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Introduction

e Gated Linear Networks (GLNs) are a general purpose family of neural networks,
with an interesting and distinct take on credit assignment.

e Many possible practical uses, such as regression [3], contextual bandits [2],
transfer learning and non-stationary time series modelling [4].

e Here we will focus on how and why they learn, what are the advantages, what
are the current limitations, and discuss some open questions.



So what is a GLN?

A scalable and universal (conditional target) density approximation technique.
Origins in data compression [1] and can be thought as a generalisation of PAQ
mixing networks.

A feedforward neural network trained via the simultaneous optimization of many
convex losses, one per neuron. Interestingly, each neuron attempts to predict
the target directly.

Relies on the interaction between gating and local learning to gain (non-linear)
representation power. No backpropagation and no implicit feature construction!
GLNs are a smoothing technique with an inductive bias which is can be
controlled by a choice of gating function.



GLN Architecture
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GLN Neuron
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GLN Neuron with Halfspace Gating

Given a choice of weights, a GLN computes a weighted product of experts:
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Context functions are generated randomly at initialisation, by uniformly
sampling normal vectors from the surface of a unit sphere, and using them to
define a pair of halfspaces, with a weight vector associated to each one.
Given an example, the context function will determine which halfspace it lies
in, and use corresponding weight vector.



Gating + Local Learning: is it all you need?
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Figure 2. Output of a four layer network with random half-space contexts after training to convergence. Each box represents a non-bias
neuron in the network, the function to fit is shown in black, and the output distribution learnt by each neuron is shown in colour (for
example, red for the first layer and purple for the top-most neuron). All axes are identical, as labeled in the bottom left neuron. The dashed

coloured lines represent the sampled hyperplane for each neuron.




Empirical Capacity

Can get a sense of model
capacity by comparing ability to
fit randomly shuffled or noisy
labels.

GLNs compare favourably with
Deep RelLU networks.

(Open Question) Can we
characterize this formally?
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Learning Dynamics

Figure 4. The
effect of a sin-
gle noisy XOR
update  (circled)
on the decision
boundaries of a
halfspace  gated
GLN. Sampled
hyperplanes for
each gate are
shown in white.

Inputs close in terms of cosine similarity will map to similar products of weight matrices!




GLNSs are data efficient neural networks suited for online learning

Single pass classification performance
of GLNs matches general purpose batch
techniques like SVMs, XGBoost, Deep
Relu Networks on UCI datasets.

98% accuracy with a single online pass
over MNIST

Matches SOTA NATs-per-image for
autoregressive MNIST density modelling
using just 1 pass!
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Figure 7. Online (single-pass) GLN classification accuracy on a
selection UCI datasets, compared to three contemporary batch
methods (Support Vector Machine, Gradient Boosting for Classifi-
cation, Multi-Layer Perceptron) trained for 100 epochs.



Additional results:

SOTA performance in contextual bandits and regression:
- Sezener, et al., Online Learning in Contextual Bandits using Gated

Linear Networks, NeurIPS, 2020.
- Budden, et al., Gaussian Gated Linear Networks, NeurIPS, 2020.

Modular and decoupled learning opens up many avenues for building
networks which can adapt to non-stationarity and transfer across tasks.
- Wang, et al., A Combinatorial Perspective on Transfer Learning,
NeurIPS, 2020.



Linear Interpretability
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Figure 5. Saliency maps for constituent GLN binary classifiers of
one-vs-all MNIST classifier after a single training epoch.



Resilience to Catastrophic Forgetting
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Figure 6. Retention results for permuted MNIST. Models are trained sequentially on 8 tasks (rows) and evaluated on all previously

encountered tasks (columns). For example, the top-right plot indicates performance on Task | after being trained sequentially on Tasks 1
to 8 inclusive (not all tasks shown). Each model only trains for one epoch per task, with the exception of “EWC 10 pass™ and “MLP 10
pass” (shrunken 10-fold on x axis). Error bars denote 95% confidence levels over 10 random seeds.



GLN algorithms as propagation of sufficient statistics

Algorithm 1 GLN(©, 2. p. z, 7, update).

: - , , Algorithm 1 G-GLN: inference with optional update
Perform a forward pass and optionally update weights.
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Code Available!

e Of course, the best way to build understanding and intuition is to see them in action:

github.com/deepmind/deepmind-research/tree/master/gated_linear_networks



Summary

GLNs are a different take on neural networks, a combination of ideas from
data compression, online learning, deep learning, which are well suited to
online or data limited regimes.

Many interesting questions remain: are there other general purpose classes
of context functions with different inductive biases? How do we incorporate

translation invariance or other image specific prior knowledge? Can we say
something stronger than (asymptotic) universality in theory?

Early days for this method, but initial results exciting and we are only just
beginning to understand which problems they are best suited to...
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