Context Tree Maximizing Reinforcement Learning (CTMRL)

March 2, 2012

Phuong Nguyen^{1,2} (PhD student) Joint work with **Peter Sunehag**¹ and **Marcus Hutter**^{1,2} *Australian National University*¹, *National ICT Australia*²

向下 イヨト イヨト

Reinforcement Learning (RL) Approach to Artificial Intelligence (AI)

RL is an area of AI in which the agent learns a task through interactions with the environment

Context Tree Maximizing Reinforcement Learning (CTMRL)

Problem formulation

$$h_t = o_0 a_1 o_1 r_1 o_2 r_2 a_2 \dots o_t r_t$$

$$a_t = \mathbf{Agent}(h_t)$$

$$o_{t+1}r_{t+1} = \text{Environment}(h_t a_t)$$

General Reinforcement Learning (GRL) Problem: find the agent function to maximize the total reward given that the environment's model and states are both unknown

Example:

Special case: Markov Decision Processes (MDP) where observations are states of the environment, s_t = o_t = ... = .

Context Tree Maximizing Reinforcement Learning (CTMRL)

$$h_t = a_1 o_1 r_1 o_2 r_2 a_2 \dots o_t r_t$$

$$a_t = \operatorname{Agent}(h_t)$$

$$o_{t+1} r_{t+1} = \operatorname{Environment}(h_t a_t)$$

$$s_t = \Phi(h_t)$$

$$\operatorname{Cost}(\Phi|h_n) = \operatorname{CL}(r_{1:n}|s_{1:n}, a_{1:n}) + \operatorname{CL}(s_{1:n}|a_{1:n})$$

Context tree maximizing for binary sequence prediction

Context tree source

Binary sequence prediction problem: find the optimal context tree given a history x_{1:n} = 010010...01 and an initial context x_{1-D:0} = 0100...1

F.M.J. Willems, Y.M. Shtarkov, and T.J. Tjalkens, *Context Tree Maximizing*, Conference on Information Sciences and Systems, Princeton University, 2000 Cost function

$$\begin{split} \min_{\mathcal{S} \subset \mathcal{C}_D} \left[\log \frac{1}{P_c(x_{1:n} | x_{1-D:0}, \mathcal{S})} + \Gamma_D(\mathcal{S}) \right] \\ P_c(x_{1:n} | x_{1-D:0}, \mathcal{S}) = \prod_{s \in \mathcal{S}} P_e(a_s, b_s) \end{split}$$

 Based on MDL (Minimum Description Length) principle, and arithmetic coding

向下 イヨト イヨト

Context tree maximizing for binary sequence prediction

Iterative procedure to find the optimal tree

Maximized probability

$$\begin{split} P^{D}_{m,s} &:= 2^{-\Gamma_{D-d}(S^{D}_{m,s})} \prod_{u \in S^{D}_{m,s}} P^{a_{us},b_{us}}_{e} \\ &= \max_{\mathcal{U} \subset \mathcal{C}_{D-d}} 2^{-\Gamma_{D-d}(\mathcal{U})} \prod_{u \in \mathcal{U}} P^{a_{us},b_{us}}_{e} \\ P^{D}_{m,s} &:= \begin{cases} \frac{1}{2} \max(P_{e}(a_{s},b_{s}),P^{D}_{m,0s}P^{D}_{m,1s}) & \text{for } 0 \leq l(s) < D \\ P_{e}(a_{s},b_{s}) & \text{for } l(s) = D \end{cases} \end{split}$$

- Iterative procedure to find the optimal tree
 - ► Maximizing set S^D_{m,s}

$$\mathcal{S}_{m,s}^{D} := \begin{cases} \mathcal{S}_{m,0s}^{D} \times 0 \cup \mathcal{S}_{m,1s}^{D} \times 1 & \text{if } P_{e}(a_{s}, b_{s}) < P_{m,0s}^{D} P_{m,1s}^{D}, \\ & \text{and } 0 \leq l(x) < D \\ \{\epsilon\} & else \end{cases}$$

► Theorem [Willems et al, 2000]: S^D_{m,€} is the optimal solution of the cost function for binary sequence prediction

Context Tree Maximizing Reinforcement Learning (CTMRL)

向下 イヨト イヨト

Context Tree Maximizing Reinforcement Learning (CTMRL)

- ▶ Instance Context Tree: context tree with the instance set $\mathcal{X} = \{x^1, x^2, \dots, x^{|\mathcal{X}|}\} = \{aor : a \in \mathcal{A}, o \in \mathcal{O}, r \in \mathcal{R}\}$ $(x_t = a_{t-1}o_tr_t \text{ is the instance at time } t)$
- Cost function

$$\min_{S \subset C_D} \left[\log \frac{1}{P_c(s_{1:n}r_{1:n}|a_{1:n}, h_0)} + \Gamma_D(S) \right]$$
$$= \min_{S \subset C_D} \left[\Sigma_a \Sigma_s \log \frac{1}{P_e^{\times |sa}} + \Gamma_D(S) \right]$$

where S is the state set of some instance context tree, $s_i = \Phi_S(h_i), i = \overline{1, n}$; and $P_e^{\times |s_a|}$ is the block probability of all instances

(本部) (本語) (本語) (語)

Context Tree Maximizing Reinforcement Learning

Context tree maximizing iterative procedure

Maximizing probability

$$\begin{split} P^{D}_{m,s} &:= 2^{-\Gamma_{D-d}(S^{D}_{m,s})} \prod_{a \in \mathcal{A}} \prod_{u \in S^{D}_{m,s}} P^{x|usa}_{e} \\ &= \max_{\mathcal{U} \subset \mathcal{C}_{D-d}} 2^{-\Gamma_{D-d}(\mathcal{U})} \prod_{a \in \mathcal{A}} \prod_{u \in \mathcal{U}} P^{x|usa}_{e} \\ P^{D}_{m,s} &:= \frac{1}{2} \begin{cases} \max\left(\prod_{a \in \mathcal{A}} P^{x|sa}_{e}, \prod_{i} P^{D}_{m,x^{i}s}\right) & \text{if } 0 \leq l(s) < D \\ \prod_{a \in \mathcal{A}} P^{x|sa}_{e} & \text{if } l(s) = D \end{cases} \end{split}$$

伺 ト イヨト イヨト

- Context tree maximizing iterative procedure
 - Maximizing state set

$$\mathcal{S}_{m,s}^{D} := \begin{cases} \bigcup_{x^{i}} \mathcal{S}_{m,x^{i}s}^{D} \times x^{i} & \text{if } \prod_{a \in \mathcal{A}} P_{e}^{x|sa} < \prod_{a \in \mathcal{A}} \prod_{i} P_{m,x^{i}s}^{D}, \\ & \text{and } 0 \leq l(s) < D \\ \{\epsilon\} & else \end{cases}$$

- ► Theorem[direct extension]: S^D_{m,e} is the optimal solution of the CTM-GRL cost function
- Problematic in estimating the multivariate block probability $P_e^{\times |sa} := P_e^{\times |sa}(n_{x^1}, n_{x^2}, \dots, n_{x^{|\mathcal{I}|}})$

・ 同 ト ・ ヨ ト ・ ヨ ト

CTM-GRL: binarization and factorization

- The primary purpose of binarization is to overcome the estimation problem in P_e^{x|sa}
- ▶ Binarize observations, actions, rewards of a history. Each instance is represented in binary form as x = aor = a[1...l_a]o[1...l_o]r[1...l_r] = ap = ap[1...l_p]. Consider the set of models M = (M₁,..., M_{l_p}) ∈ C_D × ... × C_{D+l_p-1}

$$Cost(M|h_n, h_0) = \log \frac{1}{P_c(h_n|a_{0:n-1}, h_0, M)} + \sum_{i=1}^{p} \Gamma(M_i)$$
$$= \sum_{i=1}^{p} \left[\sum_{t=1}^{n} \log \frac{1}{P_c(p_t[i]|h_t^i, h_0, M_i)} + \Gamma(M_i) \right]$$

where $h_t^i = h_{t-1}a_{t-1}p_t[1...i-1].$

向下 イヨト イヨト

CTMRL algorithm

- 1. Generate a random history h
- 2. Learn (update) l_p binary CTMs based on history h(h') from the second iteration)
- 3. Join learnt contexts from each of the CTMs to form AOCT ${\cal T}$
- 4. Compute frequency estimates of state transition and reward probabilities of the MDP model \widehat{M} based on states induced from tree \mathcal{T} and history h
- 5. Use AVI to find an estimate of optimal action values \widehat{Q} based on \widehat{M}
- 6. (Optional) Evaluate the current optimal policy induced from \widehat{Q}
- 7. $Q \leftarrow \widehat{Q} + \frac{R_{\max}}{1-\gamma}$ [[Optimistic Initialization]]
- 8. $h' \leftarrow Q$ -learning $(Q, S^T, A, Environment, n_i)$
- 9. $h \leftarrow [h, h']$
- 10. Repeat 2-9
- 11. $\widehat{Q}' \leftarrow Q\text{-learning}(Q, S^T, A, Environment, n_q)$
- 12. $\pi^*(s) \leftarrow \operatorname{argmax}_a \widehat{Q}'(s, a)$ for all $s \in \mathcal{S}^{\mathcal{T}}$

• • MDP

MC-AIXI-CTW

U-tree

Active-LZ

Context Tree Maximizing Reinforcement Learning (CTMRL)

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

Results - small domains

Cheese maze

9	10	8	10	12
5		5		5
7		7		7

Cheese Maze

Context Tree Maximizing Reinforcement Learning (CTMRL)

< ≣ >

-≣->-

Kuhn poker

イロト イヨト イヨト イヨト Context Tree Maximizing Reinforcement Learning (CTMRL)

Extended tiger

Other small domains: tiger, gridworld

Context Tree Maximizing Reinforcement Learning (CTMRL)

個 と く ヨ と く ヨ と

Modifications of CTMRL algorithm for large domains:

- Deletion of CTM trees after each learning loop (saving memory)
- Adding of unseen scenarios (dealing with huge observation space)
- Running Q-learning for a long time after the learning loop (solving MDPs with a large state space)

(4月) (4日) (4日)

Results - large domain

Partially Observable Pacman

Context Tree Maximizing Reinforcement Learning (CTMRL)

Pacman

イロト イヨト イヨト イヨト Context Tree Maximizing Reinforcement Learning (CTMRL)

 CTMRL is competitive with the state of the art MC-AIXI-CTW in terms of learning and superior to other competitors

 Compared to MC-AIXI-CTW, CTMRL is dramatically more efficient in both computation time and memory

(1日) (日) (日)

Thank you!

Context Tree Maximizing Reinforcement Learning (CTMRL)

- < ≣ >

< ≣ >

æ