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GENOTYPING DATA

* Single nucleotide polymorphism  (SNPs) = single
base-pair location in the genome where the nucleotide can
assume two possible values among the four bases (T, A, C,

G)
* We have two copies of each chromosome = at each SNP
corresponds a pair of nucleotides:

AB } Heterozygosity or Het

AA

Homozyqgosity or Hom
BB} ygosity

where A and B are the two possible values of the SNP
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COPY NUMBER DATA

* DNA copy number (CN) = for a given genomic region, is
the number of copies of DNA of that region (normal CN = 2)
=- we can divide the genome in regions of constant CN

(usually a logsratio scale is used)
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DNA ABERRATIONS

* Type of aberrations regarding genotyping and copy number
data:

- amplification (CN>4) = {Z = 2}

- gain (CN=3,4) = {Z =1}

- loss (CN=1) = {Z = —1}

- homozygous deletion (CN=0) = {Z = —2}

- loss of heterozygosity (LOH) with normal copy
number, I.e. unusual long stretches of homozygous
SNPs due to uniparental disomy or autozygosity (called
IBD/UPD regions )

where Z is the r.v. which represents the CN aberration
occurred ({Z = 0} is the normal CN)
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¢ SNP microarrays are able to measure simultaneously
genotyping and copy nhumber data

* Microarray technology is not able to distinguish between the
loss of one allele (e.g. A) or an Homozygosity (e.g. AA)
= Integration of the two types of data to better identifies
the aberrations (e.g. it possible to distinguish between
IBD/UPD and loss or between gain and high
amplification)
= Bayesian regression to estimate the piecewise constant

—~——

profile of the aberrations W:(f/[vfl, ..., Wy) atn SNP
loci. The profile consists of kg intervals, with boundaries

0=ty <t} <...<t) 4 <t) =n,sothat

th_lﬂ = ... = th =Wy, forallp=1, ..., ko.
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THE MODEL - JF

Y = (genotypes detected by the microarray
(Y; € Y ={Het, NHet, NoCall})
= true genotypes in cancer cells

X
° @ (X; e X={Het, Hom})
XN = true genotypes in normal cells
ORCONNT (X &%)

W = genotyping & CN aberrations
CN aberrations
occurrence of IBD/UPD
Y = raw CN data
= for each interval p,
{Wp =w} ={Z, =z, Up = u}

P(y;|w;, xV) estimated on two public datasets

(Zhao et al. (2004), Forconi et al. (2008))
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DEFINITION OF THE PRIORS (1)

 P(XN = Het) on the basis of the microarray annotation file

e for P(U; = 1), we tried two values 0.001 and 0.0001, on the
basis of the estimations obtained using the data in Bacolod
et al. (2008) and The International HapMap Consortium

(2007)
* the priors of K and T are similar to mBPCR (Rancoita et al.

(2009)):
P(T=t|K=k) = uniform

P(K=k) o« 1/k

Paola M. V. Rancoita, IDSIA/IOSI — p.7/19



DEFINITION OF THE PRIORS (2)

P(Z, = z) derived from the mBPCR estimated profile:

P(Z,=2) = P(up=fra+3064]cn)

P (fi2 + 362 < pp < fia + 364 | cn)
P(ﬂ2—3(32<,up§ﬂ2—|—362]cn)
P(ﬂ1—301<,up§,&2—362|cn)
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THE ESTIMATION: METHOD 1

Koi = arg max,x p(k|Y, cn),
TBinErrAk = arg maxtxe% E [Z Zko Ls 010 Y, cn}
/V[7p = argmax, P(W, =w|Y, {, k, cn), p=1,..., k

’T‘BmEWAk consists of the kg positions which have the highest
posterior probability to be a breakpoint (p;) = possible problems
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THE ESTIMATION: METHOD 2

* estimate the number of the segments and the breakpoints
with, respectively, the number of peaks and the locations of
their maxima (W estimated as previously)

* |t uses two thresholds: one for the determination of the
peaks (thri) and one for the definition of the values close to

zero (thrsy).

= corresponding estimators K Peaks thry thr, aNd
T Peaks. thr, thr, (the method is denoted with (thry, thra))

¢ Paired thresholds selected on the basis of results obtained
on simulations: (01,01), (mad,01), (01, mad), where

01 = max(0.01,quantile of p at 0.95)
mad = median(p) + 3 * mad(p)
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SIMULATIONS: DESCRIPTION
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* Aberrations not considered in the simulations:
- gain (because it does not influence the genotype
detection)

- IBD/UPD (difficult to simulate realistically)

e Simulated dataset (100 samples with fixed ky and t°): each
sample is a raw profile coming from the prior definition of
XV given by the annotation file for the SNPs of chr. 22 in
the Affymetrix GeneChip Mapping 250K Array (n = 2520)
and the following prior definition of Z (P(Z, = z) =: ¢%)

segment
I iV Vv VvEVIEIVHE X | X[ X XH | XTHTH XTIV | XV
q1 0 0.1/ 0 |0.1/0.5/0.1{ 0| O |0.1/0.5] 0 |0.1/05]|0.1| O
qO 0.1/0.6/0.1{0.6/0.4|10.6({0.1/0.1/0.6/0.4|0.1|10.6/0.4|0.6|0.1
¢~ ']0.6/0.3/0.6/0.3|0.1/0.3{0.6/0.4{0.3|0.1/0.6/0.3{0.1{0.3|0.6
q_2 03,0(03{]0}|0]|0(03/05/0|01]03]0|0] 0 |03
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SIMULATIONS: BREAKPOINT ESTIMATION
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= Method 2 has higher sensitivity and similar or lower FDR.
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- best result, - worst result

SIMULATIONS: CN ABERRATION DETECTION

method [sumO-lerr| SSQ [1/SSQ/n
method 1 421.79 |1226.59 0.70
(01,01) | 109.39 |286.15| 0.34
(01, mad)| 109.39 |286.15| 0.34
(mad, 01)| 111.75 | 28377 | 0.34
sensitivity FDR
method | Z=2 | Z=0 | Z=-1|Z=-2| Z=2 | Z=0 | Z=-1| Z=-2
method 1 [0.6810.932|0.968(0.555|0.017|0.047(0.306|0.025
(01, 01) |0.896(0.983(0.961|0.946|0.043|0.031|0.068|0.020
(01, mad)|0.896(0.983]|0.961(0.946 (0.043|0.031{0.068|0.020
(mad, 01)]0.889(0.984|0.963|0.942|0.038|0.026{0.075|0.023

= Method 2 best estimates the profile
(best paired thresholds: (01, 01), (01, mad)).

Paola M. V. Rancoita, IDSIA/IOSI — p.13/19



1
|

APPLICATION TO REAL DATA

e Data: paired samples of patients affected by chronic
lymphocytic leukemia (CLL), which then transformed in
diffuse large B-cell lymphoma (DLBCL) (Bertoni et al.
(2008)). Of two patients, we had three samples.

¢ detectable CN aberrations = the ones born by at least 60%
of cells in the sample
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ESTIMATION OF CN ABERRATIONS
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Comparison with the estimated CN of some genomic regions
with FISH (fluorescent in situ hybridization), which gives also the
percentage of cells bearing the aberration:

® 15/17 detectable aberrations found by all estimators

* 3/26 not detectable aberrations found by all estimators and
another by (01, 01) and (01, mad) with p,,; = 1073 and
(mad, 01) with py,q = 104

* in only 2/90 normal segments, all estimators discovered an
aberration, equal to the one found in the same region of the
paired sample

* simply using the prior thresholds, we detected 3 more
aberrations, but 4 normal regions were seen as aberrations

* Remark: a slight discordance with FISH measurements is

possible, because the samples used are not exactly the
same
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IBD/UPD DETECTION

Comparison of the regions found in the 3 samples of 2 patients:

Patient 1:
Pupd = 10_4 Pupd = 10_3
types of regions 01,01|01, mad|mad,01|01,01 |01, mad|mad, 01

distinct (total) 413 413 414 494 492 519
equal (%) 0.79 0.79 0.78 0.78 0.78 0.77
equal in 2 samples (%) | 0.15 0.15 0.20 0.15 0.15 0.18
overlapping (%) 0.03 0.03 0.01 0.02 0.02 0.03
validated (%) 0.98 0.98 0.98 0.95 0.95 0.98
remaining (%) 0.02 0.02 0.02 0.05 0.05 0.02
% of remaining < 1Mb | 0.80 0.80 0.88 0.93 0.92 1.00
Patient 2:

distinct (total) 441 441 454 580 580 618
equal (%) 0.21 0.21 0.25 0.19 0.19 0.24
equal in 2 samples (%) | 0.02 0.02 0.03 0.03 0.03 0.02
overlapping (%) 0.50 0.50 0.47 0.51 0.51 0.50
validated (%) 0.73 0.73 0.74 0.74 0.74 0.76
remaining (%) 0.27 0.27 0.26 0.26 0.26 0.24
% of remaining < 1Mb | 0.88 0.88 0.89 0.91 0.91 0.93

= The 3 estimators behaved similarly and equally well on real
data
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SUMMARY & CONCLUSIONS
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* Our method is a new algorithm for the joint estimation of CN
events and IBD/UPD regions, which takes into account the
errors in the genotyping measurements of microarrays, due
to the aberrations affecting the CN.

e Differently from the only other method present in literature
(i.e., Scharpf et al. (2008)), it considers all the CN events

biologically relevant.

* The goodness of our model is supported by the results
obtained on simulated and real data.

* All the proposed final versions of the method behave
similarly.
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ONGOING WORK

® Since the parameters related to the NoC'all detection
depend on the noise of the sample, we are finding a
solution to adjusting them in dependency to the noise.

* \We are making comparisons among our method and two
well-known methods for LOH estimation: dChip and CNAT.
For example (artificial data from Wu et al. (2009)):

LOH type: loss LOH type: UPD
1 I E——

—#— dChip \\\/‘ —#— dChip
0.9f CNAT g 0.9 CNAT .
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