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The Problem

Can you predict the next bit of each sequence?

111111111111111111111111111111111

101010101010101010101010101010101

111100110011001100110000111100110

1111001100110011001100001111001100

I The first two are easy. The third can be predicted by noticing
bits always come in pairs. The fourth is hard.

I We study sequence prediction where it is only reasonable to
predict selected bits, as in the 3rd line above.

I Interesting because various learning problems have this
structure. For example, online classification.



Formal Setup

Let µ : {0, 1}∗ → [0, 1] represent a measure on {0, 1}∞ where

I µ(x) is the probability that an infinite string sampled from µ
begins with x .

I µ(b|x) := µ(xb)/µ(x) is the probability of seeing b ∈ {0, 1}
having already seen x .

Let ω be sampled from an unknown µ. The goal is to learn the
measure µ sequentially from an increasing prefix of ω.



Solomonoff Induction

Let {ν1, ν2, · · · } be a set containing all enumerable semi-measures.

M(x) :=
∑
νi

wνiνi (x) wνi > 0
∑
νi

wνi ≤ 1

I M is universal in that it dominates every enumerable
semi-measure.

M(x) > cµµ(x), ∀µ

I M isn’t computable, but is enumerable. There exists a
recursive φ(x , t) such that

φ(x , t + 1) ≥ φ(x , t) lim
t→∞

φ(x , t) = M(x)

I M is not a proper measure.



Solomonoff Induction

Theorem (Solomonoff, 1965)

Let µ be any computable measure and S(ω) be defined by

S(ω) :=
∞∑
t=1

∑
b∈{0,1}

[M(b|ω<t)− µ(b|ω<t)]2

then

Eµ[S ] < K (µ) log 2 <∞
Corollary

Let ω be any computable infinite binary string then

∞∑
t=1

[M(ωn|ω<n)− 1]2 <∞, lim
t→∞

M(ωn|ω<n) = 1

Therefore M is universal predictor for computable sequences.



Solomonoff Induction

Definition (Computable Predictor)

A computable predictor is a totally recursive function
f : {0, 1}∗ → {0, 1, ε} where f (x) represents the prediction of f for
the next bit. If f (x) = ε then f chooses to make no prediction.

Example

The following function predicts even bits equal to preceding odd
bits and doesn’t try to predict odd bits.

f (x) =

{
xn if n odd

ε otherwise

Remark. It’s important that f is totally recursive. It must always
halt, even if it doesn’t wish to make a prediction.



Prediction of Selected Bits

Definition (Normalisation)

Recall M is not a proper measure. Solomonoff normalised it to
Mnorm.

Mnorm(ε) := 1 Mnorm(xb) = Mnorm(x)

[
M(xb)

M(x0) + M(x1)

]
I No longer enumerable, only approximable.

I Strictly larger than M.

I Natural, but not unique.

Theorem (Positive Result)

Let f be a computable predictor and ω be an infinite string such
that f (ω<n) = ωn for all n where f (ω<n) 6= ε. If f (ω<ni ) 6= ε for
an infinite sequence n1, n2, · · · , then

lim
i→∞

Mnorm(ωni |ω<ni ) = 1



Prediction of Selected Bits

The theorem implies that Mnorm successfully predicts selected bits
as well as any computable predictor.

Examples
The following can be predicted by Mnorm.

I 111100110011001100110000111100110

I Computable subsequences of arbitrary noise.

I B0F0Z0N0X0D0E1J0P0R0U1A1S0L0I1T0H0E1U

0 for vowels, 1 for consanants

I More general deterministic classification.

Result only applies to deterministically generated subsequences.
The stochastic case is still an open question.



Failure to Predict Selected Bits

Theorem (Negative Result)

There exists an infinite binary string ω with ω2t = ω2t−1 for all
t ≥ 1 such that

lim inf
t→∞

M(ω2t |ω<2t) < 1.

Not all bad though. Possible to show that

M(ω2t |ω<2t) > c, ∀t and lim
t→∞

M(¬ω2t |ω<2t) = 0.



Remarks

I Unusually, there is a “practical” difference between Mnorm and
M.

I For computable ω, M makes at most Km(ω) log 2 mistakes.
It is likely no such result is possible in the case of selected bits.

I It’s possible to generalise the definition of a computable
predictor by only insisting that it is computable on prefixes of
ω, not necessarily all x ∈ {0, 1}∗.

I The disadvantage of Mnorm is that it is not enumerable.
This is countered by noting that the conditional distributions
of both M and Mnorm are only approximable anyway.

I The ω in the negative result is not Martin-Löf random with
respect to any computable measure.

I We only consider deterministic sub-patterns. The stochastic
case might be much harder.

I None of this can be computed, but may be approximated.



Proof Intuition (positive result)

Theorem (Lempp, Miller, Ng and Turetsky)

For any ω ∈ {0, 1}∞, limt→∞m(ω<t)/M(ω<t) = 0.

For the positive result show M(ω<t¬ωt)
×
= m(ω<t¬ωt). Therefore

lim
t→∞

M(ω<t¬ωt)

M(ω<tωt)
= 0

Normalising ensures

lim
t→∞

Mnorm(ωt |ω<t) + Mnorm(¬ωt |ω<t) = 1,

which implies

lim
t→∞

Mnorm(ωt |ω<t) = 1.



Proof Intuition (negative result)

It is well known that M is not a proper measure.

The idea is to show M can fail to converge to a proper measure on
the even bits of some infinite sequence ω with ω2t = ω2t−1.

Not as easy as it seems since

1. The set of the sequences on which M does not converge to a
proper measure has measure zero w.r.t any computable
measure.

2. There exists a c > 0 such that if ω satisfies ω2t = ω2t−1 then
inf M(ω2t |ω<2t) > c .




