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Overview

Investigate model-free, ’off-policy’, convergence to the correct solution for
natural algorithms.

Natural algorithms are RL methods with linear function approximation that
take a projection on the Bellman equation.

E.g. TD(λ), Q-learning, GTD(λ).
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Overview continued...

Who might care about our work? Theoretical RL researchers.

What’s new in our approach?

We provide a complete, theoretical characterization of convergence based on
the choice of features.

State aggregation is proven to be a feature construction choice that will
always converge.

A condition on finding convergent algorithms beyond state aggregation is
provided.
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Overview continued...

Advantages:

Analysis is model and policy agnostic.

Results hold for a large class of RL algorithms (the natural algorithms).

Disadvantages:

Whilst extensive, natural algorithms do not cover all RL algorithms with
linear function approximation.
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Problem

The convergence proofs of many reinforcement learning algorithms with linear
function approximation assume uniqueness of solution.

Example (Convergence of GTD2 (Sutton et al., 2009))

The matrix quantities A and C are functions of the chosen features.

Making C invertible is easy, A is much harder to guarantee.

We give a more general characterization.
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Problem

Do there exist conditions on features that can characterize uniqueness, and hence
convergence, for reinforcement learning algorithms?
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Relevant Research

Relevant counter-examples and the theory of linear value function approximation
have been developed:

TD(0) diverges under off-policy learning even if value function can be
represented exactly (Tsitsiklis and Van Roy, 1997).

Linear value function approximation unified in an oblique projection
framework (Scherrer, 2010).

Counter-example showing non-uniqueness of Bellman error solutions (Sutton
and Barto, 2018).
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A Non-uniqueness Example (Sutton and Barto, 2018)
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Figure: Counter-example showing Bellman
error methods suffer from non-uniqueness.

Use a two component
parameter vector to
represent the value function
in both MDPs.

The observable
feature-reward sequence is
the same for both MDPs
=⇒ the observed data
distribution is identical.
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A Non-uniqueness Example (Sutton and Barto, 2018)
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Figure: Counter-example showing Bellman
error methods suffer from non-uniqueness.

For a parameter value of 0,
the Bellman errors in each
MDP differ: BE 1 = 0 and
BE 2 = 2

3 .

Conclusion: Converging to
the minimum Bellman error
may lead to the wrong
parameter!
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Main Result

Main Theorem: Flatness Condition on Features
Natural RL algorithms converge if and only if all linear combinations of the
features achieve their extreme values on regions of the state space that have
non-zero measure.
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Linear Function Approximation

Let Φ = {φ1, . . . , φk} be the chosen feature functions and
φ(s) = (φ1(s), . . . , φk(s))>.

Produce a parametrized estimate V̂ of V using linear function approximation:
V̂ (s) =

∑k
i=0 φi (s)wi = φ(s)>w .

Definition: Flat Extrema
Let ϕ be any linear combination of the features Φ. Then we say that ϕ has flat
extrema if it achieves its max (and min) values on a region of the state space with
non-zero measure.
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Example of flat/non-flat maxima

f

g

S

R

Figure: Function f has a non-flat maxima since it achieves its max value at a point
whereas g clearly has a flat maxima.
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Oblique Projection Operators

RL algorithms using linear function approximation can be viewed as taking an
oblique projection on the Bellman equation.

Definition: Oblique Projection Operators

Let Φ = {φ1, ..., φk} and Ψ = {ψ1, ..., ψn}. Let Π be an oblique projection
operator such that im(Π) = span(Φ) and im(Π∗) = span(Ψ). Then Π can be
characterised by the two sets (Φ,Ψ).

im(Π)

im( )Π
⋆

ker(Π)
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Geometry of Linear Value Function Approximation

Figure: The geometry of linear value function approximation (Sutton and Barto, 2018).
The Bellman operator is given by Bπ, vπ is the true value function, vw is the linear value
function approximation, BE is the Bellman error, PBE is the projected Bellman error,
VE is the value error, and TDE is the TD error.

Marcus Hutter, Samuel Yang-Zhao, Sultan Majeed Conditions on Features for TD to Converge August 4, 2019 14 / 35



Geometry of Linear Value Function Approximation
continued...

Figure: The geometry of linear value function
approximation (Sutton and Barto, 2018).

Value Error (VE ):

Best approximation to the
true value function vπ.

Requires knowledge of vπ,
which we don’t have.
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Geometry of Linear Value Function Approximation
continued...

Figure: The geometry of linear value function
approximation (Sutton and Barto, 2018).

Bellman Error (BE ):

Difference between two
sides of Bellman equation.

A measure of how far vw is
from vπ.

Suffers from
non-uniqueness =⇒ not
learnable.
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Geometry of Linear Value Function Approximation
continued...

Figure: The geometry of linear value function
approximation (Sutton and Barto, 2018).

Projected Bellman Error
(PBE ):

Solution is the TD(0) fixed
point.

Approximation to BE .

Counter-examples exist
showing that this point is
not stable under traditional
TD learning.
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Convergence

We analyse non-uniqueness and convergence in the case where BE = 0, i.e, the
true value function vπ is exactly representable in the approximation subspace.

Definition: Convergence

Let (R∗,T ∗) be the true environment with optimal value function V ∗ that can be
represented as V ∗ = φ>w∗. An algorithm is said to converge if it converges to
w∗, or equivalently, V ∗.

Definition: Failure to Converge

An algorithm is said to fail if there exists an environment (R†,T †) with optimal
parameter vector w† such that w† 6= w∗ that it cannot distinguish from (R∗,T ∗).
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Main Theorem: Flatness Condition on Features

Main Theorem: Flat Extrema Condition
Natural RL algorithms converge if and only if all linear combinations of the
features have flat extrema.
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Main Theorem: Flatness Condition on Features
continued...

Condition is model-agnostic and policy-agnostic.

All linear combinations of the features must have the flat extrema property.
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Example: State Aggregation

Corollary: State Aggregation

State aggregation is a feature construction choice that will always converge.
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Example: State Aggregation

S1 S2 S3 S4 S5 S6 S7

R
ϕ(s) = φ>(s)w

Figure: A partitioning state-aggregation feature construction that generates non-measure
zero partitions and hence has flat extrema.
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A Projection Perspective

The inner product between ψi and any function ϕ ∈ span(Φ) can be seen as the
projection of ϕ onto ψi .

Theorem: Projection Condition for Convergence

All algorithms characterized by (Φ,Ψ) converge if and only if for all ϕ ∈ span(Φ)
there exists an i such that

〈ψi , ϕ〉µ ≥ Gϕmax or 〈ψi , ϕ〉µ ≤ Gϕmin , (1)

where G := (1−λ)γ
1−λγ .
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A Projection Perspective continued...

Project on sub-regions of state space that achieve extreme values =⇒
convergence.

Simple case: 〈ψi , ϕ〉µ = ϕmax or 〈ψi , ϕ〉µ = ϕmin.

Occurs when ϕ has flat extrema and ψi projects on the flat extrema.
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Example: Projecting on Flat Extrema

ϕ(s)

ψi (s)

S

R

Figure: An example of a convergent algorithm. This algorithm precisely projects on the
flat extrema, thus satisfying (1).
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Example: Constructing a Convergent Algorithm

φ1

φ2

ψ1 ψ2

ϕ(s) = φ>(s)w

S

R

Figure: An example of a convergent algorithm constructed from piece-wise linear features
(φ1, φ2) with projection components (ψ1, ψ2). Algorithms of this form are guaranteed to
converge.
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Discussion

The choice of discount factor plays an important role in defining flat extrema.

As it moves away from one and towards zero, it becomes less likely that
non-flat extrema will occur.

=⇒ The discount factor determines the degree to which feature choices
that deviate from flat extrema can converge.
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Discussion

Can our work be generalised to consider approximate convergence?

The natural algorithms do not cover all RL algorithms with linear function
approximation. In fact, the ETD algorithm may not fit our framework.
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Appendix: Flat Extrema Condition Proof Idea

Lemma

Let 0 6≡ ϕ ∈ span(Φ) and ϕmin := min
s∈S

ϕ(s) and ϕmax := max
s∈S

ϕ(s). Then all

natural algorithms fail if and only if there exists an f : S → [ϕmin, ϕmax] such that

〈ψi , ϕ〉µ = G 〈ψi , f 〉µ (2)

for all i = 1, . . . , n and where G := (1−λ)γ
1−λγ .

Proof idea:

Show that such a function f exists if and only if ϕ has non-flat extrema.

Taking the contra-positive gives our convergence result.
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Appendix: Flat Extrema Condition Proof Idea

1
G ϕmax

ϕmax

f̃ (s) = 1
G ϕ(s)

S

R

Figure: A function f̃ that exceeds the upper limit on the range but satisfies (1).
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Appendix: Flat Extrema Condition Proof Idea

1
G ϕmax

ϕmax

Gϕmax

f̃ (s) = 1
G ϕ(s)

f̄ (s) := f̃ (s)− δ(s)

δ(s)

S

R

Figure: Define a new function f̄ that ’cuts’ the top pinnacle that exceeds Gϕmax. The
pinnacle δ has ’mass’ o(1− G).
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Appendix: Flat Extrema Condition Proof Idea

1
G ϕmax

ϕmax

Gϕmax

f̃ (s) = 1
G ϕ(s)

f̄ (s) := f̃ (s)− δ(s)

δ(s)

g(s)

S

R

Figure: Define g as the projection of the cut pinnacle δ across the basis functions ψi .
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Appendix: Flat Extrema Condition Proof Idea

1
G ϕmax

ϕmax

Gϕmax

f̃ (s) = 1
G ϕ(s)

f̄ (s) := f̃ (s)− δ(s)

δ(s)

g(s)

f (s) := f̄ (s) + g(s)

S

R

Figure: Define a new function f as the combination of f̄ and g . The function f satisfies
both the upper bound on the range and (1).
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