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Abstract

I consider the problem of converting offline estimators into an online
predictor or estimator with small extra regret. Formally this is the
problem of merging a collection of probability measures over strings
of length 1,2,3,... into a single probability measure over infinite
sequences. I describe various approaches and their pros and cons on
various examples. As a side-result I give an elementary non-heuristic
purely combinatoric derivation of Turing’s famous estimator. My
main technical contribution is to determine the computational
complexity of online estimators with good guarantees in general.

Keywords: offline, online, batch, sequential, probability, estimation,
prediction, time-consistency, tractable, regret, combinatorics, Bayes,
Laplace, Ristad, Good-Turing.
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PROBLEM FORMULATION
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Problem Formulation (Online=TC=Norm)
Notation: xt:n := xt ...xn ∈ X n−t+1, x<n := x1...xn−1, x1:0 = x<1 = ε.

Formulation 1 (measures)
• Given: Probability measures Qn on X n for n = 1, 2, 3, ....
• Seeked: Online probability measure Q̃ on X∞ close to all Qn in the

sense of Q̃(A×X∞) ≈ Qn(A) for all measurable A ⊆ X n and all n.

Formulation 2 (probability mass function for finite X )
• Given: Prob. mass functions qn : X n → [0; 1], i.e.

∑
x1:n

qn(x1:n) = 1.
• Seeked: Time-consistent (TC) fct. q̃ : X ∗ → [0; 1] with∑

xn
q̃(x1:n) = q̃(x<n) ∀n, x<n and q̃(ε) = 1

close to qn i.e. q̃(x1:n) ≈ qn(x1:n) for all n and x1:n.

Formulation 3 (predictors)
• Seeked: Normalized (Norm) predictor q̃ : X × X ∗ → [0; 1] with∑

xn
q̃(xn|x<n) = 1 ∀n, x<n such that its joint probability

q̃(x1:n) :=
∏n

t=1 q̃(xt |x<t) is close to qn as before.

Discussion: q̃(x1:n) is prob. that an (infinite) sequence starts with x1:n.
q̃(xn|x<n) ≡ q̃(x1:n)/q̃(x<n) is the probability that xn follows given x<n.
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Example Applications

(i) To use an offline estimator (qn) to make stochastic predictions
we need to expand and normalize it.

(ii) Maximum likelihood estimation θ̂n of parameter θ ∈ Θ leads to offline

estimator (qn) := (qθ̂n) even if qθ was online for all θ.

(iii) Arithmetic coding requires an online estimator,
but is often based on a class of distributions as described in (ii).

(iv) Computing the cumulative distribution function
∑

y1:n≤x1:n
qn(y1:n)

can be hard for an offline estimator,
but fast=O(n) if (qn) is (converted to) online.
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Performance/Distance Measure

Natural measure of distance of q̃ from qn:
Worst-case log-loss regret:

Rn ≡ Rn(q̃) ≡ Rn(q̃||qn) := max
x1:n

ln
qn(x1:n)

q̃(x1:n)

Properties:

Quantifies q̃ ≈ qn.

Rn ≥ 0, and Rn = 0 iff q̃|X n = qn.

Online arithmetic code of x1:n w.r.t. q̃ has length |log2 q̃(x1:n)|.
Offline Huffman code for x1:n w.r.t. qn has code length |log2 qn(x1:n)|.

=⇒ CLonline(x1:n)− CLoffline(x1:n) ≤ Rn ln 2

Plenty of alternatives: E.g. KL(qn||q̃) ≤ Rn ≥ KL(q̃||qn) not considered.
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Extending qs from X s to X∞

It is always possible to choose q̃ := q̄s such that Rs = 0 for some s ∈ N0

(but Rn > 0 for n 6= s =⇒ naive minimization of Rn w.r.t. q̃ fails)

q̄s(x1:n) :=


qs(x1:s) if n = s,∑

xn+1:s
qs(x1:s) if n < s,

qs(x1:s)Q(xs+1:n|x1:s) if n > s

Q can be an arbitrary measure on X∞, e.g. uniform Q(xs+1:n|x1:s) = |X |n−s

I now consider four methods of converting offline estimators

to online predictors ...
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CONVERSION METHODS
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Naive Ratio q̃rat

The simplest way to define a predictor q̃ from qn is via Ratio

q̃rat(xt |x<t) :=
qt(x1:t)

qt−1(x<t)
or equivalently q̃rat(x1:n) := qn(x1:n)

Tractable but obviously only works when qn already is Online.

Otherwise q̃rat violates TC.

Degree of violation = Normalizer:

N (x<t) :=
∑
xt

q̃rat(xt |x<t) ≡
∑

xt
qt(x1:t)

qt−1(x<t)
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Naive Normalization q̃n1

Correct failure of q̃rat(xt |x<t) to satisfy Norm by Normalization: [Sol78]

q̃n1(xt |x<t) :=
qt(x1:t)∑
xt

qt(x1:t)
≡ q̃rat(xt |x<t)

N (x<t)
and

q̃n1(x1:n) :=
n∏

t=1

q̃n1(xt |x<t) ≡
qn(x1:n)∏n
t=1N (x<t)

For small X is still tractable but can result in very large regret Rn ∝ n.

Express and upper bound regret Rn in terms of Normalizer N :

Rn(q̃n1) = max
x1:n

n∑
t=1

lnN (x<t) ≤
n∑

t=1

ln max
x<t
N (x<t)

If qn is TC, then N ≡ 1, hence Rn as well as the upper bound are ≡ 0.
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Limit q̃lim

Since Rs(q̄s) = 0 for any fixed s, a natural idea is taking the Limit

q̃lim(x1:n) := lim
s→∞

q̄s(x1:n) = lim
s→∞

∑
xn+1:s

qs(x1:s)

in the hope to make lims→∞ Rs = 0.

Effectively what q̃lim does is to use qs for very large s
also for short strings of length n by marginalization.

Problems are plenty:
• The limit may not exist,
• may exist but be incomputable,
• Rn may be hard to impossible to compute or upper bound,
• and even if the limit exists, q̃lim may perform badly.
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Mixture q̃mix

Take Bayesian Mixture over the class {q̄1, q̄2, ...} of all q̄s [San06]

q̃mix(x1:n) :=
∞∑
s=0

q̄s(x1:n)ws with prior ws > 0,
∞∑
s=0

ws = 1.

q̃mix is TC and its regret can easily be upper bounded: [San06]

Rn(q̃mix) = max
x1:n

ln
qn(x1:n)∑∞

s=0 q̄s(x1:n)ws
≤ max

x1:n

ln
qn(x1:n)

q̄n(x1:n)wn
= ln w−1

n

For e.g. wn := 1
(n+1)(n+2) we have ln w−1

n ≤ 2 ln(n + 2)= small.

Conclusion: Any offline estimator can be converted into
an online predictor with very small extra regret.

Problem: How convert this heavy construction into an efficient algorithm?

Variations: Q ≡ 0 -or- sparser wn.
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EXAMPLES
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Examples by Category

Class of Probabilities (ML/MAP/MDL/NML/MML/Bayes):
• Start with a class M of probability measures ν on X∞

in the hope one of them is good.

Combinatorial (Uniform,Laplace,Good-Turing,Ristad):
• Assigns uniform probabilities over subsets of X n.

Exponentiated Code Length:
• not further discussed
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Bayes

The Bayesian mixture over M w.r.t. some prior (density) w() is

qn(x1:n) :=

∫
M
ν(x1:n) w(ν) dν

qn is TC =⇒ (qrat
n ) ≡ (qn1

n ) ≡ (qlim
n ) ≡ q̃ =⇒ Rn = 0.

q̃rat is tractable if the Bayes mixture is.

Assume the true sampling distribution µ is in M:

For countable M and counting measure dν, we have
qn(x1:n) ≥ µ(x1:n)w(µ), hence Ronline

n = Roffline
n ≤ ln w(µ)−1.

For continuous classes M under mild conditions:
Ronline
n = Roffline

n . ln w(µ)−1 + O(ln n). [BC91, Hut03, ?, RH07]
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ML/MAP/MDL/NML/MML

MAP=MDL estimator: q̂n(x1:n) := sup
ν∈M
{ν(x1:n) w(ν)}

NML estimator: qn(x1:n) :=
q̂n(x1:n)∑
x1:n

q̂n(x1:n)

Since q̂n is not even a probability on X n,
we have to normalize it to qn (ML/NML).

Unlike Bayes, qn is not TC, causing various complications. [Grü07, Hut09]

Crude MDL: qn := arg maxν∈M{ν(x1:n) w(ν)}
is a probability measure on X∞ for each n, but also not TC. [PH05]
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Uniform

The uniform probability qn(x1:n) := |X |−n is TC

=⇒ all four q̃ coincide and Rn = 0∀n.

Lousy estimator, since predictor q̃(xt |x<t) = 1/|X | is indifferent and
ignores all evidence x<t to the contrary.

Improvement: Partition the sample space (here X n) and assign
uniform probabilities to and within each partition.

The Laplace rule can be derived that way, and the Good-Turing and
Ristad estimators by further sub-partitioning.
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Laplace (Double Uniform)

ni := |{t : xt = i}| is number of times,
symbol i ∈ X = {1, ..., d} appears in x1:n.

Assign uniform probability to all sequences x1:n with the same counts
n := (n1, ..., nd), therefore qn(x1:n|n) =

( n
n1...nd

)−1
.

Assign uniform probability to the counts n themselves,

therefore qn(n) = |{n : n1 + ...+ nd = n}|−1 =
(n+d−1

d−1

)−1
.

Together

qn(x1:n) =

(
n

n1 ... nd

)−1(n + d − 1

d − 1

)−1

=

(
n + d − 1

n1 ... nd d − 1

)−1

=⇒ q̃rat(xn+1 = i |x1:n) =
qn+1(x1:ni)

qn(x1:n)
=

ni + 1

n + d

Is properly normalized (Norm), so q̃rat is TC.

(qrat
n ) ≡ (qn1

n ) ≡ (qlim
n ) coincide with q̃ and Rn = 0.

q̃rat is nothing but Laplace’s famous rule.
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Good-Turing (Triple Uniform)

Mr := {i : ni = r} = symbols that appear exactly r ∈ N0 times in
x1:n, and mr := |Mr | is their number.

Assign 3× uniform probabilities:
(i) qn(x1:n|n) :=

( n
n1...nd

)−1
(as for Laplace)

(ii) qn(n|m) :=
( d
m0...mn

)−1
, where m := (m0, ...,mn)

(iii) qn(m) := Part(n)−1 = (#integer partitions of n)−1

Together: qn(x1:n) =
( n
n1 ... nd

)−1( d
m0 ... mn

)−1
Part(n)−1 is not TC.

Normalization: q̃n1(xn+1 = i |x1:n) = 1
Nn
· r+1
n+1 ·

mr+1+1
mr

[r = ni ]

Nn := 1
n+1

∑n
r=0,mr 6=0(r +1)(mr+1+1)

Is very interesting predictor: r+1
n+1 is Laplace is estimate.

mr+1+1
mr

is close to the Good-Turing (GT) correction mr+1

mr
. [Goo53]
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Good-Turing (Triple Uniform)

Worst-case regret of GT is very large: Rn(q̃n1||qn) = n ln 2± O(
√

n)

=⇒ Naive norm. severely harms the offline triple uniform estimator qn

Heuristic smoothing of the function m()

leads to excellent estimators in practice, [Goo53]

e.g. Kneser-Ney smoothing for text data. [CG99]

q̃mix may be regarded as an (unusual) kind of smoothing
with the strong guarantee Rn ≤ 2 ln(n + 2) [San06]

Marcus Hutter Offline to Online Conversion Australian National University 21 / 30



Ristad (Quadrupel Uniform)

Motivation: If X is the set of English words and x1:n some typical
English text, then most symbols=words will not appear.

=⇒ Laplace assigns not enough probability (ni+1
n+d �

ni
n ) to observed words.

Rectification: Treat symbols A := {i : ni > 0} that do appear
different from symbols X \ A that don’t:

(i) x1:n may contain m different symbols, so qn(m) := 1/min{n, d}
(ii) Choose uniformly which m ≡ |A| symbols appear: qn(A|m) :=

(d
m

)−1

(iii) Choose counts n (ni > 0⇔ i ∈ A) uniformly: qn(n|A) =
(n−1
m−1

)−1

(iv) Finally, qn(x1:n|n) =
( n
n1...nd

)−1
as for Laplace.

Together: qn(x1:n) =
( n
n1 ... nd

)−1(n−1
m−1

)−1(d
m

)−1 1
min{n,d} is not TC
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Ristad (Quadrupel Uniform)

Normalization:

q̃n1(xn+1 = i |x1:n) =


(ni+1)(n−m+1)
n(n+1)+2m if ni > 0 and m < d

m(m+1)
n(n+1)+2m ·

1
d−m if ni = 0

ni+1
n+m if m = d [⇒ ni > 0]

Regret of Ristad estimator: Rn(q̃n1||qn) ≤ 2 ln n

This shows that simple normalization does not ruin performance.

Indeed, the regret bound is as excellent as that for q̃mix
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COMPUTATIONAL
COMPLEXITY
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Computability and Complexity of q̃mix

From the four discussed online estimators
only q̃mix guarantees small extra regret over offline (qn),

Problem: The definition of q̃mix is quite heavy.

At least: q̃mix can be computed in double-exponential time:

Theorem (Computational Complexity of q̃mix)

There is an algorithm A that computes q̃mix (with uniform choice for Q) to

accuracy |A(x1:n, ε)/q̃mix(x1:n)− 1| < ε in time O(|X |
4
ε
|X |n) for all ε > 0.

Allows us to:

compute the predictive distribution q̃mix(xt |x<t) to accuracy ε,

ensures that A(x1:n, ε) > (1− ε)q̃mix
n (x1:n),

hence Rn(A(x1:n, ε)||qn) ≤ Rn(q̃mix
n (x1:n)||qn) + ε

1−ε , and

approximate normalization |1−
∑

x1:n
A(x1:n, ε)| < ε.
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Computational Complexity: Definitions

TIME(g(n)) := all algs that run in time O(g(n)) on inputs of length n

Algorithms in Ec := TIME(2cn) run in exponential time.

P :=
⋃∞

k=1 TIME(nk) is the classical class of all algorithms that run in
polynomial time (strictly speaking Function-P or FP). [AB09]

Theorems are stated for binary alphabet X = B = {0, 1}.
The generalization to arbitrary finite alphabet is trivial.

‘For all large n’ shall mean ‘for all but finitely many n’, denoted ∀′n.
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Computational Complexity of General q̃

Theorem (Sub-optimal fast online for fast offline)

For all r > 0 and c > 0 and ε > 0

(ii) ∃(qs) ∈ P ∀q̃ ∈ Ec : Rn ≥ r ln n ∀′n [e.g. large c and r]

(iii) ∃(qs) ∈ TIME(sr+1+ε) ∀q̃ ∈ P : Rn ≥ r ln n ∀′n [e.g. small c, ε]

(iv) ∃(qs) ∈ P : q̃mix 6∈ Ec [from (ii) and Rn(q̃
mix) < 3 ln n]

(iii) implies that there is an offline estimator (qs) computable in
quartic time s4 on a RAM for which no polynomial-time online
estimator q̃ is as good as q̃mix.

The slower (qs) we admit (larger r), the higher the lower bound gets.

(ii) says that even algorithms for q̃ running in exponential time 2cn

cannot achieve logarithmic regret for all (qs) ∈ P.

In particular this implies that (iv) any algorithm for q̃mix requires
super-exponential time for some (qs) ∈ P on some arguments.
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Computational Complexity of General q̃

• TIMEo(g(n)) := all algs with oracle access that run in time O(g(n))
• Each oracle call is counted only as one step. Similarly Po and Ec,o .

Theorem (Very poor fast online using offline oracle)

∀ε > 0 ∃o ≡ (qs) ∈ E1 ∀q̃o ∈ Eε/2,o : Rn(q̃o ||qn) ≥ (1− ε)n ln 2 ∀′n
Or cruder: ∀ε > 0 ∃o ≡ (qs) ∀q̃o ∈ Po : Rn(q̃o ||qn) ≥ (1− ε)n ln 2 ∀′n

• Strength: It rules out even very modest demands on Rn:
Trivial Rn ≤ n ln 2 unimprovable by a fast q̃o with (only) oracle access.

• Weakness: Only applies to online q̃ using (qs) as a black box oracle.
That is, q̃o(x1:n) can call qs(z1:s) for any s and z1:s

and receives the correct answer.
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Open Problems

Open Problem (Fast online from offline with small extra regret)

Can every polynomial-time offline estimator (qn) be converted to a
polynomial-time online estimator q̃ with small regret Rn(q̃||qn) ≤

√
n ∀′n?

Or weaker: ∀(qn) ∈ P∃q̃ ∈ P : Rn = o(n)? Or stronger: Rn = O(logn)2?

Would reduce finding good online estimators to the apparently easier
problem of finding good offline estimators.

For specific offline (qn), does there exist efficient q̃ with small Rn?

A tractable smoothing of the GT estimator with Rn = O(ln n).

Are there offline estimators of practical relevance (such as GT) for
which no fast online estimator can achieve logarithmic regret?

Weaken notion of regret to e.g. expected regret E[ln(qn/q̃)].

Is Rn = O(ln n) the best one can achieve in general.

Devise general techniques to upper bound Rn(q̃n1||qn).
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