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Abstract

Online estimation and modelling of i.i.d. data for short sequences over
large or complex “alphabets” is a ubiquitous (sub)problem in machine
learning, information theory, data compression, statistical language
processing, and document analysis. The Dirichlet-Multinomial distribution
(also called Polya urn scheme) and extensions thereof are widely applied
for online i.i.d. estimation. Good a-priori choices for the parameters in this
regime are difficult to obtain though. | present an optimal adaptive choice
for the main parameter via tight, data-dependent redundancy bounds for a
related model. The 1-line recommendation is to set the ‘total mass' =
‘precision’ = ‘concentration’ parameter to m/[2 In L], where n is the
(past) sample size and m the number of different symbols observed (so
far). The resulting estimator is simple, online, fast, and experimental
performance is superb.

Keywords: sparse coding; adaptive parameters; Dirichlet-Multinomial;
Polya urn; data-dependent redundancy bound; small/large alphabet; data
compression.
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Problem Setup

@ Data: Short sequence over large alphabet from unknown source.

@ Regime: Base alphabet X larger than sequences length n.

@ Problem: Estimation, Modelling, Prediction, Compression.

@ Online alg: Predict next symbol x;11 given only past symbols x.;.

@ Applications: machine learning, information theory, data compression,
language modelling, document analysis.

@ li.d: Assume unknown i.i.d. sampling distribution. Data often not
i.i.d. but subsequence with given context is (closer to) i.i.d.

@ Example: Typical documents comprise a small fraction of the
available 100 000+ English words,
and words have different length/complexity/frequency.

@ Problem pronounced in n-gram models: Many counts are zero.
Subsequence for given context can be very short.
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The Dirichlet-Multinomial Distribution

= generalized Laplace rule = Carnap’s inductive inference scheme
= Polya urn scheme = Chinese restaurant process
ni + «;

DirM(xp41 = i|x1:n) = hia
+

e n; = number of times / € X" appeared in xi., = (x1, ..., Xp)-
e «; = parameter = fictitious prior counts of /.
® oy =) ;. «; = total mass = precision = concentration.

Theoretically motivated choices for «; (all equal by symmetry):
Dirichlet H Laplace ‘ KT&others ‘ Perks ‘ Haldane H Hutter

S
2 | X]
e They are all problematic for large base alphabet X.
e Existing solutions: empirically optimize or sample or average a.
e New solution (last column): Analytically optimize exact redundancy.
m is the number of different symbols that appear in xy.,.

m
2|x|In 2t

_ Oy
RAFY
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Main Contribution

e Introduce an estimator S closely related to DirM
but easier to analyze and slightly superior.
e Reserve escape probability to symbols not seen so far.
e Derive optimal adaptive escape parameter S=a
based on data-dependent redundancy,
rather than expected or worst-case bounds.

The resulting estimator:
) is simple, (/i) online, (iii) fast,
iv) performs well for all m, small, middle and large,
) is independent of the base alphabet size,
) non-occurring symbols induce no redundancy,
i) the constant sequence has constant redundancy,
iif) symbols that appear only finitely often have
bounded/constant contribution to the redundancy,

(ix) is competitive with (slow) Bayesian mixing over all sub-alphabets.

(i
(i
(v
(vi
(vi
(

V
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Main Model S

t

n;
for nt >0
. t+ !
S(xey1 = i|x1t) = 5 WB'tt
i for nt=0
t+ B¢

e [, = concentration parameter.
e w/ = weight of new symbol / at time t.

) nf = number of times / appears in xi.;.
ni+Bw; |
t+p

Difference to DirM(x;+1 = i|x1.t) =
e Cases instead of sum.
e Time-dependent parameters.

Closed-form of joint sequence probability for constant J (T=Gamma fct.):

S(x1:n) HS Xe+1|X1:¢) /3|A| n+/)’ H Wy HF nj)

Xt >0 jeA
o A={xy,.. x,,} = symbols actually appearmg in xi.p.
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CodelLength and Redundancy

Performance measure(s):

Code Length = —log-likelihood = n x log(perplexity)
CLs(x1:n) = In1/S(x1:0) = nx In[1/S(x1:n)""]

s Redundancy = log-loss regret w.r.t. ML i.i.d. source:

Rs(arn) = Cls(xi.n) — nH(@), where ;:=n;i/n
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Optimal Constant 3

Code length CLg(an) is minimized for

| OCLY (x1:0) m
0= —=2"0 = — 4 VUn+p) -V
5 4 W(0+5) - ¥(9)
where V(x) := dInT(x)/dx is the diGamma function.
. . - m
Approximate solution: ™" ~ % .= I J

Discussion: m > Inn = “frequently” new symbols = reserve more
probability mass for new symbols = make [ large. /.

Discussion: m < Inn = new symbol rare = reserve most probability mass
for old symbols = make 3 small. /.
More regimes (0 < ¢ < oo and 0 < o < 1 and n — o0):

m‘ —c ‘cxlnn‘ x n® ‘cxn‘Zn—c‘:n

B* | ~c/2lnn| —c [xn®/Inn|ocn| oxn® | oo
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Redundancy of S for “optimal” constant 3*

Rg*(Xl:,,) < CLW(A)—mInm+Z%In nj+minln <%+ 0.6m J

CL of unsorted A jeA R of j small

Similar lower bound for all 3 exists with different constants.
Bound also holds for DirM with matching parameters.

Bound is independent of base alphabet size D.
= Holds even for infinite and continuous alphabet X
The weights w! become (sub)probability densities.

Extreme m ~ n ~ D: Redundancy is negative!
Code is better than ML i.i.d. oracle!

Extreme m = 1: Constant sequence x; = j¥t = (" =1/2Inn,
CL. = CLy(j) + 1 = theoretical optimum = finite. Similarly m < c.

Marcus Hutter (ANU) Sparse Adaptive Dirichlet 2013 10 / 22



Code Length of Used Alphabet A

Code Length of ordered Ais CL,,(A) := >, _oIn(1/w )

Xt41

Interpretation: Whenever we see a new symbol x; 11 & {x1, ..., x¢ },

we code it in In(1/wy, ) nits.

Of course, arithmetic coding with S does not work like this.

Example: Uniform: w! = Dfmt = CLw(A) =In ﬁ

= CLy(A) —mInm =~ In (57) = CL of unordered A.

Code-length based: wf =e () =  CL,(A) = > jea CLO)

CL(J) is some prefix-free code length of new symbol ;.
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Code length of frequencies n;

1 (la) m n @b m @ D
Ziln”i < —In— < —Inn < —lInn
_ 2 m 2 2
jeA
@ R.h.s. is minimax redundancy of i.i.d. source,
% In n nits per base alphabet symbol, achieved by KT estimator.

e My model (I.h.s.) improves upon this in two significant ways:

(1) Each symbol j that appears only finitely often,
induces finite bounded code length % Inn;+ 1.

(2) Symbols k that do not appear in xi., induce zero code length.

@ Only symbols appearing with non-vanishing frequency n;/n /> 0
have asymptotic redundancy % In n.
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Adaptive Variable 3;

Problem: 3* = m/2In Z depends on mand n= = S” not online.
Solution: Replace n~» t and m ~~ m;, both known at time t and

converging to n and m respectively, and regularize t ~» t + 1:

2n 1

mt

Adaptive Variable g} = ST J

e Compact representation of S(xi.,) is no longer possible.
e Resulting process no longer exchangeable, but still approximately.
e Still same redundancy bound but somewhat worse constants.

e Bound also holds for DirM with corresponding adaptive parameters.
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Algorithms & Computation Time

e S and DirM require O(1) time and O(D) space for computing
P(xt41|x1:+) and for updating the relevant parameters like n;, m;, [3;.

@ Space can be reduced to O(m) by hashing.
@ P(x¢41|x1:¢) is sufficient for e.g. model selection.

e Data compression via arithmetic coding requires P(Xi11 <x¢1]x1:¢),
which naively requires O(D) time per t.

e Improvement to O(log D): Maintain a binary tree of depth [log, D]
with counts ni, no, ..., np and unnormalized weights at the leafs in
this order. Inner nodes store the sum of their two children.

@ Time can be reduced to O(log m) and space to O(m) by maintaining
a self-balancing binary tree of only the non-zero counts.

e Bayes-optimal decisions can be computed/updated in O(1) time.
o Lazy update of logarithm in 3} possible.
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Online Estimators:
S9% My model with optimal variable 37 = m;/2In % [Hut13]

e KTy: KT-estimator with base alphabet X’

e Perks: DirM with o; = 1/D

e SSDC: KT-estimator w.r.t. A; and escape probability /; 1 [VH12]
e DirM*: Dirichlet-multinomial optimal variable o!* = /3; /D

e SAW-Bayes: Bayesian sub-alphabet weighting [TSW93]

Offline Estimators:
e 577 My model with optimal constant 3* = m/2In 2
o KT 4+In (g): KT-estimator w.r.t. A plus CL of unsorted A
e DirM™: Dirichlet-multinomial optimal constant a = 5*/D
Oracle Estimators:
e KT 4-ORrRACLE: KT-estimator with used alphabet A
o LLO-ORACLE: log-likelihood of the sampling distr. In 1/Pﬁd
e H-OrAcLE: Empirical entropy nH(")

Data: Uniform 61.,, ~ U(A), 0me1.0 =0; Zipf §; = i~7; Real Calgary
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Artificial Uniform Data
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01.m ~Uniform, 6,.1.p = 0, n = 1024, D = 10000, varying m.
The online/offline/oracle estimators have solid/dashed/dotted lines.
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Artificial Zip-Distributed Data (6; = i~7)

S T~ /— ...... | A| (not a CL)
1000 fereeereree it T A e _56*
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11 - KT4-OracLE
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0; =177, n=1024, D = 10000, varying Zipf exponent 0 <~ < 2.
The online/offline/oracle estimators have solid /dashed/dotted lines.
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Real Data: Calgary Corpus
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Real data: 14 files with 21504 < n < 768771 byte alphabet (D = 256).
The online/offline/oracle estimators have solid/dashed/dotted lines.
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Discussion of Experiments

@ The results generally confirm the theory with few/small surprises.
e DirM* and S” are very close for most m.
@ The offline estimators mostly coincide with their online versions.

o Off-line KT 4+In (g) significantly improves upon KT y for small m,
but breaks down for medium and large m,

@ Observations are mostly consistent across uniform, Zipf, and real data.
But for Zipf data, SAW-Bayes and KT 4+In (”) seem to be worse
& relative performance of many estimators on b&w fax pic is reversed.

@ Oracles possess significant extra knowledge:
KT 4-ORACLE the used alphabet A,
and LLO-ORACLE and H-ORACLE even the counts n.
The plots show the magnitude of this extra knowledge.
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Summary of Experiments

Results are similar for other (n, D, m) and (n, D,~) combinations but code
length differences can be more or less pronounced but are seldom reversed.

In short,
o KTy performs very poorly unless m ~ D;

@ Perks and SSDC perform poorly unless m < In n;

KT 4+In (g) DirM*, S#* are not online;

LLO-ORACLE, H-ORACLE, KT 4~-ORACLE are not realizable;

SAW-Bayes performs well but is extremely slow (factor @(m));

. - % .
which leaves DirM* and S as winners.

@ Winners perform very similar unless m gets very close to min{n, D}
. . Qx .
in which case S”" wins.
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Conclusion

@ New model S related to the Dirichlet-multinomial distribution.

@ Tight bounds for codelength = redundancy = likelihood = perplexity.
@ Data-(nj)-dependent (rather then expected or worst-case) bounds.

@ Optimal choice of 3 different from traditional recommendations.

@ Constant offline 8* and variable online g’f

@ Zero CL for unused symbols,
finite CL for symbols occurring only finitely often,
still optimal minimax redundancy %In n in general.

@ Bounds independent of size of X’ and even hold for continuous X.

@ Experimentally, 56 performance is superb.

° SE* is simple, online, fast, i.i.d. estimator.

@ Useful sub-component in non-i.i.d. online algorithmsnrei2, onssi2, mani2)

@ Redundancy bounds are of theoretical interest.
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