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Abstract

Recently a number of empirical “universal” scaling law papers have been
published, most notably by OpenAI. ‘Scaling laws’ refers to power-law
decreases of training or test error w.r.t. more data, larger neural networks,
and/or more compute. In this work we focus on scaling w.r.t. data size n.
Theoretical understanding of this phenomenon is limited, except in
finite-dimensional models for which error typically decreases with n−1/2 or
n−1, where n is the sample size. We develop and theoretically analyse the
simplest possible (toy) model that can exhibit n−β learning curves for
arbitrary power β > 0, and determine to which extent power laws are
universal or depend on the data distribution or loss function: Roughly,
learning curves exhibit a power law with β = α

1+α for Zipf-distributed data
with exponent 1 + α, independent of the choice of loss. Furthermore,
noise rapidly deteriorates/improves in instantaneous/time-averaged
learning curves for increasing n, suggesting that model selection should be
based on cumulative (AUC) or time-averaged error, not final test error.
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Power Laws in
Large-Scale Machine Learning

‘Mantra’ of modern machine learning: ‘bigger is better’.

The larger and deeper Neural Networks (NNs) are,
the more data they are fed, the longer they are trained,
the better they perform.

Quantification: Test error decreases as a power law,
with the data size, with the model size (number of NN parameters),
as well as with the compute budget used for training ...

assuming one factor is not “bottlenecked” by the other two factors,
-or- all three factors are increased appropriately in tandem.

Note: Subtract irreducible error due to intrinsic noise in the data
and/or non-vanishing model mis-specification.
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Power Laws in Deep Learning

DeepLearning Scaling [KMH+20] – Log-log Plots
Test loss of a Transformer trained to autoregressively model language
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Ubiquity/Universality of Power Laws

Power laws have been observed for many

problem types (supervised, unsupervised, transfer learning)

data types (images, video, text, even math)

many NN architectures (Transformers, ConvNets, ...)

different loss functions (cross-entropy, log, logistic, 0-1)

[HNA+17, RRBS19, HGLS20, HKK+20, KMH+20]

This has led some to the belief that power laws might be universal:
Whatever the problem, data, model, learning algorithm, or loss,
learning curves follow power laws.

To which extent this conjecture is true, we do not know, since
theoretical understanding of this phenomenon is limited.

Marcus Hutter Learning Curve Theory DeepMind 7 / 48



This Talk

Scaling with data size n.

Problem: Classical learning theory leads to scaling laws n−β with
β = 1

2 or β = 1, not the observed β ≈ 0.05...0.35 < 1
2 .

Conjecture: Any theoretical explanation of β < 1
2 requires real-world

data and models of unbounded complexity.

Possible suitable model choices:

(a) scaling up the model (e.g. NN) with data, as done in the experiments
[intertwines scaling with data and scaling with model size]

(b) non-parametric models (e.g. kNN [SB14], Kernel regression [BCP20])
[more sophisticated analysis, manifold explanation]

(c) a model with (countably-)infinitely-many parameters (this talk)
[Hut21] [more accurate analysis. Zipf explanation]
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General Findings within our Toy Model

For domains of unbounded complexity, a variety of learning curves are
possible, not only power-laws.

Real data is often Zipf distributed (e.g. the frequency of words in
text), which is itself a power law. This implies power law learning
curves with “interesting” β < 1

2 ,

Though many (even non-Zipf) distributions also lead to power laws
but with “uninteresting” β = 1.

It is plausible that these findings remain true for most infinite models.
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Key Findings within our Toy Model

In general, learning curves consist of 3 terms

1. a data-independent loss-dependent power law (usually n−1/2 or n−1),

2. a data-dependent loss-independent power law n−β for 0 < β ≤ 1,
with (typically small) β = α

1+α for (α + 1)-Zip-distributed data,

3. an irreducible term due to noise and/or model approximation error.

The signal-to-noise ratio

rapidly deteriorates with n in instantaneous learning curves.

rapidly improves with n in time-averaged learning curves.

Consistent with arguments by [Hut06] for log-loss,
Model selection should be based on cumulative (AUC) or
time-averaged error, rather than final test error.
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Scaling with Model Size

Consider a function f : [0; 1]d → R which we wish to approximate.

A naive approximation is to discretize the hyper-cube to an ε-grid.
This constitutes a model with m = (1/ε)d parameters.

If f is 1-Lipschitz, it can approximate f to accuracy ε = m−1/d ,
i.e. the (absolute) error scales with model size m as a power law with
exponent −1/d .

More generally, if first k derivatives of f are bounded,
m parameters suffice and are necessary
for Θ(m−k/d) approximation accuracy [Mha96, DHM89]

Adapted to NNs by [Pin99] and empirically verified and extended by
[SK20] to using the dimension of the data distribution in the
penultimate layer of the NN.
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Data Size↔Iterations↔Compute

(i) Usually in deep learning, compute is proportional to the number of
learning iterations, since/provided batch and model size are kept fixed.

(ii) in online learning, every data item is used only once,
hence the size of data used up to iteration n is proportional to n.

(iii) This is also true for stochastic learning algorithms for some recent
networks, such as GPT-3, trained on massive data sets, where every
data item is used at most once (with high probability).

(iv) When generating artificial data, it is natural to generate a new data
item for each iteration.

Hence in these 4 settings, the learning curves, error-with-data-size,
error-with-iterations, and error-with-compute, are scaled versions of each
other. For this reason, scaling of error with iterations also tells us how
error scales with data size and even with compute,
but scaling with model size is different.
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Scaling with Data Size

This is the traditional domain of Statistical Learning Theory (SLT)
[SB14], online learning [GPS18], and online convex optimization
[Haz16].

The fundamental (PAC) theorem of SLT states that the empirical
error converges to the generalization error at a rate of n−1/2 for
models of finite VC-dimension, and n i.i.d. samples.

Applies to many models (SVMs, regression, NNs, finite decision trees,
...), many algorithms (Empirical Risk Minimization (ERM),
(stochastic) gradient descent approximations, ...) many losses
(convex-Lipschitz-bounded, convex-smooth-bounded, ...).
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Scaling with Data Size (ctd)

n−1/2 scaling also trivially follows from the central limit theorem for
virtually any finitely-parameterized model in the under-parameterized
regime of more-data-than-parameters:
Parameters can be estimated to accuracy n−1/2 hence absolute
(locally quadratic loss) decays with n−1/2 (n−1).

We could easily create power laws with any β by choosing exotic loss
|ŷ − yt |β/2, but this would not explain the observed β for the used
standard losses.

The average regret considered in online learning theory and online
convex optimization has similar requirements on the model (e.g.
finite-dimensional) and exhibits the same rates n−1/2 or n−1 (or 1

n ln n
due to the time-average), under similar conditions.
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Interesting Scaling with Data Beyond n−1/2

An example of a non-parametric model whose sample complexity has
been analysed with “interesting” rate, is k-nearest neighbors (kNN).

For d-dimensional Lipschitz functions, the error of kNN is bounded by
n−1/(d+1) [SB14, Thm.19.3&19.5].

Power −1/(d + 1) ≈ −1/d is due to density of data points being
n−1/d similar to discretization discussed before in terms of model size.

Learning curves n−α/d for kernel regression
[BCP20, SGW20, BDK+21].

Also hold for infinitely wide NNs, since equivalent to kernel regression
with a Neural Tangent Kernel (NTK)

α depends on target smoothness and choice of loss function.

The underlying mechanism of ε-covering a d-dimensional data
manifold with n

×
≈ (1/ε)d/α data points is the same.

The origin of the power law in our toy model is very different.
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The Goal of this Work

Identify and study the simplest model that is able to exhibit
power-law learning curves as empirically observed in Deep Learning.

Toy model: i.i.d. classification problems with countable feature space.

A natural practical example application would be
classifying words w.r.t. some criterion.

Slides: deterministic labels and 0-1 loss

Toy algorithm predicts/recalls the class for a new feature from a
previously observed (feature,class) pair,
or acts randomly on a novel feature.

Paper: Extension to noisy labels and general loss.
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The Toy Model

Classification: h ∈ H := X → Y, e.g. Y = {0, 1} for binary.

Classifier h learnt from data Dn := {(i1, y1), ..., (in, yn)} ∈ (X × Y)n.

We need infinite X for interesting learning curves.

Smallest suitable X ' N, which we henceforth assume.

Model class H := N→ Y is uncountable and has ∞ VC-dim.,
hence is not PAC learnable, but still can be learnt consistently.

Features it ∈ N are drawn i.i.d. with IP[it = i ] =: θi ≥ 0
(
∑∞

i=1 θi = 1).

∞ vector θ ≡ (θ1, θ2, ...) characterizes the feature distribution.

Noise-free: Label yt = h0(it), where h0 ∈ H is unknown true
deterministic labelling function.

Results change little for noisy labels.
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The Toy Algorithm

Toy Algorithm A : N× (N× Y)∗ → Y

memorizes all past labelled features Dn.

on next feature in+1 = i recalls yt if it = i for some i ≤ n,

or outputs undefined if i /∈ i1:n i.e. if i is new.

Formally:

A(i ,Dn) :=

{
yt if i = it for some t ≤ n

⊥ else i.e. if i /∈ i1:n
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Error

Algorithm A only makes an error predicting label yn+1 if i1:n /∈ i1:n.

Formally, the (instantaneous) error En of A when predicting label
yn+1 for feature in+1 from Dn is En := [[in+1 /∈ i1:n]].

Expected (instantaneous) error (w.r.t. Dn and in+1):
EEn := IE[En] = IP[in+1 /∈ i1:n] =

∑∞
i=1 θi (1− θi )n

Intuition: If feature i has not been observed so far (happens with
prob. (1− θi )n), then feature i is observed (happens with prob. θi ),
the algorithm makes an error.

EEn as a function of n constitutes an (expected) learning curve.

Cf. probability of discovering a new species from data [Cha81], but
usage&analyses of model & resulting expressions are totally different.

Results change little for most other loss functions.

Marcus Hutter Learning Curve Theory DeepMind 21 / 48



Table of Contents

1 Motivation/Preliminaries

2 Scaling Theory

3 Setup – Toy Model, Algorithm, Error

4 Expected Learning Curves

5 Learning Curve Variance

6 Extensions

7 Discussion

Marcus Hutter Learning Curve Theory DeepMind 22 / 48



Exponential Decay

Very simple case:
m of the θi are equal, the rest are 0.

Error EEn = (1− 1
m )n ≤ e−n/m

decays exponentially with n.

This case is not too interesting to us, since

(a) this case corresponds to a finite model
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(b) exponential decay is an “artifact” of the deterministic label and
discontinuous 0-1 error.

(c) becomes a power law 1/n after time-averaging (see later).

(d) does not explain the Deep Learning power law learning curves.
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Superposition of Exponentials

Expected Error EEn is invariant under bijective renumbering of
features i ∈ N

Hence we can w.l.g. assume θ1 ≥ θ2 ≥ θ3 ≥ ....

Some θs may be equal.
Group equal θs together into ¯̄θj with multiplicity mj > 0

EEn =
∑M

j=1 mj
¯̄θje
−n ¯̄ϑj , where ¯̄ϑj := − ln(1− ¯̄θj) ≈ ¯̄θj

M ∈ N ∪ {∞} is the number of different θi > 0.
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Superposition of Exponentials

EEn =
∑M

j=1 mj
¯̄θje
−n ¯̄ϑj

is a superposition
of exponentials in n with
different decay rates ¯̄ϑj.

Sum will be dominated
by different terms
at different “times” n.

Different phases of
exponential decay
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For M <∞, eventually exponential decay e−n
¯̄ϑM will dominate EEn.

The same “caveats” (a)-(d) apply as for M = 1 two slides ago.
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Approximation

Let f : R→ R be a smooth and monotone decreasing interpolation of
θ : N→ R, i.e. f (i) := θi and f ′(x) < 0:

EEn =
∞∑
i=1

f (i)(1− f (i))n ≈
∫ ∞

1
f (x)e−nf (x)dx

(a)
=

∫ θ1

0

ue−nudu

|f ′(f −1(u))|
×
≈ 1

n2|f ′(f −1( 1
n ))|

=
d

dn
f −1( 1

n )

(a) Reparametrization u = f (x) and f (1) = θ1 and f (∞) = 0 and
dx = du/f ′(x) and f ′ < 0.

(×) Numerator ue−nu concentrated around u = 1/n, hence can replace u
by 1/n in denominator.

Intuition: EEn is dominated by samples i0 for which θi0 ≈ 1
n .

Accuracy of the integral representation is 1/en + o(1/n).

Marcus Hutter Learning Curve Theory DeepMind 26 / 48



Zipf-distributed data

Empirically many data follow
a power-law distribution
called Zipf distr. in this context:

The frequency of the ith most
frequent item is approximately
θi ∝ i−(α+1) for some α > 0.

EEn
×
= n−β where β := α

1+α
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That is, Zipf-distributed data (with power α + 1)
lead to a power-law learning curve (with power β = α

1+α < 1).
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(Super)Exponentially-Distributed Data

Exponential data distr. θi ∝ e−γi is more skewed than any power law.

Still EEn ≈ 1/γn, i.e. still leads to a power law learning curve.

But exponent β = 1 is “uninteresting” (much larger than observed)

Surprise: Any super-exponential data (e.g. θi ∝ e−γi
2
, but quite

unrealistic) always leads to a (sort of) power law as long as θi > 0 for
infinitely many i , unlike finite model which gives exponential decay:

EEn

×
≤n−1 for all n and EEn

×
≥n−1 for infinitely many n.
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Instantaneous Variance

Variance Vn of En := [[in+1 /∈ i1:n]] as a function of n is important.

Useful learning curve requires Standard Error (STE)√
Vn/k < IE[En] ≡ EEn =: µn when averaging over k runs.

En∈{0, 1} hence E2
n =En hence V[En] = IE[E2

n]−IE[En]2 = µn(1− µn)

Since µn → 0 for n→∞,
the Standard Deviation (STD)
σn :=

√
V[En] =

√
µn(1− µn)

≈ √µn � µn = EEn

For good signal-to-noise ratio

we need k � µ
−1/2
n runs

(increasing with n!)
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Time-Averaged Mean and Variance

Alternative: Report the time-averaged error E := 1
N

∑N−1
n=0 En,

rather than the instantaneous error En.

Expectation: IE[EN ] = 1
N

∑∞
i=1[1− (1− θi )N ]

Variance: V[EN ] = 1
N2

∑∞
i=1(1− θi )N [1− (1− θi )N ]

− 1
N2

∑
i 6=j [(1− θi )N(1− θj)N − (1− θi − θj)N ]
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Uniform Case θi =
1
m[[i ≤ m]]

EEn = (1− 1
m )n ≈ e−n/m

decays exponentially, but

IE[EN ] = m
N [1− (1− 1

m )N ]
−→ m

N for N →∞

σ[EN ] ≈
√
m
N e−N/2m

� m
N ≈ IE[EN ] for N � m
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I.e. Standard Deviation is (much) smaller than the mean for N � m,
so the time-averaged learning curves have a much better
signal-to-noise ratio.
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Zipf Case θi ∝ i−(α+1)

Recall expected error: EEn ≈ cαn
−β, where 0 < β = α

1+α < 1.

Time-averaged expected error: IE[EN ] ≈ cα
N

∫ N
0 n−βdn = cα

1−βN
−β

Same power law with the same exponent β (generic property)

STD σ[EN ]
×
≈ N−

1/2+α
1+α � N−

α
1+α

×
≈ IE[EN ]

Signal-to-noise ratio is
σ[EN ]/IE[EN ]

×
≈ N−1/(2+2α).

STD much smaller than Mean.

Single run suffices to get a good
(and excellent for n & 500)
signal-to-noise ratio
for ave. and cum. error
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General θ Case

Signal-to-noise ratio: σ[EN ]

IE[EN ]
≤

√
1
N EEN

IE[EN ]
=

√
NEEN∑N−1
n=0 EEn

N→∞−→ 0

Proof requires to distinguish two cases:

1)
∑∞

n=0 EEn ≤ c (e.g. exponential error decay in finite models),

2)
∑N−1

n=0 EEn →∞ (most ∞ models, e.g. Zipf, even exponential θi )
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Instantaneous vs. Time-Averaged Error

Trivial observation: For θ0 = 1, we have in = 1 ∀n,
hence E0 = 1 and En = 0 ∀n ≥ 1 and V[En] = 0 ∀n.

This is the fastest any error can decay, 0 after 1 observation,
hence always En = Ω(1/n). Fazit:

If EEn = o(1/n), report En, since � En.

If EEn = Ω̃(1/n), report En, since
×
≈ En but variance is smaller.

Esp. in Deep Learning with small β, we have En ≈ En.

Low variance does not follow directly from law of large numbers,
since E1,E2,E3, ... are not independent.
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Zipf-Distributed Words in Typical Texts

first 20469 words in file ‘book1’ of the Calgary Corpus

0 500 1000 1500 2000 2500 3000 3500
i

10 4

10 3

10 2

_i

0.12 / i
_i  N_i

100

101

102

103

Relative (left scale) and absolute (right
scale) word frequency, and fitted Zipf
law.
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Power law fit to learning curve for this
data set for a word classification task.

The power-law fit is good if n is not too large.

For large n, the error decays exponentially as exp(−θminn),
since word frequency is quantized (∈ N).
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Noisy Labels or Targets – Implications

(a) Need “smarter” “learning” algorithm, e.g. predicting the average.

(b) Subtract irreducible error due to label noise before studying scaling.

(c) Extra n−1/2 (n−1) additive error term for absolute (square loss)
due to parameter estimation error, hence

(d) Inst. loss will not decay expon. anymore even if model is finite.

(e) Otherwise the scaling laws for Zipf data are unchanged.

In summary, conceptually error/loss is a sum of 3 terms:

(1) The parameter learning rate n−1/2 (squared for locally quadratic loss)

(2) the same power law n−β as in the deterministic case,

(3) the inherent “entropy” in the data.

Remarkably: Instantaneous square Lossnoisyn (A)
×
= EEdet.

n + IE[E
det.
n ].

This “magically” ensures (c,d,e), since IE[En]
×
≈ max{EEn,

1
n}.

For instance, for a finite model, Lossn(A)
×
≈ IE[En]

×
≈ 1

n .
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Other Loss Functions

Deterministic toy model: IE[Lossn]
×
= EEn for most loss functions

Noisy labels: Same, but extra n−1 or n−1/2 term
(now fastest possible decay)

Universality at least within toy model: For large models,
scaling laws are indep. of loss function and not affected by noise.

Marcus Hutter Learning Curve Theory DeepMind 39 / 48



Continuous Features

Feature spaces are most often vector spaces Rd .

No feature ever repeats exactly (xn 6= xm for n 6= m).

Simple processes: Dirichlet = Chinese Restaurant = Stick-Breaking.

Leads to power law learning curves n−1, but β = 1 is uninteresting.

Generalized 2-parameter Poison Dirichlet Process [BH10] also only
leads to β = 1.

Open problem: Finding analytically tractable models with continuous
features that exhibit interesting learning curves.
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Generalizing Algorithms

Proper models/algorithms for continuous features need to generalize
from observed inputs to similar future not-yet-observed inputs.

Simple model: Partition domain into countably many cells

If done a-priori and independent Dn reduces back to toy model

More realistically, if partitioning, e.g. clustering of data, is data (size)
dependent, it will affect the scaling.

‘perfect prediction for exact repetition’ abstracts
‘classify features in the same cell alike’ abstracts
‘classify similar observations alike or similarly’.

So maybe some of our findings or analysis tools approximately
transfer.
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Deep learning

(Deep) neural networks are a particularly powerful class of
models/algorithms that can generalize,

But they are notoriously difficult to theoretically analyse.

It may be a long way from our toy model to a similar analysis of NNs.

Furthermore we have not at all considered the equally interesting
questions of scaling with model size.
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Summary

We introduced and analyzed the simplest model that can exhibit
power laws (decrease of error with data size) consistent with recent
findings in deep learning.

Many but not all data distributions lead to power laws.

Zipf data with exponent α + 1 lead to power law with exponent
β = α/(1 + α). Artifact of the model or wider validity?

The signal-to-noise ratio for the time-averaged error tends to zero,
which implies that a single experimental run suffices for stable results.

Model selection should be based on cumulative (AUC) error,
rather than final test error [Hut06].
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Limitations

The toy model is totally unrealistic as a Deep Learning model,

but we believe it captures the (or at least a) true reason for the
observed scaling laws w.r.t. data.

Hopefully can be generalized to NNs

We have not addressed scaling laws w.r.t. model size.
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Applications

May help making better or more principled choices for network
architecture (depth, with, and beyond), hyper-parameters,
fine-tuning, data augmentation, pre-training, etc. [CJS+93, HGLS20].

Being able to extrapolate the consequences of such choices from
cheap training on a small subset of the data to the whole corpus by
simply fitting power laws can save significant compute.

The cost of training recent models has reached millions of dollars and
can exhaust and exceed even FAANGs computational resources.
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List of Notation

Symbol Explanation

[[Bool]] 1 if Bool=True, 0 if Bool=False

IE,V Expectation, Variance
×
= Equal within a multiplicative constant

θi probability of feature i

Dn Data consisting of n (feature i ,label y) pairs

En Instantaneous Error of A on in+1 predicting yn+1 from Dn

EEn Expectation of Instantaneous Error En w.r.t. Dn+1

EN Time-Averaged Error En from n = 0, ...,N − 1

α + 1 Exponent of Zipf distributed data frequency i−(α+1)

β Exponent of power law n−β for error as a function of data size n

γ Decay rate for exponential data distribution e−γi
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