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Sequence Prediction

Can you guess the next number?
1, 2, 3, 4, 5, ...
3, 1, 4, 1, 5, ...
1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, ...



Sequence Prediction

x is a sequence over countable alphabet X

µ(x) is the µ-probability of observing x

µ(a|x) is the µ-probability of observing a ∈ X given x

M is a countable set of measures (sequence generators)

Hellinger2 Distance hx(ρ, µ) :=
∑

a∈X
(√

ρ(a|x)−
√
µ(a|x)

)2
Total Variation Distance δx(ρ, µ) :=

1
2

∑
a∈X |ρ(a|x)− µ(a|x)|√

hx(ρ, µ) ≈ δx(ρ, µ)

Goal: Construct predictor ρ such that for all µ ∈M

ρ(·|x<t)
fast−→ µ(·|x<t)

when x is sampled from µ

X = {heads, tails}
X = {rain, shine}
X = {plague, smallpox, flu}
X = {1, 2, 3, · · · }



Example

X = {heads, tails}
M = {µθ} is a countable set of Bernoulli measures (coins)

ρ(heads|x<t) = number of heads in x<t
number of observations=t−1

Theorem (Law of Large Numbers)

If µ ∈M, then limt→∞ hx<t(ρ, µ) = 0 with µ-probability 1



Example (continued)

Theorem (Corollary of Hoeffding Bound)

If µ ∈M, then with µ-probability at least 1− δ

(∀t) |ρ(heads|x<t)− µ(heads|x<t)| ≤
√

1

2t
log

2t(t+ 1)

δ
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Bayesian Predictors

No assumption on M except that it is countable

w :M→ (0, 1] is a prior on M
ξ(x) :=

∑
ν∈Mw(ν)ν(x) is the Bayes measure

Theorem (Solomonoff & Hutter)

If µ ∈M, then

limt→∞ hx<t(µ, ξ) = 0 with µ-probability 1

Eµ
∑∞

t=1 hx<t(µ, ξ) ≤ ln 1
w(µ)

Done? Not quite, hx<t(µ, ξ) is unknown. Can you construct a
confidence bound on the error like in the Bernoulli case?



Posterior Convergence

Theorem (Bayes Law)

P (H|D) = P (H)
P (D|H)

P (D)

Posterior belief in hypothesis ν ∈M having observed x is

w(ν|x) := w(ν)
ν(x)

ξ(x)

Conjecture

The posterior w(·|x) concentrates about the truth as data is
observed
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Posterior Convergence
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Bayesian Confidence

Theorem (Ville)

With µ-probability at least 1− δ

(∀n), w(µ|x<n) ≥ δw(µ)

“With high probability the posterior belief in true hypothesis µ
never falls below δw(µ)”

Define set of plausible environments

M(x<n) := {ν ∈M : ∀η ≤ n, w(ν|x<η) ≥ δw(ν)}
and confidence bound on error

ĥ(x<n) := max {hx<n(ν, ξ) : ν ∈M(x<n)}

Theorem

With µ-probablity at least 1− δ it holds that ĥ(x<n) ≥ hx<n(µ, ξ)
for all n
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Bayes predictive distribution ν ∈ M(x<t) maximising hx<t (ν, ξ)
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Bayesian Confidence

M(x<n) := {ν ∈M : ∀η ≤ n, w(ν|x<η) ≥ δw(ν)}
ĥ(x<n) := max {hx<n(ν, ξ) : ν ∈M(x<n)}
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Bayesian Confidence

M(x<n) := {ν ∈M : ∀η ≤ n, w(ν|x<η) ≥ δw(ν)}
ĥ(x<n) := max {hx<n(ν, ξ) : ν ∈M(x<n)}

Theorem

If w is uniform, then with µ-probability at least 1− δ
∞∑
n=1

ĥ(x<n) . |M|
(
ln |M|+ ln

|M|
δ

)

Therefore ĥ(x<n) converges fast to zero



Knows What It Knows Framework

Am I confident?

output ρ(·|x<t) output ⊥

hx<t (ρ, µ) ≤ ε? present xt to agent

agent fails

choose µ ∈M
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Knows What It Knows Algorithm

1 Inputs: ε, δ and M :=
{
ν1, ν2, · · · , ν|M|

}
.

2 t← 1 and x<t ← ε and w :M→ [0, 1] is uniform
3 loop
4 if ĥt(x<t) ≤ ε then
5 output ξ(·|x<t)
6 else
7 output ⊥
8 observe xt and t← t+ 1

Theorem

The following hold:

1 The agent fails with probability at most δ

2 The number of times action ⊥ is taken is at most

O

(
|M|
ε

log
|M|
δ

)
with probability at last 1− δ



Summary

Constructed frequentist-style confidence intervals for discrete
non-i.i.d. Bayes

Works well in theory and in practise

Leads to state-of-the-art bounds for KWIK learning

Generic and applicable elsewhere (Bandits/RL)

Also have bounds for KL divergence

Countable case also covered


