Reinforcement Learning Beyond Small MDPs:
Practical Generic Reinforcement Learning

Mayank Daswani, Peter Sunehag (presenting), Marcus Hutter

‘THE AUSTRALIAN NATIONAL UNIVERSITY

2014

Table of Contents

Feature Reinforcement Learning

The Bayesian approach

Reinforcement Learning with Advice for Atari games

Table of Contents

Feature Reinforcement Learning

Feature Reinforcement Learning

Feature RL aims to automatically reduce a complex real-world
non-Markovian problem to a useful (computationally tractable)
representation (MDP).

Formally we create a map ¢ from an agent’s history to a state
representation. ¢ is then a function that produces a relevant
summary of the history.

¢(ht) = St

Feature Markov Decision Process (PMDP)

To select the best ¢, one defines a cost function.

Gbest = arg ming(Cost(¢)).

e Feature RL is a recent framework.
e Original cost from Hutter 2009 is a model-based criterion.

Cost(¢]h) = CL(spnlarin) + CL(rLnlstin: a1n) + CL(S)

A practically useful modification adds a parameter « to
control the balance between reward coding and state coding,

COSta(¢|hn) = aCL(slzn|31:n) + (1 - a)CL(rl:n|51:m al:n) + CL(d))‘

e A global stochastic search (e.g. simulated annealing) is used
to find the ¢ with minimal cost.
e For fixed ¢, MDP methods can be used to find a good policy

Model-free cost criterion
Daswani&Sunehag&Hutter 2013 introduced a fitted-Q cost

Costor(¢) =
mingQ % Zg:1(rt+1+’)’ max, Q(¢(he+1), a)—Q(P(he), at))2+Reg(qb)

e Costgy also extends easily to the linear function approximation
setting by approximating Q(hy, a;) + &(ht, a) T w where
€:H x A— RK for some k € R.

e Connects feature rl to feature selection for TD methods, e.g.
Lasso-TD or Dantzig-TD using ¢1 regularization while above
Reg tends to be a more aggressive .

e For a fixed policy, a TD cost without max, can be defined but
one can also reduce the problem to feature selection for
supervised learning using pairs (s¢, R;) where R; is the return
achieved after state s;.

Input : Environment Env();
Initialise ¢ ;
Initialise history with observations and rewards from
t = init_history random actions;
Initialise M to be the number of timesteps per epoch;
while true do
¢ = SimulAnneal(¢, ht);
S1:t = (¢(h1)7 ¢(h2)7 X3 ¢(ht))'
7w = FindPolicy(si:t, r:t, a1:t-1) ;
for i =1,2,3,...M do
ay < m(st);
Ot+1, rt4+1 < Env(hy, at);
hi11 < htatory1riy1;
t+—t+1;
end
end
Algorithm 1: A high-level view of the generic #MDP algorithm.

Feature maps

e Tabular : use suffix trees to map histories
to states (Nguyen&Sunehag& Hutter O
2011,2012). Looping trees for long-term
dependences (Daswani&Sunehag&Hutter

Y\
2012) 52
e Function approximation : define a new (/ 1
Q)
SO Sl

feature class of event selectors. A feature
&; checks the n — m position in the history
(hn) for an observation-action pair (o, a).

If the history is (0,1),(0,2),(3,4),(1,2) then a event-selector
checking 3 steps in the past for the observation-action pair (0, 2)
will be turned on.

Table of Contents

The Bayesian approach

Bayesian general reinforcement learning: MC-AIXI-CTW

Unlike Feature RL, the Bayesian approach does not pick one map but
uses a mixture of all instead. The problem is (again) split into two main
areas:

e Learning - online sequence prediction / model building
e Planning/Control - search / sequential decision theory
The hard parts:

e Large model class required for Bayesian mixture predictor to have
general prediction capabilities.

e Fortunately, an efficient and general class exists: all Prediction
. . . . D—1
Suffix Trees of maximum finite depth D. Class contains over 22
models!

e The planning problem can be performed approximately with
Monte-Carlo Tree Search (UCT)

e MC-AIXI-CTW (Veness et. al. 2010) combines the above

Overview of proposed agent architecture

Environment Perform action in real world
Record new sensor information,

.. Past { Observation/Reward{Action

MC-AIXI-CTW
Refine environment mq An approximate AIXI agent
(TN
ﬁl \2 af \o
Update Bayesian Mixture of Models / C O/ O
N Iy
DE[D]] """" & Decide on bestaction

Simple Complex
Large Prior Small Prior

POCMAN : Rolling average over 1000 epochs

o] T T T
T
s o]
@
¢ —— FAhQL
E —2r —— MC-AIXI 48 | |
| | | | T T
1,000 1,500 2,000 2,500 3,000 3,500
Epochs
Figure : MC-AIXI vs hQL on Pocman
] Agent Cores Memory(GB) Time(hours) Iterations
MC-AIXI 96 bits 8 32 60 1-10°
MC-AIXI 48 bits 8 14.5 49.5 3.5-10°

FAhQL 1 0.4 17.5 3.5-10°

Table of Contents

Reinforcement Learning with Advice for Atari games

The Arcade Learning Environment (ALE)

ALE (Nadaf 2010, Bellamare et. al. 2012) is an interface built
upon the open-source Atari 2600 emulator Stella. It provides a
convenient interface to ATARI 2600 games.

Features for ALE

Basic Abstraction of Screen Shots (BASS, from Nadaf 2010)
first stores a background of the game it's playing. Then for
every frame it subtracts away the background and divides the
screen into 16x14 tiles. For each colour (8-bit SECAM) it
creates a feature. It then takes the pairwise interaction of all
these resulting features resulting in 1,606,528 features.

Color provides object recognition.

We study linear function approximation with BASS. We want
to see how well one can do with that if one finds the right
parameters

Improved results has been achieved with non-linear
neural /deep approaches.

The gap

Table : The gap between score (more is better) achieved by (linear)
learning and (uct) planning

] Game UCT BestLearner ‘
Beam Rider 6,624.6 929.4
Seaquest 5,132.4 288
Space Invaders 2,718 250.1

Pong 21 —19

Out of 55 games, UCT has the best performance on 45 of them.
The remaining games require a terribly long horizon.

Learning from an oracle

e Reinforcement learning is made much more difficult than
supervised learning due to the need to explore.

e Therefore, many authors has in recent years been developing
ways of teaching an rl agent through e.g. demonstration or
advice with reduction to supervised learning.

e | will here discuss this idea in the context of Atari games
through the Arcade Learning Environment (ALE) framework

Learning from UCT
A common scenario when applying reinforcement learning
algorithms in real-world situations, learn in a simulator, apply in
the real-world.

e UCT in the “real-world” still requires the simulator.

e UCT does not provide a policy representation, merely a
trajectory.

e How do you extract a complete explicit policy from UCT?

e We will treat the value estimates from UCT as advice

provided to the agent and we can then learn to play Pong
with just a few episodes of data.

e Learning the value function is now a regression problem we
solve using LibLinear (also exploring kernels, brings us back to
feature selection /sparsification)

e Similar to the Dataset Aggregation algorithm for imitation
learning (Ross and Bagnell 2010)

DAgger for reinforcement learning with advice Initialise D < ()
Initialise m1(=7*) t=0 for i =1to N do
while not end of episode do
for each action a do
Obtain feature ¢(s¢, a) and oracle’s Q*(st, a)
Add training sample {(¢(st, a), Q*(st,a))} to D..
end
Act according to 7;
end
for each action a do
‘ Learn new model Qa = WiaTgb from D, using regression
end
mi(¢) = argmax, Q7(¢)

end

Preliminary results

Average performance on Pong Best Reward so Far on Pong

—14 w : = T T T \
RLAdvice —10 u
o —16|[—— SARSA |4/ | 5 J
@ e 1V i ® 15| i
S 5l L | £ -1
x WAV : o
—20 | W) b _20| .7 |+ RLAdvice
| | | | | |
0 10 20 30 0 10 20 30
Episodes Episodes

Figure : Pong Results: RLadvice with different amount of aggregated
data (1-30 games) vs SARSA (linear function approximation) after 5000
games played. Results averaged over 8 runs

Conclusions/Outlook

Reinforcement Learning is a powerful paradigm within which
(basically) all Al problems can be formulated

Many practical successes using MDPs by engineering problem
reductions/reprentations

Practically increasing the versatility of agents by learning
reductions automatically.

Recently introduced arcade gaming environment (from
Alberta) for RL containing all ATARI games. Aim, have one
generic RL agent solve all!

Use data on how valuable states are from either simulations or
experience to reduce complexity

	Contents
	Feature Reinforcement Learning
	The Bayesian approach
	Reinforcement Learning with Advice for Atari games

