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History-Based Reinforcement Learning

Agent

Environment

Action
Observation
Reward

• Take actions

• Receive observations and rewards

• World dynamics are unknown

• Maximise rewards

• No i.i.d. assumption

• No Markov assumption

• No state is ever seen more than once
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Notation

• History ≡ sequence of action/observation/reward tuples

• Policy π : History→ Action

• Environment µ : History× Action Reward× Observation

• Policy and environment interact to generate random history sequence

a1o1r1, . . . , at, ot, rt

• γ ∈ [0, 1) is discount factor

• V π
µ (x) is value given history sequence x = a1o1r1, . . . , at−1, ot−1, rt−1

V π
µ (x) = Eπµ

[ ∞∑
s=t

γs−trs

∣∣∣∣∣x
]

• π∗µ is the optimal policy (maximising V π∗
µ ) and V ∗µ is its value
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Objective – Minimise Sample-Complexity

Given:

• Set of environments M
• Accuracy ε > 0 and confidence δ > 0

Goal: Find π that minimises sample-complexity N = N(M, π, δ, ε)

∀µ ∈M, P πµ

{ ∞∑
t=1

1
{
V ∗µ (x<t)− V π

µ (x<t) > ε
}
> N

}
≤ δ

• Uniform criterion

• Unobtainable (in general) unless M is finite (or compact)

Assume from now: |M| = K
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Bayesian Prediction

• Briefly forget control – no policy

• Bayesian mixture:

(ξ-probability of observing x) ≡ Pξ(x) =
∑
ν∈M

wνPν(x)

• d-step total variation distance given history x

δd(µ, ξ|x) =
1

2

∑
y∈Hd

|Pµ(y|x)− Pξ(y|x)|

Theorem: Let x be the infinite history generated by µ and t1, t2, . . . a
sequence of stopping times with tk+1 ≥ tk + dk almost surely with dk
measurable at time-step tk. Then

Pµ

{ ∞∑
k=1

δ2
dk

(µ, ξ|x<tk) ≤ log
1

wµδ2

}
≤ δ
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Bayesian Prediction

Theorem: Let x be the infinite history generated by µ and t1, t2, . . . a
sequence of stopping times with tk+1 ≥ tk + dk almost surely with dk
measurable at time-step tk. Then

Pµ

{ ∞∑
k=1

δ2
dk

(µ, ξ|x<tk) ≤ log
1

wµδ2

}
≤ δ

Example:

t1 t2 t3 t4



From Prediction to Confidence Sets

• Define confidence set

• Choose wν = 1/K (uniform prior)

Mk :=

ν :

k∑
j=1

δ2
dk

(µ, ξ|x<tk) ≤ log
K

δ2


“Mk is the set of environments for which the prediction has so far been
acceptable”

• µ ∈Mk for all k with probability at least 1− δ
• Similar idea and benefits as “Online-to-Confidence” by Abbasi-Yadkori

et. al. (2012)
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How to Act

If confident, then Bayes, else explore

Proposition: If d ≈ 1
1−γ log 1

ε(1−γ) and δd(µ
π, ξπ|x) ≤ ε(1− γ), then

V π
µ (x)− V π

ξ (x) ≤ ε

(d ≡ effective horizon, µπ ≡ measure on histories induced by µ and π)

Corollary: If δd(µ
π, ξπ|x) ≤ ε(1− γ) for π ∈ {π∗µ, π∗ξ}, then

V ∗µ (x)− V
π∗
ξ

µ (x) . ε (Bayes is nearly optimal)
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Algorithm

1. Input: M = {νi}Ki=1, discount γ, accuracy ε, confidence δ
d← 1

1−γ log 1
ε(1−γ) and k ← 0

2. Compute differences in policies:

Π∗ = {π∗ν : ν ∈M} ∪
{
π∗ξ
}

π = arg max
π∈Π∗

max
ν∈M

δdx(νπ, ξπ)

∆ = max
π∈Π∗,ν∈M

δdx(νπ, ξπ)

3. If ∆ & ε(1− γ)
• k ← k + 1 and tk = current time-step and dk = d
• Follow policy π for d time-steps

4. Else
• k ← k + 1 and tk = current time-step and dk = 1
• Follow policy π∗

ξ for 1 time-step

5. Update plausible environments and Goto 2



Why it Works

Either

Algorithm is confident, when it is nearly optimal

Or

Algorithm is exploring, when it is gaining information



Theorems

Assume rewards are in [0, 1]

Theorem

If |M| = K, then N(ε, δ) ∈ O
(

K

ε2(1− γ)3

(
log

K

δ

)(
log

1

ε(1− γ)

))
.

Theorem

For every policy and sufficiently small ε, δ

N(ε, δ) ∈ Ω

(
K

ε2(1− γ)3
log

K

δ

)
.

• Shaves numerous logarithmic factors from previous work (L & Hutter,
ICML 2013)
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No Optimism?

Standard approach: Optimisim in the face of uncertainty

(Optimistic Policy) π = arg max
π

max
ν∈Mt

V π
ν (x<t)

where Mt ≡ set of plausible environments

Very successful: Bandits, Linear Bandits, MDPs, and many problems in
online learning

Does not work (easily) for general RL

Even if Mt =Mt+1, it is not true that

arg max
π

max
ν∈Mt

V π
ν (x<t) = arg max

π
max

ν∈Mt+1

V π
ν (x<t+1)

Sequence of optimistic policies are not compatible
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Bandit Connection (γ = 0)

• γ = 0 =⇒ d = 1

• Still not i.i.d.

• Can use optimism

• Sample-complexity becomes

K

ε2
log

K

δ

• For i.i.d. bandits the sample-complexity is optimised by the median
elimination algorithm (Even-Dar et. al. 2006)

K

ε2
log

1

δ

• So non-i.i.d. really is harder



Other Results

• Dependence on K can be significantly reduced if environments share
structure (eg., MDPs)

• Dependence on ε can be reduced if environments are well separated

• Asymptotic results possible for countable classes



Some Downsides

• Computationally expensive unless γ = 0

• Finite M
• Algorithm fails if µ /∈M
• Worst-case linear dependence on K is pretty bad



Conclusions

Summary

• Improved algorithm that optimises sample-complexity for general RL

• Nearly matching upper/lower bounds

• Algorithm is adaptive to easier environments

• Bounds on sample-complexity improve on previously known

Future

• Explore non-uniform bounds

• Explore possibility of regret bounds (assumptions necessary)

• Investigate computational issues in specific environments (eg., MDPs)

• Extensions to continuous/compact classes


