A Gentle Introduction to Quantum Computing Algorithms

Elliot Catt ${ }^{1}$ Marcus Hutter ${ }^{1,2}$

${ }^{1}$ Australian National University, ${ }^{2}$ Deepmind \{elliot.carpentercatt,marcus.hutter\}@anu.edu.au

Table of Contents

What is Quantum Computing?

Quantum Turing Machines

Bra and ket Notation

Quantum Gates and Submodules

Quantum Algorithms

Quantum Complexity Theory

What is Quantum Computing?

Quantum Turing Machine

- In a certain sense, a quantum computing (/Turing machine) is essentially a probabilistic computing (/Turing machine) which uses the L^{2} norm instead of the L^{1} norm
- Has complex-valued amplitudes in the place of non-negative real probabilities
- A complex-valued unitary transition matrix instead of a stochastic one

(Deterministic) Turing Machine

(Deterministic) Turing Machine

Definition (Bernstein \& Vazirani (1997))
A deterministic Turing machine is a triplet (Σ, Q, δ), where Σ is a finite alphabet with an identified blank symbol $\#, Q$ is a finite set of states with identified initial state q_{0} and finial state $q_{f} \neq q_{0}$, and δ, a deterministic transition function, is a function

$$
\begin{equation*}
\delta: Q \times \Sigma \rightarrow \Sigma \times Q \times\{L, R\} \tag{1}
\end{equation*}
$$

Here $\{L, R\}$ denote left and right, directions to move on the tape.
The state q_{f} is also called the Halting state.

Probabilistic Turing Machine

Quantum Turing Machine

Quantum Turing Machine

Definition (Bernstein \& Vazirani (1997))

Call $\tilde{\mathbb{C}}$ the set consisting of $\alpha \in \mathbb{C}$ such that there is a deterministic algorithm that computes the real and imaginary parts of α to within 2^{-n} in time polynomial in n.
If we do not use this restriction "it is possible to smuggle hard-to-compute quantities into the transition amplitudes, for instance by letting the i th bit indicate whether the i th deterministic TM halts on a blank tape."

Quantum Turing Machine

Definition (Bernstein \& Vazirani (1997))
A Quantum Turing Machine M is defined, much like a classical Turing Machine (Definition 1), by a triplet (Σ, Q, δ) where Σ is a finite alphabet with an identified blank symbol (\#), Q is a finite set of states with identified initial state q_{0} and final state $q_{f} \neq q_{0}$, and δ, the quantum transition function,

$$
\delta: Q \times \Sigma \rightarrow \tilde{\mathbb{C}}^{\Sigma} \times Q \times\{L, R\} .
$$

The QTM M has a two-way infinite tape of cells indexed by \mathbb{Z}, each holding symbols from Σ, and a single read/write tape head that moves along the tape. A configuration or instantaneous description of the QTM is a complete description of the contents of the tape, the location of the tape head, and the state $q \in Q$ of the finite control.

Bra and ket

The Dirac bra-ket (Dirac, 1939) notation is as follows: first we use it to represent the standard basis vectors of \mathbb{C}^{2}

$$
|0\rangle=\binom{1}{0},|1\rangle=\binom{0}{1}
$$

with a single qubit being described as

$$
|\phi\rangle=\alpha|0\rangle+\beta|1\rangle=\binom{\alpha}{\beta} .
$$

This is called a ket. Where $\alpha, \beta \in \mathbb{C}$

Bra and ket

$$
\text { For }|a\rangle=\binom{\alpha_{0}}{\alpha_{1}} \text { and }|b\rangle=\binom{\beta_{0}}{\beta_{1}} \text {, and } \alpha_{0}, \alpha_{1}, \beta_{0}, \beta_{1} \in \mathbb{C} \text {, we will }
$$ also define the tensor product in bra-ket notation as follows:

$$
|a\rangle \otimes|b\rangle=|a\rangle|b\rangle=|a b\rangle=\left(\begin{array}{c}
\alpha_{0} \beta_{0} \\
\alpha_{0} \beta_{1} \\
\alpha_{1} \beta_{0} \\
\alpha_{1} \beta_{1}
\end{array}\right)
$$

Bra and ket

For example, instead of writing $|0\rangle \otimes|0\rangle \otimes|1\rangle$ we will write

$$
|001\rangle=\binom{1}{0} \otimes\binom{1}{0} \otimes\left(\begin{array}{l}
1 \cdot 1 \cdot 0 \\
1 \cdot 1 \cdot 1 \\
1 \cdot 0 \cdot 0 \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0 \cdot 1 \cdot 1 \cdot 0 \\
0 \cdot 1 \cdot 1 \\
0 \cdot 0 \cdot 0 \\
0 \cdot 0 \cdot 1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

Bra and ket

We will also raise some qubits to the power of tensors, for example:

$$
|a\rangle^{\otimes 4}=|a\rangle \otimes|a\rangle \otimes|a\rangle \otimes|a\rangle=\left(\begin{array}{c}
\alpha_{0} \cdot \alpha_{0} \cdot \alpha_{0} \cdot \alpha_{0} \\
\alpha_{0} \cdot \alpha_{0} \cdot \alpha_{0} \cdot \alpha_{1} \\
\vdots \\
\alpha_{1} \cdot \alpha_{1} \cdot \alpha_{1} \cdot \alpha_{0} \\
\alpha_{1} \cdot \alpha_{1} \cdot \alpha_{1} \cdot \alpha_{1}
\end{array}\right)
$$

Bra and ket

Additionally we will define the conjugate transpose as

$$
\langle a|:=|a\rangle^{\dagger}=\left(\overline{\alpha_{0}}, \overline{\alpha_{1}}\right)
$$

where $\bar{\alpha}$ is the complex conjugate of α. This notation is called a bra.

$$
\langle a||b\rangle=\langle a \mid b\rangle=\overline{\alpha_{0}} \beta_{0}+\overline{\alpha_{1}} \beta_{1}
$$

Superposition

- A collection of qubits (vector) $v \in \mathbb{C}^{2^{n}}$ is said to be in a superposition if $\langle v||v\rangle=1$.
- We require that the operators (matrices) we apply to collections of qubits (vectors) preserve this superposition property.

Unitary Matrices

- The property we are interested in is called unitary. An operator (matrix) U is unitary if inverse of U is also the conjugate transpose, i.e. $U U^{\dagger}=I$.
- If any linear operator was allowed, Quantum Computing would be unreasonably powerful (Aaronson, 2005).

Quantum Gates

Definition

The Hadamard gate H acts on a single qubit and corresponds to the following unitary matrix

$$
H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

For instance $H|0\rangle=\left|\frac{1}{2}\right\rangle:=\frac{1}{\sqrt{2}}\binom{1}{1}$ and
$H H|0\rangle=H \frac{1}{\sqrt{2}}\binom{1}{1}=|0\rangle$.
It is important to note that the Hadamard gate is both self-adjoint and its own inverse. That is, $H H=H H^{\dagger}=l$.

Quantum Gates

Definition

The controlled-not gate, CNOT, acts on two qubits and performs the not (bit flip) operation on the second qubit if the first qubit is $|1\rangle$. This equates to the following unitary matrix

$$
\text { CNOT }=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

For instance CNOT $|0\rangle|a\rangle=|0\rangle|a\rangle$ and
CNOT $|1\rangle|a\rangle=|1\rangle \otimes\binom{\alpha_{1}}{\alpha_{0}}$

Quantum Gates

Definition

The $\pi / 8$ gate, $R_{\pi / 4}$, corresponds to a rotation of the $|1\rangle$ qubit by $\pi / 4$. The matrix representing this rotation is

$$
R_{\pi / 4}=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \frac{\pi}{4}}
\end{array}\right), R_{\pi / 4}|a\rangle=\binom{\alpha_{0}}{\alpha_{1} e^{i \frac{\pi}{4}}} .
$$

The gate is called the $\pi / 8$ gate for historical reasons, even though the gate is a rotation of $\pi / 4$.

Quantum Gates

These three gates are important as they form a universal set of gates for two qubits.
This means that any classical two bit circuit can be constructed using only these three gates (Nielsen \& Chuang, 2002).

Quantum Gates

The Solovay-Kitaev theorem states that there exists universal sets of gates such that any unitary matrix can be efficiently approximated by a finite sequence of gates from this set. Nielsen \& Chuang (2002)

Measurement

The final part of any quantum computing algorithm is measurement, when the superpositions collapse. With $\alpha_{i} \in \mathbb{C}$ for all $i \in\{0,1\}^{n}$, measurement outputs i with probability $\left|\alpha_{i}\right|^{2}$. That is,

$$
\left(\sum_{x \in\{0,1\}^{n}} \alpha_{x}|x\rangle\right) \rightarrow i \text { with probability }\left|\alpha_{i}\right|^{2}
$$

Where $i \in\{0,1\}^{n}$. Although we can only ensure an outcome with some probability, we can repeat the computation and reduce the probability of error.

Submodules

Quantum Oracle

- The quantum oracle is used when we want to apply a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ to a superposition of all elements of $\{0,1\}^{n}$.
- Since all transforms in quantum computing are reversible (and indeed unitary) there needs to be some way to keep the information so that the transform can be reversed.
- Classically for $x \in\{0,1\}^{n}$ we could take $x \rightarrow f(x)$, however when performing this transform in quantum computing we do the following

$$
U_{f}|x\rangle|y\rangle=|x\rangle|y \oplus f(x)\rangle .
$$

Where $y \in\{0,1\}$ is representing an extra qubit used for this reversibility.

Submodules

Quantum Fourier Transform

The quantum Fourier transform $(\mathcal{Q \mathcal { F }})$ is a linear operator which acts on a vector $|j\rangle$ of size 2^{n} as follows,

$$
\begin{equation*}
\mathcal{Q} \mathcal{F} \mathcal{T}|j\rangle=\frac{1}{2^{n / 2}} \sum_{k \in\{0,1\}^{n}} e^{2 \pi i j k / 2^{n}}|k\rangle . \tag{2}
\end{equation*}
$$

Submodules

Inverse Quantum Fourier Transform

$$
\begin{equation*}
\mathcal{Q} \mathcal{F} \mathcal{T}^{-1}\left(\frac{1}{2^{n / 2}} \sum_{k \in\{0,1\}^{n}} e^{-2 \pi i j k / 2^{n}}|k\rangle\right)=|j\rangle \tag{3}
\end{equation*}
$$

Quantum Algorithms

Overview

- Take some initial state such as $|0\rangle^{\otimes n}$
- Quantumize to create a uniform superposition over all possible qubits, often done with the Hadamard gate $H^{\otimes n}$
- Perform computation of some function in simultaneous states of this superposition
- Uncompute the superposition, often done with the Hadamard gate or the inverse Quantum Fourier transform
- Measurement of some or all of the circuit

Deutsch-Jozsa Algorithm

- The Deutsch-Jozsa Algorithm is the first example of an exponential "quantum-speedup".
- Imagine we are given a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ that has the property that either all values map to 0 , or half of them do.
- Our objective is to determine whether every value maps to 0 , or half of them do.
- To check this classically, one must perform at most $2^{n-1}+1$ function evaluations.
- This is because the moment the function outputs a 1 we know that f outputs 1 on half the inputs.
- The Deutsch-Jozsa Algorithm requires only 1 function evaluation.

Deutsch-Jozsa Algorithm

$$
|0\rangle^{\otimes n}|1\rangle \rightarrow \frac{1}{\sqrt{2^{n+1}}} \sum_{x \in\{0,1\}^{n}}|x\rangle(|0\rangle-|1\rangle)
$$

Deutsch-Jozsa Algorithm

$$
\begin{aligned}
|0\rangle^{\otimes n}|1\rangle & \rightarrow \frac{1}{\sqrt{2^{n+1}}} \sum_{x \in\{0,1\}^{n}}|x\rangle(|0\rangle-|1\rangle) \\
& \rightarrow \frac{1}{\sqrt{2^{n+1}}} \sum_{x \in\{0,1\}^{n}}|x\rangle(|f(x)\rangle-|1 \oplus f(x)\rangle)
\end{aligned}
$$

Hadamard $\boldsymbol{H}^{\otimes n} \otimes H$
f oracle

Deutsch-Jozsa Algorithm

$$
\begin{aligned}
|0\rangle^{\otimes n}|1\rangle & \rightarrow \frac{1}{\sqrt{2^{n+1}}} \sum_{x \in\{0,1\}^{n}}|x\rangle(|0\rangle-|1\rangle) \\
& \rightarrow \frac{1}{\sqrt{2^{n+1}}} \sum_{x \in\{0,1\}^{n}}|x\rangle(|f(x)\rangle-|1 \oplus f(x)\rangle) \\
& =\frac{1}{\sqrt{2^{n+1}}} \sum_{x \in\{0,1\}^{n}}(-1)^{f(x)}|x\rangle(|0\rangle-|1\rangle)
\end{aligned}
$$

Hadamard $\boldsymbol{H}^{\otimes n} \otimes \boldsymbol{H}$
f oracle
since $f(x)=0,1$

Deutsch-Jozsa Algorithm

$$
\begin{aligned}
|0\rangle^{\otimes n}|1\rangle & \rightarrow \frac{1}{\sqrt{2^{n+1}}} \sum_{x \in\{0,1\}^{n}}|x\rangle(|0\rangle-|1\rangle) \\
& \rightarrow \frac{1}{\sqrt{2^{n+1}}} \sum_{x \in\{0,1\}^{n}}|x\rangle(|f(x)\rangle-|1 \oplus f(x)\rangle) \\
& =\frac{1}{\sqrt{2^{n+1}}} \sum_{x \in\{0,1\}^{n}}(-1)^{f(x)}|x\rangle(|0\rangle-|1\rangle) \\
& \rightarrow \frac{1}{2^{n}} \sum_{x \in\{0,1\}^{n}}(-1)^{f(x)}\left[\sum_{y \in\{0,1\}^{n}}(-1)^{x \cdot y}|y\rangle\right]|1\rangle
\end{aligned}
$$

Hadamard $H^{\otimes n} \otimes H$
f oracle
since $f(x)=0,1$

Hadamard $H^{\otimes n} \otimes H$

Deutsch-Jozsa Algorithm

$$
\begin{aligned}
|0\rangle^{\otimes n}|1\rangle & \rightarrow \frac{1}{\sqrt{2^{n+1}}} \sum_{x \in\{0,1\}^{n}}|x\rangle(|0\rangle-|1\rangle) \\
& \rightarrow \frac{1}{\sqrt{2^{n+1}}} \sum_{x \in\{0,1\}^{n}}|x\rangle(|f(x)\rangle-|1 \oplus f(x)\rangle) \\
& =\frac{1}{\sqrt{2^{n+1}}} \sum_{x \in\{0,1\}^{n}}(-1)^{f(x)}|x\rangle(|0\rangle-|1\rangle) \\
& \rightarrow \frac{1}{2^{n}} \sum_{x \in\{0,1\}^{n}}(-1)^{f(x)}\left[\sum_{y \in\{0,1\}^{n}}(-1)^{x \cdot y}|y\rangle\right]|1\rangle \\
& =\frac{1}{2^{n}} \sum_{y \in\{0,1\}^{n}}\left[\sum_{x \in\{0,1\}^{n}}(-1)^{x \cdot y+f(x)}\right]|y\rangle|1\rangle
\end{aligned}
$$

Hadamard $H^{\otimes n} \otimes H$
f oracle
since $f(x)=0,1$

Hadamard $H^{\otimes n} \otimes H$

Re-ordering

Deutsch-Jozsa Algorithm

$$
\begin{aligned}
|0\rangle^{\otimes n}|1\rangle & \rightarrow \frac{1}{\sqrt{2^{n+1}}} \sum_{x \in\{0,1\}^{n}}|x\rangle(|0\rangle-|1\rangle) \\
& \rightarrow \frac{1}{\sqrt{2^{n+1}}} \sum_{x \in\{0,1\}^{n}}|x\rangle(|f(x)\rangle-|1 \oplus f(x)\rangle) \\
& =\frac{1}{\sqrt{2^{n+1}}} \sum_{x \in\{0,1\}^{n}}(-1)^{f(x)}|x\rangle(|0\rangle-|1\rangle) \\
& \rightarrow \frac{1}{2^{n}} \sum_{x \in\{0,1\}^{n}}(-1)^{f(x)}\left[\sum_{y \in\{0,1\}^{n}}(-1)^{x \cdot y}|y\rangle\right]|1\rangle \\
& =\frac{1}{2^{n}} \sum_{y \in\{0,1\}^{n}}\left[\sum_{x \in\{0,1\}^{n}}(-1)^{x \cdot y+f(x)}\right]|y\rangle|1\rangle \\
& \left.\rightarrow \frac{1}{2^{n}} \sum_{x \in\{0,1\}^{n}}(-1)^{f(x)}\right|^{2}
\end{aligned}
$$

Hadamard $\boldsymbol{H}^{\otimes n} \otimes H$
f oracle
since $f(x)=0,1$

Hadamard $H^{\otimes n} \otimes H$ Re-ordering

Measurement on first n qubits

Deutsch-Jozsa Algorithm

$$
\begin{aligned}
& |0\rangle^{\otimes n}|1\rangle \rightarrow \frac{1}{\sqrt{2^{n+1}}} \sum_{x \in\{0,1\}^{n}}|x\rangle(|0\rangle-|1\rangle) \\
& \rightarrow \frac{1}{\sqrt{2^{n+1}}} \sum_{x \in\{0,1\}^{n}}|x\rangle(|f(x)\rangle-|1 \oplus f(x)\rangle) \\
& =\frac{1}{\sqrt{2^{n+1}}} \sum_{x \in\{0,1\}^{n}}(-1)^{f(x)}|x\rangle(|0\rangle-|1\rangle) \\
& \rightarrow \frac{1}{2^{n}} \sum_{x \in\{0,1\}^{n}}(-1)^{f(x)}\left[\sum_{y \in\{0,1\}^{n}}(-1)^{x \cdot y}|y\rangle\right]|1\rangle \\
& =\frac{1}{2^{n}} \sum_{y \in\{0,1\}^{n}}\left[\sum_{x \in\{0,1\}^{n}}(-1)^{x \cdot y+f(x)}\right]|y\rangle|1\rangle \\
& \rightarrow\left|\frac{1}{2^{n}} \sum_{x \in\{0,1\}^{n}}(-1)^{f(x)}\right|^{2} \\
& = \begin{cases}1 & \text { if } f(x)=0 \forall x \in\{0,1\}^{n} \\
0 & \text { if } f(x)=0 \text { for half the } x \in\{0,1\}^{n}\end{cases}
\end{aligned}
$$

Hadamard $\boldsymbol{H}^{\otimes n} \otimes H$
f oracle
since $f(x)=0,1$

Hadamard $H^{\otimes n} \otimes H$ Re-ordering

Measurement on first n qubits

Deutsch-Jozsa Algorithm

The quantum circuit below is exactly the transforms described above.

Figure: Quantum circuit for the Deutsch-Jozsa Algorithm (Nielsen \& Chuang, 2002)

Harrow-Lloyd Algorithm for Linear equations (Harrow et al., 2009)

- Given some $N \times N$ matrix A and some vector b, finding the solution x to the equation $A x=b$ is known as the linear equation problem
- Classically this can be done in many ways, such as matrix inversion (finding A^{-1} such that $x=A^{-1} b$)
- Classically the fastest algorithm takes $O(N \kappa)$ time, where κ is the condition number of the matrix A
- The Harrow-Lloyd algorithm (Harrow et al., 2009) is able to achieve an exponential speedup in N by taking $O\left(\log (N) \kappa^{2}\right)$ time, if $\kappa=O(1)$

Note that when $\kappa=O(N)$ this algorithm provides no speedup.

Harrow-Lloyd Algorithm for Linear equations (Harrow et al., 2009)

- At this point the reader may question the existence of the algorithm since to output an N long vector x, one must use at least N steps
- This is correct, however, if one is interested in some property of x, such as $\|M x\|_{\text {tr }}$ for some matrix M, it will provide an exponential speedup over classical methods
- The procedure relies on the quantum phase estimation and hamiltonian simulation, for both of which there are fast quantum algorithms

Grover Search

Grover's search (Grover, 1996), formally described in Nielsen \& Chuang (2002), takes a function f such that there is at least one s such that $f(s)=1$, a set $S=\{0,1\}^{n}$ of inputs of size $|S|=N=2^{n}$, and is able to find an $s \in S$ which satisfies $f(s)=1$ in $O(\sqrt{N})$ time.

Grover Search

The Grover Search Algorithm is effectively $O(\sqrt{N})$ application of the grover iteration.
The Grover iteration looks like

$$
G=\left(H^{\otimes n}\left(2|0\rangle^{\otimes n}\left\langle\left. 0\right|^{\otimes n}-I_{n}\right) H^{\otimes n}\right) U_{\omega}\right.
$$

Nielsen \& Chuang (2002).

Grover Search

- To demonstrate how the Grover operator is able to give the desired answer, a geometric analysis is quite useful.
- Let M denote the number of solutions to $f(s)=1$, that is $M=|\{s \in S: f(s)=1\}|$.
- Let $|\beta\rangle:=\frac{1}{\sqrt{M}} \sum_{x \in M}|x\rangle$ be the vector of all M solutions
- And $|\eta\rangle:=\frac{1}{\sqrt{N-M}} \sum_{x \in S \backslash M}|x\rangle$ be the vector of $N-M$ non solutions

We can write the uniform state as

$$
\frac{1}{\sqrt{2^{n}}} \sum_{x \in\{0,1\}^{n}}|x\rangle=\sqrt{\frac{N-M}{N}}|\eta\rangle+\sqrt{\frac{M}{N}}|\beta\rangle .
$$

Grover Search

The oracle transform reflects $|\beta\rangle$ about $|\eta\rangle$; mathematically we can write this as

$$
\begin{aligned}
U_{\omega}(p|\eta\rangle+q|\beta\rangle)\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right) & =p|\eta\rangle\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)+q|\beta\rangle\left(\frac{|1\rangle-|0\rangle}{\sqrt{2}}\right) \\
& =(p|\eta\rangle-q|\beta\rangle)\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)
\end{aligned}
$$

Grover Search

- The transform $\left(H^{\otimes n}\left(2|0\rangle^{\otimes n}\left\langle\left. 0\right|^{\otimes n}-I_{n}\right) H^{\otimes n}\right)\right.$ is a reflection about $\frac{1}{\sqrt{2^{n}}} \sum_{x \in\{0,1\}^{n}}|x\rangle$.
- Performing these two reflections together gives a rotation.

Grover Search

Let $\cos \frac{\theta}{2}=\sqrt{\frac{N-M}{N}}$, then we have that $\sin \frac{\theta}{2}=\sqrt{\frac{M}{N}}$ and we can re-write the uniform state as,

$$
\frac{1}{\sqrt{2^{n}}} \sum_{x \in\{0,1\}^{n}}|x\rangle=\cos \frac{\theta}{2}|\eta\rangle+\sin \frac{\theta}{2}|\beta\rangle .
$$

Then applying the Grover iteration to both sides we get

$$
\begin{align*}
G\left(\frac{1}{\sqrt{2^{n}}} \sum_{x \in\{0,1\}^{n}}|x\rangle\right) & =\left(H^{\otimes n}\left(2|0\rangle^{\otimes n}\left\langle\left. 0\right|^{\otimes n}-I_{n}\right) H^{\otimes n}\right) U_{\omega}\left(\cos \frac{\theta}{2}|\eta\rangle+\sin \frac{\theta}{2}|\beta\rangle\right)\right. \\
& =\left(H^{\otimes n}\left(2|0\rangle^{\otimes n}\left\langle\left. 0\right|^{\otimes n}-I_{n}\right) H^{\otimes n}\right)\left(\cos \frac{\theta}{2}|\eta\rangle-\sin \frac{\theta}{2}|\beta\rangle\right)\right. \\
& =\cos \left(\frac{3 \theta}{2}\right)|\eta\rangle+\sin \left(\frac{3 \theta}{2}\right)|\beta\rangle
\end{align*}
$$

Grover Search

Applying the iteration k times leads to

$$
G^{k}\left(\frac{1}{\sqrt{2^{n}}} \sum_{x \in\{0,1\}^{n}}|x\rangle\right)=\cos \left(\frac{2 k \theta+\theta}{2}\right)|\eta\rangle+\sin \left(\frac{2 k \theta+\theta}{2}\right)|\beta\rangle .
$$

Grover Search

Thus we perform the iteration a number of times so that $\sin \left(\frac{2 k \theta+\theta}{2}\right)$ is close to 1 , which leads to

$$
k=\left\lceil\frac{\pi}{4} \sqrt{\frac{N}{M}}\right\rceil
$$

Grover Search

This can be derived by

$$
\begin{aligned}
\sin \left(\frac{2 k \theta+\theta}{2}\right) & \approx 1 \\
\frac{2 k \theta+\theta}{2} & \approx \frac{\pi}{2} \\
\theta \frac{2 k+1}{2} & \approx \frac{\pi}{2} \\
2 k+1 & \approx \frac{\pi}{\theta} \\
k & \approx \frac{\pi}{2 \theta}-\frac{1}{2} \\
k & \approx \frac{\pi}{4} \sqrt{\frac{N}{M}}-\frac{1}{2}
\end{aligned}
$$

Grover Search

The algorithm for the case when $M=1$ and $f\left(x^{\prime}\right)=1$ can be defined as follows:

$$
|0\rangle^{\otimes n}|0\rangle \rightarrow \frac{1}{\sqrt{2^{n+1}}} \sum_{x \in\{0,1\}^{n}}|x\rangle(|0\rangle-|1\rangle) \text { Hadamard }
$$ then repeat the Grover iteration $\lceil(\pi \sqrt{N} / 4)\rceil$ times

$$
\begin{aligned}
& \rightarrow\left(\left(H^{\otimes n}\left(2|0\rangle^{\otimes n}\left\langle\left. 0\right|^{\otimes n}-I_{n}\right) H^{\otimes n}\right) U_{\omega}\right)^{\lceil(\pi \sqrt{N} / 4)\rceil}\left(\frac{1}{\sqrt{2^{n+1}}} \sum_{x \in\{0,1\}^{n}}|x\rangle(|0\rangle-|1\rangle)\right)\right. \\
& =G^{\lceil(\pi \sqrt{N} / 4)\rceil}\left(\frac{1}{\sqrt{2^{n+1}}} \sum_{x \in\{0,1\}^{n}}|x\rangle(|0\rangle-|1\rangle)\right) \\
& \approx|\beta\rangle\left(\frac{|0\rangle-|1\rangle}{2}\right) \\
& =\left|x^{\prime}\right\rangle\left(\frac{|0\rangle-|1\rangle}{2}\right) \\
& \rightarrow x^{\prime} \text { Measurement on first } n \text { qubits }
\end{aligned}
$$

Figure: Quantum Search Algorithm (Nielsen \& Chuang, 2002)

Grover Search

To produce a quantum circuit, we can just write out each transform used in order.

Grover operator

Figure: Quantum Circuit for Grover's algorithm (Nielsen \& Chuang, 2002; Wikipedia, 2017a)

Quantum Counting Algorithm

- The Quantum Counting Algorithm, proposed in Brassard et al. (1998) and described in Nielsen \& Chuang (2002), is a combination of Grover search and phase estimation.
- Given an oracle indicator function $f_{B}: A \rightarrow\{0,1\}$ of $B \subseteq A$, with $|A|=N=2^{n}$, the Quantum Counting Algorithm finds $M=|B|$.

Quantum Counting Algorithm

To find M the Quantum Counting Algorithm finds a solution θ to the equation

$$
\begin{equation*}
\sin ^{2}\left(\frac{\theta}{2}\right)=\frac{M}{2 N} \tag{4}
\end{equation*}
$$

then solves for M.

Quantum Counting Algorithm

- Phase estimation, is a subroutine used in quantum algorithms to estimate the phase of the eigenvalue of some unitary operator (in this case G) to some precision.
- Phase estimation relies on the fact that when the eigenvalue is written in the form $e^{2 \pi i j \phi}$ for phase ϕ, the inverse Fourier transform will transform

$$
\frac{1}{\sqrt{N}} \sum_{j \in\{0,1\}^{\left\lceil\log _{2} N\right\rceil}} e^{2 \pi i j \phi}|j\rangle
$$

to an approximation of ϕ in the form $|\tilde{\phi}\rangle$, where $\tilde{\phi}$ is the binary approximation of ϕ.

Quantum Counting Algorithm

To achieve m bits of accuracy of θ with probability $1-\epsilon$, the algorithm works on two registers. The first register is of size $t=m+\left\lceil\log \left(2+\frac{1}{2 \epsilon}\right)\right\rceil$, and the second register of size $n+1$.

Quantum Counting Algorithm

The algorithm is much like the phase estimation.

$$
\begin{aligned}
|0\rangle^{\otimes t}|0\rangle^{n+1} & \rightarrow \frac{1}{2^{t / 2}} \sum_{k \in\{0,1\}^{t}}|k\rangle \frac{1}{2^{(n+1) / 2}} \sum_{s \in\{0,1\}^{n+1}}|s\rangle \\
& \rightarrow \frac{1}{2^{t / 2}} \sum_{k \in\{0,1\}^{t}} e^{2 \pi i \phi k}|k\rangle \frac{1}{2^{(n+1) / 2}} \sum_{s \in\{0,1\}^{n+1}}|s\rangle \\
& =\frac{1}{2^{t / 2}}\left(|0\rangle+e^{2 \pi i 2^{t-1} \phi}|1\rangle\right)\left(|0\rangle+e^{2 \pi i 2^{t-2} \phi}|1\rangle\right) \\
& \cdots\left(|0\rangle+e^{2 \pi i 2^{0} \phi}|1\rangle\right) \frac{1}{2^{(n+1) / 2}} \sum_{s \in\{0,1\}^{n+1}}|s\rangle \\
& =\frac{1}{2^{t / 2}}\left(|0\rangle+e^{2 \pi i 0 \cdot \phi_{t}}|1\rangle\right)\left(|0\rangle+e^{2 \pi i 0 \cdot \phi_{t-1} \phi_{t}}|1\rangle\right) \\
& \cdots\left(|0\rangle+e^{2 \pi i 0 \cdot \phi_{1} \ldots \phi_{t}}|1\rangle\right) \frac{1}{2^{(n+1) / 2}} \sum_{s \in\{0,1\}^{n+1}}|s\rangle \\
& \rightarrow|\tilde{\phi}\rangle \frac{1}{2^{(n+1) / 2}} \sum_{s \in\{0,1\}^{n+1}}|s\rangle \\
& \rightarrow \tilde{\phi}
\end{aligned}
$$

Quantum Counting Algorithm

The circuit of the algorithm is as follows,

Figure: Quantum Circuit for the Quantum Counting algorithm (Nielsen \& Chuang, 2002; Wikipedia, 2017b)

Quantum Counting Algorithm

- If we choose $m=\lceil n / 2\rceil+1$ and ϵ sufficiently small (such as $1 / 10)$, then the algorithm will take $O(\sqrt{N})$ Grover iterations.
- This means that the function f will only be called $O(\sqrt{N})$ times. Note that this is in contrast to a classical (deterministic or probabilistic) algorithm which will take $O(N)$ oracle calls to achieve the same accuracy.

Quantum Counting Algorithm

Theorem (Quantum Counting Correctness)
Given a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ such that $M=\left|\left\{x \in\{0,1\}^{n}: f(x)=1\right\}\right|$ and $\sin ^{2}\left(\frac{\theta}{2}\right)=\frac{M}{2 N}$, to find θ with m bits of accuracy, with probability $1-\epsilon$ the Quantum Counting Algorithm requires $O\left(m+n+\left\lceil\log \left(2+\frac{1}{2 \epsilon}\right)\right\rceil\right)$ registers and $O(\sqrt{N})$ time.

Quantum Complexity Theory

Quantum complexity classes we are interested in are BQP (Bounded Error Quantum Polynomial time), an analogue of BPP, and EQP (Exact Quantum Polynomial Time).
Definition
BQP is defined as the set of languages that are accepted with probability $\frac{2}{3}$ by some polynomial time Quantum Turing Machine.

Definition
EQP is defined as the set of languages that are accepted with probability 1 by some polynomial time Quantum Turing Machine.

Quantum Complexity Theory

To compare Quantum complexity classes to classical complexity classes, Bernstein \& Vazirani (1997) proved

- $\mathbf{P} \subseteq E Q P$
- BPP $\subset B Q P$
- BQP \subseteq PSPACE

They additionally proved that there exist problems which are in BQP but are not in BPP, showing that Quantum Computing has strict advantages over classical deterministic (or probabilistic) computing.

To be continued...

References I

Aaronson, S. (2005). Quantum computing, postselection, and probabilistic polynomial-time. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, volume 461 (pp. 3473-3482).: The Royal Society.
Aaronson, S. (2013). Quantum computing since Democritus. Cambridge University Press.
Bernstein, E. \& Vazirani, U. (1997). Quantum complexity theory. SIAM Journal on Computing, 26(5), 1411-1473.
Brassard, G., Høyer, P., \& Tapp, A. (1998). Quantum counting. Automata, languages and programming, (pp. 820-831).
Dirac, P. A. M. (1939). A new notation for quantum mechanics. In Mathematical Proceedings of the Cambridge Philosophical Society, volume 35 (pp. 416-418).: Cambridge University Press.
Grover, L. K. (1996). A fast quantum mechanical algorithm for database search. In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing (pp. 212-219).: ACM.

References II

Harrow, A. W., Hassidim, A., \& Lloyd, S. (2009). Quantum algorithm for linear systems of equations. Physical review letters, 103(15), 150502.
Nielsen, M. A. \& Chuang, I. (2002). Quantum computation and quantum information.
Wikipedia (2017a). Grover's algorithm - Wikipedia, the free encyclopedia. [Online; accessed 17-November-2017].
Wikipedia (2017b). Quantum counting algorithm — Wikipedia, the free encyclopedia. [Online; accessed 17-November-2017].

