On Q-learning Convergence Beyond Markov Decision Processes

Sultan Javed Majeed and Marcus Hutter

Research School of Computer Science, Australian National University

International Joint Conference on Artificial Intelligence July 16th, 2018

General-purpose Artificial Intelligence

- Artificial General Intelligence (AGI) agents are versatile.
- An AGI agent needs to perform "well" in a wide range of environments.
- One of the weakest forms of performing "well" is to converge on the optimal policy asymptotically.
- The General Reinforcement Learning (GRL) framework can (possibly) realise an AGI agent.
- Arguably, GRL admits the largest possible class of environments. (details in the next slide)

A Typical GRL Setup

- The agent and the environment interact in cycles.
- \blacksquare This interaction generates a history h.
- The agent takes an action a, then the environment provides an observation-reward tuple (o', r').
- The history extends for the next cycle as h' = hao'r'.
- There are no restrictions on the environment dynamics P(o'r'|ha).
- Every history is unique and appears at most once.
- Hence, in general, this History-based Decision Process (HDP) is not learnable.

(Restrictive) Subclass/Modeling of HDP

- A model ϕ which sends histories to a finite set of states.
- The modeling results in a marginalized process $P_{\phi}(s'r'|ha) = \sum_{o':\phi(hao'r')=s'} P(o'r'|ha)$.

Definition: A Markov Decision Process (MDP) Model

A model ϕ is an MDP if there exists a p such that $p(s'r'|sa) = P_{\phi}(s'r'|ha) \ \forall a,h: \phi(h) = s.$

- In words: next state-reward probability only depends on h through $\phi(h)$.
- An MDP model has state-based/stationary Markovian dynamics, (optimal) Q-function, and optimal policies.
- Q-learning, an off-policy algorithm, converges in MDPs.

Going Beyond MDP Models

- An MDP model is restrictive, e.g. it can not model non-stationarity.
- Often, an aggregated MDP is not an MDP anymore.
- However, it provides a necessary condition¹ for Q-learning convergence by preserving¹ the optimal Q-function.
- Which is a strong condition² for convergence of Q-learning.
- The (optimal) Q-function preservation is not only necessary but the sufficient condition¹ for Q-learning to converge.

¹A preserved quantity is modeled perfectly by the model.

²One of our main results, more details later.

(Compartively) Less Restrictive Subclass of HDP

Definition: A Q-uniform Decision Process (QDP) Model

A model ϕ is a QDP if there exists a q such that $q(s,a) = Q^*(h,a) \ \forall a,h : \phi(h) = s$.

- QDP only preserves the optimal Q-function.
- The QDP class is strictly larger than MDP.
- It still admits stationary optimal policies.
- Whereas, the Partially Observable MDP (POMDP) class does not have stationary optimal policies.

Why do we need Q-learning for AGI?

- Q-learning, in the tabular case, converges in MDPs.
- As far as convergence is the only performance criteria,
 Q-learning can serve as a learning and/or planning module for an AGI for finite-MDPs.

Definition: Q-learning (Sketch)

The Q-learning algorithm applies the following Q-iteration for each time-step t,

$$q_{t+1}(s,a) = (1 - \alpha_t(s,a)) q_t(s,a) + \alpha_t(s,a) \left(r' + \max_b q_t(s',b)\right)$$

With a set of *appropriate* learning rates (α_t), the Q-iteration asymptotically converges to the optimal.

Question Asked and Answered in this Paper

Does Q-learning also converge in QDPs?

Answer and Implications

Yes, it does. Because,

- The operators are contractions, and
- they still have the same fix point.

Theorem: Q-learning Convergence in QDPs

Q-learning converges in QDPs, if the rewards are bounded and the set of learning rates satisfies the *appropriate conditions*³.

- Hence, Q-learning can also be used as a learning and/or planning module for an AGI for QDPs.
- The convergence also implies the existence of a stationary optimal policy.
- The preservation of optimal Q-function is not only necessary but a sufficient condition for Q-learning convergence.

 $^{^{3}\}sum_{t=0}^{\infty}\alpha_{t}(s,a)=\infty, \sum_{t=0}^{\infty}\alpha_{t}^{2}(s,a)<\infty$

Q-learning on a non-stationary (toy) domain

- The agent has to input the right key.
- The key acceptance probability is non-stationary.
- More wrong inputs in the past, lower the acceptance probability.
- But, the optimal Q-function is **not** a function of history.

Where to go from here?

- The exact Q*-uniformity (i.e. preservation of the optimal Q-function) is brittle, an extension to the approximate Q*-uniformity case is a natural next step.
- Can Q-learning also converge with high probability if the Q*-uniformity condition is only met in expectation with small variance?
- Construct a natural sub-class of QDP environments beyond MDPs.
- Develop a QDP learning (i.e. ϕ learning) algorithm using Q-learning as a module.

Summary

Q-learning not only converges in MDPs but also beyond MDPs in QDPs, which include non-stationary domains.