
A Gentle Introduction to Quantum Computing
Algorithms

Elliot Catt1 Marcus Hutter1,2

1Australian National University, 2Deepmind

{elliot.carpentercatt,marcus.hutter}@anu.edu.au

Table of Contents

What is Quantum Computing?

Quantum Turing Machines

Bra and ket Notation

Quantum Gates and Submodules

Quantum Algorithms

Quantum Complexity Theory

What is Quantum Computing?

Quantum Turing Machine

I In a certain sense, a quantum computing (/Turing machine) is
essentially a probabilistic computing (/Turing machine) which
uses the L2 norm instead of the L1 norm

I Has complex-valued amplitudes in the place of non-negative
real probabilities

I A complex-valued unitary transition matrix instead of a
stochastic one

(Deterministic) Turing Machine

(Deterministic) Turing Machine

Definition (Bernstein & Vazirani (1997))

A deterministic Turing machine is a triplet (Σ,Q, δ), where Σ is a
finite alphabet with an identified blank symbol #, Q is a finite set
of states with identified initial state q0 and finial state qf 6= q0,
and δ, a deterministic transition function, is a function

δ : Q × Σ→ Σ× Q × {L,R} (1)

Here {L,R} denote left and right, directions to move on the tape.
The state qf is also called the Halting state.

Probabilistic Turing Machine

Quantum Turing Machine

Quantum Turing Machine

Definition (Bernstein & Vazirani (1997))

Call C̃ the set consisting of α ∈ C such that there is a
deterministic algorithm that computes the real and imaginary parts
of α to within 2−n in time polynomial in n.

If we do not use this restriction “it is possible to smuggle
hard-to-compute quantities into the transition amplitudes, for
instance by letting the ith bit indicate whether the ith
deterministic TM halts on a blank tape.”

Quantum Turing Machine

Definition (Bernstein & Vazirani (1997))

A Quantum Turing Machine M is defined, much like a classical
Turing Machine (Definition 1), by a triplet (Σ,Q, δ) where Σ is a
finite alphabet with an identified blank symbol (#), Q is a finite
set of states with identified initial state q0 and final state qf 6= q0,
and δ, the quantum transition function,

δ : Q × Σ → C̃Σ × Q × {L,R}.

The QTM M has a two-way infinite tape of cells indexed by Z,
each holding symbols from Σ, and a single read/write tape head
that moves along the tape. A configuration or instantaneous
description of the QTM is a complete description of the contents
of the tape, the location of the tape head, and the state q ∈ Q of
the finite control.

Bra and ket

The Dirac bra-ket (Dirac, 1939) notation is as follows: first we use
it to represent the standard basis vectors of C2

|0〉 =

(
1
0

)
, |1〉 =

(
0
1

)
with a single qubit being described as

|φ〉 = α |0〉+ β |1〉 =

(
α
β

)
.

This is called a ket. Where α, β ∈ C

Bra and ket

For |a〉 =

(
α0

α1

)
and |b〉 =

(
β0

β1

)
, and α0, α1, β0, β1 ∈ C, we will

also define the tensor product in bra-ket notation as follows:

|a〉 ⊗ |b〉 = |a〉 |b〉 = |ab〉 =

α0β0

α0β1

α1β0

α1β1

Bra and ket

For example, instead of writing |0〉 ⊗ |0〉 ⊗ |1〉 we will write

|001〉 =

(
1
0

)
⊗
(

1
0

)
⊗
(

0
1

)
=

1 · 1 · 0
1 · 1 · 1
1 · 0 · 0
1 · 0 · 1
0 · 1 · 0
0 · 1 · 1
0 · 0 · 0
0 · 0 · 1

=

0
1
0
0
0
0
0
0

.

Bra and ket

We will also raise some qubits to the power of tensors, for example:

|a〉⊗4 = |a〉 ⊗ |a〉 ⊗ |a〉 ⊗ |a〉 =

α0 · α0 · α0 · α0

α0 · α0 · α0 · α1
...

α1 · α1 · α1 · α0

α1 · α1 · α1 · α1

Bra and ket

Additionally we will define the conjugate transpose as

〈a| := |a〉† = (ᾱ0, ᾱ1)

where ᾱ is the complex conjugate of α. This notation is called a
bra.

〈a| |b〉 = 〈a |b〉 = ᾱ0β0 + ᾱ1β1

Superposition

I A collection of qubits (vector) v ∈ C2n is said to be in a
superposition if 〈v | |v〉 = 1.

I We require that the operators (matrices) we apply to
collections of qubits (vectors) preserve this superposition
property.

Unitary Matrices

I The property we are interested in is called unitary. An
operator (matrix) U is unitary if inverse of U is also the
conjugate transpose, i.e. UU† = I .

I If any linear operator was allowed, Quantum Computing would
be unreasonably powerful (Aaronson, 2005).

Quantum Gates

Definition
The Hadamard gate H acts on a single qubit and corresponds to
the following unitary matrix

H =
1√
2

(
1 1
1 −1

)
.

For instance H |0〉 =
∣∣1

2

〉
:= 1√

2

(
1
1

)
and

HH |0〉 = H 1√
2

(
1
1

)
= |0〉 .

It is important to note that the Hadamard gate is both self-adjoint
and its own inverse. That is, HH = HH† = I .

Quantum Gates

Definition
The controlled-not gate, CNOT , acts on two qubits and performs
the not (bit flip) operation on the second qubit if the first qubit is
|1〉. This equates to the following unitary matrix

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

For instance CNOT |0〉 |a〉 = |0〉 |a〉 and

CNOT |1〉 |a〉 = |1〉 ⊗
(
α1

α0

)

Quantum Gates

Definition
The π/8 gate, Rπ/4, corresponds to a rotation of the |1〉 qubit by
π/4. The matrix representing this rotation is

Rπ/4 =

(
1 0

0 e i
π
4

)
, Rπ/4 |a〉 =

(
α0

α1e
i π

4

)
.

The gate is called the π/8 gate for historical reasons, even though
the gate is a rotation of π/4.

Quantum Gates

These three gates are important as they form a universal set of
gates for two qubits.
This means that any classical two bit circuit can be constructed
using only these three gates (Nielsen & Chuang, 2002).

Quantum Gates

The Solovay–Kitaev theorem states that there exists universal sets
of gates such that any unitary matrix can be efficiently
approximated by a finite sequence of gates from this set. Nielsen &
Chuang (2002)

Measurement

The final part of any quantum computing algorithm is
measurement, when the superpositions collapse. With αi ∈ C for
all i ∈ {0, 1}n, measurement outputs i with probability |αi |2. That
is, ∑

x∈{0,1}n
αx |x〉

→ i with probability |αi |2

Where i ∈ {0, 1}n. Although we can only ensure an outcome with
some probability, we can repeat the computation and reduce the
probability of error.

Submodules
Quantum Oracle

I The quantum oracle is used when we want to apply a function
f : {0, 1}n → {0, 1} to a superposition of all elements of
{0, 1}n.

I Since all transforms in quantum computing are reversible (and
indeed unitary) there needs to be some way to keep the
information so that the transform can be reversed.

I Classically for x ∈ {0, 1}n we could take x → f (x), however
when performing this transform in quantum computing we do
the following

Uf |x〉 |y〉 = |x〉 |y ⊕ f (x)〉 .

Where y ∈ {0, 1} is representing an extra qubit used for this
reversibility.

Submodules
Quantum Fourier Transform

The quantum Fourier transform (QFT) is a linear operator which
acts on a vector |j〉 of size 2n as follows,

QFT |j〉 =
1

2n/2

∑
k∈{0,1}n

e2πijk/2n |k〉 . (2)

Submodules
Inverse Quantum Fourier Transform

QFT −1

 1

2n/2

∑
k∈{0,1}n

e−2πijk/2n |k〉

 = |j〉 (3)

Quantum Algorithms
Overview

I Take some initial state such as |0〉⊗n

I Quantumize to create a uniform superposition over all
possible qubits, often done with the Hadamard gate H⊗n

I Perform computation of some function in simultaneous states
of this superposition

I Uncompute the superposition, often done with the Hadamard
gate or the inverse Quantum Fourier transform

I Measurement of some or all of the circuit

Deutsch-Jozsa Algorithm

I The Deutsch-Jozsa Algorithm is the first example of an
exponential “quantum-speedup”.

I Imagine we are given a function f : {0, 1}n → {0, 1} that has
the property that either all values map to 0, or half of them
do.

I Our objective is to determine whether every value maps to 0,
or half of them do.

I To check this classically, one must perform at most 2n−1 + 1
function evaluations.

I This is because the moment the function outputs a 1 we know
that f outputs 1 on half the inputs.

I The Deutsch-Jozsa Algorithm requires only 1 function
evaluation.

Deutsch-Jozsa Algorithm

|0〉⊗n|1〉 →
1

√
2n+1

∑
x∈{0,1}n

|x〉(|0〉 − |1〉) Hadamard H⊗n ⊗ H

→
1

√
2n+1

∑
x∈{0,1}n

|x〉(|f (x)〉 − |1⊕ f (x)〉) f oracle

=
1

√
2n+1

∑
x∈{0,1}n

(−1)f (x)|x〉(|0〉 − |1〉) since f (x) = 0, 1

→
1

2n

∑
x∈{0,1}n

(−1)f (x)

 ∑
y∈{0,1}n

(−1)x·y |y〉

 |1〉 Hadamard H⊗n ⊗ H

=
1

2n

∑
y∈{0,1}n

 ∑
x∈{0,1}n

(−1)x·y+f (x)

 |y〉 |1〉 Re-ordering

→

∣∣∣∣∣∣ 1

2n

∑
x∈{0,1}n

(−1)f (x)

∣∣∣∣∣∣
2

Measurement on first n qubits

=

{
1 if f (x) = 0 ∀x ∈ {0, 1}n

0 if f (x) = 0 for half the x ∈ {0, 1}n

Deutsch-Jozsa Algorithm

|0〉⊗n|1〉 →
1

√
2n+1

∑
x∈{0,1}n

|x〉(|0〉 − |1〉) Hadamard H⊗n ⊗ H

→
1

√
2n+1

∑
x∈{0,1}n

|x〉(|f (x)〉 − |1⊕ f (x)〉) f oracle

=
1

√
2n+1

∑
x∈{0,1}n

(−1)f (x)|x〉(|0〉 − |1〉) since f (x) = 0, 1

→
1

2n

∑
x∈{0,1}n

(−1)f (x)

 ∑
y∈{0,1}n

(−1)x·y |y〉

 |1〉 Hadamard H⊗n ⊗ H

=
1

2n

∑
y∈{0,1}n

 ∑
x∈{0,1}n

(−1)x·y+f (x)

 |y〉 |1〉 Re-ordering

→

∣∣∣∣∣∣ 1

2n

∑
x∈{0,1}n

(−1)f (x)

∣∣∣∣∣∣
2

Measurement on first n qubits

=

{
1 if f (x) = 0 ∀x ∈ {0, 1}n

0 if f (x) = 0 for half the x ∈ {0, 1}n

Deutsch-Jozsa Algorithm

|0〉⊗n|1〉 →
1

√
2n+1

∑
x∈{0,1}n

|x〉(|0〉 − |1〉) Hadamard H⊗n ⊗ H

→
1

√
2n+1

∑
x∈{0,1}n

|x〉(|f (x)〉 − |1⊕ f (x)〉) f oracle

=
1

√
2n+1

∑
x∈{0,1}n

(−1)f (x)|x〉(|0〉 − |1〉) since f (x) = 0, 1

→
1

2n

∑
x∈{0,1}n

(−1)f (x)

 ∑
y∈{0,1}n

(−1)x·y |y〉

 |1〉 Hadamard H⊗n ⊗ H

=
1

2n

∑
y∈{0,1}n

 ∑
x∈{0,1}n

(−1)x·y+f (x)

 |y〉 |1〉 Re-ordering

→

∣∣∣∣∣∣ 1

2n

∑
x∈{0,1}n

(−1)f (x)

∣∣∣∣∣∣
2

Measurement on first n qubits

=

{
1 if f (x) = 0 ∀x ∈ {0, 1}n

0 if f (x) = 0 for half the x ∈ {0, 1}n

Deutsch-Jozsa Algorithm

|0〉⊗n|1〉 →
1

√
2n+1

∑
x∈{0,1}n

|x〉(|0〉 − |1〉) Hadamard H⊗n ⊗ H

→
1

√
2n+1

∑
x∈{0,1}n

|x〉(|f (x)〉 − |1⊕ f (x)〉) f oracle

=
1

√
2n+1

∑
x∈{0,1}n

(−1)f (x)|x〉(|0〉 − |1〉) since f (x) = 0, 1

→
1

2n

∑
x∈{0,1}n

(−1)f (x)

 ∑
y∈{0,1}n

(−1)x·y |y〉

 |1〉 Hadamard H⊗n ⊗ H

=
1

2n

∑
y∈{0,1}n

 ∑
x∈{0,1}n

(−1)x·y+f (x)

 |y〉 |1〉 Re-ordering

→

∣∣∣∣∣∣ 1

2n

∑
x∈{0,1}n

(−1)f (x)

∣∣∣∣∣∣
2

Measurement on first n qubits

=

{
1 if f (x) = 0 ∀x ∈ {0, 1}n

0 if f (x) = 0 for half the x ∈ {0, 1}n

Deutsch-Jozsa Algorithm

|0〉⊗n|1〉 →
1

√
2n+1

∑
x∈{0,1}n

|x〉(|0〉 − |1〉) Hadamard H⊗n ⊗ H

→
1

√
2n+1

∑
x∈{0,1}n

|x〉(|f (x)〉 − |1⊕ f (x)〉) f oracle

=
1

√
2n+1

∑
x∈{0,1}n

(−1)f (x)|x〉(|0〉 − |1〉) since f (x) = 0, 1

→
1

2n

∑
x∈{0,1}n

(−1)f (x)

 ∑
y∈{0,1}n

(−1)x·y |y〉

 |1〉 Hadamard H⊗n ⊗ H

=
1

2n

∑
y∈{0,1}n

 ∑
x∈{0,1}n

(−1)x·y+f (x)

 |y〉 |1〉 Re-ordering

→

∣∣∣∣∣∣ 1

2n

∑
x∈{0,1}n

(−1)f (x)

∣∣∣∣∣∣
2

Measurement on first n qubits

=

{
1 if f (x) = 0 ∀x ∈ {0, 1}n

0 if f (x) = 0 for half the x ∈ {0, 1}n

Deutsch-Jozsa Algorithm

|0〉⊗n|1〉 →
1

√
2n+1

∑
x∈{0,1}n

|x〉(|0〉 − |1〉) Hadamard H⊗n ⊗ H

→
1

√
2n+1

∑
x∈{0,1}n

|x〉(|f (x)〉 − |1⊕ f (x)〉) f oracle

=
1

√
2n+1

∑
x∈{0,1}n

(−1)f (x)|x〉(|0〉 − |1〉) since f (x) = 0, 1

→
1

2n

∑
x∈{0,1}n

(−1)f (x)

 ∑
y∈{0,1}n

(−1)x·y |y〉

 |1〉 Hadamard H⊗n ⊗ H

=
1

2n

∑
y∈{0,1}n

 ∑
x∈{0,1}n

(−1)x·y+f (x)

 |y〉 |1〉 Re-ordering

→

∣∣∣∣∣∣ 1

2n

∑
x∈{0,1}n

(−1)f (x)

∣∣∣∣∣∣
2

Measurement on first n qubits

=

{
1 if f (x) = 0 ∀x ∈ {0, 1}n

0 if f (x) = 0 for half the x ∈ {0, 1}n

Deutsch-Jozsa Algorithm

|0〉⊗n|1〉 →
1

√
2n+1

∑
x∈{0,1}n

|x〉(|0〉 − |1〉) Hadamard H⊗n ⊗ H

→
1

√
2n+1

∑
x∈{0,1}n

|x〉(|f (x)〉 − |1⊕ f (x)〉) f oracle

=
1

√
2n+1

∑
x∈{0,1}n

(−1)f (x)|x〉(|0〉 − |1〉) since f (x) = 0, 1

→
1

2n

∑
x∈{0,1}n

(−1)f (x)

 ∑
y∈{0,1}n

(−1)x·y |y〉

 |1〉 Hadamard H⊗n ⊗ H

=
1

2n

∑
y∈{0,1}n

 ∑
x∈{0,1}n

(−1)x·y+f (x)

 |y〉 |1〉 Re-ordering

→

∣∣∣∣∣∣ 1

2n

∑
x∈{0,1}n

(−1)f (x)

∣∣∣∣∣∣
2

Measurement on first n qubits

=

{
1 if f (x) = 0 ∀x ∈ {0, 1}n

0 if f (x) = 0 for half the x ∈ {0, 1}n

Deutsch-Jozsa Algorithm

The quantum circuit below is exactly the transforms described
above.

|0〉 /n H⊗n

Uf

H⊗n

|1〉 H

Figure: Quantum circuit for the Deutsch-Jozsa Algorithm (Nielsen &
Chuang, 2002)

Harrow-Lloyd Algorithm for Linear equations (Harrow
et al., 2009)

I Given some N × N matrix A and some vector b, finding the
solution x to the equation Ax = b is known as the linear
equation problem

I Classically this can be done in many ways, such as matrix
inversion (finding A−1 such that x = A−1b)

I Classically the fastest algorithm takes O(Nκ) time, where κ is
the condition number of the matrix A

I The Harrow-Lloyd algorithm (Harrow et al., 2009) is able to
achieve an exponential speedup in N by taking O(log(N)κ2)
time, if κ = O(1)

Note that when κ = O(N) this algorithm provides no speedup.

Harrow-Lloyd Algorithm for Linear equations (Harrow
et al., 2009)

I At this point the reader may question the existence of the
algorithm since to output an N long vector x , one must use at
least N steps

I This is correct, however, if one is interested in some property
of x , such as ||Mx ||tr for some matrix M, it will provide an
exponential speedup over classical methods

I The procedure relies on the quantum phase estimation and
hamiltonian simulation, for both of which there are fast
quantum algorithms

Grover Search

Grover’s search (Grover, 1996), formally described in Nielsen &
Chuang (2002), takes a function f such that there is at least one s
such that f (s) = 1, a set S = {0, 1}n of inputs of size
|S | = N = 2n, and is able to find an s ∈ S which satisfies f (s) = 1
in O(

√
N) time.

Grover Search

The Grover Search Algorithm is effectively O(
√
N) application of

the grover iteration.
The Grover iteration looks like

G = (H⊗n(2 |0〉⊗n 〈0|⊗n − In)H⊗n)Uω

Nielsen & Chuang (2002).

Grover Search

I To demonstrate how the Grover operator is able to give the
desired answer, a geometric analysis is quite useful.

I Let M denote the number of solutions to f (s) = 1, that is
M = |{s ∈ S : f (s) = 1}|.

I Let |β〉 := 1√
M

∑
x∈M |x〉 be the vector of all M solutions

I And |η〉 := 1√
N−M

∑
x∈S\M |x〉 be the vector of N −M non

solutions

We can write the uniform state as

1√
2n

∑
x∈{0,1}n

|x〉 =

√
N −M

N
|η〉+

√
M

N
|β〉 .

Grover Search

The oracle transform reflects |β〉 about |η〉; mathematically we can
write this as

Uω(p |η〉+ q |β〉)
(
|0〉 − |1〉√

2

)
= p |η〉

(
|0〉 − |1〉√

2

)
+ q |β〉

(
|1〉 − |0〉√

2

)
= (p |η〉 − q |β〉)

(
|0〉 − |1〉√

2

)

Grover Search

I The transform (H⊗n(2 |0〉⊗n 〈0|⊗n − In)H⊗n) is a reflection
about 1√

2n

∑
x∈{0,1}n |x〉.

I Performing these two reflections together gives a rotation.

Grover Search

Let cos θ2 =
√

N−M
N , then we have that sin θ

2 =
√

M
N and we can

re-write the uniform state as,

1√
2n

∑
x∈{0,1}n

|x〉 = cos
θ

2
|η〉+ sin

θ

2
|β〉 .

Then applying the Grover iteration to both sides we get

G

 1√
2n

∑
x∈{0,1}n

|x〉

 = (H⊗n(2 |0〉⊗n 〈0|⊗n − In)H
⊗n)Uω

(
cos

θ

2
|η〉+ sin

θ

2
|β〉
)

= (H⊗n(2 |0〉⊗n 〈0|⊗n − In)H
⊗n)

(
cos

θ

2
|η〉 − sin

θ

2
|β〉
)

= cos

(
3θ

2

)
|η〉+ sin

(
3θ

2

)
|β〉

Grover Search

Applying the iteration k times leads to

G k

 1√
2n

∑
x∈{0,1}n

|x〉

 = cos

(
2kθ + θ

2

)
|η〉+sin

(
2kθ + θ

2

)
|β〉 .

Grover Search

Thus we perform the iteration a number of times so that
sin
(

2kθ+θ
2

)
is close to 1, which leads to

k =

⌈
π

4

√
N

M

⌉
.

Grover Search

This can be derived by

sin

(
2kθ + θ

2

)
≈ 1

2kθ + θ

2
≈ π

2

θ
2k + 1

2
≈ π

2

2k + 1 ≈ π

θ

k ≈ π

2θ
− 1

2

k ≈ π

4

√
N

M
− 1

2

Grover Search
The algorithm for the case when M = 1 and f (x ′) = 1 can be
defined as follows:

|0〉⊗n |0〉 →
1

√
2n+1

∑
x∈{0,1}n

|x〉 (|0〉 − |1〉) Hadamard

then repeat the Grover iteration d(π
√
N/4)e times

→ ((H⊗n(2 |0〉⊗n 〈0|⊗n − In)H⊗n)Uω)d(π
√

N/4)e

 1
√

2n+1

∑
x∈{0,1}n

|x〉 (|0〉 − |1〉)

= Gd(π

√
N/4)e

 1
√

2n+1

∑
x∈{0,1}n

|x〉 (|0〉 − |1〉)

≈ |β〉

(
|0〉 − |1〉

2

)
=
∣∣x ′〉(|0〉 − |1〉

2

)
→ x ′ Measurement on first n qubits

Figure: Quantum Search Algorithm (Nielsen & Chuang, 2002)

Grover Search

To produce a quantum circuit, we can just write out each
transform used in order.

Grover operator

|0〉 /n H⊗n

Uω
H⊗n 2 |0〉⊗n 〈0|⊗n − In H⊗n · · ·

|1〉 H · · ·
Repeat O(

√
N) times

Figure: Quantum Circuit for Grover’s algorithm (Nielsen & Chuang,
2002; Wikipedia, 2017a)

Quantum Counting Algorithm

I The Quantum Counting Algorithm, proposed in Brassard
et al. (1998) and described in Nielsen & Chuang (2002), is a
combination of Grover search and phase estimation.

I Given an oracle indicator function fB : A→ {0, 1} of B ⊆ A,
with |A| = N = 2n, the Quantum Counting Algorithm finds
M = |B|.

Quantum Counting Algorithm

To find M the Quantum Counting Algorithm finds a solution θ to
the equation

sin2

(
θ

2

)
=

M

2N
(4)

then solves for M.

Quantum Counting Algorithm

I Phase estimation, is a subroutine used in quantum algorithms
to estimate the phase of the eigenvalue of some unitary
operator (in this case G) to some precision.

I Phase estimation relies on the fact that when the eigenvalue is
written in the form e2πijφ for phase φ, the inverse Fourier
transform will transform

1√
N

∑
j∈{0,1}dlog2 Ne

e2πijφ |j〉

to an approximation of φ in the form
∣∣∣φ̃〉, where φ̃ is the

binary approximation of φ.

Quantum Counting Algorithm

To achieve m bits of accuracy of θ with probability 1− ε, the
algorithm works on two registers. The first register is of size
t = m + dlog(2 + 1

2ε)e, and the second register of size n + 1.

Quantum Counting Algorithm

The algorithm is much like the phase estimation.

|0〉⊗t |0〉n+1 →
1

2t/2

∑
k∈{0,1}t

|k〉
1

2(n+1)/2

∑
s∈{0,1}n+1

|s〉 Hadamards

→
1

2t/2

∑
k∈{0,1}t

e2πiφk |k〉
1

2(n+1)/2

∑
s∈{0,1}n+1

|s〉 Controlled-G

=
1

2t/2

(
|0〉 + e2πi2t−1φ |1〉

)(
|0〉 + e2πi2t−2φ |1〉

)
. . .

(
|0〉 + e2πi20φ |1〉

)
1

2(n+1)/2

∑
s∈{0,1}n+1

|s〉

=
1

2t/2

(
|0〉 + e2πi0.φt |1〉

) (
|0〉 + e

2πi0.φt−1φt |1〉
)

. . .
(
|0〉 + e2πi0.φ1...φt |1〉

) 1

2(n+1)/2

∑
s∈{0,1}n+1

|s〉

→
∣∣∣φ̃〉 1

2(n+1)/2

∑
s∈{0,1}n+1

|s〉 Inverse Fourier transform

→ φ̃ Measurement on first register

Quantum Counting Algorithm

The circuit of the algorithm is as follows,

Figure: Quantum Circuit for the Quantum Counting algorithm (Nielsen &
Chuang, 2002; Wikipedia, 2017b)

Quantum Counting Algorithm

I If we choose m = dn/2e+ 1 and ε sufficiently small (such as
1/10), then the algorithm will take O(

√
N) Grover iterations.

I This means that the function f will only be called O(
√
N)

times. Note that this is in contrast to a classical
(deterministic or probabilistic) algorithm which will take O(N)
oracle calls to achieve the same accuracy.

Quantum Counting Algorithm

Theorem (Quantum Counting Correctness)

Given a function f : {0, 1}n → {0, 1} such that
M = |{x ∈ {0, 1}n : f (x) = 1}| and sin2

(
θ
2

)
= M

2N , to find θ with
m bits of accuracy, with probability 1− ε the Quantum Counting
Algorithm requires O(m + n + dlog(2 + 1

2ε)e) registers and O(
√
N)

time.

Quantum Complexity Theory

Quantum complexity classes we are interested in are BQP
(Bounded Error Quantum Polynomial time), an analogue of BPP,
and EQP (Exact Quantum Polynomial Time).

Definition
BQP is defined as the set of languages that are accepted with
probability 2

3 by some polynomial time Quantum Turing Machine.

Definition
EQP is defined as the set of languages that are accepted with
probability 1 by some polynomial time Quantum Turing Machine.

Quantum Complexity Theory

To compare Quantum complexity classes to classical complexity
classes, Bernstein & Vazirani (1997) proved

I P ⊆ EQP

I BPP ⊂ BQP

I BQP ⊆ PSPACE

They additionally proved that there exist problems which are in
BQP but are not in BPP, showing that Quantum Computing has
strict advantages over classical deterministic (or probabilistic)
computing.

To be continued...

References I

Aaronson, S. (2005). Quantum computing, postselection, and
probabilistic polynomial-time. In Proceedings of the Royal
Society of London A: Mathematical, Physical and Engineering
Sciences, volume 461 (pp. 3473–3482).: The Royal Society.

Aaronson, S. (2013). Quantum computing since Democritus.
Cambridge University Press.

Bernstein, E. & Vazirani, U. (1997). Quantum complexity theory.
SIAM Journal on Computing, 26(5), 1411–1473.

Brassard, G., Høyer, P., & Tapp, A. (1998). Quantum counting.
Automata, languages and programming, (pp. 820–831).

Dirac, P. A. M. (1939). A new notation for quantum mechanics.
In Mathematical Proceedings of the Cambridge Philosophical
Society, volume 35 (pp. 416–418).: Cambridge University Press.

Grover, L. K. (1996). A fast quantum mechanical algorithm for
database search. In Proceedings of the twenty-eighth annual
ACM symposium on Theory of computing (pp. 212–219).: ACM.

References II

Harrow, A. W., Hassidim, A., & Lloyd, S. (2009). Quantum
algorithm for linear systems of equations. Physical review letters,
103(15), 150502.

Nielsen, M. A. & Chuang, I. (2002). Quantum computation and
quantum information.

Wikipedia (2017a). Grover’s algorithm — Wikipedia, the free
encyclopedia. [Online; accessed 17-November-2017].

Wikipedia (2017b). Quantum counting algorithm — Wikipedia,
the free encyclopedia. [Online; accessed 17-November-2017].

	What is Quantum Computing?
	Quantum Turing Machines
	Bra and ket Notation
	Quantum Gates and Submodules
	Quantum Algorithms
	Quantum Complexity Theory

