

Planning

Finding the best policy in a *known* world.

Reinforcement Learning

Finding the best policy in an *unknown* world.

Reinforcement Learning

How Good is My Algorithm?

- Model class, *M*
- Calculate the expected number of mistakes you make in each possible model¹
- Worst-case result is a measure of ability

¹Sometimes expectation is replaced with "with high probability"

How to Make a Good Algorithm?

The optimism principle

- Think of the plausable world you'd most like to be in.
- Act as if you're in that world.

Why it works

- If you're right then your actions are optimal.
- If you're wrong then you can discard that world.

Optimism its the best Way to see life

Example - Grid World

- Never know anything for sure. Seems hard.
- Eliminate environments when they become very unlikely (implausable).
- Take the bound you proved in deterministic case and multiply it by

Theory

Theorem

If \mathcal{M} is a class of N arbitrary environments where values are discounted geometrically. Then with probability at least $1 - \delta$ an algorithm (loosely) based on the optimism principle makes at most

$$\tilde{O}\left(\frac{N}{\epsilon^2(1-\gamma)}\log\frac{1}{\delta}\right)$$

 ϵ -errors.

- Matching lower bound
- Compact classes
- Counter-example in non-compact case

 $\left(\begin{array}{c} \frac{1}{1-\gamma} \text{ is essentially the diameter, so the heuristic} \\ \text{ on the previous slide works} \end{array}\right)$

- We know model class, ${\cal M}$
- Want to minimise the maximum number of errors
- Search through all algorithms and choose the best one!²
- This is a horrible idea

 $^{^{2}\}mbox{Totally incomputable}$ Analysis of computation complexity an interesting direction for future research

Hell is Bad

- Best to go directly to hell
- Therefore don't optimise for sample-complexity bounds only

Summary and Questions?

- 1. Optimism is a good principle for reinforcement learning if *uniform* optimality properties are desired
- 2. We proved sample-complexity bounds for very general environment classes (see paper)
- 3. Blindly optimising for sample-complexity is not smart

Example

Let \hat{p} be the empiric estimate of p from n samples.

$$|V(s_0) - \widehat{V}(s_0)| \approx \frac{|\widehat{p} - p|}{(1 - \gamma)^2} \stackrel{?}{<} \epsilon$$

 $\begin{array}{lll} \mbox{Bound} & \mbox{Estimate} & \mbox{n} \\ \mbox{Hoeffding} & |\hat{p} - p| \lesssim \sqrt{L/n} & \mbox{n} > \frac{L}{\epsilon^2(1-\gamma)^4} \\ \mbox{Bernstein} & |\hat{p} - p| \lesssim \sqrt{p(1-p)L/n} & \mbox{n} > \frac{Lp(1-p)}{\epsilon^2(1-\gamma)^4} \approx \frac{L}{\epsilon^2(1-\gamma)^3} \\ & \mbox{L} = \log \frac{1}{\delta} \end{array}$

Concentration Inequalities

Theorem (Markov's inequality)

Let X be an arbitrary random variable and $\epsilon>0$ then

$$P\left\{|X| \ge \epsilon\right\} \le \frac{\mathbf{E}|X|}{\epsilon}$$

Theorem (Chebyshev's inequality)

Let X be an arbitrary random variable and $\epsilon > 0$ then

$$P\left\{|X - \mathbf{E}X| \ge \epsilon\right\} \le \frac{\operatorname{Var} X}{\epsilon^2}$$

Corollary

Let $X_1 \cdots X_n$ be i.i.d with $|X_i| < c$ and mean μ then

$$P\left\{\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\right| \geq \epsilon\right\} \leq \frac{c^{2}}{n\epsilon^{2}}$$

Concentration Inequalities

Theorem (Hoeffding-Azuma Inequality)

Let $X_1 \cdots X_n$ be independent r.v's with $X_i \in [a_i, b_i]$ with probability 1. If $\bar{X} := \frac{1}{n} \sum_{i=1}^n X_i$ then

$$P\left\{\left|\bar{X} - \mathbf{E}[\bar{X}]\right| \ge \epsilon\right\} \le 2\exp\left(-\frac{2\epsilon^2 n^2}{\sum_{i=1}^n (b_i - a_i)^2}\right)$$

Corollary

If $X_1 \cdots X_n$ are Bernoulli with parameter p then

$$P\left\{\left|p-\hat{p}\right| \ge \epsilon\right\} \le 2\exp\left(-2\epsilon^2 n\right)$$

Concentration Inequalities

Theorem (Bernstein's Inequality)

Let $X_1 \cdots X_n$ be independent with means μ_i and variances σ_i^2 . If $|X_i| \le c$ w.p.1 then

$$P\left\{\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\right| \geq \epsilon\right\} \leq \exp\left(-\frac{\epsilon^{2}n}{2\sigma^{2}+2c\epsilon/3}\right)$$

where
$$\mu := \frac{1}{n} \sum_{i=1}^{n} \mu_i$$
 and $\sigma^2 := \frac{1}{n} \sum_{i=1}^{n} \sigma_i^2$.

Corollary

If $X_1 \cdots X_n$ are *i.i.d* Bernoulli with parameter p then

$$P\left\{|p-\hat{p}| \ge \epsilon\right\} \le \exp\left(-\frac{\epsilon^2 n}{2p(1-p)+2\epsilon/3}\right)$$

Confidence Intervals

We say CI is a confidence interval at level $1 - \delta$ if

$$P\left\{|p - \hat{p}| \ge CI\right\} \le \delta$$

Different bounds lead to different confidence intervals.

NameProbability BoundConfidence IntervalChebyshev's $\frac{1}{n\epsilon^2}$ $\sqrt{\frac{1}{n\delta}}$ Hoeffding's $\exp(-2\epsilon^2 n)$ $\sqrt{\frac{1}{2n}\log\frac{2}{\delta}}$ Bernstein's $\exp(-\frac{\epsilon^2 n}{2p(1-p)+2\epsilon/3})$ $\frac{2}{3n}\log\frac{2}{\delta} + \sqrt{\frac{2p(1-p)}{n}\log\frac{2}{\delta}}$

- 1. What if your data isn't independent? Most results can be extended to Martingales. Beautiful paper by McDiarmid and more recently by Seldin et al (2011).
- 2. Are they tight? They can be.
- **3.** How do I prove these bounds? A variety of methods. Often a Markov inequality on a cleverly chosen r.v is enough.
- **4.** Can I eliminate the dependence on *c*? Yes, amazingly, but not with an unbiased estimator. See Catoni (2009).

Chernoff Bound

Theorem (Chernoff)

Let $X_1 \cdots X_n$ be Bernoulli r.v's with parameter p then

$$P\left\{\hat{p} \ge q\right\} \le \exp(-nD(q,p))$$

Proof.

Let $x \in \mathcal{B}^n$ be a sequence where the number of successes, k satisfies $k \ge nq$.

$$\frac{P_q(x)}{P_p(x)} = \frac{q^k (1-q)^{n-k}}{p^k (1-p)^k} \ge \frac{q^{nq} (1-q)^{n-nq}}{p^{nq} (1-p)^{n-nq}} = \exp(nD(q,p))$$

Let ${\cal S}$ be the set of all such x then

$$P_p(S) \le P_q(S) \exp(-nD(q, p)) \le \exp(-nD(q, p))$$

as required.

Bandits

Definition (Bandit)

Let A be a set of actions then a bandit is a vector $p\in [0,1]^{|A|}.$

At each time-step an agent chooses an action a and receives reward 1 with probability p(a) and reward 0 otherwise.

Definition

The best arm is $a^* := \underset{a}{\operatorname{arg\,max}} p(a)$.

Definition (Policy)

A policy is a function $\pi: \{0,1\}^* \to A$

Question. Can we construct an algorithm where the number of mistakes is bounded high probability?

Definition (Bandit Sample Complexity)

A policy π has sample complexity N if

$$P\left\{\sum_{t=1}^{\infty} \llbracket p(a^*) - p(a_t) > \epsilon \rrbracket > N\right\} < \delta$$

for all |A|-armed bandits.

Naive Bandit Learner

1:
$$L := \log \frac{2|A|}{\delta}$$
 and $m := \frac{2L}{\epsilon^2}$
2: Pull each arm m times for $r(a)$ accumulated reward.
3: $\hat{p}(a) := r(a)/m$
4: **loop**
5: Pull arm $\hat{a}^* := \arg \max \hat{p}(a)$

Sample Complexity

Theorem

The naive bandit learner has sample complexity of $O\left(\frac{2|A|}{\epsilon^2}\log\frac{2|A|}{\delta}\right).$

Proof.

- 1. By Hoeffding's bound $|\hat{p}(a) p(a)| \le \sqrt{\frac{L}{2m}} \le \epsilon/2$ with probability $1 \delta/|A|$.
- 2. By the union bound this holds for all a with probability at least 1δ .

Let $t \ge m|A|$ then with probability at least $1 - \delta$

$$p(a^*) - p(a_t) \le \hat{p}(a^*) - p(a_t) + \epsilon/2$$
$$\le \hat{p}(a_t) - p(a_t) + \epsilon/2$$
$$\le \epsilon$$

Bandit specialists would be very unexcited about the Naive Bandit Learner for a few reasons:

- 1. Although it has a uniform (and optimal) sample-complexity bound, it achieves this bound on all bandits, even easy ones.
- 2. It has a linear (hopeless) regret bound.
- 3. The algorithm depends on ϵ and δ . Many modern bandits algorithms have optimal sample-complexity bounds with no dependence on ϵ/δ .
- 4. It only works for stationary discrete bandits.