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Reinforcement Learning

I Maximise long-term discounted reward

I Hard because environment is unknown

I We model the environment using finite state Markov Decision
Processes with unknown transitions



Markov Decision Processes

Goal: Construct A with V AM (s1:t) = V ∗M (st).

Problem 1: M is unknown. A has to spend some time exploring

Problem 2: The environment is stochastic. A can be “unlucky”

Notation

M (S,A, p, r, γ)

V ∗M (st) value of optimal policy

V AM (s1:t) value of A in M



Sample Complexity

An algorithm A is (ε, δ)-correct with sample complexity N if for all
M ∈M := {(S,A, p, r, γ) : p transition probabilities},

P
{ ∑∞

t=1[[V
∗
M (st)− V AM (s1:t) > ε]] > N

}
< δ

# time-steps where A is not ε-optimal

“The probability that I am ’badly’ suboptimal for more
than N time-steps is at most δ!”



Theorems

ucrlγ is a combination/modification of ucrl2 (Ortner & Auer
2010) and mbie (Littman et al., 2008)

Theorem (Upper Bound, L & Hutter 2012)

For 0 < ε ≤ 1, ucrlγ is (ε, δ)-correct with sample complexity

Õ

(
T

ε2(1− γ)3
log

1

δ

)
,

where T ≤ |S|2|A| is the number of non-zero transition
probabilities.

Theorem (Lower Bound, L & Hutter 2012)

Every (ε, δ)-correct policy has sample complexity at least

Ω̃

(
|S||A|

ε2(1− γ)3
log

1

δ

)
.



History of the Upper Bound
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Algorithm Sketch

1: loop
2: Compute empiric estimate, p̂, of transition matrix p
3: Compute confidence interval about p̂
4: Act according to the most optimistic plausible MDP
5: end loop



Analysis

I Key component is bounding |V A
M̂

(s1:t)− V AM (s1:t)| < ε
I Require each state to be visited sufficiently often
I States that are expected to be visited often needed better

estimates

Bernstein’s, σ2(s) := VarV (s′|s) and L := log 1/δ

Discounted future state distribution Error

V A
M̂

(st)−V AM (st) = γ
∑
s

w(s) (ps − p̂s) · V̂
≈
≤
∑
s

w(s)
√
|S|σ2(s)L
n(s)

=
∑
s

√
L|S|w(s)σ2(s)

m := n(s)/w(s)

≈
≤
√
L|S|2
m

∑
sw(s)σ2(s)

≤

√
L|S|2

m(1− γ)2
Var

∑∞
k=t γ

k−trk ≤ 1
(1−γ)2

Therefore n(s) ≈ w(s)L|S|2

ε2(1− γ)2
visits to state s needed



Analysis

n ≈ w(s)L|S|2

ε2(1− γ)2
H :=

1

1− γ
log

1

ε(1− γ)

I w(s) is the discounted future state distribution

I Expect to visit s at least w(s) times within H time-steps

I Expect to “know” a state after
L|S|2H
ε2(1− γ)2

time-steps

I Once we “know” all states we are optimal

I Expect sample complexity bounded by
|S|2|A|H
ε2(1− γ)2

log
1

δ

I Analysis harder since w(s) changes over time and we want
results with high probability



Summary

I Upper and lower bounds with (unimprovable) cubic
dependence on horizon

I Unfortunately our analysis led to an extra dependence on |S|
for dense transition probabilities

I See paper for algorithm and (very) messy details



Questions




