Bayesian Analysis of the Poisson-Dirichlet Process

Wray Buntine and Marcus Hutter National ICT Australia (NICTA)

16th October 2008

Pitman-Yor and Dirichlet Processes

- Two-Parameter Poisson-Dirichlet <u>Distribution</u> proposed by Pitman and Yor in 1997, denoted PD(a, b).
- Usually embedded in the Two-Parameter Poisson-Dirichlet Process, denoted PDP(a, b).
- Subsequently called Pitman-Yor Process.
- Parameters usually are α, θ , but we use a, b.
- When first parameter (a or α) is zero, reduces to the Dirichlet Process (DP).
- Used for so-called non-parametric Bayesian analysis, since they are infinite dimensional distributions.
- At NIPS is considered double-plus good.

Typical Application: Clustering

- Data is sequence $\vec{y}_1, \vec{y}_2, \ldots$
- Assume clusters have means distributed apriori as Gaussian $(0, \vec{l})$.
- Mixture model places $\vec{y_i}$ in cluster k_i : Can make the mixture probabilities PD(a, b), thus allowing infinite many clusters.
- Or place $\vec{y_i}$ with mean $\vec{\mu_i}$, where $\vec{\mu_i}$ are PDP $(a, b, \text{Gaussian}(0, \vec{I}))$.
 - The PDP will intrinsically do the mixture model for you.

Typical Application: Language Model

Word probability models:

- Data is sequence of English words, "from", "apple", "to", "from", "from", "cat", "to",...
- Model the word probabilities as PD(a, b), thus allowing potentially infinite many words.

Variable *n*-gram models:

- Data is English text tokenised at spaces, "The quick brown fox jumped over the lazy dog ..."
- Model the word context (previous n words) be a tree with context frequency at each node. Place a single word probability model (as above) at each node as well.
- Thus combined model gives word probabilities for each context.

Our Motivation

- PDP's and DPs are usually defined procedurally (with sampling or sorting rules) or axiomatically.
- We would like to better understand what sort of prior they are when used for non-parametric Bayesian inference,
 e.g. for "infinite" dimensional clustering.
- When used in language modelling, we would like more efficient inference algorithms.

Model Family

Consider the distributional formula:

$$p(k) = p_k$$
 where $\sum_{k=1}^{\infty} p_k = 1$, $p(X|k) = \delta_{X_k}(\cdot)$

where $\delta_{X_k}(\cdot)$ is a discrete measure concentrated at X_k . We assume the values $X_k \in \mathcal{X}$ are independently and identically distributed according to same base measure $H(\cdot)$.

- We might model a sequence of X values generated.
- We might model just a sequence of k values.
- We might model the equivalence classes in a sequence of k's.
- We might model the p_k themselves.

Model Family, cont.

Assume $H(\cdot)$ is the uniform distribution on the unit interval [0,1].

• We might model a sequence of X values generated.

We might model just a sequence of k values.

ullet We might model the equivalence classes in a sequence of k's.

• We might model the p_k themselves (assuming a = 0 and b = 2),

$$p_1 = 3/9$$
, $p_2 = 1/9$, $p_3 = 2/9$, $p_4 = 1/9$,

Model Family, cont.

• Assume $H(\cdot)$ is the <u>non-atomic</u> distribution uniform on the unit interval [0,1]. Given a sequence of X values generated 0.4674, 0.3925, 0.1937, 0.4674, 0.4674, 0.3947, 0.1937, ...,

we can be sure the equivalence classes in a sequence of k's are 1, 2, 3, 1, 1, 4, 3, ...,

• Assume $H(\cdot)$ is a <u>discrete</u> distribution on English words (so different X_k could be the same) given a sequence "from", "apple", "to", "from", "from", "cat", "to",...

it could have any one of the following equivalence classes

Definitions

Definition. (Pitman and Yor, 1997) For $0 \le a < 1$ and b > -a, suppose that a probability $P_{a,b}$ governs independent random variables \tilde{Y}_k such that \tilde{Y}_k has Beta(1-a,b+ka) distribution. Let

$$\tilde{V}_1 = \tilde{Y}_1, \quad \tilde{V}_k = (1 - \tilde{Y}_1) \cdots (1 - \tilde{Y}_{k-1}) \tilde{Y}_k \quad k \geq 2$$

and let $V_1 \geq V_2 \geq \cdots$ be the ranked (sorted) values of the \tilde{V}_k . Define the Poisson-Dirichlet distribution with parameters a,b, abbreviated PD(a,b) to be the $P_{a,b}$ distribution of V_n .

Definition. (Ishwaran and James, 2001) Given a base probability (density) function $H(\cdot)$ on a measurable space \mathcal{X} , the <u>Poisson-Dirichlet process</u> with parameters a, b, abbreviated PDP(a, b, H), is given by the discrete probability

$$\sum_{k=1}^{\infty} V_k \delta_{X_k}(\cdot)$$

where $\delta_{X_k}(\cdot)$ is a discrete measure concentrated at X_k and \vec{V} is PD(a,b).

References

- Pitman and Yor, "The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator," Annals of Probability, 1997.

 Basic theory.
- Ishwaran and James, "Gibbs Sampling Methods for Stick Breaking Priors", JASA, 2001. → General overview and history of PDP, and sampling methods. De rigueur citation at NIPS.
- Y.W. Teh, "A Hierarchical Bayesian Language Model based on Pitman-Yor Processes," *CCL and ACL*, Sydney 2006.
 — Example of use in the discrete language domain.
- James, "Large sample asymptotics for the two-parameter Poisson-Dirichlet process," IMS Collections, 2008. → Recent asymptotic theory.
- **NB.** There are also loads of good tutorials from the SML crowd.

Definition: Partition Model

Definition. A <u>partition model</u> is defined by a countably infinite sequence of probabilities p_1, p_2, \ldots from an infinite-dimensional probability vector \vec{p} , where $\sum_{i=1}^{\infty} p_k = 1$. A <u>sample</u> of length N from the model is a sequence of indices k_1, \ldots, k_N drawn i.i.d. according to probability \vec{p} .

Definition. The sample from the partition model induces a <u>sample from non-atomic base distribution</u> $H(\cdot)$ as follows. Let $X_k \sim H(\cdot)$ for $k=1,...,\infty$. Given the partition represented by indices $I_N=k_1,...,k_N$, return the sequence $S_N=X_{k_1},...,X_{k_N}$.

Definition: Improper Dirichlet Prior

Definition. Given parameters (a, b), where $0 \le a < 1$ and b > -a, define an improper prior (or unnormalised measure) on the parameters \vec{p} of a partition model as follows. For any sub-vector $p_{k_1}, p_{k_2}, ..., p_{k_M}$, use the following measure:

$$p(p_{k_1}, p_{k_2}, ..., p_{k_M}, p_M^+) := (p_M^+)^{b+Ma} \prod_{m=1}^M p_{k_m}^{-a-1},$$

where
$$p_{M}^{+} = 1 - \sum_{m=1}^{M} p_{k_{m}}$$
.

NB. informally, this is a Dirichlet_{M+1}(-a, -a, ..., -a, b + Ma), **NB.** the definition is consistent across change of variables to

sub-vectors.