
Optimization
Difficulty

Tansu Alpcan

Introduction

Definitions and
Model

Optimization
Difficulty

Bounds on
Optimization
Difficulty

Conclusion

Can we measure the difficulty

of an optimization problem?

Tansu Alpcan*, Tom Everitt**,
and Marcus Hutter***

* Dept. of Electrical and Electronic Engineering
The University of Melbourne

** Department of Mathematics
Stockholm University

*** Research School of Computer Science
Australian National University

ITW 2014, Hobart

1 / 22

Optimization
Difficulty

Tansu Alpcan

Introduction

Definitions and
Model

Optimization
Difficulty

Bounds on
Optimization
Difficulty

Conclusion

Outline

Introduction

Definitions and Model

Optimization Difficulty

Bounds on Optimization Difficulty

Conclusion

2 / 22

Optimization
Difficulty

Tansu Alpcan

Introduction

Definitions and
Model

Optimization
Difficulty

Bounds on
Optimization
Difficulty

Conclusion

Introduction

◮ Can we measure the difficulty of an optimization

problem?

◮ Although optimization plays a crucial role in modern

science and technology, a formal framework that

puts problems and solution algorithms into a broader

context has not been established.

◮ This paper presents a conceptual approach which

gives a positive answer to the question for a broad

class of optimization problems.

◮ The proposed framework builds upon Shannon and

algorithmic information theories and provides a

computational perspective.

3 / 22

Optimization
Difficulty

Tansu Alpcan

Introduction

Definitions and
Model

Optimization
Difficulty

Bounds on
Optimization
Difficulty

Conclusion

Overview

◮ A concrete model and definition of a class of

optimization problems is provided.

◮ A formal definition of optimization difficulty is

introduced which builds upon algorithmic information

theory.

◮ Following an initial analysis, lower and upper

bounds on optimization difficulty are established.

◮ One of the upper-bounds is closely related to

Shannon information theory and black-box

optimization.

◮ Finally, various computational issues and future

research directions are discussed.

4 / 22

Optimization
Difficulty

Tansu Alpcan

Introduction

Definitions and
Model

Optimization
Difficulty

Bounds on
Optimization
Difficulty

Conclusion

Optimization Problem

We consider mathematical optimization problems of type:

max
x

f (x) subject to gi(x) ≤ 0, i = 1, . . . ,m, x ∈ R
n.

◮ The list of constraints, denoted by c, define the

solution space A which is a assumed to be a

compact subset of A ⊂ R
n.

◮ Assume f is Lipschitz-continuous on A and there is a

feasible global solution x∗ = arg maxx∈A f (x).

5 / 22

Optimization
Difficulty

Tansu Alpcan

Introduction

Definitions and
Model

Optimization
Difficulty

Bounds on
Optimization
Difficulty

Conclusion

Discretization

For a given scalar ε > 0 and compact set A, let A(ε) be

an ε-discretization of A constructed using the following

procedure:

1. Let C be a finite covering of A with hypercubes of

side length at most ε.

2. For each cube C ∈ C, let xC ∈ C ∩ A.

3. Finally, let A(ε) be the set of all xC , C ∈ C.

4. Thus, A(ε) is a finite subset of A, with the same

cardinality as C.

5. If the cubes in C do not overlap, we call discretization

based on C non-overlapping.

6 / 22

Optimization
Difficulty

Tansu Alpcan

Introduction

Definitions and
Model

Optimization
Difficulty

Bounds on
Optimization
Difficulty

Conclusion

Discrete Optimization Problem

Definition:

A (discretizable) optimization problem on R
n is a tuple

〈f , c, ε〉 where f : Rn → R is the objective function, c is a

list of constraints expressed using functional

(in)equalities, and ε > 0 is a discretization parameter.

◮ Assume that the constraint set A is non-empty and

compact and that f is Lipschitz-continuous over A.

Let A(ε) be an ε-discretization of A.

◮ An argmax of f on A is a point x∗ ∈ A satisfying

∀x ∈ A : f (x) ≤ f (x∗).

◮ A discrete argmax (or δε- argmax) is a point x̂

satisfying ∀x ∈ A : f (x) ≤ f (x̂) + δε where

δε = max{|f (x)− f (x̂)| : ‖x − x̂‖ < ε} and ‖·‖ is the

maximum norm.

7 / 22

Optimization
Difficulty

Tansu Alpcan

Introduction

Definitions and
Model

Optimization
Difficulty

Bounds on
Optimization
Difficulty

Conclusion

Discretized and Approximate Solutions

◮ The definition above accepts δε- argmax (rather than

true argmax) as a solution.

◮ The discretization parameter ε then effectively states

how close the discrete argmax needs to be to the

true argmax.

◮ If the Lipschitz constant of the objective function is k ,

then the desired solution differs at most δ in target

value from the optimum, if one chooses ε = δ/k .

◮ A sufficient condition for a x̂ ∈ A(ε) being a discrete

argmax is: If it holds for all x ∈ A(ε) that f (x) ≤ f (x̂),
then x̂ must be a δε- argmax.

◮ It is worth noting that all numerical optimization

software packages yield only discrete and

approximate solutions.

8 / 22

Optimization
Difficulty

Tansu Alpcan

Introduction

Definitions and
Model

Optimization
Difficulty

Bounds on
Optimization
Difficulty

Conclusion

Binary Representation

◮ To allow for a computational treatment, an encoding

of problems as (binary) strings must be chosen.

◮ The “standard calculus symbols” we base these
descriptions on are:

◮ finite precision real numbers 0, 1.354, . . . ;
◮ variables x1, x2, . . . ;
◮ elementary functions +, ·,exp, . . . ;
◮ parenthesis;
◮ relations ≤,=,

◮ A function R
n → R is an expression formed by

elementary functions, real numbers and the variables

x1, . . . , xn, and a constraint on R
n is a formula of the

form g(x1, . . . , xn) ≤ 0 with g : Rn → R.

◮ If e is an expression, let ℓ(e) denote the length of its

binary encoding which can be obtained by giving

each symbol a binary encoding (e.g. ASCII).

9 / 22

Optimization
Difficulty

Tansu Alpcan

Introduction

Definitions and
Model

Optimization
Difficulty

Bounds on
Optimization
Difficulty

Conclusion

Correctness of Solutions
◮ To ensure correctness, any alleged δε- argmax

solution is paired with a polynomially verifiable

certificate s of the the correctness.
◮ In general, the trace (step-by-step reporting) of a

correct optimization algorithm forms one example of

a (linearly verifiable) certificate.
◮ To verify, it suffices to check that each step of the

trace corresponds to the definition of the algorithm,

and that the final step of the trace outputs the

proposed argmax.
◮ A general type of certificate (not specific to a

particular class or optimization algorithm) may for

example be based on formal proofs in first-order

logic or type-theory. Many automated theorem

proving systems have developed formalizations of

analysis, which could potentially form the basis of a

suitable proof system.

10 / 22

Optimization
Difficulty

Tansu Alpcan

Introduction

Definitions and
Model

Optimization
Difficulty

Bounds on
Optimization
Difficulty

Conclusion

Verifiable Solutions

Definition:

Consider the discrete optimization problem and a suitable

proof system T offering polynomially verifiable certificates

s of candidate solutions. A solution of the optimization

problem 〈f , c, ε〉 is defined as a pair 〈x∗, s〉 where s is a

certificate in T that x∗ is a δε- argmax for 〈f , c, ε〉.

◮ It is beyond the scope of this paper to describe a

suitable proof system T in detail. We will instead rely

on semi-formal proof sketches in examples, and

polynomial verifiability in abstract arguments.

◮ For concreteness, we will assume that certificates in

T can be verified in time dnq. That is, we assume the

existence of a verifier for certificates in T with

runtime at most dnq for certificates of length n.

11 / 22

Optimization
Difficulty

Tansu Alpcan

Introduction

Definitions and
Model

Optimization
Difficulty

Bounds on
Optimization
Difficulty

Conclusion

Illustrative Example
Consider the optimization problem

〈f (x) = 3x2 + x ; x ≥ −1, x ≤ 1; ε = 0.001〉 . (1)

A solution is δε- argmax = 1. The following informal

certificate sketch validates the solution.

1. df/dx = 6x + 1 (derivative)

2. 6x + 1 = 0 ⇐⇒ x = −1/6 (properties of real

numbers)

3. roots(df/dx) = {−1/6} (from 1 and 2)

4. boundary = {−1, 1} (from c)

5. x 6∈ roots(df/dx) ∧ x 6∈ boundary(c) =⇒
¬ argmax(x) (calculus)

6. argmax = −1/6 ∨ argmax = −1 ∨ argmax = 1 (from

3–5)

7. f (−1) ≤ f (1) =⇒ argmax 6= −1

8. f (−1/6) ≤ f (1) =⇒ argmax 6= −1/6

9. argmax = 1 (from 6–8)

10. δε- argmax = 1 (from 9)
12 / 22

Optimization
Difficulty

Tansu Alpcan

Introduction

Definitions and
Model

Optimization
Difficulty

Bounds on
Optimization
Difficulty

Conclusion

Optimization Difficulty: Solution Concept

◮ For measuring its difficulty, the optimization problem

is formulated as a “knowledge or “information”

problem.

◮ Before solving 〈f , c, ε〉 it is only known that the

solution has to be in the search domain, A.

◮ Solving the optimization problem yields knowledge

about the location of x∗ up to a certain precision.

◮ Solving an optimization problem is equivalent to

obtaining knowledge about the location of the

solution.

◮ If a problem 〈f , c, ε〉 is “simple” then solving it

corresponds to discovering a small amount of

knowledge. Likewise, a difficult problem means a lot

of knowledge is produced in solving it.

13 / 22

Optimization
Difficulty

Tansu Alpcan

Introduction

Definitions and
Model

Optimization
Difficulty

Bounds on
Optimization
Difficulty

Conclusion

Optimization Algorithm

Definition:

An algorithm p solves the optimization problem 〈f , c, ε〉 if

p(〈f , c, ε〉) = 〈x∗, s〉 with s a certificate that x∗ is a

δε- argmax of f on A. That is, p should output a solution

〈x∗, s〉 when fed 〈f , c, ε〉 as input.

With U a universal Turing-machine (aka programming

language), let the description length ℓU(p) be the length

of the binary string-encoding of p on U, and let the

runtime tU(p(〈f , c, ε〉)) be the number of time steps it

takes for p to halt on input 〈f , c, ε〉 on U.

14 / 22

Optimization
Difficulty

Tansu Alpcan

Introduction

Definitions and
Model

Optimization
Difficulty

Bounds on
Optimization
Difficulty

Conclusion

Optimization Difficulty

Definition:

The optimization difficulty of a given optimization problem

〈f , c, ε〉 is defined as

Dopt(〈f , c, ε〉) := min
p

{ℓ(p) + log2(t(p)) : p solves 〈f , c, ε〉}

Discussion:

◮ Definition above refers to instances of optimization

problems rather than classes; multiple reasons for

this choice.

◮ Generally applicable vs special solvers: certificates

and “runtime-knowledge” vs “source

code”-knowledge.

15 / 22

Optimization
Difficulty

Tansu Alpcan

Introduction

Definitions and
Model

Optimization
Difficulty

Bounds on
Optimization
Difficulty

Conclusion

Optimization vs Search: Upper Bound 1

◮ A discretized optimization problem with a finite

search space A(ε) can always be solved as a

“search problem” by ignoring the properties of the

objective function f .

◮ Assuming no a priori knowledge (i.e., a uniform prior

over argmax-locations in A(ε)), once the solution is

found, the amount of a posteriori knowledge obtained

is log2(|A(ε)|) bits from Shannon information theory.

Proposition III.3 (Upper Bound 1). There is a

computational constant k ∈ N such that for any

optimization problem 〈f , c, ε〉 with ε-discretization A(ε),

Dopt(〈f , c, ε〉) ≤ k + log2(|A(ε)|+ C) ,

where C is the runtime cost of obtaining the discretization

A(ε), and |·| denotes cardinality.

16 / 22

Optimization
Difficulty

Tansu Alpcan

Introduction

Definitions and
Model

Optimization
Difficulty

Bounds on
Optimization
Difficulty

Conclusion

Optimization vs Search: Upper Bound 1

◮ The solution could also have been directly encoded

into the source code of algorithm p. This way, p

would not have had to perform the exhaustive

search, reducing its runtime considerably.

◮ However, a standard result in algorithmic information

theory is that the typical description length of an

element x ∈ A(ε) is of order log2(|A(ε)|).

◮ Thus, the upper bound on Dopt would have been the

same.

◮ This symmetry between information encoded in the

algorithm, and information found searching, provides

one deep justification of the particular combination

“description-length plus the binary log of the runtime”

used in the definition of Dopt.

17 / 22

Optimization
Difficulty

Tansu Alpcan

Introduction

Definitions and
Model

Optimization
Difficulty

Bounds on
Optimization
Difficulty

Conclusion

Upper Bound 2

The difficulty of optimization is also bounded above by the

shortest solution.

Proposition III.4 (Upper bound 2). There is a (small)

computational constant k such that if 〈f , c, ε〉 is an

optimization problem with shortest solution 〈x∗, s〉, then

Dopt(〈f , c, ε〉) ≤ k + ℓ(〈x∗, s〉)

Proof: The proof is immediate: Let p be the program

Print ‘〈x∗, s〉’.

Note that the program in the proof is not as short as it

initially looks. The program fits the entire solution s in the

source code.

18 / 22

Optimization
Difficulty

Tansu Alpcan

Introduction

Definitions and
Model

Optimization
Difficulty

Bounds on
Optimization
Difficulty

Conclusion

Lower Bound 1

The difficulty of optimization may also be bounded from

below.

Proposition III.5 (Lower bound). Assume that d · nq

bounds the running time of the proof-verifier, and that

〈f , c, ε〉 is a non-trivial problem. Then

Dopt(〈f , c, ε〉) ≥
1

q
log2(ℓ(〈f , c〉))− log2(d)/q

The proof builds upon two bounds on the verification time

of solutions for an optimal polynomial verifier v for the

proof system T .

19 / 22

Optimization
Difficulty

Tansu Alpcan

Introduction

Definitions and
Model

Optimization
Difficulty

Bounds on
Optimization
Difficulty

Conclusion

Upper Bound 3

Proposition III.6 (Upper bound 3). There is a

computational constant k ∈ N allowing the following

bound: Let p output the correct argmax for all instances

in a class S of optimization problems, and let sp b a

certificate for this. Let 〈f , c, ε〉 be a problem in S. Then

Dopt(〈f , c, ε〉) ≤ 2ℓ(sp) + log2(t(p(〈f , c, ε〉))) + k + C

where C subsumes the cost of proving 〈f , c, ε〉 ∈ S.

Note that, this connects the instance-difficulty introduced

in this paper with the commonly-known class-difficulty

from computational complexity theory, which is defined as

the best (asymptotic) runtime of an algorithm outputting

the correct argmax on all instances.

20 / 22

Optimization
Difficulty

Tansu Alpcan

Introduction

Definitions and
Model

Optimization
Difficulty

Bounds on
Optimization
Difficulty

Conclusion

Conclusion

◮ The conceptual framework presented constitutes

merely a first step in developing a deeper

understanding of optimization problems from an

information and algorithmic perspective.

◮ Several important issues are left for future analysis:
◮ The intricate relationship between the description of

the algorithm, its runtime, and the computing

resources it requires.
◮ Practical computability of optimization difficulty.
◮ Availability of “information” about the optimization

problem itself.
◮ Approximations and noise.

21 / 22

Optimization
Difficulty

Tansu Alpcan

Introduction

Definitions and
Model

Optimization
Difficulty

Bounds on
Optimization
Difficulty

Conclusion

Thank you and Questions?

Further information is available at:

http://www.tansu.alpcan.org

http://people.su.se/˜toev8920

22 / 22

http://www.tansu.alpcan.org
http://people.su.se/~toev8920

	Introduction
	Definitions and Model
	Optimization Difficulty
	Bounds on Optimization Difficulty
	Conclusion

