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Notation

History = sequence of action/observation/reward tuples
Policy 7 : History — Action
Environment p : History x Action ~» Reward x Observation

Policy and environment interact to generate random history sequence
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Policy 7 : History — Action
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Policy and environment interact to generate random history sequence
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~v € [0,1) is discount factor

Vlf(x) is value given history sequence x = a10171,...,G:_1,0i-1,Tt_1
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7}, is the optimal policy (maximising Vlf*) and V; is its value

Vi(z) =E] T




Objective — Minimise Sample-Complexity
Given:

e Set of environments M

e Accuracy € > 0 and confidence § > 0

Goal: Find 7 that minimises sample-complexity N = N (M, 7,0, ¢)
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e Uniform criterion

¢ Unobtainable (in general) unless M is finite (or compact)

Assume from now: | M| =
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Bayesian Prediction

e Briefly forget control — no policy

e Bayesian mixture:

(&-probability of observing ) Z wy, Py (
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e d-step total variation distance given history =
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Theorem: Let = be the infinite history generated by p and t1,ts,... a
sequence of stopping times with tx1 > t; 4+ dj almost surely with dj,
measurable at time-step tx. Then
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Bayesian Prediction

Theorem: Let = be the infinite history generated by u and t1,ts,... a
sequence of stopping times with tx1 >t + di almost surely with dj,
measurable at time-step tx. Then
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From Prediction to Confidence Sets

e Define confidence set

e Choose w, = 1/K (uniform prior)

k
K
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“M|. is the set of environments for which the prediction has so far been
acceptable”



From Prediction to Confidence Sets

Define confidence set

Choose w, = 1/K (uniform prior)

k
K
Mk‘ = [ Zégk (M,€|$<tk> < log?

Jj=1
“M|. is the set of environments for which the prediction has so far been

acceptable”

1€ My, for all k with probability at least 1 — §

Similar idea and benefits as “Online-to-Confidence” by Abbasi-Yadkori
et. al. (2012)
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How to Act

If confident, then Bayes, else explore

Proposition: If d ~ log and 64(u™, €™ |x) < e(1 —7y), then

E(1 ¥)
Vi(z) = Vi(z) <e

(d = effective horizon, ;™ = measure on histories induced by u and 7)

Corollary: If 54(u", €™ |x) < (1 —7) for m € {m);, m¢}, then

Vi(z) — V:g () Se (Bayes is nearly optimal)



Algorithm

~Input: M = {1}/, discount v, accuracy ¢, confidence 4
1 1

d <+ mlogm and k<0

. Compute differences in policies:

I = {m, : v e M} U {n}
d/, m™ ¢
T = arg max max 0, (v
g max max 27 ET)
A= max §T €T
mwell* veM x( 76 )
A Z (1 —7)
o k< k41 and t; = current time-step and dy = d
e Follow policy 7 for d time-steps
. Else
e k< k41 and t; = current time-step and dj = 1
e Follow policy 7 for 1 time-step

. Update plausible environments and Goto 2



Why it Works

Either
Algorithm is confident, when it is nearly optimal

Or

Algorithm is exploring, when it is gaining information



Theorems

Assume rewards are in [0, 1]

Theorem
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Theorems

Assume rewards are in [0, 1]

Theorem

If|M| = K, then N(z,8) € O <52(1[i7)3 <10g ?) <log n L 7)))

Theorem

For every policy and sufficiently small €, §

K K
N(g,0) 69(52(1_7)310g5)'

e Shaves numerous logarithmic factors from previous work (L & Hutter,
ICML 2013)



No Optimism?
Standard approach: Optimisim in the face of uncertainty

(Optimistic Policy) 7 = arg max max V) (z<)
T VEM,
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Very successful: Bandits, Linear Bandits, MDPs, and many problems in
online learning
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No Optimism?
Standard approach: Optimisim in the face of uncertainty

(Optimistic Policy) 7 = arg max max V) (z<)
T VEM,

where M; = set of plausible environments

Very successful: Bandits, Linear Bandits, MDPs, and many problems in
online learning

Does not work (easily) for general RL

Even if M; = Mgy, it is not true that

arg max max V' (z<;) = argmax max V] (Z<y1)
T vEM; T VEMit1

Sequence of optimistic policies are not compatible



Bandit Connection (y = 0)

y=0 = d=1
Still not i.i.d.
Can use optimism

Sample-complexity becomes

Kl K
707
g2 &5

For i.i.d. bandits the sample-complexity is optimised by the median
elimination algorithm (Even-Dar et. al. 2006)

K] 1
707
g2 &5

So non-i.i.d. really is harder



Other Results

e Dependence on K can be significantly reduced if environments share
structure (eg., MDPs)
e Dependence on € can be reduced if environments are well separated

e Asymptotic results possible for countable classes



Some Downsides

Computationally expensive unless v =0
Finite M
Algorithm fails if © ¢ M

Worst-case linear dependence on K is pretty bad



Conclusions

Summary

o Improved algorithm that optimises sample-complexity for general RL
¢ Nearly matching upper/lower bounds
e Algorithm is adaptive to easier environments

e Bounds on sample-complexity improve on previously known
Future

e Explore non-uniform bounds
e Explore possibility of regret bounds (assumptions necessary)
e Investigate computational issues in specific environments (eg., MDPs)

e Extensions to continuous/compact classes



