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Introduction

I Feature Markov (Decision) Processes is a history based approach
to Sequence Prediction and Reinforcement Learning (RL).
introduced by Hutter 2009

I We also consider Sequence Prediction with side information.
I In RL we have sequences of actions, observations and rewards.

Actions and observations are side information for predicting
future rewards.

I The actions are chosen with the aim of maximizing total long
term reward in some sense.



States and Features

I If we have a suitable set of features that define states that are
Markov, i.e. the sequence is transformed into a Markov sequence
of states and the RL problem into a Markov Decision Process
(MDP), then there exists sucessfull methods for solving the
problems.

I The Feature Markov Decision Process framework (Hutter 2009)
aims at learning such a feature map based on a globally (for a
class of feature maps) defined cost criterium.

I We present a consistency theory in this article/talk.
I Some first empirical results in (Mahmoud 2010)
I Empirical investigations are ongoing by Phuong Nguyen,

Mayank Daswani.
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Ergodic Sequences and Distributions over Infinite Sequences

I Consider the set of all infinite sequences yt, t = 1, 2, ... of
elements from a finite alphabet Y . We equip the set with the
σ-algebra that is generated by the cylinder sets
Γy1:n = {x1:∞| xt = yt, t = 1, ..., n}

Definition
A sequence y1:∞ defines a probability distribution on infinite
sequences if the (relative) frequency of every finite substring of y1:∞
converges asymptotically. The probabilities of the cylinder sets are
defined to equal those limits:

Γz1:m := limn→∞#{t ≤ n : yt+1:t+m = z1:m}/n
We call such sequences ergodic
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Sources and Feature Maps

I Our primary class of sources and maps are defined from FSMs.

Definition
We are interested in Finite State Machines (FSM) with the property
that st−1 (internal state) and yt (current element in a sequence)
determine st. If we also have probabilities Pr(yt+1 | st) we have
defined a generating distribution.
Probabilistic-Deterministic Finite Automata (PDFA)
Used in (Mahmoud 2010)



Sources and Feature Maps

Proposition
If we have FSM (of bounded memory) and the state transitions are
ergodic it will a.s. generate an ergodic sequence

I Special case of maps: Trees. (Ineffecient representation of
bounded memory FSM, many states)

I More generally, feature map Φ : Y∗ → S from histories (finite
strings) to states. Φ(y1:t) = st. Feature Markov Process

I Task: Find Φ while observing the sequence yt.
I Given Φ, estimating probabilities Pr(y|s) is simple (frequency,

KT, Laplace)
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Criteria for Selecting Feature Maps

I Given a feature map Φ and y1:t, we also have a (fictitious) state
sequence st.

I We can estimate Pr(yt+1 = y|st = s) using frequency estimates
#{t|yt+1=y,st=s}

#{t|st=s} and then we have defined a generative
distribution for sequences

I Alternative, estimate Pr(st+1 = s′|st = s) and
Pr(yt+1 = y|st+1 = s). HMM parameters

I Let pt,Φ be the distribution estimated at time t based on Φ.

Definition

Costt(Φ) = log Pr(y1:t|pt,Φ) + pen(m, t)

where m is the number of states and pen(m, t) is positive, strictly
increasing in m and limt→∞

pen(m,t)
t = 0.

I We select the Φ (in the class) that has the smallest cost.
I We assume finite classes in this talk.
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Analysis Strategy

Definition
If p is a distribution and the following limit is defined

K(p) = lim
t→∞

1
t

log Pr(y1:t|p)

then we call the limit the entropy rate of p (for y1:∞).
I Well defined with almost sure uniform convergence on compact

sets of HMM parameters for sequences generated by ergodic
Hidden Markov Models.

Strategy
If Φ is such that its parameter estimates (pt defined by frequency
estimates) converge (to p∞) and if 1

t log Pr(y1:t|p) converges
uniformly (to K(p)) then we also have convergence for
1
t log Pr(y1:t|pt) and the convergence is to
limt→∞

1
t log Pr(y1:t|p∞) = K(p∞). Finally one argues that better

log-likehood will defeat lower model penalty pen(m, t) due to
sublinear growth of the latter and linear of the first.
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Classes of Sources and Maps

I We now fit our model and map class based on FSMs into the
strategy.

Proposition
If we have a map based on bounded memory FSMs and an ergodic
sequence we will have converging parameters pt,Φ as t→∞.

Proposition
Suppose that we have a source defined by a bounded memory FSM
(with ergodic state transition parameters) then, we will almost surely
generate an ergodic sequence which is such that such that
1
t log Pr(y1:t|p) converges uniformly on compact HMM parameter
sets.
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Conclusion for sequence prediction

I The main result for generic sequence prediction

Theorem
If we have a finite class of maps based on FSMs of bounded memory
and the data is generated by one of the maps (together with
parameters that makes the Markov sequence ergodic), then almost
surely the entropy rates (for all the maps) exist and there is T <∞
such that whenever t ≥ T ,

argmin
Φ

Costt(Φ) ∈ argmin
Φ

K(pΦ)

where pΦ = limt→∞ pt,Φ



Side Information

I Sequence of (xt, yt) and we are only really interested in yt
I For example yt rewards and xt observations and actions in RL

I Alternative 1: Model everything ((xt, yt) = zt) as before
I Alternative 2: Model states st and yt

OCostt(Φ) = logPr(s1:t|pt,Φ) + log Pr(y1:t|s1:t, pt,Φ) + pen

I If Φ is injective Alternative 1 and 2 are the same.
I Maps based on non-empty suffix trees are injective
I Alternative 3 (ICost): Model only yt and marginalize out st
I Leads to Hidden Markov Models since st depends on both y1:t

and x1:t.
ICost(Φ) = logPr(y1:t|pt,Φ) + pen

I The same kind of conditions and analysis applied to ICost lead to
the conclusion that we will after finite time only choose between
maps that yield minimal entropy rate as models of yt.
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Side Information

I ICost ignores information that only gives you a bounded finite
number of bits improvement, something whose influence expires
after a finite horizon.

I Example, let yt+k = xt. Generate by letting xt be Bernoulli(1/2)

I Other alternatives:
I Finite Horizon cost focus on log Pr(yt:t+k|st)

I Ex: (k = 0) log Pr(y1:t|s1:t) + pen. Close to (Mahmoud 2010)
who has a Bayesian version of this

I Can fail to capture the probabilistic transition struture
I The various criteria with side information does not aim at

recovering the full model.
I Must relate the criteria to the sense in which we want to be

optimal, for example finite horizon RL.
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Summary

I Consistency of Feature Markov Processes for sequence
prediction

I A framework for analyzing criteria for selecting a feature map
for sequence prediction with side information

I One can only hope for optimality with respect to the sense of
optimality embodied by the criteria (entropy rate of what given
what)

I Ongoing empirical studies where agents based Feature Markov
Decision Processes tries to solve various problems will lead us
forward


