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The Exploration/Exploitation Dilemma

Efficient exploration is still an open problem in MDPs with:

Large state spaces

Sparse rewards
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Novelty-Based Exploration in Large MDPs

How do you explore efficiently?

Encourage the agent to visit novel states to maximally reduce its
uncertainty. How?

Make your agent curious about states with novel features
1 Choose a feature representation ψ(s, a) of the state space
2 Compute a visit pseudocount N̂(ψ)
3 Compute a novelty-based exploration bonus:

R(ψ) ∝ 1√
N̂(ψ)

4 Add the bonus to the reward r
5 Train the agent with the augmented reward r+ = r +R(ψ)
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Novelty-Based Exploration in Large MDPs

Feature Representations for Novelty from previous work:

Context-Tree Switching (CTS) Density Model (Google DeepMind) [1]

#-Exploration (Berkeley) [4]

Neural Density Model (Google DeepMind) [3]
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Novelty-Based Exploration in Large MDPs

Problem:

Which feature representation is appropriate for measuring the
novelty of a state?

Previous works do not justify their choices
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Which features are relevant when measuring novelty?

Irrelevant features: Wallpaper, Parking, Lighting, Floorspace, Address...

J. Martin, S. Narayanan S., T. Everitt, M. Hutter Count-Based Exploration in Feature Space for Reinforcement Learning 6 / 13



Previous Works do not use Value-Relevant Features

Problem:

In this architecture, the feature representation used for novelty
estimation may not capture value-relevant features

So which features are relevant for maximising value?
J. Martin, S. Narayanan S., T. Everitt, M. Hutter Count-Based Exploration in Feature Space for Reinforcement Learning 7 / 13



The φ-Exploration Bonus Algorithm (φ-EB)

Our novelty estimator assigns a high exploration bonus to states that
have novel, value-relevant features

Our φ-Exploration Bonus algorithm is simpler and less
computationally expensive than previous approaches
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The φ-Exploration Bonus Algorithm (φ-EB)

Require: β, tend
while t < tend do

Observe rt and features φ(s) for the current state s

Compute joint feature probability ρt(φ) :=
∏M

i ρit(φi )
for i in {1,. . . ,M} do

Update each probability ρit+1 with observed feature φi
end for
Recompute joint probability ρt+1(φ) :=

∏M
i ρit+1(φi )

Compute the φ-pseudocount N̂φ
t (s) :=

ρt(φ)(1− ρt+1(φ))

ρt+1(φ)− ρt(φ)

Compute the exploration bonus Rφ
t (s, a) :=

β√
N̂φ

t (s)

Add the bonus to the reward r+t := rt +Rφ
t (s, a)

Pass φ(s), r+t to RL algorithm to update θt
end while
return θtend
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Empirical Evaluation

Venture Montezuma

Sarsa-φ-EB (100M)[2] 1169.2 2745.4

Sarsa-ε (100M) 0.0 399.5

DDQN-PC (100M)[1] 86.4 3459
A3C+ (200M)[1] 0 142

TRPO-Hash (200M)[4] 445 75
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Trained φ-EB agent playing Atari

Switch to dedicated video-player, if flash fails to load video.
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}
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