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Planning

Finding the best policy in a known world.



Reinforcement Learning

Finding the best policy in an unknown world.



Reinforcement Learning



How Good is My Algorithm?

I Model class, M
I Calculate the expected number of mistakes you make in each

possible model1

I Worst-case result is a measure of ability

1Sometimes expectation is replaced with “with high probability”



How to Make a Good Algorithm?

The optimism principle

I Think of the plausable world
you’d most like to be in.

I Act as if you’re in that world.

Why it works

I If you’re right then your actions
are optimal.

I If you’re wrong then you can
discard that world.



Example - Grid World

Three possible worlds



Stochastic Case

I Never know anything for sure. Seems hard.

I Eliminate environments when they become very unlikely
(implausable).

I Take the bound you proved in deterministic case and multiply
it by

1

ε2
log

1

δ

Claim proof is too long for the paper. It probably is.



Theory

Theorem

If M is a class of N arbitrary environments where values are
discounted geometrically. Then with probability at least 1− δ an
algorithm (loosely) based on the optimism principle makes at most

Õ

(
N

ε2(1− γ)
log

1

δ

)
ε-errors.

I Matching lower bound
I Compact classes
I Counter-example in non-compact case(

1
1−γ is essentially the diameter, so the heuristic

on the previous slide works
)



The Best Algorithm (?)

I We know model class, M
I Want to minimise the maximum number of errors

I Search through all algorithms and choose the best one!2

I This is a horrible idea

2Totally incomputable Analysis of computation complexity an interesting
direction for future research



Hell is Bad

I Best to go directly to hell

I Therefore don’t optimise for sample-complexity bounds only



Summary and Questions?

1. Optimism is a good principle for reinforcement learning if
uniform optimality properties are desired

2. We proved sample-complexity bounds for very general
environment classes (see paper)

3. Blindly optimising for sample-complexity is not smart



Example

s0
r = 1

s1
r = 0

1− p

p ≈ γ q >> γ

1− q

Let p̂ be the empiric estimate of p from n samples.

|V (s0)− V̂ (s0)| ≈
|p̂− p|

(1− γ)2
?
< ε

Bound Estimate n

Hoeffding |p̂− p| .
√
L/n n > L

ε2(1−γ)4

Bernstein |p̂− p| .
√
p(1− p)L/n n > Lp(1−p)

ε2(1−γ)4 ≈
L

ε2(1−γ)3

L = log
1

δ



Concentration Inequalities

Theorem (Markov’s inequality)

Let X be an arbitrary random variable and ε > 0 then

P {|X| ≥ ε} ≤ E|X|
ε

Theorem (Chebyshev’s inequality)

Let X be an arbitrary random variable and ε > 0 then

P {|X −EX| ≥ ε} ≤ VarX

ε2

Corollary

Let X1 · · ·Xn be i.i.d with |Xi| < c and mean µ then

P

{∣∣∣∣∣ 1n
n∑
i=1

Xi − µ

∣∣∣∣∣ ≥ ε
}
≤ c2

nε2



Concentration Inequalities

Theorem (Hoeffding-Azuma Inequality)

Let X1 · · ·Xn be independent r.v’s with Xi ∈ [ai, bi] with

probability 1. If X̄ :=
1

n

n∑
i=1

Xi then

P
{∣∣X̄ −E[X̄]

∣∣ ≥ ε} ≤ 2 exp

(
− 2ε2n2∑n

i=1(bi − ai)2

)
Corollary

If X1 · · ·Xn are Bernoulli with parameter p then

P {|p− p̂| ≥ ε} ≤ 2 exp
(
−2ε2n

)



Concentration Inequalities

Theorem (Bernstein’s Inequality)

Let X1 · · ·Xn be independent with means µi and variances σ2i . If
|Xi| ≤ c w.p.1 then

P

{∣∣∣∣∣ 1n
n∑
i=1

Xi − µ

∣∣∣∣∣ ≥ ε
}
≤ exp

(
− ε2n

2σ2 + 2cε/3

)

where µ :=
1

n

n∑
i=1

µi and σ2 :=
1

n

n∑
i=1

σ2i .

Corollary

If X1 · · ·Xn are i.i.d Bernoulli with parameter p then

P {|p− p̂| ≥ ε} ≤ exp

(
− ε2n

2p(1− p) + 2ε/3

)



Confidence Intervals

We say CI is a confidence interval at level 1− δ if

P {|p− p̂| ≥ CI} ≤ δ

Different bounds lead to different confidence intervals.

Name Probability Bound Confidence Interval

Chebyshev’s 1
nε2

√
1
nδ

Hoeffding’s exp(−2ε2n)
√

1
2n log 2

δ

Bernstein’s exp(− ε2n
2p(1−p)+2ε/3) 2

3n log 2
δ +

√
2p(1−p)

n log 2
δ



FAQ

1. What if your data isn’t independent? Most results can be
extended to Martingales. Beautiful paper by McDiarmid and
more recently by Seldin et al (2011).

2. Are they tight? They can be.

3. How do I prove these bounds? A variety of methods. Often a
Markov inequality on a cleverly chosen r.v is enough.

4. Can I eliminate the dependence on c? Yes, amazingly, but not
with an unbiased estimator. See Catoni (2009).



Chernoff Bound

Theorem (Chernoff)

Let X1 · · ·Xn be Bernoulli r.v’s with parameter p then

P {p̂ ≥ q} ≤ exp(−nD(q, p))

Proof.

Let x ∈ Bn be a sequence where the number of successes, k
satisfies k ≥ nq.

Pq(x)

Pp(x)
=
qk(1− q)n−k

pk(1− p)k
≥ qnq(1− q)n−nq

pnq(1− p)n−nq
= exp(nD(q, p))

Let S be the set of all such x then

Pp(S) ≤ Pq(S) exp(−nD(q, p)) ≤ exp(−nD(q, p))

as required.



Bandits

Definition (Bandit)

Let A be a set of actions then a bandit is a
vector p ∈ [0, 1]|A|.

At each time-step an agent chooses an action a
and receives reward 1 with probability p(a) and
reward 0 otherwise.

Definition

The best arm is a∗ := arg max
a

p(a).

Definition (Policy)

A policy is a function π : {0, 1}∗ → A



Bandit Sample Complexity

Question. Can we construct an algorithm where the number of
mistakes is bounded high probability?

Definition (Bandit Sample Complexity)

A policy π has sample complexity N if

P

{ ∞∑
t=1

[[p(a∗)− p(at) > ε]] > N

}
< δ

for all |A|-armed bandits.



A Naive Bandit Learner

Naive Bandit Learner

1: L := log
2|A|
δ

and m :=
2L

ε2
2: Pull each arm m times for r(a) accumulated reward.
3: p̂(a) := r(a)/m
4: loop
5: Pull arm â∗ := arg max p̂(a)



Sample Complexity

Theorem

The naive bandit learner has sample complexity of

O

(
2|A|
ε2

log
2|A|
δ

)
.

Proof.

1. By Hoeffding’s bound |p̂(a)− p(a)| ≤
√

L

2m
≤ ε/2 with

probability 1− δ/|A|.
2. By the union bound this holds for all a with probability at

least 1− δ.

Let t ≥ m|A| then with probability at least 1− δ

p(a∗)− p(at) ≤ p̂(a∗)− p(at) + ε/2

≤ p̂(at)− p(at) + ε/2

≤ ε



Remarks

Bandit specialists would be very unexcited about the Naive Bandit
Learner for a few reasons:

1. Although it has a uniform (and optimal) sample-complexity
bound, it achieves this bound on all bandits, even easy ones.

2. It has a linear (hopeless) regret bound.

3. The algorithm depends on ε and δ. Many modern bandits
algorithms have optimal sample-complexity bounds with no
dependence on ε/δ.

4. It only works for stationary discrete bandits.


