Context Tree Maximizing Reinforcement Learning (CTMRL)

March 2, 2012

Phuong Nguyen1,2 (PhD student)
Joint work with Peter Sunehag1 and Marcus Hutter1,2
Australian National University1, National ICT Australia2
Reinforcement Learning (RL) Approach to Artificial Intelligence (AI)

RL is an area of AI in which the agent learns a task through interactions with the environment.
Problem formulation

\[h_t = o_0a_1o_1r_1o_2r_2a_2 \ldots o_tr_t \]
\[a_t = \text{Agent}(h_t) \]
\[o_{t+1}r_{t+1} = \text{Environment}(h_t, a_t) \]

- **General Reinforcement Learning (GRL) Problem**: find the agent function to maximize the total reward given that the environment’s model and states are both unknown
 - **Example**:

 ![Diagram](image)

 - **Special case**: Markov Decision Processes (MDP) where observations are states of the environment, \(s_t = o_t \)
Feature Reinforcement Learning - ΦMDP

\[h_t = a_1 o_1 r_1 o_2 r_2 a_2 \ldots o_t r_t \]
\[a_t = \text{Agent}(h_t) \]
\[o_{t+1} r_{t+1} = \text{Environment}(h_t a_t) \]
\[s_t = \Phi(h_t) \]
\[\text{Cost}(\Phi|h_n) = \text{CL}(r_{1:n}|s_{1:n}, a_{1:n}) + \text{CL}(s_{1:n}|a_{1:n}) \]
Context tree maximizing for binary sequence prediction

- Context tree source

\[S = \{0, 01, 11\} \]
\[\theta_{01} = P(\text{next_bit} = 1|\text{current_context} = s = 01) \]

- Binary sequence prediction problem: find the optimal context tree given a history \(x_{1:n} = 010010 \ldots 01 \) and an initial context \(x_{1-D:0} = 0100 \ldots 1 \)

Cost function

\[
\min_{S \subseteq C_D} \left[\log \frac{1}{P_c(x_{1:n}|x_{1-D:0}, S)} + \Gamma_D(S) \right]
\]

\[
P_c(x_{1:n}|x_{1-D:0}, S) = \prod_{s \in S} P_e(a_s, b_s)
\]

* Based on MDL (Minimum Description Length) principle, and arithmetic coding*
Iterative procedure to find the optimal tree

Maximized probability

\[P_{m,s}^D := 2^{-\Gamma_{D-d}(S_{m,s}^D)} \prod_{u \in S_{m,s}^D} P_{e}^{a_{us}, b_{us}} \]

\[= \max_{U \subseteq C_{D-d}} 2^{-\Gamma_{D-d}(U)} \prod_{u \in U} P_{e}^{a_{us}, b_{us}} \]

\[P_{m,s}^D := \begin{cases} \frac{1}{2} \max(P_{e}(a_{s}, b_{s}), P_{m,0s}^D P_{m,1s}^D) & \text{for } 0 \leq l(s) < D \\ P_{e}(a_{s}, b_{s}) & \text{for } l(s) = D \end{cases} \]
Iterative procedure to find the optimal tree

Maximizing set $S^D_{m,s}$

$$S^D_{m,s} := \begin{cases}
S^D_{m,0s} \times 0 \cup S^D_{m,1s} \times 1 & \text{if } P_e(a_s, b_s) < P^D_{m,0s} P^D_{m,1s}, \\
\{\epsilon\} & \text{and } 0 \leq l(x) < D \\
\text{else}
\end{cases}$$

Theorem [Willems et al, 2000]: $S^D_{m,\epsilon}$ is the optimal solution of the cost function for binary sequence prediction
Context Tree Maximizing Reinforcement Learning (CTMRL)

- **Instance Context Tree**: context tree with the instance set
 \[
 \mathcal{X} = \{x^1, x^2, \ldots, x^{\mathcal{|X|}}\} = \{aor : a \in \mathcal{A}, o \in \mathcal{O}, r \in \mathcal{R}\}
 \]
 \[
 (x_t = a_{t-1}o_tr_t \text{ is the instance at time } t)
 \]

- **Cost function**

\[
\begin{align*}
\min_{S \subset \mathcal{C}_D} & \left[\log \frac{1}{P_c(s_{1:n}r_{1:n}|a_{1:n}, h_0)} + \Gamma_D(S) \right] \\
= & \min_{S \subset \mathcal{C}_D} \left[\sum_a \sum_s \log \frac{1}{P_e^{x|sa}} + \Gamma_D(S) \right]
\end{align*}
\]

where \(S \) is the state set of some instance context tree,
\(s_i = \Phi_S(h_i), i = 1, n \); and \(P_e^{x|sa} \) is the block probability of all instances
Context tree maximizing iterative procedure

Maximizing probability

\[
P^D_{m,s} := 2^{-\Gamma_{D-d}(S^D_{m,s})} \prod_{a \in A} \prod_{u \in S^D_{m,s}} P^x_{e|usa}
\]

\[
= \max_{\mathcal{U} \subseteq \mathcal{C}_{D-d}} 2^{-\Gamma_{D-d}(\mathcal{U})} \prod_{a \in A} \prod_{u \in \mathcal{U}} P^x_{e|usa}
\]

\[
P^D_{m,s} := \begin{cases}
\frac{1}{2} \left(\max_{a \in A} \left(\prod_{a \in A} P^x_{e|sa}, \prod_{i} P^D_{m,x^i|s} \right) \right) & \text{if } 0 \leq l(s) < D \\
\prod_{a \in A} P^x_{e|sa} & \text{if } l(s) = D
\end{cases}
\]
Context tree maximizing iterative procedure

- Maximizing state set

\[S_{m,s}^D := \begin{cases} \bigcup_{x^i} S_{m,x^i s}^D \times x^i & \text{if } \prod_{a \in A} P_{e|s}^{x|sa} < \prod_{a \in A} \prod_{i} P_{m,x^i s}^D, \\
\{\epsilon\} & \text{and } 0 \leq l(s) < D \\
\text{else} &
\end{cases} \]

- Theorem [direct extension]: \(S_{m,\epsilon}^D \) is the optimal solution of the CTM-GRL cost function

- Problematic in estimating the multivariate block probability

\[P_{e|s}^{x|sa} := P_{e|s}^{x|sa}(n_{x^1}, n_{x^2}, \ldots, n_{x|\mathcal{I}|}) \]
CTM-GRL: binarization and factorization

- The primary purpose of binarization is to overcome the estimation problem in $P_e^x|sa$.

- Binarize observations, actions, rewards of a history. Each instance is represented in binary form as $x = aor = a[1 \ldots l_a]o[1 \ldots l_o]r[1 \ldots l_r] = ap = ap[1 \ldots l_p]$. Consider the set of models $M = (M_1, \ldots, M_{l_p}) \in C_D \times \ldots \times C_{D+l_p-1}$

\[
\text{Cost}(M|h_n, h_0) = \log \frac{1}{P_c(h_n|a_0:n-1, h_0, M)} + \sum_{i=1}^{p} \Gamma(M_i)
\]

\[
= \sum_{i=1}^{p} \left[\sum_{t=1}^{n} \log \frac{1}{P_c(p_t[i]|h_t^i, h_0, M_i)} + \Gamma(M_i) \right]
\]

where $h_t^i = h_{t-1}a_{t-1}p_t[1 \ldots i-1]$.

Context Tree Maximizing Reinforcement Learning (CTMRL)
1. Generate a random history h

2. Learn (update) l_p binary CTMs based on history h (h' from the second iteration)

3. Join learnt contexts from each of the CTMs to form AOCT \mathcal{T}

4. Compute frequency estimates of state transition and reward probabilities of the MDP model \hat{M} based on states induced from tree \mathcal{T} and history h

5. Use AVI to find an estimate of optimal action values \hat{Q} based on \hat{M}

6. (Optional) Evaluate the current optimal policy induced from \hat{Q}

7. $Q \leftarrow \hat{Q} + \frac{R_{\text{max}}}{1-\gamma}$ [[Optimistic Initialization]]

8. $h' \leftarrow \text{Q-learning}(Q, S^\mathcal{T}, A, \text{Environment}, n_i)$

9. $h \leftarrow [h, h']$

10. Repeat 2-9

11. $\hat{Q}' \leftarrow \text{Q-learning}(Q, S^\mathcal{T}, A, \text{Environment}, n_q)$

12. $\pi^*(s) \leftarrow \arg\max_a \hat{Q}'(s, a)$ for all $s \in S^\mathcal{T}$
Related work

- ΦMDP
- MC-AIXI-CTW
- U-tree
- Active-LZ
Results - small domains

- Cheese maze

![Cheese Maze Diagram]

Context Tree Maximizing Reinforcement Learning (CTMRL)
Results - small domains

- Kuhn poker

Kuhn Poker

- CTMRL
- PhiMDP
- MC-AIXI
- U-Tree
- Active-LZ
- Optimal

Graph showing the average reward per cycle for Kuhn poker over different experience (cycles) with various algorithms.
Results - small domains

- Extended tiger

![Extended Tiger](image)

- Other small domains: tiger, gridworld
Results - large domain

Modifications of CTMRL algorithm for large domains:

- Deletion of CTM trees after each learning loop (saving memory)
- Adding of unseen scenarios (dealing with huge observation space)
- Running Q-learning for a long time after the learning loop (solving MDPs with a large state space)
Results - large domain

- Pacman

Partially Observable Pacman

![Graph showing learning curves for CTMRL and MC-AIXI over experience (cycles).]
Results - large domain

- Pacman

Partially Observable Pacman

![Graph showing comparison between CTMRL and MC-AIXI in terms of average reward over time.](image)
Conclusion

- CTMRL is competitive with the state of the art MC-AIXI-CTW in terms of learning and superior to other competitors.

- Compared to MC-AIXI-CTW, CTMRL is dramatically more efficient in both computation time and memory.
Thank you!