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1 Abstract

Optimism is a prevalent bias in human cognition including variations
like self-serving beliefs, illusions of control and overly positive views
of one’s own future. Further, optimism has been linked with both suc-
cess and happiness. In fact, it has been described as a part of human
mental well-being which has otherwise been assumed to be about be-
ing connected to reality. In reality, only people suffering from depres-
sion are realistic. Here we study a formalization of optimism within a
dual process framework and investigate its usefulness beyond human
needs in a way that also applies to artificial reinforcement learning
agents. Optimism enables systematic exploration which is essential
in an (partially) unknown world. The key property of an optimistic hy-
pothesis is that if it is not contradicted when one acts greedily with
respect to it, then one is well rewarded even if it is wrong.

2 General Reinforcement Learning

• An agent interacts with an environment in cycles
• The agent

performs actions at from a finite set A
receives observations ot from a finite set O
and rewards rt from a finite set R ⊂ [0, 1]

• The result is a history ht := o1r1a1, ..., otrt ∈ H
• The value function: V πν (ht−1) := Eν(·|π,ht−1)

∑∞
i=t γ

i−tri
• The optimal value function: V ∗ν (ht−1) := maxπ V

π
ν (ht−1)

3 Rational and Optimistic Agents

•Given
a countable class of environmentsM
strictly positive prior weights wν for all ν ∈M

we define the a-priori environment ξ(·) =
∑
wνν(·)

A rational agent follows a policy

π∗ ∈ arg max
π

V πξ (ε).

• An optimist follows

π◦ ∈ arg max
π

max
ξ∈Ξ

V πξ (ε)

for a finite set of beliefs (environments) Ξ.
• If Ξ has size one, the optimist is a rational agent.

• To achieve high rewards, it is not enough to predict well what is
going to happen for a lazy unexplorative policy.
• A Bayesian RL agent sometimes fails, even with finite environment

classes, to achieve asymptotic optimality (having an expected re-
turn arbitrarily close to optimal for the situation the agent is in).

4 Decision Functions

• A decision function f : M → A (M is the set of finite classes of
environments) only depending on a class of environmentsM.
• The decision function is independent of the history
•However, the class M fed to the decision function introduces an

indirect dependence
• f is strictly rational for the class M if there are ων ≥ 0, ν ∈
M,

∑
ν∈Mwν = 1 such that a = π(ε) for a policy

π ∈ arg max
π

∑
ν∈M

ωνV
π
ν (1)

• A special case is when |M| = 1 and (1) becomes

π ∈ arg max
π

V πν

where ν is the environment inM.
• f is optimistic if f (M) = a implies that a = π(ε) for an optimistic

policy π, i.e. for
π ∈ arg max

π
max
ν∈M

V πν . (2)

5 Hypothesis-Generating Functions

Given a decision function, what remains to create a complete agent is
a hypothesis generating function Γ(h) =M that for any history h ∈ H
produces a class of environmentsM.

• A special case is defined by combining the initial Γ(ε) = M0 with
an update function ψ(Mt−1, ht) =Mt.
• A hypothesis generating function satisfies Epicurus principle if the

update function is such that it might add new environments in any
way while removing environments if a hypothesis is implausible
(likely to be false) in light of the observations made.
•Given 0 < ε < 1, we define the number of ε-inconfidence points in

the history h to be

n(h, ε) := |{i ≤ l(h) | max
ν1,ν2∈Γ(hi)

|V π
∗

ν1 − V
π∗
ν2 | > ε}|

where π∗ := arg maxπ maxν∈Γ(ht) V
π
ν . In the γ = 0 case studied here,

we can equivalently use a∗ := arg maxamaxν∈Γ(ht) V
a
ν instead of π∗.

•We define a hypothesis generating function from a countable enu-
merated class M based on a budget function for ε-inconfidence
that is increasing and unbounded.
•When the number of ε-inconfidence points is below budget we in-

troduce the next environment in the class.
• This form of hypothesis generating function enables bounds on the

number of errors made by optimistic agents and it implements the
intuition that the agent should not introduce more environments
when the existing ones are very contradictory.

6 Agents in a Dual Process Framework

An agent, i.e. a function from histories to actions, is defined from a hy-
pothesis generating function Γ and a decision function f by choosing
action a = f (Γ(h)) after seeing history h.
Example 1. Suppose that M is a finite class of deterministic envi-
ronments and let Γ(h) = {ν(·|h) | ν ∈ M consistent with h} . If we
combine Γ with the optimistic decision function we have defined the
optimistic agents for finite classes of deterministic environments. We
here extend the analysis to infinite classes by letting Γ(ht) contain
new environments that were not in Γ(ht−1).
Example 2. The Model Based Interval Estimation (MBIE) method for
Markov Decision Processes (MDPs) defines Γ(h) as a set of MDPs
(for a given state space) with transition probabilities in confidence
intervals calculated from h. This is combined with the optimistic deci-
sion function.
Given 0 ≤ ε < 1, we define the number of ε-errors in history h to be

m(h, ε) = |{i ≤ `(h) | V aiµ (hi) < V ∗µ (hi)− ε}|

where µ is the true environment, `(h) is the length of h, ai is the i:th
action and V ∗µ (h) = arg maxa V

a
µ (h).

Theorem 3 (Finite error bound). Following π◦ (optimistic decision func-
tion with hypothesis-generating function that excludes inconsistent
environments but does not add) for µ ∈M (finite deterministic class),

V π
◦

µ (ht) ≥ max
π∈Π

V πµ (ht)− ε, 0 < ε < 1/(1− γ)

for all but at most K− log ε(1−γ)
1−γ ≤ |M−1|− log ε(1−γ)

1−γ time steps t where
K is the number of times that some environment is contradicted.
•Given

a countable class of deterministic environmentsM
Γ excluding contradicted environments from finite initial class
a budget function N : N→ N, accuracy ε = 0

π◦ is defined by combining Γ with an optimistic decision function.
• The number of 0-errors m(ht, 0) is at most n(ht, 0) + C for some

constant C > 0 (dependent on choice of budget function N but not
on t) that is the time at which the truth is included.
• ∀i ∈ N there is ti ∈ N such that ti < ti+1 and n(hti, 0) < N(ti).

7 Combining Laws into Environments

•Observations of the form of a feature vector
• o = ~x = (xj)

m
j=1 ∈ O = ×mj=1Oj, O⊥ = ×mj=1(Oj ∪ {⊥})

• ⊥ means that there is no prediction for this feature.
• A law is a function τ : H×A → O⊥.
• A set of laws T̃ is complete and coherent if for each h, a and j

exactly one prediction is made by laws in the class.
• Let C(T ) denote the complete and coherent subsets of T .
• The class of environments generated by T is

M(T ) := {ν(T̃ ) |T̃ ∈ C(T )}.

Theorem 4 (Finite error bound when using laws). Suppose that T is a
finite class of deterministic laws and let Γ(h) = {ν(·|h) | ν ∈M({τ | τ ∈
T consistent with h})}. We define π̄ by combining g with the optimistic
decision function. Following π̄ for a finite class of deterministic laws
T in an environment µ ∈M(T ), we have for any 0 < ε < 1

1−γ that

V π̄µ (ht) ≥ max
π
V πµ (ht)− ε (5)

for all but at most |T −l|− log ε(1−γ)
1−γ time steps t where l is the minimum

number of laws from T needed to define a complete environment.
Example 3 (Deterministic laws for fixed vector). Consider an environ-
ment with a constant binary feature vector of length m. There are
2m such environments. Every such environment can be defined by
combining m out of a class of 2m laws. Each law says what the value
of one of the features is, one law for 0 and one for 1. In this example,
a coherent set of laws is simply one feature for each coefficient. The
generated environment is the constant vector defined by that vector
and the set of all the generated environments is the full set of 2m

environments.

8 Conclusions

•Optimism enables sufficient exploration for short-sighted agents to
achieve optimality. Strict rationality fails to guarantee this.
• Viewing environments as combinations of laws can improve bounds

exponentially
•Outlook: Milder form better related to human’s with Reward Modulated-

Inference as in reward-modulated spike-timing plasticity
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