Feature Reinforcement Learning In Practice

September 9, 2011

Phuong Nguyen^{1,2} (PhD student) Joint work with **Peter Sunehag**¹ and **Marcus Hutter**^{1,2} *Australian National University*¹, *National ICT Australia*²

Problems

Robotic control in an unknown environment

Feature Reinforcement Learning In Practice

・ロト ・回 ト ・ヨト ・ヨトー

Perceptual aliasing

9	10	8	10	12
5		5		5
7		7		7

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

$$egin{array}{rll} h_t &=& a_1 o_1 r_1 o_2 r_2 a_2 \dots o_t r_t \ a_t &=& {f Agent}(h_t) \ o_{t+1} r_{t+1} &=& {f Environment}(h_t a_t) \end{array}$$

Feature Reinforcement Learning In Practice

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Φ : Histories ightarrow States $s_t = \Phi(h_t)$

- Φ is to reduce the general RL problem to an MDP, so that we can use MDP solvers to find the solution
- Aim at finding Φs that result in MDPs with good reward-prediction capability

向下 イヨト イヨト

ΦMDP framework

What does the function Φ look like?

 \Rightarrow one of the most useful classes of maps is **context trees**

Example:

 $\begin{aligned} \mathcal{S} &= \{ \textit{s}_1, \textit{s}_2, \textit{s}_3 \} = \{ 00, 10, 1 \} \\ \Phi_{\mathcal{S}} \text{ is the map represented by } \mathcal{S} \\ \textit{h}_6 &= 011001 \end{aligned}$

•
$$\Phi_{\mathcal{S}}(h_4) = 10(s_2)$$

$$\bullet \ \Phi_{\mathcal{S}}(h_5) = 00(s_3)$$

•
$$\Phi_{\mathcal{S}}(h_6) = 1(s_1)$$

► How good is a Φ? ⇒ predictive ability

$$\mathsf{Cost}(\Phi|h_n) = \mathsf{CL}_{\Phi}(s_{1:n}|a_{1:n}) + \mathsf{CL}_{\Phi}(r_{1:n}|s_{1:n}, a_{1:n})$$

 $(\mathbf{CL} = \mathsf{Code Length})$

Inspired by MDL(Minimum Description Length) principle

M. Hutter, *Feature Reinforcement Learning: Part I: Unstructured MDPs*, Journal of General Artificial Intelligence, 2009

向下 イヨト イヨト

ΦMDP framework

• The optimal solution $\Phi = \arg \min_{\Phi} \mathbf{Cost}(\Phi|h_n)$

Feature Reinforcement Learning In Practice

4 3 b

Generic stochastic Φ MDP search (GS Φ A)

- $1. \ \mbox{Generate}$ a history using random policy
- 2. Given the initial history, run stochastic search to find an estimate $\hat{\Phi}$ of Φ^{optimal}
- 3. Solve the MDP induced from $\hat{\Phi}$ using Action-Value Iteration (AVI)
- 4. Start acting based on the AVI solution, and further apply Q-Learning to refine the MDP solution
- 5. Add the history obtained from Q-Learning to the old history
- 6. Go back to step 2
- 7. Return the $\hat{\Phi}$ with lowest cost, and the corresponding optimal policy computed from Q^*

マロト マヨト マヨト

- Search space: Markov Action-Observation Context Trees (Closed Finite State Machines)
 - Markov trees are trees where given s_t and a_t, o_{t+1}, we know s_{t+1}
- Parallel tempering algorithm:
 - Run a number of traditional simulated annealings in parallel
 - Swap configurations to speed up the search process

Stochastic search - Parallel tempering

- Proposal distribution
 - Propose to split and merge some leaf node
 - Keep the search trees in the space of Markov action-observation context trees. In order to do this, we might have to perform a chain of splits or merges
 - Keep useful short-term memory if found, and share it with all other trees

Cheese maze

9	10	8	10	12
5		5		5
7		7		7

イロン イヨン イヨン イヨン

æ

Feature Reinforcement Learning In Practice

Tiger

Experience (cycles)

イロン イヨン イヨン イヨン

æ

Feature Reinforcement Learning In Practice

Kunh poker

イロト イヨト イヨト イヨト

▶ 4 × 4 grid

イロン イヨン イヨン イヨン

æ

Feature Reinforcement Learning In Practice

- Limiting search space to Markov action-observation context trees
- Proposing the GSΦA algorithm
- Providing the first empirical analysis of ΦMDP
- Designing a specialized proposal distribution for stochastic search

ヨット イヨット イヨッ

- ΦMDP outperforms U-tree, Active-LZ
- ΦMDP is more efficient than MC-AIXI in both computation and memory usage
- ΦMDP is more flexible in environment modelling than U-tree, Active-LZ, and MC-AIXI through the choice of any class of maps Φ, though other approaches can be combined with predicates

向下 イヨト イヨト

Thank you!

Feature Reinforcement Learning In Practice

 < ∃→