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Abstract

Online estimation and modelling of i.i.d. data for short sequences over
large or complex “alphabets” is a ubiquitous (sub)problem in machine
learning, information theory, data compression, statistical language
processing, and document analysis. The Dirichlet-Multinomial distribution
(also called Polya urn scheme) and extensions thereof are widely applied
for online i.i.d. estimation. Good a-priori choices for the parameters in this
regime are difficult to obtain though. I present an optimal adaptive choice
for the main parameter via tight, data-dependent redundancy bounds for a
related model. The 1-line recommendation is to set the ‘total mass’ =
‘precision’ = ‘concentration’ parameter to m/[2 ln n+1

m ], where n is the
(past) sample size and m the number of different symbols observed (so
far). The resulting estimator is simple, online, fast, and experimental
performance is superb.
Keywords: sparse coding; adaptive parameters; Dirichlet-Multinomial;
Polya urn; data-dependent redundancy bound; small/large alphabet; data
compression.
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Problem Setup

Data: Short sequence over large alphabet from unknown source.

Regime: Base alphabet X larger than sequences length n.

Problem: Estimation, Modelling, Prediction, Compression.

Online alg: Predict next symbol xt+1 given only past symbols x1:t .

Applications: machine learning, information theory, data compression,
language modelling, document analysis.

I.i.d: Assume unknown i.i.d. sampling distribution. Data often not
i.i.d. but subsequence with given context is (closer to) i.i.d.

Example: Typical documents comprise a small fraction of the
available 100 000+ English words,
and words have different length/complexity/frequency.

Problem pronounced in n-gram models: Many counts are zero.
Subsequence for given context can be very short.
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The Dirichlet-Multinomial Distribution

= generalized Laplace rule = Carnap’s inductive inference scheme
= Polya urn scheme = Chinese restaurant process

DirM(xn+1 = i |x1:n) =
ni + αi

n + α+

• ni = number of times i ∈ X appeared in x1:n ≡ (x1, ..., xn).
• αi = parameter = fictitious prior counts of i .
• α+ :=

∑
i∈X αi = total mass = precision = concentration.

Theoretically motivated choices for αi (all equal by symmetry):

Dirichlet Laplace KT&others Perks Haldane Hutter

αi =
α+

|X |
1

1

2

1

|X |
0

m

2|X | ln n+1
m

• They are all problematic for large base alphabet X .
• Existing solutions: empirically optimize or sample or average α.
• New solution (last column): Analytically optimize exact redundancy.

m is the number of different symbols that appear in x1:n.
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Main Contribution

• Introduce an estimator S closely related to DirM
but easier to analyze and slightly superior.

• Reserve escape probability to symbols not seen so far.
• Derive optimal adaptive escape parameter β=̂α+

based on data-dependent redundancy,
rather than expected or worst-case bounds.

The resulting estimator:
(i) is simple, (ii) online, (iii) fast,
(iv) performs well for all m, small, middle and large,
(v) is independent of the base alphabet size,
(vi) non-occurring symbols induce no redundancy,
(vii) the constant sequence has constant redundancy,
(viii) symbols that appear only finitely often have

bounded/constant contribution to the redundancy,
(ix) is competitive with (slow) Bayesian mixing over all sub-alphabets.
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Main Model S

S(xt+1 = i |x1:t) :=


nti

t + βt
for nti > 0

βtw
t
i

t + βt
for nti = 0

• βt = concentration parameter.
• w t

i = weight of new symbol i at time t.
• nti = number of times i appears in x1:t .

Difference to DirM(xt+1 = i |x1:t) =
nti +βwi

t+β :
• Cases instead of sum.
• Time-dependent parameters.

Closed-form of joint sequence probability for constant β (Γ=Gamma fct.):

S(x1:n) =
n−1∏
t=0

S(xt+1|x1:t) = β|A|
Γ(β)

Γ(n + β)

∏
t:ntxt+1

>0

w t
xt+1

∏
j∈A

Γ(nj)

• A = {x1, ..., xn} = symbols actually appearing in x1:n.
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CodeLength and Redundancy

Performance measure(s):

Code Length = –log-likelihood = n × log(perplexity)

CLS(x1:n) := ln 1/S(x1:n) = n × ln[1/S(x1:n)1/n]

+
= Redundancy = log-loss regret w.r.t. ML i.i.d. source:

RS(a1:n) := CLS(x1:n)− n H(θ̂), where θ̂i := ni/n
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Optimal Constant β

Code length CLβS(x1:n) is minimized for

0
!

=
∂CLβS(x1:n)

∂β
= − m

β
+ Ψ(n+β)−Ψ(β)

where Ψ(x) := d ln Γ(x)/dx is the diGamma function.

Approximate solution: βmin ≈ β∗ :=
m

2 ln n
m

Discussion: m� ln n ⇒ “frequently” new symbols ⇒ reserve more
probability mass for new symbols ⇒ make β large.

√
.

Discussion: m� ln n ⇒ new symbol rare ⇒ reserve most probability mass
for old symbols ⇒ make β small.

√
.

More regimes (0 < c <∞ and 0 ≤ α < 1 and n→∞):

m → c ∝ ln n ∝ nα ∝ n ≥ n − c = n

β∗ ∼ c/2 ln n → c ∝ nα/ ln n ∝ n ∝ n2 ∞
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Redundancy of S for “optimal” constant β∗

Rβ
∗

S (x1:n) ≤ CLw (A)−m lnm︸ ︷︷ ︸
CL of unsorted A

+
∑
j∈A

1
2 ln nj︸ ︷︷ ︸
R of j

+m ln ln en
m + 0.6m︸ ︷︷ ︸
small

• Similar lower bound for all β exists with different constants.

• Bound also holds for DirM with matching parameters.

• Bound is independent of base alphabet size D.
⇒ Holds even for infinite and continuous alphabet X .
The weights w t

i become (sub)probability densities.

• Extreme m ≈ n ≈ D: Redundancy is negative!
Code is better than ML i.i.d. oracle!

• Extreme m = 1: Constant sequence xt = j∀t ⇒ β∗ = 1/2 ln n,

CLβ
∗

S = CLw (j) + 1 = theoretical optimum = finite. Similarly m ≤ c .
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Code Length of Used Alphabet A

• Code Length of ordered A is CLw (A) :=
∑

t:ntxt+1
=0 ln(1/w t

xt+1
)

• Interpretation: Whenever we see a new symbol xt+1 6∈ {x1, ..., xt},

we code it in ln(1/w t
xt+1

) nits.

• Of course, arithmetic coding with S does not work like this.

• Example: Uniform: w t
i = 1

D−mt
⇒ CLw (A) = ln D!

(D−m)!

⇒ CLw (A)−m lnm ≈ ln
(D
m

)
= CL of unordered A.

• Code-length based: w t
i = e−CL(i) ⇒ CLw (A) =

∑
j∈A CL(j),

CL(j) is some prefix-free code length of new symbol j .
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Code length of frequencies nj

∑
j∈A

1
2 ln nj

(1a)

≤ m

2
ln

n

m

(1b)

≤ m

2
ln n

(2)

≤ D

2
ln n

R.h.s. is minimax redundancy of i.i.d. source,
1
2 ln n nits per base alphabet symbol, achieved by KT estimator.

My model (l.h.s.) improves upon this in two significant ways:

(1) Each symbol j that appears only finitely often,
induces finite bounded code length 1

2 ln nj + 1.

(2) Symbols k that do not appear in x1:n induce zero code length.

Only symbols appearing with non-vanishing frequency ni/n 6→ 0
have asymptotic redundancy 1

2 ln n.
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Adaptive Variable β∗
t

Problem: β∗ = m/2 ln n
m depends on m and n ⇒ Sβ

∗
not online.

Solution: Replace n t and m mt , both known at time t and

converging to n and m respectively, and regularize t  t + 1:

Adaptive Variable β∗t :=
mt

2 ln t+1
mt

• Compact representation of S(x1:n) is no longer possible.

• Resulting process no longer exchangeable, but still approximately.

• Still same redundancy bound but somewhat worse constants.

• Bound also holds for DirM with corresponding adaptive parameters.
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Algorithms & Computation Time

S and DirM require O(1) time and O(D) space for computing
P(xt+1|x1:t) and for updating the relevant parameters like ni , mt , β

∗
t .

Space can be reduced to O(m) by hashing.

P(xt+1|x1:t) is sufficient for e.g. model selection.

Data compression via arithmetic coding requires P(Xt+1<xt+1|x1:t),
which naively requires O(D) time per t.

Improvement to O(logD): Maintain a binary tree of depth dlog2De
with counts n1, n2, ..., nD and unnormalized weights at the leafs in
this order. Inner nodes store the sum of their two children.

Time can be reduced to O(logm) and space to O(m) by maintaining
a self-balancing binary tree of only the non-zero counts.

Bayes-optimal decisions can be computed/updated in O(1) time.

Lazy update of logarithm in β∗t possible.
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Experiments

Online Estimators:
• S

~β∗: My model with optimal variable β∗t = mt/2 ln t+1
mt

[Hut13]

• KTX : KT-estimator with base alphabet X
• Perks: DirM with αi = 1/D
• SSDC: KT-estimator w.r.t. At and escape probability 1/t+1 [VH12]

• D~irM∗: Dirichlet-multinomial optimal variable αt∗
i = β∗t /D

• SAW-Bayes: Bayesian sub-alphabet weighting [TSW93]

Offline Estimators:
• Sβ

∗
: My model with optimal constant β∗ = m/2 ln n

m

• KTA+ln
(D
m

)
: KT-estimator w.r.t. A plus CL of unsorted A

• DirM∗: Dirichlet-multinomial optimal constant α∗i = β∗/D
Oracle Estimators:
• KTA-Oracle: KT-estimator with used alphabet A
• LLθ-Oracle: log-likelihood of the sampling distr. ln 1/Pθ

iid

• H-Oracle: Empirical entropy nH( n
n )

Data: Uniform θ1:m ∼ U(∆), θm+1:D = 0; Zipf θi = i−γ ; Real Calgary
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Artificial Uniform Data
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θ1:m ∼Uniform, θm+1:D = 0, n = 1024, D = 10 000, varying m.
The online/offline/oracle estimators have solid/dashed/dotted lines.
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Artificial Zip-Distributed Data (θi = i−γ)
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θi = i−γ , n = 1024, D = 10 000, varying Zipf exponent 0 ≤ γ ≤ 2.
The online/offline/oracle estimators have solid/dashed/dotted lines.
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Real Data: Calgary Corpus
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Real data: 14 files with 21 504 ≤ n ≤ 768 771 byte alphabet (D = 256).
The online/offline/oracle estimators have solid/dashed/dotted lines.
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Discussion of Experiments

The results generally confirm the theory with few/small surprises.

D~irM∗ and S
~β∗ are very close for most m.

The offline estimators mostly coincide with their online versions.

Off-line KTA+ln
(D
m

)
significantly improves upon KTX for small m,

but breaks down for medium and large m,

Observations are mostly consistent across uniform, Zipf, and real data.
But for Zipf data, SAW-Bayes and KTA+ln

(D
m

)
seem to be worse

& relative performance of many estimators on b&w fax pic is reversed.

Oracles possess significant extra knowledge:
KTA-Oracle the used alphabet A,
and LLθ-Oracle and H-Oracle even the counts n.
The plots show the magnitude of this extra knowledge.
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Summary of Experiments

Results are similar for other (n,D,m) and (n,D, γ) combinations but code
length differences can be more or less pronounced but are seldom reversed.

In short,

KTX performs very poorly unless m ≈ D;

Perks and SSDC perform poorly unless m . ln n;

KTA+ln
(D
m

)
, DirM∗, Sβ

∗
are not online;

LLθ-Oracle, H-Oracle, KTA-Oracle are not realizable;

SAW-Bayes performs well but is extremely slow (factor Õ(m));

which leaves D~irM∗ and S
~β∗ as winners.

Winners perform very similar unless m gets very close to min{n,D}
in which case S

~β∗wins.
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Conclusion

New model S related to the Dirichlet-multinomial distribution.

Tight bounds for codelength =̂ redundancy =̂ likelihood =̂ perplexity.

Data-(ni )-dependent (rather then expected or worst-case) bounds.

Optimal choice of β different from traditional recommendations.

Constant offline β∗ and variable online ~β∗.

Zero CL for unused symbols,
finite CL for symbols occurring only finitely often,
still optimal minimax redundancy 1

2 ln n in general.

Bounds independent of size of X and even hold for continuous X .

Experimentally, S
~β∗’s performance is superb.

S
~β∗ is simple, online, fast, i.i.d. estimator.

Useful sub-component in non-i.i.d. online algorithms [VNHB12, OHSS12, Mah12]

Redundancy bounds are of theoretical interest.
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