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Abstract

| consider a reinforcement learning setup without any (esp. MDP)
assumptions on the environment. State aggregation and more generally
feature reinforcement learning is concerned with mapping
histories/raw-states to aggregated states. The idea behind both is that the
resulting reduced process (approximately) forms a small stationary
finite-state MDP, which can then be efficiently solved or learnt. |
considerably generalize existing aggregation results by showing that even if
the reduced process is not an MDP, the (q)value functions and (optimal)
policies of an associated MDP with same state-space size solve the original
problem, as long as the solution can approximately be represented as a
function of the reduced states. This implies an upper bound on the
required state space size that holds uniformly for all RL problems. It may
also explain why RL algorithms designed for MDPs sometimes perform
well beyond MDPs.
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Overview in 1 Slide

@ Setup: Reinforcement Learning (RL) without any (esp. MDP)
assumptions on the environment. Is very hard problem. Approaches:

e State aggregation: Partitions (raw) states into fewer aggr. states.
@ Feature Reinforcement Learning: maps/reduces histories to states.

@ So far: Resulting process needed to (approximately) form a small
stationary finite-state MDP, which can then be efficiently solved.

@ New: Even if the reduced process is not an MDP, there is an
associated MDP of same size whose optimal value&policy
approximately solve the original problem.

@ Only condition: Solution can still be approximately represented.

@ Implications: Uniform upper bound on the required state space size
for all RL problems.

@ Explains why RL algorithms designed for MDPs sometimes perform
well beyond MDPs.
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Agent-Environment Setup [Hut09]

o Agent I1 interacts with an Environment P:
actions a € A, observations o € O, real-valued rewards r € R C [0; 1]

observation

Env. P:H x A~ O X R, P(ots1re+i|hiar), ! eWaTa
Agent M :H — A, ar = MN(hy), Agent T Env.P
action

o (I, P) generate history he H := (O x R x A)* x O x R:
hy := oy1riai...or 1r_1ar10irr € Hy = (OXRx A1 xOxR

@ O and R and A assumed to be finite.
@ Agent's objective is to maximize its long-term reward.

@ We make no (stationarity or Markov or other) assumption on
environment P.
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(Optimal) Value Functions, Policies,

and History Bellman Equations

Performance of a policy I1 is measured in terms of the expected
~-discounted reward, called (Q)-Value of [T at history h; (and action a;)

Vn(ht) = En[RtH\ht]
Qn(hhat) = En[RtJrl‘htat]
Re == 22,77 '

The Optimal Policy and (Q)-Value functions are
V*(he) = max VI (hy)
Q*(ht,ar) = mI_EIiX Qn(ht, at)

n* :e argml_?er'(e)
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From Histories to States (¢)

@ Space of histories is huge and unwieldy and no history ever repeats.
— Problem: Prevents naive learning based on frequencies.

@ Solution: Aggregate similar histories: Feature map ¢: H — S
reduces histories h; € H to states s; := ¢(h;) € S.

@ The probability of successor states and rewards can be obtained by
marginalization: Py(si1re41|hear) i= Z P(8¢+1rt+1|heat)

Ort1:¢0(htardei1re1)=5st+1

@ We neither assume P, to be MDP nor to be stationary.
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Classical State Aggregation

@ Assumes P is MDP in observations: P(o'r’|ha) = P(0'r'|oa)

Aggregates s; = ¢(0;) via equivalent partitioning: {¢ 1(s) : s € S}

@ s; is supposed to summarize all relevant information from obs. o;.

Formally: Assumes P, is (approximately) a stationary MDP
(bisimulation condition [GDG03, FPP04]):

P¢ € MDP & Elp : P¢(5t+1rt+1|/~1tat) — p(st+1rt+1|stat) qu(%t) = St

This is precisely the condition we lift.
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Markov Decision Processes (MDP)

@ Upper-case letters V, @, I for the general process P.
Lower-case letters v, g, 7 for stationary MDP p.

o Consider a stationary finite-state MDP p: S x A ~~ S X R,
and its (stationary deterministic) optimal policy 7* : S — A.

o MDP Bellman optimality equations:

q*(s,a) = > p(s'r|sa)[r +yv*(s)]

vi(s) = maxq”(s,a)
m*(s) € argmaxq®(s,a)
o If P reduces via ¢ to an MDP p = P, then the solution of these

equations, yields optimal (Q)-Values and optimal Policy of the
original process P. But in general p # P!
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Dispersion Probability B

e B:S x A~ 7H may be viewed as a (weird) stochastic inverse of ¢
that assigns non-zero probability (only) to h € ¢~ *(s) of any/mixed

length:
B(h|sa) >0 and Z B(h|sa) = Z B(h|sa) =1 Vs,a (1)
heH h:¢(h)=s
@ Definition: ''|sa) = Z Py(s'r'|ha)B(h|sa) (2)
heH

@ pis a stationary MDP for any B satisfying (1) and any ¢ and P.
o Easy to see: P, € MDP <= p= P, (any B)

@ In general p is not the state distribution induced by P (and [1),
which in general is non-Markov.
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Relating P and p via B

Key relation between P and p via B used later to relate original history
with reduced state Bellman equations.

Lemma (BPp)

For any function f : S x R — R and p defined in (2) in terms of P, and
s’ :=¢(h') and 0" := hao'r’" it holds

Z (h|sa) ZP r'|ha)f Zp r'|sa)f(s’,r")

heH o'r’ it
depends ono'r
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Relating v — V and q — Q

Lemma (v — V| < max, g — Q| and |q — (Q)a| < v|v — V)

() v(s) = V'(R) < max|q*(s,a) — @“(ha)| Vs,ha
(iil) For any P, ¢, and B, define p via (2). Then
g°(s,a) = (Q7(h,a))s| < ~|v'(s) = V*(h)| Vs =g(h) Va,
where (f(h,a))p =Y B(h|sa)f(h,a) with s:=¢(h)
her

o (i) trivially bounds v — V differences in terms of ¢ — Q differences.

o (ii) non-trivially shows that a reverse holds in expectation.

o (f(h,a))p takes a B-average over all h that ¢ maps to same state as h
e Function 7(h) is called ¢-uniform iff f(h) = f(h) for all ¢(h) = ¢(h).

@ Expectation can (only) be dropped if Q" is ¢-uniform.
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Main Result

Theorem (¢pQx*)

For any P, ¢, and B, define p via (2). )
Assume |Q*(h,a) — Q*(h, a)| < e for all p(h) = ¢(h) and all a.

Then for all a and h and s = ¢(h) it holds:
() [Q*(h,a) = q*(s,a)l < = and |V*(h) —v*(s)| < 1=,
(i) 0 < V*(h)—VT(h) < Ty, where (h) :== n*(s

(iii) Ife =0 then M*(h) = 7*(s)

e Meaning: We can aggregate histories as much as we wish,
as long as the optimal value function and policy are still approximately
representable as functions of aggregated states.

e Whether the reduced process P, is Markov is immaterial.
We can use surrogate MDP p to find an e-optimal policy for P.

e Similar results hold for V!, Q" V*, but some questions are open.
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Simple Example

@ A simple example of a P and ¢ that satisfy the conditions Theorem 3,
@ but violate the bisimulation condition [GDGO03]

@ and indeed have large bisimulation distance [FPP04].

e (Q)Value function V(o;) := V*(h;) = Q*(h¢, at) is ¢-uniform:

V(o) = V(0%) = 12 and V(0?) = V(0%) = 1 L.

@ Theorem 3 can be applied to aggregate the
four raw states O = {o', ..., 0%} into two states S = {0, 1}.
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Extreme Aggregation

@ Thm.3 allows to represent any Process as a small finite-state MDP.

o Consider ¢ that maps each history to the vector-over-actions of
optimal Q-values Q*(h, -) discretized to some finite -grid:

o(h) = (1Q"(ha)/e)),cp € (0L |z /14 = S (3)
l.e. all histories with e-close Q*-values are mapped to the same state:

o Now find 7* of MDP p of size |S| and define [1(h) := 7*(o(h)).

e By Thm.3ii, [is an 2¢/(1 — ~)-optimal policy of original process P.

Theorem (Extreme ¢)

For every process P, reduction ¢ ~(3’ ) and MDP p (2) has optimal policy
7", which is an e-optimal policy [1(h) := 7*(¢p(h)) for P. The size of the

3 Al
MDP is bounded (uniformly for any P) by |S| < (W)
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Discussion of Extreme Aggregation

@ We do not know @ in advance, so what are these results good for?

o Start with a sufficiently rich class of maps ® that contains at least
one ¢ approximately representing Q*(h, -),

@ Have a learning algorithm that favors such ¢,

@ Then Theorem 3 tells us that we do not need to worry about whether
P4 is MDP or not; we “simply” use/learn MDP p instead.

@ Theorem 4 tells us that this allows for extreme aggregation way
beyond MDPs.

o Conjecture: If ¢(h):=([V*(h)/e],N*(h)) €{0,1, ..., Lﬁj}x.%l =S

then [VI1() — v*(h)| = O(e) hence |S| = O(| A /<)
i.e. |S| is only linear in | A], not exponential as in Thm.4.
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Choice of B

o Let g :H ~~ A be a general behavior policy of our RL Agent.
@ The (Mg, P)-interaction generates joint probability, say Pg(h:a;).
@ Subscripts B and ¢ indicate dependence on [ and/or ¢.

e By marginalization and conditioning we get Pyg(h¢|s:a;) in the usual
way, and similar for other arguments.

@ Introduce weights w; : S x A ~~ [0; 1] and define
B(ht|sa) := wi(sa)Pyg(ht|s:=s,ar=a) Vt, where Zwt(sa)zl Vs, a
t=1
@ B satisfies (1) and leads to  p(s'r'|sa) =

o0

= Z we(sa) Z Py(stx1=5", rex1=r'|he, ap = 2a)Pyp(he|si =s, a; = a)
t=1 ht€H

= > o1 wi(sa)Pig(s'r'[sa). P{g cannot be estimated, but ...
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Estimation of p

P;B(sa)
o Choose wi(sa) = —7——=—— for t<n and 0 fort>n

= =
Zt:l'D¢>B(Sa) LS pt(casl)
— (S/f/|53) . n t=1" ¢B sas'r
T IS Pls(sa)
n t=1" ¢B

@ Under weak conditions this can be estimated as follows:
n n
Count number of times L _ _ _
action a is taken in state s - n(sa) T Z Xt - Z[[Sf =sNar= a]]
t=1 t=1

o E[X;] = P(Xt =1) = Pjg(sa)

n
e Similarly: n(sas'r’) := Y:, where Y; = [[starsei1rii1 = asa'r’]]
t=1

Theorem (p-estimation)

n(sas’'r’
(()) — p(s'r'|sa) n(sa) oo 0 a.s. under weak conditions.
n(sa

For example, convergence holds if Y; are stationary ergodic processes.
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Discussion of p-Estimation

e Limit n()/n() — p() shows that standard frequency estimation for p
will converge to the true p under weak conditions.

e If Py is MDP, samples are conditionally i.i.d.
and the ‘weak conditions’ are satisfied.

@ But Laws of Large Numbers hold way beyond the i.i.d. case [FKO01].

@ Model-free learning possible too: Condition n()/n() — p()
should be sufficient for Q-learning to converge to Q*.

@ Q-learning and other RL algorithms designed for MDPs have been
observed to often (but not always) perform well even if applied to
non-MDP domains. Our results appear to explain why.
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Feature Reinforcement Learning

@ The idea of FRL is to learn ¢ [Hut09].

o FRL starts with a class of maps ®, compares different ¢ € @, and
selects the most appropriate one given the experience h; so far.

@ Several criteria based on how well ¢ reduces P to an MDP have been
devised.

@ Theorems 3 shows that demanding P to be approximately MDP is
overly restrictive.

@ Theorem 4 suggests that if we relax this condition, much more
substantial aggregation is possible, provided ® is rich enough.
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Search for Exact ¢

based on Infinite Sample Size

o We call a reduction ¢ : H — S exact iff Q*(h,a) = gj(s, a) and
M*(h) = m;(s) for all s = ¢(h) and a.

@ Even for n = 0o, P hence Q* needed for 1" is (usually) not estimable
(from h).

@ On the other hand, for each ¢ € ®, p = p, can be determined
(exactly) (under weak conditions).

o From p,; we can determine g and 7 via (1).

@ The solution always satisfies the reduced Bellman equations exactly,
even for very bad reductions, e.g. single state ¢(h) = 0Vh.

@ So the reduced problem is not sufficient to judge the quality of ¢.
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Search for Exact ¢

based on Infinite Sample Size

@ Coarsening and refining reductions ¢:
Let us now coarsen ¢: Consider x : S — Sy, and ¢ : H — S, such

that ¢(h) = x(o(h)).

Example: Splitting/marging nodes in tree representation of states.

o Partially order reductions in ®:
1 < ¢ = g% and 7 are constant on all s, € Y~ !(s,) for all 5, and a
¢ ¢ 2 ) )

@ Enriching the order: ¢ <, ¢ :iff p < ¢ <" or p <), & := (,¢)

@ Search for ¢: Assume ® contains at least one exact reduction and is
closed under arbitrary coarsening = d unique < .-minimizer ¢g.

@ Theorem 3 justifies <y-minimization
based on (g, 7)) that ignores the (non)Markov structure of P.
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Search for Approximate ¢

based on Finite Sample Size

The principle approach in the previous paragraph is sound,
but needs to be generalized in various ways before it can be used:

® Approximate equality: g3 ~ qy,

@ Finite sample size: e.g. Kolmogorov-Smirnov test

Exploration: optimism

Regularization: penalizing complex ¢

Efficient search: heuristic rather than exhaustive search for ¢g

All but the last point raised above have or should have general solutions
(see next slide).
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Utilizing Existing Algorithms

The BLB algorithm family [Ngul3] solves most of the problems above
and can be used/adapted for our purpose.

BLB algorithm and analysis relies on UCRL2 [JOA10],
an exploration algorithm for finite-state MDPs.

Replacing P, by p in the proof of BLB and UCRL2 should work.

UCRL2 analysis exploits that s’, r’ conditioned on s. a are i.i.d.,
which is true no longer true for P, ¢ MDP.

Hoeffding's inequality for i.i.d. needs to be replaced by comparable
bounds with weaker conditions,
e.g. Azuma's inequality for martingales.

Problem: BLB considers average reward and regret,
while our theorems are for discounted reward.

ToDo: Derive PAC version of BLB for discounted reward,
e.g. by combining MERL [LHS13] with UCRL~y [LH12].

Marcus Hutter Extreme State Aggregation beyond MDPs Australian National University 24 /27



@ Our results show that RL algorithms for finite-state MDPs can be
utilized even for problems P that have arbitrary history dependence
and history-to-state reductions/aggregations ¢ that induce P, that
are also neither stationary nor MDP.

@ The only condition to be placed on the reduction is that the
quantities of interest, (Q)Values and (optimal) Policies, can
approximately be represented.

@ This considerably generalizes previous work on Feature Reinforcement
Learning and MDP state aggregation and allows for extreme state
aggregations beyond MDPs.

@ The obtained results may also explain why RL algorithms designed for
MDPs sometimes perform well beyond MDPs.
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Weaken condition on Q* to V* in Theorem 3ii.

Develop algorithm learning ¢ beyond MDPs that comes with PAC
guarantees (e.g. MERL+UCRL~).

All bounds contain 1% to some power. Are they tight?
Bt

Generalize exact to approximate ¢-uniformity conditions for given [1.

Use new theorems and/or proof ideas to extend existing convergence
theorems for RL algorithms such as Q-learning and others from MDPs
to beyond MDPs.
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