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The general RL problem

Agent

Environment

An agent acts in an unknown environment and receives observations
and rewards in cycles. The agent's task is to act so as to receive as
much reward as possible.
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Traditional RL

Source : Reinforcement Learning : Sutton and Barto.

In traditional reinforcement learning, the environment is considered to
be a Markov Decision Process (MDP).
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Traditional RL

Given an MDP representation a value function can be defined which
says how good it is to be in a particular state. Formally, a (action) value
function is the expected future discounted reward sum i.e.

Qπ(s, a) = Eπ[
∞∑
k=0

γkrt+k+1|st = s, at = a]

where π is the current policy. The Bellman equation tells us that this is
in fact

Qπ(s, a) =
∑
a

π(s, a)
∑
s′
Pa
ss′

[
Ra

ss′ + γ
∑
a′

π(s′, a′)Qπ(s′, a′)

]
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Model-based versus model-free RL

There are two broad approaches to solving unknown MDPs.

• Model-based RL approximates the (unknown) transition
probabilities and reward distribution of the MDP.

• Model-free RL attempts to directly estimate the value function
itself.
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Feature Reinforcement Learning

Life

Universe

Everything

42

Feature RL aims to automatically reduce a complex real-world problem
to a useful (computationally tractable) representation (MDP).

Formally we create a map ϕ from an agent's history to an MDP state. ϕ
is then a function that produces a relevant summary of the history.

ϕ(ht) = st
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Feature Markov Decision Process (ΦMDP)

In order to select the best ϕ, we need a cost function and a way to
search over the space containing ϕ.
The original cost proposed is,

Cost(ϕ|h) = CL(sϕ1:n|a1:n)+CL(r1:n|sϕ1:n, a1:n)+CL(ϕ)

In order to calculate these code lengths we need to have the transition
and reward counts, effectively the model for the MDP.
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ΦMDP : Choosing the right ϕ

• A global stochastic search (e.g. simulated annealing) is used to
find the ϕ with minimal cost.

• Traditional RL methods can then be used to find the optimal policy
given the minimal ϕ.
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Algorithm 1: A high-level view of the generic ΦMDP algorithm.

Input : Environment Env();
Initialise ϕ ;
Initialise history with observations and rewards from t = init_history
random actions;
Initialise M to be the number of timesteps per epoch;
while true do

ϕ = SimulAnneal(ϕ, ht);
s1:t = ϕ(ht);
π = FindPolicy(s1:t, r1:t, a1:t−1) ;
for i = 1, 2, 3, ...M do

at ← π(st);
ot+1, rt+1 ← Env(ht, at);
ht+1 ← htatot+1rt+1;
t← t+ 1;

end
end
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Motivation

• Scale the feature reinforcement learning framework to deal with
large environments using function approximation.
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Scaling up Feature RL

Following the model-based and model-free dichotomy, there are two
ways to scale up feature RL.

• In the model-based case, we can search for factored MDPs
instead. This involves an additional search over the temporal
structure of the factored MDP.

• In the model-free case, we can use function approximation. But
first we need a model-free cost!
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Q-learning

A particular model-free method is Q-learning. It is an off-policy,
temporal difference method that converges asymptotically under some
mild assumptions.
It uses the update rule

Q(s, a)← Q(s, a) + αt∆t

where ∆t is the temporal difference

∆t = rt+1 + γmax
a

Q(st+1, a)− Q(st, at)
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Q-learning Cost

We can define a cost based on the Q-learning error over the history so
far,

CostQL(Q) =
1

2

n∑
t=1

(∆t)
2

This is similar to the loss used for regularised least-squares fitted
Q-iteration. Now we can extend this cost to the history-based setting.

Q-learning for history-based RL Model-free Cost 14 / 27



Q-learning in history-based RL

We can use the cost to find a suitable map ϕ : H → S by selecting ϕ to
minimise the following cost,

CostQL(ϕ) =min
Q

1

2

n∑
t=1

(rt+1 + γmax
a

Q(ϕ(ht+1), a)− Q(ϕ(ht), at))2

+ Reg(ϕ)
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Extension to linear FA

This cost also easily extends to the linear function approximation case
where we approximate Q(ht, at) by ξ(ht, at)Tw where ξ : H×A → Rk

for some k ∈ R.

CostQL(ξ) = min
w

1

2

n∑
t=1

(
rt+1 + γmax

a
ξ(ht+1, a)Tw− ξ(ht, at)Tw

)2

+ Reg(ξ)
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Feature maps

We need to define the feature map that takes histories to states in both
the tabular and function approximation cases.

• In the tabular case, we use suffix trees to map histories to states.

• In the function approximator case we define a new feature class
of event selectors. A feature ξi checks the n−m position in the
history (hn) for an observation-action pair (o, a).

If the history is (0, 1), (0, 2), (3, 4), (1, 2) then a event-selector checking
3 steps in the past for the observation-action pair (0, 2) will be turned
on.
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Relation to existing TD-based approaches

• This work resembles recent regularised TD-based function
approximation methods.

• The key differences are in the regulariser and in the use of
simulated annealing to find suitable feature sets.

• The problem setting.
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Experimental results: Cheesemaze
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Experimental results: Cheesemaze
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Figure: Comparison between hQL, FAhQL and ΦMDP on Cheese Maze
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Domain : Tiger

• You must choose between 2 doors.

• One has a tiger behind it and the other a pot of gold.

• You can listen for the tiger's growl, but the resulting observation
is only accurate 85% of the time.
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Experimental Results : Tiger
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Domain : POCMAN
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Experimental Results : POCMAN
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Computation used : POCMAN

Table: Computational comparison on Pocman

Agent Cores Memory(GB) Time(hours) Iterations

MC-AIXI 96 bits 8 32 60 1 · 105
MC-AIXI 48 bits 8 14.5 49.5 3.5 · 105

FAhQL 1 0.4 17.5 3.5 · 105
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Conclusions/Future Work

• We introduced a model-free cost to the Feature RL framework
which allows for scaling to large environments.

• The resulting algorithm can be viewed as an extension of
Q-learning to the history-based setting.

Problems/Future Work
• It does not deal with the exploration-exploitation problem. It uses
ϵ-greedy exploration.

• The extension to function approximation should be made sound
by using methods like Greedy-GQ to avoid divergence.

• Current work is using this as a feature construction method to
learn how to play ATARI games.
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Questions?
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