Bayesian Reinforcement Learning with Exploration

Tor Lattimore¹ & Marcus Hutter²

¹University of Alberta

²Australian National University

History-Based Reinforcement Learning

- Take actions
- Receive observations and rewards
- World dynamics are unknown
- Maximise rewards

History-Based Reinforcement Learning

- Take actions
- Receive observations and rewards
- World dynamics are unknown
- Maximise rewards
- No i.i.d. assumption
- No Markov assumption
- No state is ever seen more than once

Notation

- History \equiv sequence of action/observation/reward tuples
- Policy π : History \rightarrow Action
- Environment μ : History × Action \rightsquigarrow Reward × Observation
- Policy and environment interact to generate random history sequence

 $a_1 o_1 r_1, \ldots, a_t, o_t, r_t$

Notation

- History \equiv sequence of action/observation/reward tuples
- Policy π : History \rightarrow Action
- Environment μ : History × Action \rightsquigarrow Reward × Observation
- · Policy and environment interact to generate random history sequence

 $a_1 o_1 r_1, \ldots, a_t, o_t, r_t$

- $\gamma \in [0,1)$ is discount factor
- $V^{\pi}_{\mu}(x)$ is value given history sequence $x = a_1 o_1 r_1, \ldots, a_{t-1}, o_{t-1}, r_{t-1}$

$$V^{\pi}_{\mu}(x) = \mathbf{E}^{\pi}_{\mu} \left[\sum_{s=t}^{\infty} \gamma^{s-t} r_s \middle| x \right]$$

• π^*_μ is the optimal policy (maximising $V^{\pi^*}_\mu$) and V^*_μ is its value

Objective – Minimise Sample-Complexity

Given:

- Set of environments ${\cal M}$
- Accuracy $\varepsilon > 0$ and confidence $\delta > 0$

Goal: Find π that minimises sample-complexity $N = N(\mathcal{M}, \pi, \delta, \varepsilon)$

$$\forall \mu \in \mathcal{M}, \qquad P_{\mu}^{\pi} \left\{ \sum_{t=1}^{\infty} \mathbb{1}\left\{ V_{\mu}^{*}(x_{< t}) - V_{\mu}^{\pi}(x_{< t}) > \varepsilon \right\} > N \right\} \leq \delta$$

Objective – Minimise Sample-Complexity

Given:

- Set of environments ${\cal M}$
- Accuracy $\varepsilon > 0$ and confidence $\delta > 0$

Goal: Find π that minimises sample-complexity $N = N(\mathcal{M}, \pi, \delta, \varepsilon)$

$$\forall \mu \in \mathcal{M}, \qquad P_{\mu}^{\pi} \left\{ \sum_{t=1}^{\infty} \mathbb{1}\left\{ V_{\mu}^{*}(x_{< t}) - V_{\mu}^{\pi}(x_{< t}) > \varepsilon \right\} > N \right\} \leq \delta$$

- Uniform criterion
- Unobtainable (in general) unless ${\mathcal M}$ is finite (or compact)

Objective – Minimise Sample-Complexity

Given:

- Set of environments ${\cal M}$
- Accuracy $\varepsilon > 0$ and confidence $\delta > 0$

Goal: Find π that minimises sample-complexity $N = N(\mathcal{M}, \pi, \delta, \varepsilon)$

$$\forall \mu \in \mathcal{M}, \qquad P_{\mu}^{\pi} \left\{ \sum_{t=1}^{\infty} \mathbb{1}\left\{ V_{\mu}^{*}(x_{< t}) - V_{\mu}^{\pi}(x_{< t}) > \varepsilon \right\} > N \right\} \leq \delta$$

- Uniform criterion
- Unobtainable (in general) unless ${\mathcal M}$ is finite (or compact)

Assume from now: $|\mathcal{M}| = K$

- Briefly forget control no policy
- Bayesian mixture:

$$(\xi$$
-probability of observing $x) \equiv P_{\xi}(x) = \sum_{\nu \in \mathcal{M}} w_{\nu} P_{\nu}(x)$

- Briefly forget control no policy
- Bayesian mixture:

$$(\xi$$
-probability of observing $x) \equiv P_{\xi}(x) = \sum_{\nu \in \mathcal{M}} w_{\nu} P_{\nu}(x)$

• d-step total variation distance given history x

$$\delta_d(\mu, \xi | x) = \frac{1}{2} \sum_{y \in \mathcal{H}^d} |P_\mu(y|x) - P_\xi(y|x)|$$

- Briefly forget control no policy
- Bayesian mixture:

$$(\xi$$
-probability of observing $x) \equiv P_{\xi}(x) = \sum_{\nu \in \mathcal{M}} w_{\nu} P_{\nu}(x)$

• d-step total variation distance given history x

$$\delta_d(\mu, \xi | x) = \frac{1}{2} \sum_{y \in \mathcal{H}^d} |P_\mu(y|x) - P_\xi(y|x)|$$

Theorem: Let x be the infinite history generated by μ and t_1, t_2, \ldots a sequence of stopping times with $t_{k+1} \ge t_k + d_k$ almost surely with d_k measurable at time-step t_k . Then

$$P_{\mu}\left\{\sum_{k=1}^{\infty}\delta_{d_{k}}^{2}(\mu,\xi|x_{< t_{k}}) \le \log\frac{1}{w_{\mu}\delta^{2}}\right\} \le \delta$$

Theorem: Let x be the infinite history generated by μ and t_1, t_2, \ldots a sequence of stopping times with $t_{k+1} \ge t_k + d_k$ almost surely with d_k measurable at time-step t_k . Then

$$P_{\mu}\left\{\sum_{k=1}^{\infty} \delta_{d_k}^2(\mu, \xi | x_{< t_k}) \le \log \frac{1}{w_{\mu} \delta^2}\right\} \le \delta$$

Example:

From Prediction to Confidence Sets

- Define confidence set
- Choose $w_{\nu} = 1/K$ (uniform prior)

$$\mathcal{M}_k := \left\{ \nu : \sum_{j=1}^k \delta_{d_k}^2(\mu, \xi | x_{< t_k}) \le \log \frac{K}{\delta^2} \right\}$$

" \mathcal{M}_k is the set of environments for which the prediction has so far been acceptable"

From Prediction to Confidence Sets

- Define confidence set
- Choose $w_{\nu} = 1/K$ (uniform prior)

$$\mathcal{M}_k := \left\{ \nu : \sum_{j=1}^k \delta_{d_k}^2(\mu, \xi | x_{< t_k}) \le \log \frac{K}{\delta^2} \right\}$$

" \mathcal{M}_k is the set of environments for which the prediction has so far been acceptable"

- $\mu \in \mathcal{M}_k$ for all k with probability at least $1-\delta$
- Similar idea and benefits as "Online-to-Confidence" by Abbasi-Yadkori et. al. (2012)

How to Act

If confident, then Bayes, else explore

How to Act

If confident, then Bayes, else explore

Proposition: If $d \approx \frac{1}{1-\gamma} \log \frac{1}{\varepsilon(1-\gamma)}$ and $\delta_d(\mu^{\pi}, \xi^{\pi} | x) \leq \varepsilon(1-\gamma)$, then $V_{\mu}^{\pi}(x) - V_{\xi}^{\pi}(x) \leq \varepsilon$

 $(d \equiv \text{effective horizon}, \mu^{\pi} \equiv \text{measure on histories induced by } \mu \text{ and } \pi)$

How to Act

If confident, then Bayes, else explore

Proposition: If $d \approx \frac{1}{1-\gamma} \log \frac{1}{\varepsilon(1-\gamma)}$ and $\delta_d(\mu^{\pi}, \xi^{\pi} | x) \leq \varepsilon(1-\gamma)$, then $V^{\pi}_{\mu}(x) - V^{\pi}_{\xi}(x) \leq \varepsilon$

 $(d \equiv$ effective horizon, $\mu^{\pi} \equiv$ measure on histories induced by μ and π)

Corollary: If $\delta_d(\mu^{\pi}, \xi^{\pi}|x) \leq \varepsilon(1-\gamma)$ for $\pi \in {\pi^*_{\mu}, \pi^*_{\xi}}$, then $V^*_{\mu}(x) - V^{\pi^*_{\xi}}_{\mu}(x) \lesssim \varepsilon$ (Bayes is nearly optimal)

Algorithm

- 1. Input: $\mathcal{M} = \{\nu_i\}_{i=1}^K$, discount γ , accuracy ε , confidence δ $d \leftarrow \frac{1}{1-\gamma} \log \frac{1}{\varepsilon(1-\gamma)}$ and $k \leftarrow 0$
- 2. Compute differences in policies:

$$\Pi^* = \{\pi^*_{\nu} : \nu \in \mathcal{M}\} \cup \{\pi^*_{\xi}\}$$
$$\pi = \underset{\pi \in \Pi^*}{\arg \max} \max_{\nu \in \mathcal{M}} \delta^d_x(\nu^{\pi}, \xi^{\pi})$$
$$\Delta = \underset{\pi \in \Pi^*, \nu \in \mathcal{M}}{\max} \delta^d_x(\nu^{\pi}, \xi^{\pi})$$

3. If $\Delta \gtrsim \varepsilon (1 - \gamma)$

- $k \leftarrow k+1$ and $t_k =$ current time-step and $d_k = d$
- Follow policy π for d time-steps

4. Else

- $k \leftarrow k+1$ and $t_k =$ current time-step and $d_k = 1$
- Follow policy $\pi_{\mathcal{E}}^*$ for 1 time-step
- 5. Update plausible environments and Goto 2

Why it Works

Either

Algorithm is confident, when it is nearly optimal

Or

Algorithm is exploring, when it is gaining information

Theorems

Assume rewards are in [0,1]

Theorem

If
$$|\mathcal{M}| = K$$
, then $N(\varepsilon, \delta) \in O\left(\frac{K}{\varepsilon^2(1-\gamma)^3}\left(\log \frac{K}{\delta}\right)\left(\log \frac{1}{\varepsilon(1-\gamma)}\right)\right)$.

Theorems

Assume rewards are in [0,1]

Theorem

$$\text{If } |\mathcal{M}| = K \text{, then } N(\varepsilon, \delta) \in O\left(\frac{K}{\varepsilon^2(1-\gamma)^3}\left(\log \frac{K}{\delta}\right)\left(\log \frac{1}{\varepsilon(1-\gamma)}\right)\right).$$

Theorem

For every policy and sufficiently small ε,δ

$$N(\varepsilon, \delta) \in \Omega\left(\frac{K}{\varepsilon^2(1-\gamma)^3}\log\frac{K}{\delta}\right).$$

 Shaves numerous logarithmic factors from previous work (L & Hutter, ICML 2013)

No Optimism?

Standard approach: Optimisim in the face of uncertainty

(Optimistic Policy) $\pi = \underset{\pi}{\arg \max} \max_{\nu \in \mathcal{M}_t} V_{\nu}^{\pi}(x_{< t})$

where $\mathcal{M}_t \equiv$ set of plausible environments

Very successful: Bandits, Linear Bandits, MDPs, and many problems in online learning

No Optimism?

Standard approach: Optimisim in the face of uncertainty

(Optimistic Policy) $\pi = \underset{\pi}{\arg \max} \max_{\nu \in \mathcal{M}_t} V_{\nu}^{\pi}(x_{< t})$

where $\mathcal{M}_t \equiv$ set of plausible environments

Very successful: Bandits, Linear Bandits, MDPs, and many problems in online learning

Does not work (easily) for general RL

No Optimism?

Standard approach: Optimisim in the face of uncertainty

(Optimistic Policy) $\pi = \underset{\pi}{\arg \max} \max_{\nu \in \mathcal{M}_t} V_{\nu}^{\pi}(x_{< t})$

where $\mathcal{M}_t \equiv$ set of plausible environments

Very successful: Bandits, Linear Bandits, MDPs, and many problems in online learning

Does not work (easily) for general RL

Even if $\mathcal{M}_t = \mathcal{M}_{t+1}$, it is **not true** that

$$\arg\max_{\pi} \max_{\nu \in \mathcal{M}_t} V_{\nu}^{\pi}(x_{< t}) = \arg\max_{\pi} \max_{\nu \in \mathcal{M}_{t+1}} V_{\nu}^{\pi}(x_{< t+1})$$

Sequence of optimistic policies are not compatible

Bandit Connection ($\gamma = 0$)

- $\gamma = 0 \implies d = 1$
- Still not i.i.d.
- Can use optimism
- Sample-complexity becomes

$$\frac{K}{\varepsilon^2}\log\frac{K}{\delta}$$

• For i.i.d. bandits the sample-complexity is optimised by the median elimination algorithm (Even-Dar et. al. 2006)

$$\frac{K}{\varepsilon^2}\log\frac{1}{\delta}$$

• So non-i.i.d. really is harder

Other Results

- Dependence on *K* can be significantly reduced if environments share structure (eg., MDPs)
- Dependence on ε can be reduced if environments are well separated
- Asymptotic results possible for countable classes

Some Downsides

- Computationally expensive unless $\gamma=0$
- Finite \mathcal{M}
- Algorithm fails if $\mu \notin \mathcal{M}$
- Worst-case linear dependence on \boldsymbol{K} is pretty bad

Conclusions

Summary

- Improved algorithm that optimises sample-complexity for general RL
- Nearly matching upper/lower bounds
- Algorithm is adaptive to easier environments
- · Bounds on sample-complexity improve on previously known

Future

- Explore non-uniform bounds
- Explore possibility of regret bounds (assumptions necessary)
- Investigate computational issues in specific environments (eg., MDPs)
- Extensions to continuous/compact classes