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Some Preliminary Concepts

Tree Sources

ó k-order Markov Source: pn(X1, . . . ,Xn) = π(X1, . . . ,Xk)
n∏

j=k+1

p(Xj |Xj−1, . . .Xj−k)

ó Defined uniquely by π and k-order conditional distribution p.

ó Tree (or Variable-order Markov) Sources:

ó The # of RVs in the conditioning of the product term varies with the realization.

ó Defined by: (a) a complete context tree [i.e., leaves form a sufix-free code and
satisfy Kraft’s inequality]; and (b) appropriate variable-order conditional
distributions.
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Some Preliminary Concepts

(Binary) Context-tree Weighting (CTW) Method

ó CTW estimate is a Bayesian mixture of tree source estimates.

pCTW (x1:n) =
∑
T ωTpT (x1:n),

where ωT > 0 for every context tree, and for context a ∈ T ,

pa(0) = 1− pa(1) :=
#a0 + 1

2

#a + 1
(add-half or Laplace estimator)

#s = the number of times the string s appears in x1:n.

1-order Markov SourceIID source
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[Willems et al.-T-IT95]

ó CTW yields an optimal, consistent, adaptive, strongly-sequential estimate of
(stationary) distributions of tree sources.

ó Worst-case redundancy bounds: For any tree source T with C leaves/contexts,

max
x1:n

ρ(x1:n) := max
x1:n

log2

pT (x1:n)

pCTW (x1:n)
≤ C

(
1
2

log2
n
C

+ 1
)

+ (2C− 1) + 2.
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Some Preliminary Concepts

CTW Extensions for Tree Sources with Non-binary Alphabets

ó Straightforward generalization of CTW to non-binary (tree) sources is sub-optimal
[Tjalkens et al-ISIT’93]

ó Extensions of CTW for non-binary tree sources using hierarchical
decomposition/binarization of the alphabet was proposed [Tjalkens et al-ISIT’94,
Tjalkens et al-DCC’97]
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ó binarization allows the possibility of exploiting any (tree) structure of the correlation
between component bits, which a näıve non-binary CTW cannot exploit.
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Some Preliminary Concepts

Binarized CTW

ó Recently, a binarized CTW approach was used to estimate the underlying stationary
distribution of a hidden Markov model process [Veness et al.-AAAI’15]

ó This approach translates the problem of policy evaluation and on-policy control in
reinforcement learning to estimation (of stationary distribution).

ó The binarized CTW translates estimation of the stationary distribution over 2`

symbols to those of ` binary sources as follows.

Z1 Z4Z3Z2

z }| { z }| { z }| { z }| {

· · ·B11 · · · · · · · · ·B12 B1‘ B3‘B31B21 B2‘
B4‘B41

· · ·

B11 B31B21 B41 p
(1)
CTW

Binary CTW of depth 0

B11 B12 B31B21 B41B22 B32 B42 p
(2)
CTW

Binary CTW of depth 1

Model {B1k}k2N as an IID process

· · ·B11 · · · · · ·B1‘ B3‘B31B21 B2‘ B4‘B41· · · p
(‘)
CTW

Binary CTW of depth ‘� 1

Model {B2k}k2N process as a mixture of IID and 1-order Markov processes

Model {B‘k}k2N process as a mixture of all tree sources of depth ‘� 1 or less

...
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Some Preliminary Concepts

Binarized CTW

P̂CTW (z1:n) :=
∏̀
i=1

p
(i)
CTW (z1:n)

P̂CTW is a product of ` component binary CTW estimates.

p
(i)
CTW is a binary CTW estimate that depends only on the first i component binary

processes, i.e., {Bkj : 1 ≤ k ≤ i , 1 ≤ j ≤ n}.
Simulations in [veness et al.-AAAI’15] reveal that p̂CTW has:

ó excellent convergence rate in estimating the stationary distribution of the
underlying process;

ó the ability to handle much larger alphabets than the frequency estimator.

In this work, we...

ó show that the worst-case L1-prediction error between the binarized CTW and
frequency (ML) estimates for the stationary distribution of a stationary ergodic source

over {0; 1}` for some ` > 1 is Θ

(√
2` log n

n

)
.

ó (consequently,) establish the consistency of the binarized CTW estimator
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Main Results

Main Results

Let P̂CTW(c ; z1:n) denote the binarized CTW estimate of the distribution of a random
process Z after observing n symbols of the process, i.e.,

P̂CTW(c ; z1:n) :=
p̂CTW(z1:nc)

p̂CTW(z1:n)
, c ∈ Z, z1:n ∈ Zn

Theorem (Lower Bound)

Let Z = {0, 1}` for ` ≥ 2 denote the alphabet of a given random process. Then, for
ε > 0, there exist n ∈ N and z1:n ∈ Zn such that

∆` :=
∑

c∈{0,1}`

∣∣∣P̂CTW(Z = c ; z1:n)−
#`c
n

∣∣∣ ≥√ 2`−2(1−ε) log n
n

.

Theorem (Upper Bound)

Let Z = {0, 1}` for ` ∈ N denote the alphabet of a given random process. Then,

∆` := max
z1:n∈Zn

∑
c∈{0,1}`

∣∣∣P̂CTW(Z = c ; z1:n)−
#`c
n

∣∣∣
≤


1
n

` = 1

∆`−1 + 2`−1

2n
+

√
2`−2

n
log
(

2πe5n
2`−1

)
` > 1

.
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Main Results

Outline of Lower Bound

ó Identify explicitly a sequence z1:n for which the lower bound holds.

ó Let n = 2`m and σ > 0.

ó Let z1:n be a sequence such that the number of occurrence of a ∈ {0, 1}` is

#a =

{
m − bσ

√
m logmc a is of even weight

m + bσ
√
m logmc a is of odd weight

.

ó The frequency of symbols is nearly equiprobable, but deviates from the equiprobable

distribution by a factor that is Θ

(√
log n
n

)
.

ó The proof proceeds by computing the two estimates to show explicitly that the lower
bound holds for this choice of frequencies.
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Main Results

Outline of Upper Bound

ó Proof follows by induction.

ó Since the binarized CTW estimate is a product of ` binary CTW estimates, one needs
to identify the dominant tree source in the Bayesian mixture corresponding to each of
the binary CTW estimates.

ó Consider the binary CTW estimate for the k th bit.

ó To identify the dominant tree in this estimate, we need to compare the contribution
of each context tree in each Bayesian mixture; this is done in three steps.

ó Step 1: Compare the contributions of two trees T ,T ′ such that
T ′ = (T \ {a}) ∪ {0a, 1a} for some a ∈ T .
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Main Results

Outline of Upper Bound

ó Step 2: By repeated use of Step 1, compare the contributions of two trees T ,T ′′

such that T ′′ = (T \ {a}) ∪ {all leaves with suffix a}
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ó Step 3; By repeated use of Step 2, one can compare the contributions of a tree T
and the context-tree T ∗k−1 corresponding to the (k − 1)-order Markov source to show
that:

p
(k)
T (z1:n)

p
(k)
T∗
k−1

(z1:n)
≤

(2π)
2k−1−|T|

2

( ∏
a∈T :#k−1a>0

λa√
#k−1a

) ∏
c∈{0,1}k−1:#k−1c>0

√
#`−1c

exp

{
4
∑
a∈T

∑
b∈{0,1}ma :#k−1ba>0

#k−1ba
(

#`ba0
#k−1ba −

#ka0
#k−1a

)2} ,

where ma := k − 1− ‖a‖, and | log λa| ≤ 2ma−1
2

.
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Main Results

Outline of Upper Bound

p
(k)
T (z1:n)

p
(k)
T∗
k−1

(z1:n)
≤

(2π)
2k−1−|T|

2

( ∏
a∈T :#k−1a>0

λa√
#k−1a

) ∏
c∈{0,1}k−1:#k−1c>0

√
#`−1c

exp

{
4
∑
a∈T

∑
b∈{0,1}ma :#k−1ba>0

#k−1ba
(

#`ba0
#k−1ba −

#ka0
#k−1a

)2} ,

ó The largest the numerator can grow is polynomially in n

ó The largest the denominator can grow is exponentially in n.

ó If simpler model T explains data z1:n better than the complicated model T ∗k−1, the
contribution of T can be larger than that of T ∗k−1 only by a polynomial factor.

ó If complicated model T ∗k−1 explains data z1:n better than the simpler model T , the
contribution of T ∗k−1 can be larger than that of T by an exponential factor.

ó Upon rearranging terms, and relating the required L1-predictive error between the
binarized CTW and ML estimates to the denominator term yields the upper bound.
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Main Results

Additional Structure between Component Bits

ó The binarized CTW presented so far assumes no known structure between component
bits, i.e., the k th bit is assumed to depend on all previous k − 1 component bits.
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ó If it is known that the component bits satisfy some structure (given by a Bayesian
Network B), we can incorporate accordingly to derive a suitable binarized CTW
estimate P̂B

CTW
; Corresponding to our previous results, we can show that:

Theorem

Given Bayesian network B consisting of k binary random variables, and Z = {0, 1}`,

max
z1:n∈Zn

∥∥∥P̂BCTW(· ; z1:n)− P̂ML,B(· ; z1:n)
∥∥∥ = Θ

(√
log n
n

)
,

where P̂ML,B(· ; z1:n) := argmax
P satisfies B

P(z1:n),
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