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Reinforcement Learning

» Maximise long-term discounted reward
» Hard because environment is unknown

» We model the environment using finite state Markov Decision
Processes with unknown transitions




Markov Decision Processes

Goal: Construct A with Vﬁ‘(sl;t) = Vi (se).
Problem 1: M is unknown. A has to spend some time exploring

Problem 2:  The environment is stochastic. A can be “unlucky”

Notation

M (S, 4,p,7,7)

Vir(st) value of optimal policy
Vit(s14)  value of Ain M




Sample Complexity

An algorithm A is (¢, §)-correct with sample complexity N if for all
M e M :={(S,A,p,r,~v) : p transition probabilities},

P{ 2 Vii(s0) — Vidsia) > ] > N} <

\

# time-steps where A is not e-optimal

“The probability that | am 'badly’ suboptimal for more
than N time-steps is at most §!”



Theorems

UCRL7 is a combination/modification of UCRL2 (Ortner & Auer
2010) and MBIE (Littman et al., 2008)

Theorem (Upper Bound, L & Hutter 2012)
For 0 < e <1, UCRLY is (€, d)-correct with sample complexity
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where T < |S|?| A| is the number of non-zero transition
probabilities.

Theorem (Lower Bound, L & Hutter 2012)

Every (e, 0)-correct policy has sample complexity at least
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History of the Upper Bound
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Algorithm Sketch

b5

Optimism its the best

Way to see life

1: loop

2 Compute empiric estimate, p, of transition matrix p
3: Compute confidence interval about p

4 Act according to the most optimistic plausible MDP
5: end loop



Analysis

» Key component is bounding \V];f}(sl:t) — Vi(s14)] < €

» Require each state to be visited sufficiently often

» States that are expected to be visited often needed better
estimates

Bernstein's, 0%(s) := Var V(s|s) and L :=log1/§

Discounted future state distribution Error \
\

\ ~ 5 = o2(s
Vi (s0) = Vit (se) ZVZ ) (ps— D)V <> wls) %

Slw(s)o?(s) =~ S|?
ZV LiSulo?(s) 2 [HSE o spo2(e
m = n(s)/w(s) m 7
L|S|? Var 3502, 75 e < e
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Therefore n(s) ~ visits to state s needed



Analysis
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» w(s) is the discounted future state distribution

» Expect to visit s at least w(s) times within H time-steps
Bl

» Expect to "know" a state after 5 time-steps

(1 —7)

» Once we “know" all states we are optimal

SP|AlH 1

e(1—7)? 76

» Analysis harder since w(s) changes over time and we want
results with high probability

» Expect sample complexity bounded by



Summary

» Upper and lower bounds with (unimprovable) cubic
dependence on horizon

» Unfortunately our analysis led to an extra dependence on |S]|
for dense transition probabilities

» See paper for algorithm and (very) messy details








