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Optimism in Reinforcement Learning (MDPs)

Optimism has been extensively used
in many different ways as an
exploration technique for
Markov Decision Processes

Choose the plausible model in which
one can achieve the highest expected return
(used by Strehl and Littman in MBIE
(discounted) and by Auer and Ortner in
UCRL (undiscounted))



Disasters

To choose the most optimistic plausible
model is wildly optimistic to begin
with when everything is equally plausible

Our results do not rely on any restrictions
(Markov, Ergodicity,...) on our environments
except on the size of the class considered.
The results are, however, primarily
interesting if the agent cannot destroy itself.



General Reinforcement Learning

An environment ν(ht, at) = (ot, rt)
where ht = a1o1r1, ..., atotrt.

Maximize the discounted reward sum
(return)

∑∞
i=t riγ

t−i where γ ∈ (0, 1)

A policy is a function π(ht) = at

Vπν (ht) = expected return (in ν)
achieved by following policy π after ht

π is asymptotically optimal if for the true environment µ
limt→∞(maxπ̃ V π̃µ (ht)− Vπµ (ht)) = 0



Optimistic Agent for Deterministic Environments

Consider a finite classM = {ν1, ..., νm}
We will define a policy π0 such that there is a T such that Vπν (ht)
is maximal (given the past) when t ≥ T as long as ν ∈M
LetMt be the set of environments that remains consistent at
time t

We will choose the most optimistic hypothesis and policy and act
according to it until it is contradicted. As long as the outcome is
consistent with the optimistic prediction the return is optimal,
even if the environment is wrong.

Algorithm 1 (π◦):

1. Choose (π∗, ν∗) ∈ arg maxπ∈Π,ν∈Mt−1
Vπν (ht−1),

2. Act according to π∗ until contradicted and then go back to 1.



Asymptotic Optimality

Theorem (Optimality, Finite Deterministic Class)

If we use Algorithm 1 (π◦) in an environment µ ∈M , then there is
T <∞ such that

Vπ
◦

µ (ht) = max
π

Vπµ (ht) ∀t ≥ T.

Proof.
(sketch) After a finite amount of time all environments that will be
excluded have been excluded. Due to time consistency of geometric
discounting, the optimistic policy remains optimistic and since the
optimistic environment remains consistent under this policy there is
no better policy, even if the environment is wrong.



Finite Error Bound

Theorem (Finite error bound)

Following π◦ (Algorithm 1),

Vπ
◦

µ (ht) ≥ max
π∈Π

Vπµ (ht)− ε, 0 < ε < 1/(1− γ)

for all but at most |M| log ε(1−γ)
γ−1 time steps t.

Proof.
Each time an environment is contradicted π◦ could have been
ε-suboptimal for at most log ε(1−γ)

log γ time steps.

We can prove asymptotic optinality also for agents that
reevaluate its choice of optimistic hypothesis at every time step.
We call these agents liberal and the agent that keep their
hypothesis until contradiction conservative.



Stochastic Environments

Class of stochastic environmentM

We need a new exclusion criteria:
Use threshold on likelihood ratio

Exclude ν if ν(ht|a1:t)
maxν̃∈M ν̃(ht|a1:t)

< z

Reevaluate
choice of optimistic environment
at each time step, because
optimism can end without exclusion



Optimality, Stochastic Case

Theorem (Optimality, Finite Stochastic Class)

Define π◦ by using Algorithm 2 with any threshold z ∈ (0, 1) and a
finite classM of stochastic environments containing the true
environment µ, then with probability 1− z|M− 1| there exists, for
every ε > 0, a number T <∞ such that

Vπ
◦

µ (ht) > max
π

Vπµ (ht)− ε ∀t ≥ T.

Remark
For a different exclusion criteria Lattimore, Hutter and Sunehag
(submitted) prove sample complexity bounds.



Extending the proofs

The martingale convergence theorem tells us that the likelihood
ratio’s converge
A slightly extended Blackwell-Dubins Theorem tells us that the
limit is strictly larger than 0 if and only if the environments
merge (in total variation) under the policy followed
Hence the environments that do not merge will be excluded and
there is a finite amount of time after which every environment
that will be excluded have been excluded
For every ε1 > 0 there is a time after which all the environments
are within a sufficiently small total variation ball to make the
value functions differ by less than ε1

From optimality we conclude near optimality



Infinite Compact Classes

The simplest way to extend to the compact class is to choose an
accuracy ε > 0 in advance and then we use the centers of finitely
many sufficiently small balls that cover the space of
environments
If we want the same asymptotic optimality as in the finite case,
we need to have balls that decrease at the right speed and we let
Mt consists of such (confidence) balls around every
non-excluded environment
There are non-compact countable classes for which asymptotic
optimality is impossible to achieve, but we can achieve weak
asymptotic optimality by introducing environments slowly into
the class our optimistic agent works with.



Conclusions

Sunehag and Hutter (AGI’2012) provides an axiomatic system
for optimistic agents

Weakens one of the rationality axioms in a way that break
symmetry. We refer to the complying agents as optimistically
rational

In comparison to the rational/bayesian agents we have
asymptotic optimality guarantees

Bayesian agents are, however, best on average with respect to the
prior (which can have a big impact, even for relatively
uninformative priors)

Different sense of optimality leads to different agents. One is not
optimal in every sense




