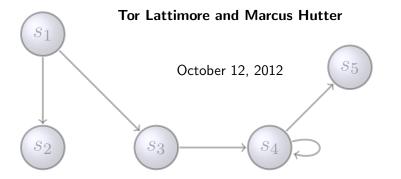
Sample-Complexity of Learning MDPs



Reinforcement Learning

- Maximise long-term discounted reward
- Hard because environment is unknown
- We model the environment using finite state Markov Decision Processes with unknown transitions

Markov Decision Processes

- **Goal:** Construct \mathcal{A} with $V_M^{\mathcal{A}}(s_{1:t}) = V_M^*(s_t)$.
- **Problem 1:** M is unknown. A has to spend some time exploring
- **Problem 2:** The environment is stochastic. A can be "unlucky"

Notation	
M	(S,A,p,r,γ)
$V_M^*(s_t)$	value of optimal policy
$V_M^{\mathcal{A}}(s_{1:t})$	value of ${\cal A}$ in M

Sample Complexity

An algorithm \mathcal{A} is (ϵ, δ) -correct with sample complexity N if for all $M \in \mathcal{M} := \{(S, A, p, r, \gamma) : p \text{ transition probabilities}\},$

$$P\left\{\sum_{t=1}^{\infty} \llbracket V_M^*(s_t) - V_M^{\mathcal{A}}(s_{1:t}) > \epsilon \rrbracket > N\right\} < \delta$$

$$\swarrow$$
time-steps where \mathcal{A} is not ϵ -optimal

"The probability that I am 'badly' suboptimal for more than N time-steps is at most δ !"

Theorems

 $_{\rm UCRL\gamma}$ is a combination/modification of $_{\rm UCRL2}$ (Ortner & Auer 2010) and $_{\rm MBIE}$ (Littman et al., 2008)

Theorem (Upper Bound, L & Hutter 2012)

For $0 < \epsilon \leq 1$, UCRL γ is (ϵ, δ) -correct with sample complexity

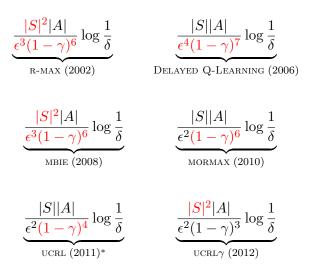
$$\tilde{O}\left(\frac{T}{\epsilon^2(1-\gamma)^3}\log\frac{1}{\delta}\right),$$

where $T \leq |S|^2 |A|$ is the number of non-zero transition probabilities.

Theorem (Lower Bound, L & Hutter 2012) Every (ϵ, δ) -correct policy has sample complexity at least

$$\tilde{\Omega}\left(\frac{|S||A|}{\epsilon^2(1-\gamma)^3}\log\frac{1}{\delta}\right).$$

History of the Upper Bound



*unpublished

Algorithm Sketch

- 1: **loop**
- 2: Compute empiric estimate, \hat{p} , of transition matrix p
- 3: Compute confidence interval about \hat{p}
- 4: Act according to the most optimistic plausible MDP
- 5: end loop

Analysis

- ▶ Key component is bounding $|V^{\mathcal{A}}_{\hat{M}}(s_{1:t}) V^{\mathcal{A}}_{M}(s_{1:t})| < \epsilon$
- Require each state to be visited sufficiently often
- States that are expected to be visited often needed better estimates

21

TT **T**T (

Bernstein s,
$$\sigma^{2}(s) := \operatorname{Var} V(s \mid s)$$
 and $L := \log 1/\delta$
Discounted future state distribution
 $V_{\hat{M}}^{\mathcal{A}}(s_{t}) - V_{\hat{M}}^{\mathcal{A}}(s_{t}) = \gamma \sum_{s}^{s} w(s) \quad (p_{s} - \hat{p}_{s}) \cdot \hat{V} \stackrel{\approx}{\leq} \sum_{s}^{s} w(s) \sqrt{\frac{|S|\sigma^{2}(s)L}{n(s)}}$
 $= \sum_{s} \sqrt{\frac{L|S|w(s)\sigma^{2}(s)}{m := n(s)/w(s)}} \stackrel{\approx}{\leq} \sqrt{\frac{L|S|^{2}}{m}} \sum_{s}^{s} w(s)\sigma^{2}(s)}$
 $\leq \sqrt{\frac{L|S|^{2}}{m(1 - \gamma)^{2}}}$
Var $\sum_{k=t}^{\infty} \gamma^{k-t}r_{k} \leq \frac{1}{(1 - \gamma)^{2}}$
Therefore $n(s) \approx \frac{w(s)L|S|^{2}}{\epsilon^{2}(1 - \gamma)^{2}}$ visits to state s needed

Analysis

$$n \approx \frac{w(s)L|S|^2}{\epsilon^2(1-\gamma)^2} \qquad \qquad H := \frac{1}{1-\gamma}\log\frac{1}{\epsilon(1-\gamma)}$$

• w(s) is the discounted future state distribution

- Expect to visit s at least w(s) times within H time-steps
- \blacktriangleright Expect to "know" a state after $\frac{L|S|^2H}{\epsilon^2(1-\gamma)^2}$ time-steps
- Once we "know" all states we are optimal
- Expect sample complexity bounded by $\frac{|S|^2|A|H}{\epsilon^2(1-\gamma)^2}\log\frac{1}{\delta}$
- Analysis harder since w(s) changes over time and we want results with high probability

- Upper and lower bounds with (unimprovable) cubic dependence on horizon
- Unfortunately our analysis led to an extra dependence on |S| for dense transition probabilities
- See paper for algorithm and (very) messy details

Questions

