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Motivation

What does this green apple tell you about black ravens?



The Paradox of Confirmation

Proposed by [Hempel, 1945].
H = all ravens are black

H ′ = all nonblack objects are nonravens

I Nicod’s criterion:
Something that is F and G confirms “all F s are G s”
=⇒ A nonblack nonraven confirms H ′

I Equivalence condition:
Logically equivalent hypotheses are confirmed by the same
evidence
=⇒ A nonblack nonraven confirms H

Paradox?
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Solomonoff Induction

Let U be a universal monotone Turing machine.

Solomonoff’s universal prior [Solomonoff, 1964]:

M(x) :=
∑

p:U(p)=x ...

2−|p|

M is a probability distribution on X∞ ∪ X ∗

Solomonoff normalization: Mnorm(ε) := 1 and

Mnorm(xa) := Mnorm(x)
M(xa)∑

b∈X M(xb)

Mnorm is a probability distribution on X∞
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Properties of Solomonoff Induction

Observe (non-iid) data x<t := x1x2 . . . xt−1 ∈ X ∗,
predict

arg max
a∈X

M(a | x<t)

I At most E + O(
√

E ) errors when observing data from a
computable measure µ (E = errors of the predictor that
knows µ) [Hutter, 2001]

I M merges with any computable measure
µ [Blackwell and Dubins, 1962]:

sup
H
|M(H | x<t)− µ(H | x<t)| → 0 µ-a.s. as t →∞

I M is lower semicomputable, but M(xy | x) is incomputable

=⇒ M is really good at learning
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Setup

I Alphabet = observations:

X := {BR,BR,BR,BR}

I Hypothesis H = “all ravens are black”:

H := {x ∈ X∞ ∪ X ∗ | x does not contain BR}

I Data x<t drawn from a computable measure µ for t = 1, 2, . . .

I M(H | x<t) is subjective belief in H at time step t

I Confirmation and disconfirmation:

µ(H) = 0 =⇒ ∃t. M(H | x<t) = 0 µ-a.s.

µ(H) = 1 =⇒ M(H | x<t)→ 1 µ-a.s.

I Equivalence condition is satisfied.
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Nicod’s Criterion

Question: Does a black raven confirm H:

M(H | x<t) < M(H | x<tBR)?

Question: Does a nonblack nonraven confirm H:

M(H | x<t) < M(H | x<tBR)?

Answer: Not always.
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Solomonoff Induction and Nicod’s Criterion

Theorem (Counterfactual Black Raven Disconfirms H)

Let x1:∞ ∈ H ⊂ X∞ be computable and xt 6= BR infinitely often.
=⇒ ∃t ∈ N (with xt 6= BR) s.t. M(H | x<tBR) < M(H | x<t)

Theorem (Disconfirmation Infinitely Often for M)

Let x1:∞ ∈ H be computable.
=⇒ M(H | x1:t) < M(H | x<t) infinitely often.

Theorem (Disconfirmation Finitely Often for Mnorm)

Let x1:∞ ∈ H be computable.
=⇒ ∃t0∀t > t0. Mnorm(H | x1:t) > Mnorm(H | x<t).

Theorem (Disconfirmation Infinitely Often for Mnorm)

There is an (incomputable) x1:∞ ∈ H s.t.
Mnorm(H | x1:t) < Mnorm(H | x<t) infinitely often.
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Resolving the Paradox of Confirmation I

Solution: Reject Nicod’s criterion!
[Good, 1967, Jaynes, 2003, Vranas, 2004]

Not all black ravens confirm H.



Resolving the Paradox of Confirmation II

In the literature there are perhaps 100 ‘paradoxes’ and
controversies which are like this, in that they arise from
faulty intuition rather than faulty mathematics. Someone
asserts a general principle that seems to him intuitively
right. Then, when probability analysis reveals the error,
instead of taking this opportunity to educate his
intuition, he reacts by rejecting the probability analysis.

[Jaynes, 2003, p. 144]
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