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Problems

I Robotic control in an unknown environment
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Problems

I Perceptual aliasing
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Problem formulation

ht = a1o1r1o2r2a2 . . . otrt

at = Agent(ht)

ot+1rt+1 = Environment(htat)
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ΦMDP framework

Φ: Histories → States

st = Φ(ht)

I Φ is to reduce the general RL problem to an MDP,
so that we can use MDP solvers to find the solution

I Aim at finding Φs that result in MDPs with good
reward-prediction capability

Feature Reinforcement Learning In Practice



ΦMDP framework

I What does the function Φ look
like?
⇒ one of the most useful classes
of maps is context trees

I Example:
S = {s1, s2, s3} = {00, 10, 1}
ΦS is the map represented by S
h6 = 011001

I ΦS(h4) = 10(s2)
I ΦS(h5) = 00(s3)
I ΦS(h6) = 1(s1)
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ΦMDP framework

I How good is a Φ?
⇒ predictive ability

Cost(Φ|hn) = CLΦ(s1:n|a1:n) + CLΦ(r1:n|s1:n, a1:n)

(CL = Code Length)

I Inspired by MDL(Minimum Description Length) principle

M. Hutter, Feature Reinforcement Learning: Part I: Unstructured
MDPs, Journal of General Artificial Intelligence, 2009
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ΦMDP framework

I The optimal solution Φ = arg minΦ Cost(Φ|hn)
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Generic stochastic ΦMDP search (GSΦA)

1. Generate a history using random policy

2. Given the initial history, run stochastic search to find an
estimate Φ̂ of Φoptimal

3. Solve the MDP induced from Φ̂ using Action-Value
Iteration (AVI)

4. Start acting based on the AVI solution, and further apply
Q-Learning to refine the MDP solution

5. Add the history obtained from Q-Learning to the old
history

6. Go back to step 2

7. Return the Φ̂ with lowest cost, and the corresponding optimal
policy computed from Q∗
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Stochastic search - Parallel tempering

I Search space: Markov Action-Observation
Context Trees (Closed Finite State
Machines)

I Markov trees are trees where given st
and at , ot+1, we know st+1

I Parallel tempering algorithm:
I Run a number of traditional simulated

annealings in parallel
I Swap configurations to speed up the

search process
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Stochastic search - Parallel tempering

I Proposal distribution
I Propose to split and merge some leaf node
I Keep the search trees in the space of Markov

action-observation context trees. In order to do this, we might
have to perform a chain of splits or merges

I Keep useful short-term memory if found, and share it with all
other trees
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Domain and results

I Cheese maze
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Domain and results

I Tiger
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Domain and results

I Kunh poker

-0.05

0

0.05

0.1

A
v

e
ra

g
e

 R
e

w
a

rd
 p

e
r 

C
y

cl
e

Kuhn Poker

PhiMDP MC-AIXI U-Tree

Active-LZ Optimal

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

100 1000 10000 100000 1000000

A
v

e
ra

g
e

 R
e

w
a

rd
 p

e
r 

C
y

cl
e

Experience (cycles)

Kuhn Poker

PhiMDP MC-AIXI U-Tree

Active-LZ Optimal

Feature Reinforcement Learning In Practice



Domain and results

I 4× 4 grid
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Main contributions

I Limiting search space to Markov action-observation context
trees

I Proposing the GSΦA algorithm

I Providing the first empirical analysis of ΦMDP

I Designing a specialized proposal distribution for stochastic
search
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Key conclusions

I ΦMDP outperforms U-tree, Active-LZ

I ΦMDP is competitive with MC-AIXI in short-term memory
domains

I ΦMDP is more efficient than MC-AIXI in both computation
and memory usage

I ΦMDP is more flexible in environment modelling than U-tree,
Active-LZ, and MC-AIXI through the choice of any class of
maps Φ, though other approaches can be combined with
predicates
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Thank you!
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