetry requirement is an example of an intrinsically desirable 
property of a UTM (aka programming language) in context of RL.



Call for Co-Authors

I’d be interested in working with members of this seminar on follow-up 
papers. If interested, email me: samuelallenalexander@gmail.com

Some ideas:
• Notions of UTM symmetry in general (not limited to RL context).
• Deeper dive into the “weak symmetry implies symmetry” argument.
• Legg-Hutter intelligence in almost-symmetric UTMs (leads naturally to 

number systems with infinities and infinitesimals).
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Theorem 11: For every suffix-free RL-
encoding Π, there is a Π-symmetric PFUTM.
Proof: Let U0 be some PFUTM. Let U be the PFUTM with U(1X)= U0(X) 
and with U(0X) defined as follows:

• If X is U0 -program “plug history s into function F to get rational 
probability distribution 𝜇𝜇(•,•|s)”, then instead plug 𝑠̅𝑠 into F. If this 
yields a rational probability distribution 𝑚𝑚 on 𝑂𝑂 × 𝑅𝑅, then U(0X)= �𝑚𝑚, 
where �𝑚𝑚 𝑜𝑜, 𝑟𝑟 = 𝑚𝑚(𝑜𝑜,−𝑟𝑟). Else, U(0X) diverges.

U is prefix-free by Π-suffix-freeness. By constr., whenever 0X is a U-
code for 𝜇𝜇, then 1X is a U-code for 𝜇̅𝜇, & vice versa. So U is Π-symmetric.



Abs Values History: Plato’s “Lesser Hippias”

• Whether to take absolute values is an ancient debate.
• In Plato’s “Lesser Hippias”, Socrates presents what initially seems like 

a compelling argument in favor of taking absolute values.

SOCRATES: “Which of the two then is a
better runner? He who runs slowly
voluntarily, or he who runs slowly
involuntarily?” Etc. etc. etc...



Abs Values History: Socrates’ Evil Twist

• From what initially seems like a pro-abs-values argument, 
Socrates uses the same logic to defend the ludicrous position 
that it’s better to be intentionally evil than unintentionally evil. 

(An interesting AGI safety question. Is an
intentionally evil AGI better or worse than
an unintentionally evil one?)

The dialogue ends with poor Hippias
hopelessly confused. Better not to take
sides on the abs-value question.
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