Confident Bayesian Sequence Prediction

Sequence Prediction

Can you guess the next number?
$1,2,3,4,5, \ldots$
$3,1,4,1,5, \ldots$
$1,0,0,0,1,0,1,1,1,1,0,1,0,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,1, \ldots$

Google
can you predict
can you predict earthquakes can you predict your height can you predict labour
can you predict the weather

Sequence Prediction

- x is a sequence over countable alphabet X
- $\mu(x)$ is the μ-probability of observing x

```
X={heads,tails}
X = {rain, shine }
X={plague, smallpox, flu }
X={1,2,3,\cdots}
```

- $\mu(a \mid x)$ is the μ-probability of observing $a \in X$ given x
- \mathcal{M} is a countable set of measures (sequence generators)

Hellinger ${ }^{2}$ Distance

$$
h_{x}(\rho, \mu):=\sum_{a \in X}(\sqrt{\rho(a \mid x)}-\sqrt{\mu(a \mid x)})^{2}
$$

Total Variation Distance $\delta_{x}(\rho, \mu):=\frac{1}{2} \sum_{a \in X}|\rho(a \mid x)-\mu(a \mid x)|$

$$
\sqrt{h_{x}(\rho, \mu)} \approx \delta_{x}(\rho, \mu)
$$

Goal: Construct predictor ρ such that for all $\mu \in \mathcal{M}$

$$
\rho\left(\cdot \mid x_{<t}\right) \xrightarrow{\text { fast }} \mu\left(\cdot \mid x_{<t}\right)
$$

when x is sampled from μ

Example

- $X=\{$ heads, tails $\}$
- $\mathcal{M}=\left\{\mu_{\theta}\right\}$ is a countable set of Bernoulli measures (coins)
- $\rho\left(\right.$ heads $\left.\mid x_{<t}\right)=\frac{\text { number of heads in } x_{<t}}{\text { number of observations }=t-1}$

Theorem (Law of Large Numbers)

If $\mu \in \mathcal{M}$, then $\lim _{t \rightarrow \infty} h_{x_{<t}}(\rho, \mu)=0$ with μ-probability 1

Example (continued)

Theorem (Corollary of Hoeffding Bound)

If $\mu \in \mathcal{M}$, then with μ-probability at least $1-\delta$

$$
(\forall t) \quad \mid \rho\left(\text { heads } \mid x_{<t}\right)-\mu\left(\text { heads } \mid x_{<t}\right) \left\lvert\, \leq \sqrt{\frac{1}{2 t} \log \frac{2 t(t+1)}{\delta}}\right.
$$

Time
$\delta=1 / 10$ and $\theta=1 / 2$

Bayesian Predictors

- No assumption on \mathcal{M} except that it is countable
- $w: \mathcal{M} \rightarrow(0,1]$ is a prior on \mathcal{M}
- $\xi(x):=\sum_{\nu \in \mathcal{M}} w(\nu) \nu(x)$ is the Bayes measure

Theorem (Solomonoff \& Hutter)

If $\mu \in \mathcal{M}$, then

- $\lim _{t \rightarrow \infty} h_{x_{<t}}(\mu, \xi)=0$ with μ-probability 1
- $\mathbf{E}_{\mu} \sum_{t=1}^{\infty} h_{x<t}(\mu, \xi) \leq \ln \frac{1}{w(\mu)}$

Done? Not quite, $h_{x_{<t}}(\mu, \xi)$ is unknown. Can you construct a confidence bound on the error like in the Bernoulli case?

Posterior Convergence

Theorem (Bayes Law)

$$
P(H \mid D)=P(H) \frac{P(D \mid H)}{P(D)}
$$

Posterior belief in hypothesis $\nu \in \mathcal{M}$ having observed x is

$$
w(\nu \mid x):=w(\nu) \frac{\nu(x)}{\xi(x)}
$$

Conjecture

The posterior $w(\cdot \mid x)$ concentrates about the truth as data is observed

Posterior Convergence

21 Bernoulli measures with true $\theta=1 / 2$ and $w(\nu)=1 / 21$

Posterior Convergence

21 Bernoulli measures with true $\theta=1 / 2$ and $w(\nu)=1 / 21$

Posterior Convergence

21 Bernoulli measures with true $\theta=1 / 2$ and $w(\nu)=1 / 21$

Posterior Convergence

21 Bernoulli measures with true $\theta=1 / 2$ and $w(\nu)=1 / 21$

Posterior Convergence

21 Bernoulli measures with true $\theta=1 / 2$ and $w(\nu)=1 / 21$

Bayesian Confidence

Theorem (Ville)

With μ-probability at least $1-\delta$

$$
(\forall n), \quad w\left(\mu \mid x_{<n}\right) \geq \delta w(\mu)
$$

"With high probability the posterior belief in true hypothesis μ never falls below $\delta w(\mu)$ "
Define set of plausible environments

$$
\mathcal{M}\left(x_{<n}\right):=\left\{\nu \in \mathcal{M}: \forall \eta \leq n, w\left(\nu \mid x_{<\eta}\right) \geq \delta w(\nu)\right\}
$$

and confidence bound on error

$$
\hat{h}\left(x_{<n}\right):=\max \left\{h_{x_{<n}}(\nu, \xi): \nu \in \mathcal{M}\left(x_{<n}\right)\right\}
$$

Theorem

With μ-probablity at least $1-\delta$ it holds that $\hat{h}\left(x_{<n}\right) \geq h_{x_{<n}}(\mu, \xi)$ for all n

Posterior Convergence

- Bayes predictive distribution

21 Bernoulli measures with true $\theta=1 / 2$ and $w(\nu)=1 / 21$ and $\delta=1 / 10$

Posterior Convergence

21 Bernoulli measures with true $\theta=1 / 2$ and $w(\nu)=1 / 21$ and $\delta=1 / 10$

Posterior Convergence

- Bayes predictive distribution
- $\nu \in \mathcal{M}\left(x_{<t}\right)$ maximising $h_{x<t}(\nu, \xi)$

21 Bernoulli measures with true $\theta=1 / 2$ and $w(\nu)=1 / 21$ and $\delta=1 / 10$

Posterior Convergence

- Bayes predictive distribution
- $\nu \in \mathcal{M}\left(x_{<t}\right)$ maximising $h_{x<t}(\nu, \xi)$

21 Bernoulli measures with true $\theta=1 / 2$ and $w(\nu)=1 / 21$ and $\delta=1 / 10$

Posterior Convergence

- Bayes predictive distribution
- $\nu \in \mathcal{M}\left(x_{<t}\right)$ maximising $h_{x<t}(\nu, \xi)$
- $1 / 2$

21 Bernoulli measures with true $\theta=1 / 2$ and $w(\nu)=1 / 21$ and $\delta=1 / 10$

Bayesian Confidence

$$
\begin{aligned}
\mathcal{M}\left(x_{<n}\right) & :=\left\{\nu \in \mathcal{M}: \forall \eta \leq n, w\left(\nu \mid x_{<\eta}\right) \geq \delta w(\nu)\right\} \\
\hat{h}\left(x_{<n}\right) & :=\max \left\{h_{x_{<n}}(\nu, \xi): \nu \in \mathcal{M}\left(x_{<n}\right)\right\}
\end{aligned}
$$

$\delta=1 / 10$ and $\theta=1 / 2$.
Time

Bayesian Confidence

$$
\begin{aligned}
\mathcal{M}\left(x_{<n}\right) & :=\left\{\nu \in \mathcal{M}: \forall \eta \leq n, w\left(\nu \mid x_{<\eta}\right) \geq \delta w(\nu)\right\} \\
\hat{h}\left(x_{<n}\right) & :=\max \left\{h_{x_{<n}}(\nu, \xi): \nu \in \mathcal{M}\left(x_{<n}\right)\right\}
\end{aligned}
$$

Theorem

If w is uniform, then with μ-probability at least $1-\delta$

$$
\sum_{n=1}^{\infty} \hat{h}\left(x_{<n}\right) \lesssim|\mathcal{M}|\left(\ln |\mathcal{M}|+\ln \frac{|\mathcal{M}|}{\delta}\right)
$$

Therefore $\hat{h}\left(x_{<n}\right)$ converges fast to zero

Knows What It Knows Framework

Knows What It Knows Algorithm

${ }_{1}$ Inputs: ε, δ and $\mathcal{M}:=\left\{\nu_{1}, \nu_{2}, \cdots, \nu_{|\mathcal{M}|}\right\}$.
${ }_{2} t \leftarrow 1$ and $x_{<t} \leftarrow \epsilon$ and $w: \mathcal{M} \rightarrow[0,1]$ is uniform
${ }_{3}$ loop
4 if $\hat{h}_{t}\left(x_{<t}\right) \leq \varepsilon$ then
$5 \quad$ output $\xi\left(\cdot \mid x_{<t}\right)$
${ }_{6}$ else
$7 \quad$ output \perp
$8 \quad$ observe x_{t} and $t \leftarrow t+1$

Theorem

The following hold:
(1) The agent fails with probability at most δ
(2) The number of times action \perp is taken is at most

$$
O\left(\frac{|\mathcal{M}|}{\epsilon} \log \frac{|\mathcal{M}|}{\delta}\right)
$$

with probability at last $1-\delta$

Summary

- Constructed frequentist-style confidence intervals for discrete non-i.i.d. Bayes
- Works well in theory and in practise
- Leads to state-of-the-art bounds for KWIK learning
- Generic and applicable elsewhere (Bandits/RL)
- Also have bounds for KL divergence
- Countable case also covered

