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Sequence Prediction

Can you guess the next number?

1,2,3,4,5, ...

3,1,4,1,5, ...
1,0,0,0,1,0,1,1,1,1,0,1,0,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0, 1, ...

G()Uglt?_' | can you predict
can you predict earthquakes
can you predict your height
can you predict labour
@ can you predict the weather

Press Enter to search




Sequence Prediction

= T is a sequence over countable alphabet X

« p(x) is the u-probability of observing x

X = {heads, tails}

X = {rain, shine}

X {plague, smallpoz, flu}
{1,2,3,---}

p(alz) is the p-probability of observing a € X given x

« M is a countable set of measures (sequence generators)

2
Hellinger? Distance he(p, 1) = > aex <\/p(a|aj) - \/u(a]:v))
Total Variation Distance 6, (p, 11) := £ 3" .c ¢ Ip(alz) — p(alz)|

he(p, 1) = 02(p, 1)

Goal: Construct predictor p such that for all 4 € M

fast
( ‘37<t) = (- \$<t)

when x is sampled from u



Example

» X = {heads, tails}

« M = {pp} is a countable set of Bernoulli measures (coins)

number of heads in z ¢
number of observations=t—1

» p(heads|zy) =

Theorem (Law of Large Numbers)

If p € M, then limy_,o hy_,(p, ) = 0 with p-probability 1




Example (continued)

Theorem (Corollary of Hoeffding Bound)
If pw € M, then with p-probability at least 1 — §

(Vt) |p(heads|z<;) — p(heads|r )| < \/ t—+1)
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Bayesian Predictors

= No assumption on M except that it is countable
» w: M — (0,1] is a prior on M
» {(x) =) ey w(v)v(x) is the Bayes measure

Theorem (Solomonoff & Hutter)

If w € M, then
o limy o0 hp, (1, &) = 0 with p-probability 1

B 5 hos, (1,6) < In s

Done? Not quite, h,_, (1, ) is unknown. Can you construct a
confidence bound on the error like in the Bernoulli case?



Posterior Convergence

Theorem (Bayes Law)

P(D|H)

P(H|D) = P(H) =5

Posterior belief in hypothesis v € M having observed x is

w(v|z) == w(v)——=

The posterior w(-|z) concentrates about the truth as data is
observed




Posterior Convergence

@ Bayes predictive distribution ml/2
0.2 T T —
0
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Posterior at time 1
21 Bernoulli measures with true = 1/2 and w(v) = 1/21



Posterior Convergence

@ Bayes predictive distribution ml/2
0.2 T T o———1
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Posterior at time 2
21 Bernoulli measures with true = 1/2 and w(v) = 1/21



Posterior Convergence

@ Bayes predictive distribution ml/2
0.2 T T —
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Posterior at time 3
21 Bernoulli measures with true = 1/2 and w(v) = 1/21



Posterior Convergence

@ Bayes predictive distribution ml/2
0.2 T T —o-i
0
0 0.2 0.4 0.6 0.8 1

Posterior at time 10
21 Bernoulli measures with true = 1/2 and w(v) = 1/21



Posterior Convergence

@ Bayes predictive distribution ml/2
0.2 T T o—ii
0 - L
0 0.2 0.4 0.6 0.8

Posterior at time 20
21 Bernoulli measures with true = 1/2 and w(v) = 1/21



Bayesian Confidence

Theorem (Ville)
With p-probability at least 1 — §

(Vn),  w(plr<n) > dw(p)

“With high probability the posterior belief in true hypothesis
never falls below dw(u)"
Define set of plausible environments

M(zep) ={ve M:¥np<n, w|re,) > dw(v)}
and confidence bound on error

~

haey) :==max{h;_,(v,§) v € M(zcp)}

With p-probablity at least 1 — & it holds that h(x<y,) > hy_, (11, )
for all n




Posterior Convergence

@ Bayes predictive distribution o v € M(xz<t) maximising he , (v, §) m1/2
0-2 , I . I I I
0
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Posterior at time 1
21 Bernoulli measures with true 6 = 1/2 and w(v) = /21 and 6 = /10



Posterior Convergence

@ Bayes predictive distribution o v € M(xz<t) maximising he , (v, §) m1/2
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Posterior at time 2
21 Bernoulli measures with true 6 = 1/2 and w(v) = /21 and 6 = /10



Posterior Convergence

@ Bayes predictive distribution o v € M(xz<t) maximising he , (v, §) m1/2
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Posterior at time 3
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Posterior Convergence

@ Bayes predictive distribution o v € M(xz<t) maximising he , (v, §) m1/2
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0
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Posterior at time 10
21 Bernoulli measures with true 6 = 1/2 and w(v) = /21 and 6 = /10



Posterior Convergence

@ Bayes predictive distribution o v € M(xz<t) maximising he , (v, §) m1/2
0.2 @ i—e T T
O 1 I I

0 0.2 0.4 0.6 0.8 1

Posterior at time 20
21 Bernoulli measures with true 6 = 1/2 and w(v) = /21 and 6 = /10



Bayesian Confidence

M(zp) i={rve M :Vn<n, wv|re,) > dw(v)}
Wz o) = max {hy_,(1,€) : v € M(x<p)}
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Bayesian Confidence

M(zep) i ={veM:Vn<n, wvjza,) > dw(v)}
h(x-p) = max {hg_,(,€) 1 v E M(xch)}

If w is uniform, then with p-probability at least 1 — 9

Z (<n) S M| (ln|./\/l| +1In |/;/l|)

Therefore h(z<y,) converges fast to zero



Knows What It Knows Framework

- agent fails Start

b

1

§ noT

>

c yes

w ha oy (pyp) < €7 > present z; to agent 4—‘ choose p € M

A | [

JE . oo mmmmmsemooeooooooooo- Soommme-ooe-
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Knows What It Knows Algorithm

1 Inputs: €, § and M := {v1, 10, v umq )
2 t< 1and z<4 < € and w: M — [0,1] is uniform
s loop

if hy(x<y) < e then

output §(+|z<¢)
else
output L

8 observe x; and t + t+1

The following hold:
@ The agent fails with probability at most ¢

~ o o »

@ The number of times action | is taken is at most

o (14116 21)
€ 1)

with probability at last 1 — ¢




Summary

» Constructed frequentist-style confidence intervals for discrete
non-i.i.d. Bayes

= Works well in theory and in practise

» Leads to state-of-the-art bounds for KWIK learning
« Generic and applicable elsewhere (Bandits/RL)

= Also have bounds for KL divergence

= Countable case also covered



