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Abstract

Given well-shuffled data, can we determine whether the data items are
statistically (in)dependent? Formally, we consider the problem of testing
whether a set of exchangeable random variables are independent. We will
show that this is possible and develop tests that can confidently reject the
null hypothesis that data is independent and identically distributed and
have high power for (some) exchangeable distributions. We will make no
structural assumptions on the underlying sample space. One potential
application is in Deep Learning, where data is often scraped from the
whole internet, with duplications abound, which can render data non-iid
and test-set evaluation prone to give wrong answers.

Keywords: independent; identically distributed; exchangeable random
variables; statistical tests; unstructured data.
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IID and Exchangeable Distributions

Definition (Exchangeable distributions)

• Probability space (X n,Σ,Q)
• Probability Q is (finitely) exchangeable ⇐⇒ Q(x1, ..., xn)

is invariant under all (finite) permutations of its argument.
• Q := {exchangeable Q}

• In particular x1, ..., xn are equally distributed: Q[Xt = x ] = Q[Xt′ = x ]

Definition (IID Distributions)

• Probability space (X n,Σ,Pθ)
• Q is independent and identically distributed (iid)

⇐⇒ Q(x1, ..., xn) = Pθ(x1, ..., xn) := θx1 · ...θxn
for some θ ∈ [0; 1]X with

∑
x∈X θx = 1

• Hiid := {iid Q} ≡ {Pθ}

• In particular iid Pθ are exchangeable: Hiid ⊂ Q
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Problem Setup

Main Question Considered in this Talk

How to test whether exchangeable random variables X1, ...,Xn are
independent, solely from observations x1:n := x1x2...xn sampled from some
exchangeable Q.

(Only) assumptions: X ⊇ {x1, ..., xn} and Q is exchangeable.

Less formally: Assume x1:n is well-shuffled.
Did it originate from some iid distribution Pθ?

The only useful information in x1:n is the counts nx := |{xt : xt = x}|
of each x ∈ X , and indeed actually only the second-order
multiplicities mk := |{x : nx = k}|.

So we may as well assume X ⊆ N (will be proven).

We are primarily interested in low multiplicities nx .
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Binomial Example

Shuffle n = 1000 coins with 500 heads up without turning them.

Looks random?
Probability of 500 heads from flipping 1000 coins iid is only 2.5%.

=⇒ Test “Nheads
?
= n/2” rejects Hiid.

What about n = 1′000′000 and n1 = 314′159.

Obviously not fair, but maybe from coin with bias around n1/n?

n1 is Prime and P[prime] ≈ 1/ ln(n1)=̇7% is small.

n1 is also first 6 digits of π. Again n1 is suspicious.

How to avoid numerology: Universal tests [Hut22]
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Black Jack Example

Cards are drawn from c ∈ N card decks of 52 cards each deck.

The first few draws look uniformly iid.

Closer to the end of the pile, the non-iid nature is revealed
(exploited in card-counting)

For instance: the chance of seeing no face twice when drawing 26
cards iid from 52 faces is less than 0.2% (cf. the birthday paradox),
thus is strong evidence for c = 1.

Our tests are not tailored to this setting,
but our most advanced test is sensitive to this signal.
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Data Duplication in Machine Learning

Data is scraped from the whole internet and duplications abound.
If, say, a photo appears more than once, the chance that it originated
from independent shoots is close to zero.
This is evidence that the scraped data is not iid.
Why is this relevant? ML still mostly assumes iid and train/test split
Problem: If, for instance, the whole data set contains 3 copies of each
data item, then 99% of the items in the 10% hold-out set appear as
well in the train set.
A pure memorizer without any generalization capacity will perform
nearly perfectly on the hold-out set,
but will fail in practice on any newly taken photo.
Removing approximate duplicates is a huge ill-defined AI-complete
problem.
Conclusion: Detecting that unordered/shuffled/exchangeable data is
non-iid can prevent falling prey to bad overfitting due to misleading
low test error.
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Unrelated Work

Testing independence of a pair of random variables (X ,Y ), given a
number of iid sample pairs {(xt , yt)}
(e.g. mutual information and chi-square tests).

Stochastic processes: Dependence can be tested via estimating
auto-correlation coefficients. Requires ordered data and X = R.
Might be extendible beyond linear order and beyond X = R.

Our setup is totally different and much harder.
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List of Notation

Symbol Type Explanation
X sample space of size d = |X |, mostly d = ∞ and X countable.
n number of samples, sample size
X X -valued random variable
X ≡ X1:n n iid or exchangeable random variables
x ≡ x1:n ∈ X n sample of size n
Nx = #{Xt : Xt = x} (first-order) count=multiplicity of x in X
Mk = #{x : Nx = k} (second-order) count=multiplicity of k in N
M = (M1,M2, ...) vector of Mk excluding M0

x , nx ,mk ,m, ... realization of random variable X ,Nx ,Mk ,M , ...
P(x) := P[X = x ] probability that X is x
Pθ(k) ≡ f nk (θ) := ( nk )θ

k(1− θ)n−k binomial distribution over N0

Pθ ∈ Hiid iid (multinomial) distribution over X n (NX
0 )

Pλ(k) ≡ gk(λ) := λke−λ/k! Poisson distribution over N0

Pλ product of Poisson(λx) distributions over n ∈ NX
0

Q ∈ Q exchangeable distribution
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List of Notation

Symbol Type Explanation
Z generic random variable
E expectation w.r.t. Pθ or Pλ unless otherwise noted
σ2 = V[Z ]:= E[Z 2]− E[Z ]2 variance of Z and other random variables
Cov[Y ,Z ]:= E[YZ ]− E[Y ]E[Z ] covariance of Y and Z
Z̄ := Z/n not an average of random variables
ζ := E[Z ] corresponding lower-case greek letters denote expectation
ζub ∈ R upper bound on expectation
V ub deterministic or stochastic upper bound on variance
T : X n → R generic test statistic
E ,O,Mk ,Dk ,Ck , Ūkspecific test statistics
α = Pθ[T > cα] Type I error, prob. of falsely rejecting Hiid

β(α) = Q[T > cα] power of test T at level α for Q
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IID → Multinomial ⇝ Poisson

Binomial distribution: Pθ(k) ≡ f nk (θ) := ( nk )θ
k(1− θ)n−k

(0 ≤ θ ≤ 1, k ∈ N0)

Poisson distribution: Pλ(k) ≡ gk(θ) :=
λke−λ

k!
(λ ≥ 0, k ∈ N0)

IID=True Distribution:
Pθ(x1:n) = Pθ(x1) · ... · Pθ(xn) = θx1 · ... · θxn =

∏
x∈X θnxx

Multinomial distribution: Pθ(n1:d) =
( n
n1,...,nd

)∏
x∈X θnxx

Product of Poissons: Pθ(n1:d) =
∏
x∈X

Pλx (nx) =
∏
x∈X

λnx
x e−λx

nx !

Theorem (IID = Multinomial ≈ Poisson Product)

For many events E ⊆ X n and random variables Z : X n → R of interest,
for large n, Pθ[E ] ≈ Pλ[E ], Eθ[Z ] ≈ Eλ[Z ], Vθ[Z ] ≲ Vλ[Z ]. This holds in
particular for (restricted linear combinations of) basics events
E x
k := {n : nx = k} and Mx

k = [[Nx = k]].
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Second-Order Count Multiplicities

First-order counts: nx := #{xt : Xt = x} = multiplicity of x in x1:n.

Second-order count multiplicities:
mk := #{x : nx = k} = number of x that appear k times in x1:n.

Basic properties of mk

• mk = 0 for k > n but mk = 0 also for many k ≤ n due to

•
∑∞

k=0 k ·mk = m and
∑∞

k=0mk = d = |X |.

• m+ :=
∑∞

k=1mk = #{x : nx > 0} = #{x1, ..., xn} = d −m0

is the number of different xt in x , not counting multiplicities.

• We are mostly interested in d = ∞, in which case m0 = ∞

• We therefore exclude m0 in m := m1:n.
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Invariant Statistical Tests

Definition (Statistical tests)

• T : X n → R is a (valid) test statistic with critical value cα
for Type I error α iff Pθ[T (X ) > c] ≤ α ∀θ.

• T rejects Hiid that x is iid with confidence 1− α iff T (x) > c .
• The p-value of T for data x is p := supθ Pθ[T (X ) > T (x)].
• T can reject Hiid with confidence 1− p.

• Since we assume X1:n are exchangeable (shuffled), it is natural to ask
for T to be independent of the order in which X1, ...,Xn are presented.

• Since the class Q of exchangeable Q is invariant under
permutations of elements of X , it is natural to ask T to be as well.

Definition (Invariant tests T )

We call tests T : X n → R that are invariant under permutations of the
argument x1, ..., xn as well as invariant under permutations of the elements
in X , invariant tests. Invariant tests are functions of M0, ...,Mn only.
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Exchangeable Distr. and Power of Tests

Q is exchangeable :iff Q(x1:n) = Q(xπ(1:n)),
where π ∈ Sn is any permutation of 1 : n.

=⇒ Q only depends on the counts n. Q := {exchangeable Q}
Examples: Laplace’s rule Q(x1:n) = n1!n2!/(n + 1)! is exchangeable.
Others: KT, Good-Turing, Ristad.

All shuffled data (π(1 : n) ∼ Uniform(Sn)) have Q ∈ Q
Power β = Q[T > c] of test T (1− β =Type II error).

There are no uniformly most powerful (UMP) tests for Q \ Hiid.

Different tests will have high power for some subset of Q
and low power for other Q ∈ Q.

We focus on developing tests with correct (small) Type I error α =
small size α = significance level α

We demonstrate the (lack of) power empirically.
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All Tests are Powerless Against Densities

Consider (non-iid and iid) densities ρ on X n = Rn, e.g. Gaussian.

Then all x1, ..., xn are different (almost surely).

Hence for any test statistic T , T (M) = T (n, 0, 0, ...) is the same for
all x1:n and all densities ρ, whether iid or not.

Hence no test can discern iid from non-iid densities .

Same conclusion for any X and non-atomic measure

Same conclusion for countably infinite X
by discretizing ρ on εZ and ε → 0.

Proposition (All tests are powerless against densities)

If X is infinite and all x1, ..., xn are different, no valid invariant test can
reject Hiid. This is not true for finite X . See c = 1 card counting example.
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Reducing General X to R to N

Proposition (X = R suffices)

For every invariant test T , P[T > c] ≤ α for iid P on X
⇐⇒ P̃[T > c] ≤ α for iid P̃ on R constructed below.

Proof: Decompose P into pure point measure and atom-free rest.
Construct measure P̃ on R with same point measure on N and any density
on R \ N. Then P̃(m) = P(m).

Proposition (X = N suffices)

For every invariant test T and infinite X ,
P[T > c] ≤ α for all iid P on X ⇐⇒ P̃[T > c] ≤ α for all iid P̃ on N.

Proof: Approximate R by εZ and let ε → 0 and N ≃ εZ.

Proposition (|X | = n3 suffices to leadning order in n)
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The Poisson Distribution is “Smooth”

Pλ(k) =
λke−λ

Γ(k+1)
is “smooth” in k
≈ blue curve

Unique maximum
at k = λ = n/d

log-concave

⇒ benign function
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k

0
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4
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7

M
[k

]

Count frequencies M[k] of one run and expecation
d=30
n=100
uniform
iid

[M[k]]
M[k]
<M[k]>
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Mixtures of Poissons are (More) Smooth

E[Mk ] = E[#{x : Nx = k}] = E
∑

x [[Nx = k]]
=

∑
x Pλ[Nx = k] =

∑
x Pλx (k) =

∑
x gk(λx) =

∑
x λ

k
xe

−λx/k!

That is, E[Mk ] is
a sum of Poisson(λx)
distributions.

E[Mk ] may have
multiple extrema in k

but as a mixture of
Poissons it cannot
be less smooth

and typically is
even more smooth,
see plot for λx ∝ x 0 20 40 60 80

k
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M
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]

Count frequencies M[k] of one run and expecation
d=30
n=1000
linear
even-n

[M[k]]
M[k]
<M[k]>
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The General Idea Behind the Tests

Since M̄k → E[M̄k ] for n → ∞, Mk as a function of k will inherit any
(lack of) structure in E[Mk ], just with noise added (see first plot).

Since invariant tests can
only depend on M , they
must test for some such
structure of E[Mk ].

Example: No Poisson
(mixture) can have
E[Mk ] = 0 for all odd k

⇒ Such Mk is strong
evidence against X
being iid. 0 2 4 6 8 10

k
0

2

4

6

8

M
[k

]

d=30
n=100
uniform
even-n

[M[k]]
M[k]
<M[k]>
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The Specific Idea Behind the Tests

For any test T = Tn with critical values cp, which is asymptotically
Gaussian, the p-value can be approximately upper bounded by

p
(a)
= sup

θ
Pθ[T > cp]

(b)
≈ sup

θ
Φ

(
Eθ[T ]− T√

Vθ[T ]

)
(c)

≤ Φ

(
τub − T√

V ub

)
(d)

≤ exp

(
− n(τ̄ub − T̄ )2

2V̄ ub

)
(a) by definition of cp

(b) by T being asymptotically Gaussian

(c) by τub :≥ Eθ[T ] ∀θ and V ub :≥ Vθ[T ] ∀θ and if τub ≥ T

(d) by T̄ := T/n and V̄ ub := V ub/n and large n and
Φ(y) :=

∫ y
−∞ e−x2/2dx/

√
2π ≤ e−y2/2/y

√
2π

Random V ub is also ok provided E[V ub] ≥ V[T ] and

√
V[V ub]

E[V ub]
→ 0
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Upper Bounds for E and V of Tests

Proposition (Upper bounds for linear tests)

• Let T =
∑

k αkMk for αk ∈ R. Then
• τ := E[T ] ≤ n · supλ>0 g(λ)/λ =: τub,
• where g(λ) :=

∑
k αkPλ(k) =

∑
k αkλ

ke−λ/k!, and
• V[T ] ≤

∑
k α

2
kE[Mk ] ≲ V ub,

• where V ub :=
∑

k α
2
kµ

ub
k or V ub :=

∑
k α

2
kMk ,

• with µub
k ≥ E[Mk ] =: µk upper bounding the expectations of Mk .

• For non-linear tests f (T ), we linearize by Taylor expansion
f (T ) = f (τ) + (T − τ)f ′(τ) + O(T − τ)2.

• More precisely, we apply the delta-method in statistics.

Marcus Hutter IID vs Exchangeable DeepMind 25 / 38



Basics Mk Test

Basic test: T = Mk , i.e. αk ′ = [[k ′ = k]]. Then

µk := E[Mk ] ≤ n·sup
λ>0

λk−1e−λ

k!
= n

(k−1)k−1e−(k−1)

k!
=: µub ≤ n

k
√
2π(k−1)

We (also) have V[Mk ] ≤ E[Mk ] ≤ µub
k and also V[Mk ] ≲ Mk

Example

• Assume each data item is duplicated and appears exactly twice.

• In this case, M2 = n/2 and all other Mk = 0.

• For k = 2 we have µ̄ub
2 = 1/2e =̇ 0.184 and hence

• p-Value: p ≲ exp(−1
2n(

1
2 − 1

2e )
2/ 1

2e ) =̇ e−0.271n.

• I.e. Hiid can be extremely confidently rejected for moderately large n.

• For k ̸= 2, the tests have no power (M̄k = 0 < µ̄ub
k ).
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Other/More Powerful Tests

Table only shows
n ≫ k ≫ 1 approximation

For V ub
k we only show

the better upper bound
(empirical except for Mk)

0.1 0.2 0.3 0.4

f(
)/

Plots of normalized f( )/  for Tests E, O, M , D , C , U
Even
Odd
M
D
C
U

Test statistics T : X n → R with upper bounds on their mean and variance:

Test NameT := nT̄ := τ̄ := E[T̄ ] ≤ V[T̄ ] ≲ V̄ ub = λ∗ O(ln 1
p )

Even ̸= 0 E :=
∑

x Nx [[Nx ̸= 0 even]] ε̄ub = 1/2 1
n

∑
k ̸=0 even k

2Mk ∞ n

Odd ̸= 1O :=
∑

x Nx [[Nx ̸= 1 odd]] ōub = 1/2 1
n

∑
k ̸=1 odd k

2Mk ∞ n

2nd-CountMk :=
∑

x [[Nx = k]] µ̄ub
k ≤ 1

k
√

2π(k−1)
µ̄ub
k k − 1 n

k3/2

SlopeDk := Mk −Mk−1 δ̄ubk ≤ 1
k2

√
2πe

M̄k + M̄k−1
k−1/2+√

k+1/4
n

k5/2

Lin.Curv. Ck := 2Mk−Mk−1−Mk+1 γ̄ub
k ≈ 1

k(k+1)
√
2πk

4M̄k + M̄k−1 + M̄k+1 k n
k7/2

Log.Curv. Ūk := ln(M2
k/Mk−1Mk+1) ῡub

k = ln k+1
k ≤ 1

k M̄−1
k−1+4M̄−1

k +M̄−1
k+1 any n

k7/2
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Data Generation and Test Evaluation

We verify the validity of our tests on artificially generated data
(correct low Type I error).

We generate iid data for all θx being the same
and θ being maximally diverse.

We then “corrupt” the samples in various ways to create non-iid data.

We also sample from finite population w/o replacement (Black Jack)
to determine the tests’s power in rejecting Hiid (low Type II error).

We estimate the p-value distribution and rejection frequency at
nominally α = 0.05 from 10′000 sampled data sets x .
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Testing the Tests on IID Data

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

P[p
-va

lue
]

Distribution of p-values for Tests from 10000 samples.
 % is empirical rejection frequency at nominally =5%

d=30,n=100,k=3
uniform,iid
p for U-test
u-test 5.0%
M-test 0.1%
D-test 3.5%
C-test 2.8%
U-test 4.5%
E-test 0.0%
exact 5%

For iid Pθ we want the curve to be on or below the diagonal
A curve above/below means over/under-confidence
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Testing the Tests on Non-IID Data

Every data item is duplicated, i.e. Mk = 0 for all odd k

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

P[p
-va

lue
]

d=30,n=100,k=2
uniform,even-n
p for E-test
u-test 5.0%
M-test 0.0%
D-test 89.5%
C-test 65.6%
U-test 99.5%
E-test 100.0%
exact 5%

%=Sensitivity, higher is better

For non-iid we want far above the diagonal, esp. for small α.
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Black Jack

Drawing 65 cards from two 52-card decks, (only) U2-Test reveals non-iid

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

P[
p-

va
lue

]

d=52,n=65,k=2
uniform,cards2
p for U-test
u-test 5.1%
M-test 94.5%
D-test 0.1%
C-test 22.1%
U-test 98.7%
E-test 0.5%
exact 5%
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Summary of Experimental Results

Tests are not over-confident

Tests can be under-confident (no problem)

Tests can be powerful, weak, or vacuous

Having no singletons can sometimes be significant

Tests are often weak for larger k

Some tests are able to detect data duplication
and draws from finite card decks.

Every test displayed its own strengths and weaknesses.
There was no uniformly best test among them.

Tests largely performed as expected.
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More/Alternative Tests

Summing tests: T+ =
∑

k Tk to broaden power (fragile)

Bonferroni: TK := maxk{Tk − c
α/|K |
k } to robustly broaden power

Uniformizing tests: T ⇝ T̃ such that Pθ[T̃ ≤ δ] ≤ δ ∀θ
Universal tests: T̃ := min{k(k + 1)T̃k : k ∈ N}
Likelihood Ratio (LR) tests: T̃ (x) := supθ Pθ(x)/Q(x), any Q

Martin-Loef Test: Q(x) := M(x) ≈ 2−Km(x)= Solomonoff prob.

Generalized LR tests: T̃ (x) := supθ Pθ(x)/Qθ(x) w.
∑

x Qθ(x) ≤ 1

Invariant LR tests: T̃ (m) =
n!(m+

m )

m+!Q(m) ·
∏n

k=1|2
[
1
k!(

k−1
n−m+

)k−1
]mk

Combinatorial tests: E.g. Q(m) = 1
m+

(m+

m )/( n
m+

) (Ristad)

Compression tests: Q(m) := 2−CodeLength(m|n)

Moment method: Hiid iff ∀k ≥ 1: nMk/(
n

k+1)M1 ≈ a kth moment
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Outlook

Develop stronger tests that exploit structural information in X if
available (topology, metric, ...).

The simplest approach would be to aggregate similar x into the same
category (Xorig → Xagg).

Derive theoretical power of tests for “interesting” subclasses of
exchangeable distributions.

Work out the alternative ideas for developing tests.

Apply our tests to some real data.

Could there be stronger non-invariant tests?
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Summary

We developed various tests for the (in)dependence of exchangeable
data for unstructured observation spaces X .

We reduced the problem to X = N which simplified the analysis.

Data duplication is necessary for any invariant test to have power.

The tests exploit that counts mk are smooth if data are iid.

Testing for non-iid w/o structure in X is hard but not impossible.

Some tests detect data duplication and draws from finite card decks.

Every test displayed its own strengths and weaknesses.

There was no uniformly best test among them.

Tests largely performed as expected.

Plenty of work left (better/alternative tests, power of tests, better
approximations, aggregation, exploit structure, real data, ...)
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Thanks!
Questions?
Comments
References
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