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Reinforcement Learning (RL) Approach to Artificial
Intelligence (AI)

RL is an area of AI in which the agent learns a task through
interactions with the environment
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Problem formulation

ht = o0a1o1r1o2r2a2 . . . otrt

at = Agent(ht)

ot+1rt+1 = Environment(htat)

I General Reinforcement Learning (GRL) Problem: find the
agent function to maximize the total reward given that the
environment’s model and states are both unknown

I Example:

I Special case: Markov Decision Processes (MDP) where
observations are states of the environment, st = ot
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Feature Reinforcement Learning - ΦMDP

ht = a1o1r1o2r2a2 . . . otrt

at = Agent(ht)

ot+1rt+1 = Environment(htat)

st = Φ(ht)

Cost(Φ|hn) = CL(r1:n|s1:n, a1:n) + CL(s1:n|a1:n)
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Context tree maximizing for binary sequence prediction

I Context tree source

S = {0, 01, 11}
θ01 = P(next bit = 1|current context = s = 01)

I Binary sequence prediction problem: find the optimal context
tree given a history x1:n = 010010 . . . 01 and an initial context
x1−D:0 = 0100 . . . 1

F.M.J. Willems, Y.M. Shtarkov, and T.J. Tjalkens, Context Tree

Maximizing, Conference on Information Sciences and Systems, Princeton

University, 2000
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Context tree maximizing for binary sequence prediction

I Cost function

min
S⊂CD

[
log

1

Pc(x1:n|x1−D:0,S)
+ ΓD(S)

]
Pc(x1:n|x1−D:0,S) =

∏
s∈S

Pe(as , bs)

I Based on MDL (Minimum Description Length) principle, and
arithmetic coding
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Context tree maximizing for binary sequence prediction

I Iterative procedure to find the optimal tree
I Maximized probability

PD
m,s := 2−ΓD−d (SD

m,s )
∏

u∈SD
m,s

Paus ,bus
e

= max
U⊂CD−d

2−ΓD−d (U)
∏
u∈U

Paus ,bus
e

PD
m,s :=

{
1
2 max(Pe(as , bs),PD

m,0sP
D
m,1s) for 0 ≤ l(s) < D

Pe(as , bs) for l(s) = D
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Context tree maximizing for binary sequence prediction

I Iterative procedure to find the optimal tree
I Maximizing set SD

m,s

SDm,s :=


SDm,0s × 0 ∪ SDm,1s × 1 if Pe(as , bs) < PD

m,0sP
D
m,1s ,

and 0 ≤ l(x) < D

{ε} else

I Theorem [Willems et al, 2000]: SDm,ε is the optimal solution of
the cost function for binary sequence prediction
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Context Tree Maximizing Reinforcement Learning
(CTMRL)

I Instance Context Tree: context tree with the instance set
X = {x1, x2, . . . , x |X |} = {aor : a ∈ A, o ∈ O, r ∈ R}
(xt = at−1otrt is the instance at time t)

I Cost function

min
S⊂CD

[
log

1

Pc(s1:nr1:n|a1:n, h0)
+ ΓD(S)

]
= min

S⊂CD

[
ΣaΣs log

1

P
x |sa
e

+ ΓD(S)

]

where S is the state set of some instance context tree,
si = ΦS(hi ), i = 1, n; and P

x |sa
e is the block probability of all

instances
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Context Tree Maximizing Reinforcement Learning

I Context tree maximizing iterative procedure
I Maximizing probability

PD
m,s := 2−ΓD−d (SD

m,s )
∏
a∈A

∏
u∈SD

m,s

Px|usa
e

= max
U⊂CD−d

2−ΓD−d (U)
∏
a∈A

∏
u∈U

Px|usa
e

PD
m,s :=

1

2

{
max

(∏
a∈A P

x|sa
e ,

∏
i P

D
m,x i s

)
if 0 ≤ l(s) < D∏

a∈A P
x|sa
e if l(s) = D
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Context Tree Maximizing Reinforcement Learning

I Context tree maximizing iterative procedure
I Maximizing state set

SDm,s :=


⋃

x i SDm,x i s × x i if
∏

a∈A P
x|sa
e <

∏
a∈A

∏
i P

D
m,x i s ,

and 0 ≤ l(s) < D

{ε} else

I Theorem[direct extension]: SDm,ε is the optimal solution of the
CTM-GRL cost function

I Problematic in estimating the multivariate block probability

P
x|sa
e := P

x|sa
e (nx1 , nx2 , . . . , nx|I|)
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CTM-GRL: binarization and factorization

I The primary purpose of binarization is to overcome the estimation

problem in P
x|sa
e

I Binarize observations, actions, rewards of a history. Each instance is
represented in binary form as x = aor = a[1 . . . la]o[1 . . . lo ]r [1 . . . lr ]
= ap = ap[1 . . . lp]. Consider the set of models
M = (M1, . . . ,Mlp ) ∈ CD × . . .× CD+lp−1

Cost(M|hn, h0)

= log
1

Pc(hn|a0:n−1, h0,M)
+

p∑
i=1

Γ(Mi )

=

p∑
i=1

[
n∑

t=1

log
1

Pc(pt [i ]|hit , h0,Mi )
+ Γ(Mi )

]

where hit = ht−1at−1pt [1 . . . i − 1].
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CTMRL algorithm

1. Generate a random history h

2. Learn (update) lp binary CTMs based on history h (h′ from the second
iteration)

3. Join learnt contexts from each of the CTMs to form AOCT T
4. Compute frequency estimates of state transition and reward probabilities

of the MDP model M̂ based on states induced from tree T and history h

5. Use AVI to find an estimate of optimal action values Q̂ based on M̂

6. (Optional) Evaluate the current optimal policy induced from Q̂

7. Q ← Q̂ + Rmax
1−γ

[[Optimistic Initialization]]

8. h′ ← Q-learning(Q, ST ,A,Environment, ni )

9. h← [h, h′]

10. Repeat 2-9

11. Q̂ ′ ← Q-learning(Q,ST ,A,Environment, nq)

12. π∗(s)← argmaxa Q̂
′(s, a) for all s ∈ ST
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Related work

I ΦMDP

I MC-AIXI-CTW

I U-tree

I Active-LZ
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Results - small domains

I Cheese maze
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Results - small domains

I Kuhn poker

-0.05

0

0.05

0.1

A
v

e
ra

g
e

 R
e

w
a

rd
 p

e
r 

C
y

cl
e

Kuhn Poker

CTMRL PhiMDP MC-AIXI

U-Tree Active-LZ Optimal

-0.2

-0.15

-0.1

100 1000 10000 100000

A
v

e
ra

g
e

 R
e

w
a

rd
 p

e
r 

C
y

cl
e

Experience (cycles)

Context Tree Maximizing Reinforcement Learning (CTMRL)



Results - small domains

I Extended tiger
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I Other small domains: tiger, gridworld
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Results - large domain

Modifications of CTMRL algorithm for large domains:

I Deletion of CTM trees after each learning loop (saving

memory)

I Adding of unseen scenarios (dealing with huge observation

space)

I Running Q-learning for a long time after the learning loop

(solving MDPs with a large state space)
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Results - large domain

I Pacman
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Results - large domain

I Pacman
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Conclusion

I CTMRL is competitive with the state of the art
MC-AIXI-CTW in terms of learning and superior to other
competitors

I Compared to MC-AIXI-CTW, CTMRL is dramatically more
efficient in both computation time and memory
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Thank you!
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