

Universal Knowledge-Seeking Agents in Stochastic Environments

Laurent Orseau¹ Tor Lattimore² Marcus Hutter²

¹AgroParisTech, Paris, France

²ANU, Canberra, Australia

Algorithmic Learning Theory, 2013

KL-KSA

Properties

Issue

Conclusion

Oxford dictionary:

The intellectual and practical activity encompassing the systematic study of the structure and behavior of the physical and natural world through observation and experiment.

- Popper + Occam + Epicurus?
 Falsifiability + simplicity + multiple explanations
- What formalization?

Solomonoff induction

- Formalization + unification + generalization of falsifiability + simplicity + multiple explanations
- Solomonoff prior:

$$\xi(h) := \sum_{\mu \in \mathcal{M}_U} w_\mu \mu(h)$$

 $\mathcal{M}_{\mathit{U}}\!\!:$ all computable hypotheses

h: observation history

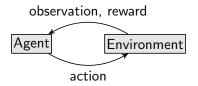
$$w_{\mu} = 2^{-K(\mu)}$$
$$\sum_{\mu \in \mathcal{M}_{U}} w_{\mu} \le 1$$

K: Kolmogorov complexity

(Kraft inequality)

- Bayes theorem for induction
- Discards inconsistent hypotheses
- Regret $\leq K(\mu)$ for true environment μ
- Many good philosophical/logic properties [RH2011]
- Incomputable by necessity

KL-KSA

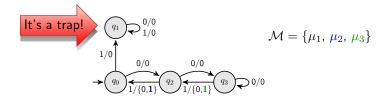

Properties

Issue

Conclusion

Choosing optimal actions

- Induction is not enough: observations only, no experiment
- A scientist is active, **must make choices** How to choose the **optimal** actions?
- AIXI [Hutter2005]
 - Online RL setting (no restart)
 - Universal agent based on Solomonoff's prior
 - Balanced Pareto optimal
- Almost there, but...
 - Reward-based, no intrinsic reward function
 - Exploration issues



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Maximizing prediction accuracy

Intrinsic reward: maximize prediction accuracy?

- Bad idea!
 - May jump into inescapable traps / kill itself (extreme confirmation bias)
 - $\rightarrow\,$ optimal future prediction for all policies

 \rightarrow Choose actions to maximize long-term expected knowledge

KL-KSA

Properties

Issues

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion

Optimal Scientist

Optimal way to seek knowledge

- Knowledge-seeking agent for all computable deterministic environments [Orseau2011]
 - Shannon-KSA and Square-KSA
 - Goal: minimize $\xi(h)$
 - \rightarrow Falsifies as many hypotheses as possible
- Exploration = exploitation
- Convergence to optimal knowledge Tends to learn everything it can
- Avoids traps

Properties

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

... but fails in stochastic environments

Not resistant to noise

 $n \times \text{ in } q_2 \text{ loop: } V_{\text{Shannon}} = 1$ $n \times \text{ in } q_1 \text{ loop: } V_{\text{Shannon}} = n$

KL-KSA

Properties

Conclusion

Universal Scientist, v2013

• KL-KSA, based on Kullback-Leibler divergence

$$V^{\pi} := \sum_{\mu \in \mathcal{M}} 2^{-K(\mu)} K L^{\pi}(\mu || \xi)$$
$$\pi^* := \arg \max_{\pi} V^{\pi}$$

• Maximize the expected divergence between

each individual possible environment and the agent's knowledge of the world.

- $\rightarrow\,$ Choose actions that maximize expected information gain
 - Time consistency:

Choosing π^* at t = 0 and following it after history h same as choosing π^* after history h.

・ロト ・ 日下 ・ 日下 ・ 日下 ・ 今日・

Theorems:

- On-policy prediction
 - · Learns to predict accurately the future history
 - (True for all policies)

(main theorem)

• On-policy learning, off-policy prediction

- · Learns to predict if would follow any policy
- Reason:

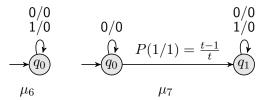
 π^* outcomes are the most difficult to predict

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Introduction	KL-KSA	Properties	Issues	Conclusion
	N	oise and traps	5	

 Non-informative policy π:
 Outcomes have equal probabilities for all (consistent) environments

 $\rightarrow KL^{\pi}=0$


- Noise: non-informative π with stochastic outcomes $\rightarrow V^{\pi}=0$
 - \rightarrow KL-KSA resistant to noise
- Trap: all policies are non-informative $\label{eq:phi} \rightarrow \forall \pi V^\pi = 0$
 - \rightarrow KL-KSA avoids traps

Introduction KL-KSA Properties Issues Conclusion

KL-KSA, undiscounted: Issues

- Non-existence of the value for $\mathcal{M} = \mathcal{M}_U$ KL-entropy $(\xi) \geq \sum_x 2^{-K(x)} K(x) = \infty$ $\rightarrow V^{\pi^*} = \infty$
- Non-existence of the optimal policy

Even if value existed

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• Less clear if $\mathcal{M} = \mathcal{M}_U \dots$

KL-KSA

Properties

Issues

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion

Solution 1: Horizon function

- Weights γ_t each time step (finite sum)
- Need to define discounted KL_γ
- Ensures existence of value + policy
- But not appealing
 - Myopic
 - No fundamentally justified choice
 - Infinite dimension vector

KL-KSA

Properties

Issues

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion

Solution 2: Approximations

- ϵ -biased prior: $w_{\mu} = 2^{-(1+\epsilon)K(\mu)}$
 - Existence of the value (finite entropy)
 - But loses dominance property
- δ -optimal policy
 - Existence of the (near-)optimal policy
 - But may stop exploring at some point
- Only 2 scalar parameters

Properties

Conclusion

What is science?

Choose actions to maximize long-term expected knowledge

- First formal definition of the optimal scientific process for all computable stochastic environments
- Still some annoying parameters
 - Horizon function, ϵ -biased prior + δ -optimal policy
 - Reference machine
- Rate of convergence?
- How to be more convincing?
 - How to *prove* this defines (or not) science? What mathematical properties are required?

- [Hutter2005] M. Hutter, Universal Artificial Intelligence: Sequential Decisions based on Algorithmic Probability, Springer, 2005.
- [RH2011] S. Rathmanner and M. Hutter, A Philosophical Treatise of Universal Induction, Entropy (13) 6, 1076–1136, 2011.
- [Orseau2011] L. Orseau, Universal Knowledge-Seeking Agents. ALT (6925), 353–367, 2011.