

3D Model Assisted Image Segmentation

Srimal Jayawardena Di Yang Marcus Hutter Australian National University

srimal(dot)jayawardena(at)anu(dot)edu(dot)au
http://users.cecs.anu.edu.au/~srimalj

DICTA 2011

Srimal Jayawardena

Australian National University

3D Model Assted. Img. Seg.

DICTA 2011

3 1 4

The problem

Segmenting a mostly homogeneous (same color/texture) object into parts is a hard problem.

(a) Original Image

(b) Segmentated into parts

• • • • • • • • • • • • •

3D Model Assted. Img. Seg.

DICTA 2011 2 / 15

Methodology Overview

Gradient Loss for Pose Estimation

Let θ parameterize the pose of the 3D model w.r.t the camera.

3D Model Gradients

 $G_N(\boldsymbol{\theta})(u,v) = ||\nabla \Phi(u,v,\boldsymbol{\theta})||_k^k$ (1)

(j) $G_N(\theta)$

Srimal Jayawardena

Australian National University

3D Model Assted. Img. Seg.

DICTA 2011

Photo Gradients

(g) Real G_I

(h) Synthetic G_I

$$G_I(u,v) = ||\nabla I(u,v)||_k^k$$
 (2)

Overlays and Smoothing

(a) Real

(d) Synthetic

(e) n=0

(f) n=2

Srimal Jayawardena

Australian National University

3D Model Assted. Img. Seg.

DICTA 2011 7 / 15

Loss Landscapes

< ロ > < 回 > < 回 > < 回 > < 回</p>

Hierarchical Optimization

(a) Photo (b) Background removed

(c) n=2 (d) n=1 (e) n=0

(f) Final fine pose n=0

Next: Initialise a *Level Set Evolution* contour detection from projected 3D model parts

Srimal Jayawardena

Australian National University

3D Model Assted. Img. Seg.

DICTA 2011 9 / 15

Contour Detection

Level Set Evolution without re-initialization [Li et al., 2005, CVPR]

Row 1: Level set function, Row 2: Zero level curve

Results

(a) Initialisation

(b) Result

(c) Benchmark GC (d) Benchmark LS

(e) Initialisation

(f) Result

(g) Benchmark GC (h) Benchmark LS

イロト イヨト イヨト イヨト

Srimal Jayawardena

Australian National University

3D Model Assted. Img. Seg.

DICTA 2011 11/15

Results

(a) Initialisation

(b) Result

(c) Benchmark GC (d) Benchmark LS

< ロ > < 回 > < 回 > < 回 > < 回</p>

(e) Initialisation

Srimal Jayawardena

Australian National University

3D Model Assted. Img. Seg.

크 **DICTA 2011** 12/15

Accuracy

• Part segmentation results for two views of a Mazda Astina.

•
$$Accuracy = 1 - \left(\frac{No.Misclassified.Pixels}{No.Ground.Truth.Pixels}\right)$$

Part	Side View	Semi Profile	Avg.
Fender	97.7%	97.6%	97.7%
Front door	98.1%	95.3%	96.7%
Back door	96.8%	93.6%	95.2%
Mud flap	97.3%	95.1%	96.2%
Front window	97.8%	97.5%	97.7%
Back window	99.5%	93.9%	96.7%

Discussion

- Challenges High amount of reflections and noise
- A closer initialisation curve better results
- Future work simlutaneous pose estimation and segmentation

Thank you!

References I

Li, C., Xu, C., Gui, C., and Fox, M. (2005).

Level set evolution without re-initialization: a new variational formulation.

In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, volume 1, pages 430 – 436 vol. 1.

DICTA 2011 15 / 15

★ ∃ ► ★