Confident Bayesian Sequence Prediction

Sequence Prediction

Sequence Prediction

- \boldsymbol{x} is a sequence over countable alphabet \boldsymbol{X}
- $\mu(x)$ is the $\mu\text{-probability}$ of observing x
- $\mu(a|x)$ is the $\mu\text{-probability}$ of observing $a\in X$ given x
- \mathcal{M} is a countable set of measures (sequence generators)
- $\begin{array}{ll} \text{Hellinger}^2 \text{ Distance} & h_x(\rho,\mu) \coloneqq \sum_{a \in X} \left(\sqrt{\rho(a|x)} \sqrt{\mu(a|x)} \right)^2 \\ \text{Total Variation Distance} & \delta_x(\rho,\mu) \coloneqq \frac{1}{2} \sum_{a \in X} |\rho(a|x) \mu(a|x)| \end{array}$

$$\sqrt{h_x(\rho,\mu)} \approx \delta_x(\rho,\mu)$$

Goal: Construct predictor ρ such that for all $\mu \in \mathcal{M}$

$$\rho(\cdot|x_{< t}) \xrightarrow{fast} \mu(\cdot|x_{< t})$$

when x is sampled from μ

 $\begin{array}{l} X = \{heads, tails\} \\ X = \{rain, shine\} \\ X = \{plague, smallpox, flu\} \\ X = \{1, 2, 3, \cdots \} \end{array}$

Example

- $\bullet \ X = \{ \mathsf{heads}, \mathsf{tails} \}$
- $\mathcal{M} = \{\mu_{\theta}\}$ is a countable set of Bernoulli measures (coins)
- $\rho(\text{heads}|x_{< t}) = \frac{\text{number of heads in } x_{< t}}{\text{number of observations} = t 1}$

Theorem (Law of Large Numbers)

If $\mu \in \mathcal{M}$, then $\lim_{t \to \infty} h_{x_{< t}}(
ho, \mu) = 0$ with μ -probability 1

Example (continued)

Theorem (Corollary of Hoeffding Bound)

If $\mu \in \mathcal{M}$, then with μ -probability at least $1-\delta$

$$(\forall t) \quad |\rho(\textit{heads}|x_{< t}) - \mu(\textit{heads}|x_{< t})| \le \sqrt{\frac{1}{2t}\log\frac{2t(t+1)}{\delta}}$$

Bayesian Predictors

- No assumption on ${\mathcal M}$ except that it is countable
- $w: \mathcal{M} \to (0,1]$ is a prior on \mathcal{M}
- $\xi(x) \mathrel{\mathop:}= \sum_{\nu \in \mathcal{M}} w(\nu) \nu(x)$ is the Bayes measure

Theorem (Solomonoff & Hutter)

If $\mu \in \mathcal{M}$, then

- $\lim_{t\to\infty}h_{x< t}(\mu,\xi)=0$ with μ -probability 1
- $\mathbf{E}_{\mu} \sum_{t=1}^{\infty} h_{x < t}(\mu, \xi) \le \ln \frac{1}{w(\mu)}$

Done? Not quite, $h_{x < t}(\mu, \xi)$ is unknown. Can you construct a confidence bound on the error like in the Bernoulli case?

Theorem (Bayes Law)

$$P(H|D) = P(H)\frac{P(D|H)}{P(D)}$$

Posterior belief in hypothesis $\nu \in \mathcal{M}$ having observed x is

$$w(\nu|x) := w(\nu) \frac{\nu(x)}{\xi(x)}$$

Conjecture

The posterior $w(\cdot | \boldsymbol{x})$ concentrates about the truth as data is observed

Bayesian Confidence

Theorem (Ville)

With μ -probability at least $1 - \delta$

$$(\forall n), \quad w(\mu | x_{< n}) \ge \delta w(\mu)$$

"With high probability the posterior belief in true hypothesis μ never falls below $\delta w(\mu)$ "

Define set of plausible environments

$$\mathcal{M}(x_{< n}) := \{ \nu \in \mathcal{M} : \forall \eta \le n, \ w(\nu | x_{< \eta}) \ge \delta w(\nu) \}$$

and confidence bound on error

$$\hat{h}(x_{< n}) \coloneqq \max \left\{ h_{x_{< n}}(\nu, \xi) : \nu \in \mathcal{M}(x_{< n}) \right\}$$

Theorem

With μ -probablity at least $1 - \delta$ it holds that $\hat{h}(x_{< n}) \ge h_{x< n}(\mu, \xi)$ for all n

Bayesian Confidence

$$\mathcal{M}(x_{< n}) := \{ \nu \in \mathcal{M} : \forall \eta \le n, \ w(\nu | x_{< \eta}) \ge \delta w(\nu) \}$$
$$\hat{h}(x_{< n}) := \max \{ h_{x_{< n}}(\nu, \xi) : \nu \in \mathcal{M}(x_{< n}) \}$$

Bayesian Confidence

$$\mathcal{M}(x_{< n}) := \{ \nu \in \mathcal{M} : \forall \eta \le n, \ w(\nu | x_{< \eta}) \ge \delta w(\nu) \}$$
$$\hat{h}(x_{< n}) := \max \{ h_{x_{< n}}(\nu, \xi) : \nu \in \mathcal{M}(x_{< n}) \}$$

Theorem

If w is uniform, then with μ -probability at least $1-\delta$

$$\sum_{n=1}^{\infty} \hat{h}(x_{< n}) \lesssim |\mathcal{M}| \left(\ln |\mathcal{M}| + \ln \frac{|\mathcal{M}|}{\delta} \right)$$

Therefore $\hat{h}(x_{< n})$ converges fast to zero

Knows What It Knows Framework

Knows What It Knows Algorithm

Theorem

The following hold:

- The agent fails with probability at most δ
- **2** The number of times action \perp is taken is at most

$$O\left(\frac{|\mathcal{M}|}{\epsilon}\log\frac{|\mathcal{M}|}{\delta}\right)$$

with probability at last $1 - \delta$

Summary

- Constructed frequentist-style confidence intervals for discrete non-i.i.d. Bayes
- Works well in theory and in practise
- Leads to state-of-the-art bounds for KWIK learning
- Generic and applicable elsewhere (Bandits/RL)
- Also have bounds for KL divergence
- Countable case also covered