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Abstract

Recently a number of empirical “universal” scaling law papers have been pub-
lished, most notably by OpenAI. ‘Scaling laws’ refers to power-law decreases of
training or test error w.r.t. more data, larger neural networks, and/or more com-
pute. In this work we focus on scaling w.r.t. data size n. Theoretical understanding
of this phenomenon is largely lacking, except in finite-dimensional models for which
error typically decreases with n−1/2 or n−1, where n is the sample size. We develop
and theoretically analyse the simplest possible (toy) model that can exhibit n−β

learning curves for arbitrary power β > 0, and determine to which extent power
laws are universal or depend on the data distribution or loss function: Roughly,
learning curves exhibit a power law with β = α

1+α for α-Zipf-distributed data in-
dependent of the choice of loss. Furthermore, noise rapidly deteriorates/improves
in instantaneous/time-averaged learning curves for increasing n, suggesting that
model selection should be based on cumulative (AUC) or time-averaged error, not
final test error.
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1 Introduction

Power laws in large-scale machine learning. The ‘mantra’ of modern machine
learning is ‘bigger is better’. The larger and deeper Neural Networks (NNs) are, the
more data they are fed, the longer they are trained, the better they perform. Apart from
the problem of overfitting [BHM18] and the associated recent phenomenon of double-
descent [BHMM19], this in itself is rather unsurprising. But recently ‘bigger is better’
has been experimentally quantified [JN17], most notably by Baidu [HNA+17] and OpenAI
[HKK+20, KMH+20, HKHM21].

They observe that the error or test loss decreases as a power law, with the data size,
with the model size (number of NN parameters), as well as with the compute budget used
for training, assuming one factor is not “bottlenecked” by the other two factors. If all
three factors are increased appropriately in tandem, the (reducible) loss has power-law
scaling over a very wide range of data/model size and compute budget.

If there is intrinsic noise in the data (or a non-vanishing model mis-specification),
the loss can never reach zero, but at best can converge to the intrinsic entropy of the
data (or the intrinsic representation=approximation error). When we talk about error,
sometimes also called excess error or reducible error, we mean test loss with this potential
offset subtracted, similar to average regret in online learning.

Ubiquity/universality of power laws. Power laws have been observed for many
problem types (supervised, unsupervised, transfer learning) and data types (images,
video, text, even math) and many NN architectures (Transformers, ConvNets, ...)
[HNA+17, RRBS19, HGLS20, HKK+20, KMH+20]. This has led some to the belief
that power laws might be universal: Whatever the problem, data, model, or learning
algorithm, learning curves follow power laws. To which extent this conjecture is true, we
do not know, since theoretical understanding of this phenomenon is largely lacking.

This work. In this work we focus on scaling with data size n. As explained below, any
reasonable finitely-parameterized model and reasonable loss function leads to a scaling
law n−β with β = 1

2
or β = 1, but not the observed β ≈ 0.05...0.35 < 1

2
. We therefore

conjecture that any theoretical explanation of power laws for a variety of β (beyond 0-1
and absolute error implying β = 1

2
and locally-quadratic loss implying β = 1) requires

real-world data and models of unbounded complexity, that is, no finite-dimensional model
can “explain” all information in the data.

Possible modelling choices are (a) scaling up the model with data, as done in the
experiments, or (b) consider non-parametric models (e.g. Gaussian processes), or (c)
a model with (countably-)infinitely-many parameters. We choose (c) for mathematical
simplicity compared to (b), and because (c) clearly separates scaling with data from
scaling with model size, unlike (a). In future, (a) and (b) should definitely also be
pursued, in particular, since we have no indication that our findings transfer.

Within our toy model, we show that for domains of unbounded complexity, a large
variety of learning curves are possible, including non-power-laws. It is plausible that
this remains true for most infinite models. Real data is often Zipf distributed (e.g. the
frequency of words in text), which is itself a power law. We show that this, in our
toy model, implies power law learning curves with “interesting” β, though most (even
non-Zipf) distributions also lead to power laws but with “uninteresting” β.

Key findings. Valid within our toy model, and potentially beyond,
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(I) our primary finding is that learning curves consist of 3 terms, (1) a theoretically well-
understood loss-dependent power law (usually n−1/2 or n−1) or exponential decay in
the deterministic instantaneous case, (2) a data-dependent loss-independent power
law n−β for 0 < β ≤ 1, with (typically small) β = α

1+α
for α-Zip-distributed data,

and (3) an irreducible term due to noise (and model approximation error in more
general models).

(II) a secondary finding is that the signal-to-noise ratio rapidly deteriorates/improves
with n in instantaneous/time-averaged learning curves. Though we do not study
model selection per se in this work, augmented by arguments laid out by [Hut06] for
log-loss, this suggests that model selection should be based on cumulative (AUC)
or time-averaged error, rather than final test error.

Contents. In Section 2 we review some scaling theory (with model size, compute, and
data size) we are aware of, and discuss their relations. In Section 3 we introduce our
setup: classification with countable “feature” space and a memorizing algorithm, the
simplest model and algorithm we could come up with that exhibits interesting/relevant
scaling behavior. In Section 4 we derive and discuss general expressions for expected
learning curves and for various specific data distributions: finite, Zipf, exponential, and
beyond, many but not all lead to power laws. In Section 5 we estimate the uncertainty
in empirical learning curves. We show that the signal-to-noise ratio deteriorates with n,
which implies that many (costly) runs need to be averaged in practice to get a smooth
learning curve. On the other hand, the signal-to-noise ratio of the time-averaged learning
curves tends to infinity, hence even a single run suffices for large n. In Section 6 we perform
some simple control experiments to confirm and illustrate the theory and claims, and the
accuracy of the theoretical expressions. In Section 7 we discuss (potential) extensions
of our toy model towards a more comprehensive and realistic theory of scaling laws:
noisy labels, other loss functions, continuous features, models that generalize, and deep
learning. Section 8 concludes with limitations and potential applications. Appendix A
discusses losses beyond 0-1 loss. Appendix B contains derivations and approximations of
the expected error. Appendix C derives exact and approximate expressions for the time-
averaged variance. Appendix D proves the n−1 upper bound on the learning curve for
sub-exponential distributions. Appendix E considers noisy labels. Appendix F derives an
approximation of sums by integrals, tailored to our purpose. Appendix G lists notation.
Appendix H contains some mores plots.

2 Scaling Theory

Scaling with model size. Consider a function f : [0; 1]d → R which we wish to
approximate. A naive approximation is to discretize the hyper-cube to an ε-grid. This
constitutes a model with m = (1/ε)d parameters, and if f is 1-Lipschitz, can approximate
f to accuracy ε = m−1/d, i.e. the (absolute) error scales with model size m as a power
law with exponent −1/d. More generally, there exist (actually linear basis function)
models with m parameters that can approximate all functions f whose first k derivatives
are bounded to accuracy O(m−k/d) [Mha96], again a power law, and without further
assumptions, no reasonable model can do better [DHM89]; see [Pin99] for reformulations
and discussions of these results in the context of NNs. Not being aware of this early
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theoretical work, this scaling law has very recently been empirically verified and extended
by [SK20]. Instead of naively using the input dimension d, they determine and use the
(fractal) dimension of the data distribution in the penultimate layer of the NN.

Scaling with compute. Most NNs are trained by some form of stochastic gradient
descent, efficiently implemented in the form of back-propagation. Hence compute is
proportional to number of iterations i times batch-size times model size. So studying the
scaling of error with the number of iterations tells us how error scales with compute. The
loss landscape of NNs is highly irregular, which makes theoretical analyses cumbersome
at best. At least asymptotically, the loss is locally convex, hence the well-understood
stochastic (and online) convex optimization could be a first (but possibly misleading)
path to search for theoretical understanding of scaling with compute. The error of most
stochastic/online optimization algorithms scales as a power law i−1/2 or i−1 for convex
functions [Bub15, Haz16].

Scaling with data size. This is the traditional domain of Statistical Learning Theory
(SLT) [SB14], online learning [GPS18], and online convex optimization [Haz16]. The
fundamental (PAC) theorem of SLT states that the empirical error converges to the
generalization error at a rate of n−1/2 for models of finite VC-dimension, and n i.i.d. sam-
ples. Most results in SLT are applications, adaptations, or generalizations of this result,
all keeping the n−1/2 rate. Most models have finite VC-dimension (SVMs, regression,
NNs, finite decision trees, ...). The core theorem applies to Empirical Risk Minimization
(ERM) algorithms, but extends to e.g. (stochastic) gradient descent approximations. It
generalizes to convex-Lipschitz-bounded and convex-smooth-bounded losses. Rates im-
prove to n−1 for β-smooth (“locally quadratic”) losses. The average regret considered
in online learning theory and online convex optimization has similar requirements on
the model (e.g. finite-dimensional) and exhibits the same rates n−1/2 or n−1 (or 1

n
lnn

due to the time-average), under similar conditions. An example of a non-parametric
model whose sample complexity has been analysed with “interesting” rate, is k-nearest
neighbors (kNN). For d-dimensional Lipschitz functions, the error of kNN is bounded
by n−1/(d+1) [SB14, Thm.19.3&19.5]. This power law and the intuition for the power
−1/(d + 1) ≈ −1/d is similar to [Pin99, SK20] discussed above but in terms of model
size. Again, the origin of the power law in our model is very different.

We are not aware of any successful attempts to theoretically explain the power laws
observed by OpenAI with β < 1/2. [Cho20] and [HNA+17] consider a very simple
Bernoulli model: Essentially they observe that the Bernoulli parameter can be estimated
to accuracy 1/

√
n from n i.i.d samples, i.e. the absolute loss (also) scales with 1/

√
n

[HNA+17] and the log-loss or KL-divergence scales with 1/n [Cho20]. Indeed, the latter
holds for any loss, locally quadratic at the minimum, so is not at all due to special
properties of KL as [Cho20] suggests. These observations are simple instantiations of the
above statistical learning theory results, and also trivially follow from the central limit
theorem for virtually any finitely-parameterized model in the under-parameterized regime
of more-data-than-parameters. This is of course always the case for their Bernoulli model,
which only has one parameter, but not for the over-parameterized regime some modern
NNs work in. Anyway, the scaling laws identified by OpenAI et al. are n−β, for various
β < 1/2, which neither the Bernoulli nor any finite-dimensional model can explain.

Data size vs iterations vs compute. Above we have used the fact that compute is
(usually in deep learning) proportional to number of learning iterations, provided batch
and model size are kept fixed. In addition,
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(i) in online learning, every data item is used only once, hence the size of data used
up to iteration n is proportional to n.

(ii) This is also true for stochastic learning algorithms for some recent networks, such
as GPT-3, trained on massive data sets, where every data item is used at most once
(with high probability).

(iii) When generating artificial data, it is natural to generate a new data item for each
iteration.

Hence in all of these 3 settings, the learning curves, error-with-data-size, error-with-
iterations, and error-with-compute, are scaled versions of each other. For this reason,
scaling of error with iterations, also tells us how error scales with data size and even with
compute, but scaling with model size is different.

3 Setup

We formally introduce our setup, model, algorithm, and loss function in this section:
We consider classification problems with 0-1 loss and countable feature space. A natural
practical example application would be classifying words w.r.t. some criterion. Our toy
model is a deterministic classifier for features/words sampled i.i.d. w.r.t. to some distri-
bution. Our toy algorithm predicts/recalls the class for a new feature from a previously
observed (feature,class) pair, or acts randomly on a novel feature. The probability of an
erroneous prediction is hence proportional to the probability of observing a new feature,
which formally is equivalent to the model in [Cha81]. The usage and analyses of the
model and resulting expressions are totally different though. While [Cha81]’s aim is to
develop estimators for the probability of discovering a new species from data whatever
the unknown true underlying probabilities, we are interested in the relationship between
the true probability distribution of the data and the resulting learning curves, i.e. the
scaling of expected (averaged) error with sample size. In Appendix A we show that,
within a for our purpose irrelevant multiplicative constant, the results also apply to most
other loss functions.

The toy model. The goal of this work is to identify and study the simplest
model that is able to exhibit power-law learning curves as empirically observed by
[HNA+17, HKK+20, KMH+20] and others. Consider a classification problem h ∈ H :=
X → Y , e.g. Y = {0, 1} for binary classification, where classifier h is to be learnt from
data Dn := {(x1, y1), ..., (xn, yn)} ∈ (X × Y)n. For finite X and Y , this is a finite
model class (|H| <∞), which, as discussed above, can only exhibit a restrictive range of
learning curves, typically n−1/n−1/2/e−O(n) for locally-quadratic/absolute/0-1 error. In
practice, X is often a (feature) vector space Rd, which can support an infinite model
class (|H| = ∞) (e.g. NNs) rich enough to exhibit (at least empirically) n−β scaling
for many different β 6∈ {1

2
, 1}, typically β � 1. The smallest potentially suitable X

would be countable, e.g. N, which we henceforth assume. The model class H := N→ Y
is uncountable and has infinite VC-dimension, hence is not PAC learnable, but nev-
ertheless can be learnt consistently. Furthermore, for simplicity we assume that data
Dn := {(i1, y1), ..., (in, yn)} ≡ (i1:n, y1:n) with “feature” it ∈ N “labelled” yt is noise-free =
deterministic, i.e. yt = yt′ if it = it′ . Let h0 ∈ H be the unknown true labelling function.
We discuss relaxations of some of these assumptions later in Section 7, in particular ex-
tension to other loss function in Appendix A and noisy labels in Appendix E. Let features
it be drawn i.i.d. with P[it = i] =: θi ≥ 0 and (obviously)

∑∞
i=1 θi = 1. The infinite vector
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θ ≡ (θ1, θ2, ...) characterizes the feature distribution. The labels are then determined by
yt = h0(it).

The toy algorithm. We consider a simple tabulation learning algorithm A : N× (N×
Y)∗ → Y that stores all past labelled features Dn and on next feature in+1 = i recalls yt
if it = i, i.e. feature i has appeared in the past, or outputs, in its simplest instantiation,
undefined if i 6∈ i1:n i.e. is new. Formally:

A(i,Dn) :=

{
yt if i = it for some t ≤ n

⊥ else i.e. if i 6∈ i1:n

(1)

Error. Algorithm A only makes an error predicting label yn+1 if i 6∈ i1:n. We say A
makes 1 unit of error in this case. Formally, the (instantaneous) error En of algorithm A
when predicting yn+1 from Dn is defined as

En := [[in+1 6∈ i1:n]]

The expectation of this w.r.t. to the random choice of Dn and in+1 gives the expected
(instantaneous) error

EEn := E[En] = P[in+1 6∈ i1:n] =
∞∑
i=1

θi(1− θi)n (2)

A formal derivation is given in Appendix B, but the result is also intuitive: If feature i
has not been observed so far (which happens with probability (1−θi)n), and then feature
i is observed (which happens with probability θi), the algorithm makes an error. EEn as a
function of n constitutes an (expected) learning curve, which we will henceforth study. In
Appendix A we show that expression (2) remains valid within an irrelevant multiplicative
constant for most other loss functions.

4 Expected Learning Curves

We now derive theoretical expected learning curves for various underlying data distribu-
tions. We derive exact and approximate, general and specific expressions for the scaling
of expected error with sample size. Specifically we consider finite models, which lead to
exponential error decay, and infinite Zipf distributions, which lead to interesting power
laws with power β < 1. Interestingly even highly skewed data distributions lead to power
laws, albeit with “uninteresting” power β = 1.

Exponential decay. In the simplest case of m of the θi being equal and the rest being 0,
the error EEn = (1− 1

m
)n ≤ e−n/m decays exponentially with n. This is not too interesting

to us, since

(a) this case corresponds to a finite model (see below),
(b) exponential decay is an “artifact” of the deterministic label and discontinuous 0-1

error (it can also happen for stochastic labels with a majority predictor, but not
the more common averaging or stochastic predictor),

(c) will become a power law 1/n after time-averaging (see Section 5).
(d) most importantly for us, does not explain the Deep Learning power law learning

curves.
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Superposition of exponentials. Since (2) is
invariant under bijective renumbering of features
i ∈ N, we can w.l.g. assume θ1 ≥ θ2 ≥ θ3 ≥ ....
Some θs may be equal. If we group equal θs to-
gether into ¯̄θj with multiplicity mj > 0 and define
¯̄ϑj := − ln(1− ¯̄θj), then

EEn =
M∑
j=1

mj
¯̄θje
−n ¯̄ϑj (3)

where M ∈ N ∪ {∞} is the number of different θi > 0. This is a superposition of
exponentials in n (note that

∑M
j=1mj

¯̄θj = 1) with different decay rates ¯̄ϑj. If different
¯̄θj have widely different magnitudes and/or for suitable multiplicities mj, the sum will
be dominated by different terms at different “times” n. So there will be different phases
of exponential decay, starting with fast decay e−n

¯̄ϑ1 for small n, taken over by slower
decay e−n

¯̄ϑ2 for larger n, and e−n
¯̄ϑ3 for even larger n, etc. though some terms may never

(exclusively) dominate, or phases may be unidentifiably muddled together (see figure
above). In any case, if M = ∞, the dominant terms shift indefinitely to ever smaller θ

for ever larger n. For M <∞ eventually e−n
¯̄ϑM for the smallest ¯̄ϑ will dominate EEn. The

same “caveats” (a)-(d) apply as for M = 1 in the previous paragraph.

Approximations. First, in our subsequent analysis we (can) approximate (1 − θi)n =:
e−nϑi ≈ e−nθi , justified as follows: (i) For nθi � 1 this is an excellent approximation. (ii)
For θi � 1, ϑi ≈ θi, while numerically e−nϑi/e−nθi 6≈ 1 for nθi � 1, but the exponential
scaling of e−nϑi and e−nθi we care about is sufficiently similar. (iii) There can only be
a finite number of θi 6� 1, say, θi for i ≤ i0 are not small, then already for moderately
large n � 1/θi0 , all features i ≤ i0 are observed with high probability and hence do not
contribute (much) to the expected error (formally e−nθi � 1 for i ≤ i0) hence can safely
be ignored in any asymptotic analysis.

Second, let f : R→ R be a smooth and monotone decreasing interpolation of θ : N→
R, i.e. f(i) := θi and f ′(x) ≤ 0. We can then approximate the error as follows:

EEn =
∞∑
i=1

f(i)(1− f(i))n ≈
∫ ∞

1

f(x)e−nf(x)dx

=

∫ θ1

0

ue−nudu

|f ′(f−1(u))|
×
≈ 1

n2|f ′(f−1( 1
n
))|

(4)

The first ≈ uses the two approximations introduced above. The equality follows from
a reparametrization u = f(x) and f(1) = θ1 and f(∞) = 0 and dx = du/f ′(x) and
f ′ < 0. The numerator ue−nu is maximal and (strongly) concentrated around u = 1/n,
hence u ≈ 1/n gives most of the integral’s contribution. Therefore replacing u by 1/n in
the denominator can be a reasonable approximation. The last ≈ follows from this and∫ θ1

0
ue−nudu ≈

∫∞
0
ue−nudu = 1/n2 for nθ1 � 1.

Intuitively, the expected error (2) is dominated by samples i0 for which θi0 ≈ 1
n
. Esti-

mating the number of such i0 multiplied by θi0(1− θi0)n ≈ θi0e
−1 leads to approximation

(4). In Appendix B we show that the approximation error of the integral representation
is bounded by 1/en+ o(1/n).

Zipf-distributed data. Empirically many data have been observed to have a power-law
distribution, called Zipf distribution in this context, that is, for a countable domain the
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frequency of the ith most frequent item is approximately proportional to i−(α+1) for some
α > 0. In our model this will be the case if θi ∝ i−(α+1), so let u = f(x) = α · x−(α+1).
This implies x = f−1(u) = (u/α)−1/(1+α) and f ′(x) = −α(α + 1)x−(α+2) = −α(α +
1)(u/α)(α+2)/(α+1), hence

EEn ≈
1

n2|f ′(f−1( 1
n
))|

×
= n−β, where β :=

α

1 + α

That is, Zipf-distributed data (with power α + 1) lead to a power-law learning curve
(with power β = α

1+α
< 1). The more accurate integral representation leads to the same

power law but with correct coefficient EEn ≈ cαn
−β with cα = α1/(α+1)Γ( α

1+α
)/(α + 1).

c1 = 1
2

√
π =̇ 0.886 and c0.1 = 1.177 in excellent agreement with the fit curves in Figure 2.

Exponentially-distributed data. An exponential data distribution θi ∝ e−γi is more
skewed than any power law. For u = f(x) = γ · e−γx we have x = f−1(u) = 1

γ
ln γ

u
and

f ′(x) = −γ2e−γx = −γu, hence both approximations in (4) give 1/γn. A rigorous upper
bound EEn ≤ (1

e
+ 1

γ
) 1
n

+ o( 1
n
) follows from (11) in Appendix B, and a rigorous lower

bound EEn
×
≥ 1
n

from the next paragraph. So even an exponential data distribution leads
to a power law learning curve, though the exponent 1 is much larger than observed in
(most) experiments, which hints at that data are not exponentially distributed, assuming
this toy model has any real-world relevance.

Beyond exponentially-distributed data. For (quite unrealistic) decay faster than
exponential, e.g. θi ∝ e−γi

2
, the approximations (4) are too crude, but somewhat surpris-

ingly we always get a (sort of) power law as long as θi > 0 for infinitely many i. First,
the previous paragraph implies that EEn

×
≤n−1 for any θi

×
≤e−γi for any γ > 0, i.e. the error

decreases at least with n−1 if the ith item has at most exponentially small probability in i.
For a (partial) converse, define ni := d1/ϑie ≤ 1/ϑi + 1. Plugging ϑi := − ln(1− θi) ≥ θi
and 2θi ≥ ϑi ≥ 1/ni for θi < 0.79 into EEn ≥ θi(1− θi)n = θie

−nϑi we get

EEni ≥ θie
−niϑi ≥ 1

2ni
e−(1/ϑi+1)ϑi ≥ 1

2nie2
×
= n−1

i

Hence, if θi > 0 for infinitely many i, then there are infinitely many n for which EEn
×
≥n−1.

For θi going to zero exponentially or slower, the spacing between ni+1 and ni has bounded
ratio ni+1/ni ≤ eγ, which implies EEn

×
≥n−1 for all n. For faster decaying θi, e.g. θi = e−γi

2

this is no longer the case. So in some weak sense, power law learning curves are universal,
but it’s mostly 1/n, so not useful to explain observed power laws.

5 Learning Curve Variance

So far we have considered expected learning curves. This corresponds to averaging in-
finitely many experimental runs. In practice, only finitely many runs are possible, some-
times as few as 5 or even 1. In the following we consider the variance Vn of the instan-
taneous error En = [[in+1 6∈ i1:n]] as a function of n. The standard error when averaging k
runs is then

√
Vn/k. The question we care most about here is whether (for large n) this

is small or large compared to EEn, because this determines whether learning curves (for
small k) are smooth or look random, and how large k suffices for a good signal-to-noise ra-
tio. We also consider time-average expected learning curves and their variance, which are
much smoother. Note that cumulative errors are like attenuated drifting random walks, a
property time-average learning curves qualitatively inherit (red curve in Figure 1 right).
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Instantaneous Variance. En ∈ {0, 1}, hence E2
n = En, hence

E[E2
n] = E[En] =

∞∑
i=1

θi(1− θi)n =: µn, hence

V[En] = E[E2
n]− E[En]2 = µn(1− µn)

Since µn → 0 for n→∞, the standard deviation

σn :=
√

V[En] =
√
µn(1− µn) ≈ √µn � µn = EEn

That is, the standard deviation is much larger than then mean for large n. Indeed, for
a single run, there is no proper learning curve at all, since En ∈ {0, 1} (see Figures 4&5
top left). In order to get a good signal-to-noise ratio one would need to average a large
(and indeed increasing with n) number k � 1/µn of runs (see Figures 1&4&5).

Time-averaged Mean and Variance. In practice, beyond averaging over runs, other
averages are performed to reduce noise. One alternative is to report the time-averaged
error E, rather than the instantaneous error E. We can calculate its mean and variance
as follows

EN : =
1

N

N−1∑
n=0

En (5)

E[EN ] =
1

N

N−1∑
n=0

E[En] =
1

N

∞∑
i=1

θi

N−1∑
n=0

(1− θi)n
(a)
=

1

N

∞∑
i=1

1− (1− θi)N (6)

E[E
2

N ]
(b)
=

1

N2

∞∑
i=1

[1− (1− θi)N ] +
1

N2

∑
i 6=j

[1− (1− θi)N − (1− θj)N + (1− θi − θj)N ]

V[EN ]
(c)
=

1

N2

∞∑
i=1

(1− θi)N [1− (1− θi)N ] − 1

N2

∑
i 6=j

[(1− θi)N(1− θj)N − (1− θi − θj)N ]

(7)

where (a) is simple algebra, (b) follows from inserting the definition of EN and some
rather tedious algebraic manipulations (see Appendix C), and (c) from inserting (a) and
(b) into the definition of variance and simple algebraic manipulation. We now revisit the
exponential and Zipf case studied earlier, after a trivial but note-worthy observation.

Case θi = [[i = 1]]. In this case in = 1 ∀n, hence E0 = 1 and En = 0 ∀n ≥ 1 and
V[En] = 0 ∀n. This is the fastest any error can decay, 0 after 1 observation, hence the
fastest any time-averaged error can decay is EN = 1/N . This means, for any learning
problem that has instantaneous error decaying faster than 1/N , one should report the
instantaneous error rather than the slower decaying and hence much larger time-averaged
error. Most problems of interest in Deep Learning have much slower learning curves
though, and for those, the time-averaged and the instantaneous error have the same
decay rate, but the time-averaged has lower variance, so is the preferred one to plot or
report.

Case θi = 1
m

[[i ≤ m]]. In this case, while EEn = (1− 1
m

)n ≈ e−n/m decays exponentially,

9



the average quantities decay with 1/N (or 1/N2):

E[EN ] = m
N

[1− (1− 1
m

)N ] −→ m
N

for N →∞
V[EN ] = m2

N2 [ 1
m

(1− 1
m

)N + (1− 1
m

)(1− 2
m

)N − (1− 1
m

)2N ]

→ m
N2 [e−N/m − e−2N/m] → m

N2 e
−N/m for N →∞

σ[EN ] ≈
√
m
N
e−N/2m � m

N
≈ E[EN ] for N � m

The expressions for the mean and variance follow from the general expression (6) and
(7) above, by inserting θi = 1

m
for i ≤ m and noting that i > m, for which θi = 0, give

no contribution, hence
∑

i 1 = m and
∑

i 6=j 1 = m(m − 1), and rearranging terms. The
conclusion most interesting to us is that the standard deviation is (much) smaller than
the mean for N (much) larger than m, so the time-averaged learning curves have a much
better signal-to-noise ratio; see Figure 1. Also σ[EN ] ≈ N−1/2 � 1 ≈ E[EN ] for m� N .
The intuition is easy: For m � N , at ever n < N , a new in+1 is observed, i.e. En = 1
w.h.p. For N � m, all m errors have been made, i.e. EN = m

N
w.h.p, i.e. in both cases

the variance is small. Only for m ≈ N is there sizeable uncertainty in EN . The situation
is similar for the most interesting Zipf case:

Case θi ∝ i−(α+1). Recall that for Zipf-distribution θi ∝ i−(α+1), the expected error
followed power law EEn ≈ cαn

−β, where 0 < β = α
1+α

< 1. The time-averaged error

E[EN ] ≈ 1

N

N∑
n=1

E[En] ≈ cα
N

∫ N

0

n−βdn = c′αN
−β with c′α :=

cα
1− β

= α
1

1+αΓ( α
1+α

)

follows the same power law with the same exponent β, which is a generic property as
foreshadowed earlier. As for the variance, we show in Appendix C that

E[E
2

N ]
×
≈ E[EN ]2, V[EN ]

×
≈ N−

1+2α
1+α , hence

σ[EN ]
×
≈ N−

1/2+α
1+α � N−

α
1+α

×
≈ E[EN ]

In particular, the signal-to-noise ratio is
σ[EN ]

E[EN ]

×
≈ N−1/(2+2α)

That is, the standard deviation is much smaller than then mean. A single run suffices
to get a good (and excellent for n & 500) signal-to-noise ratio for the averaged and
cumulative error (see Figures 2&3&6 (right) and Figures 4&5 (top left)). Still, the infinite
Zipf model leads to a more noisy learning curve than the finite uniform model. Intuitively,
for every N , new iN+1 6∈ i1:N have small but sufficient chance, contributing to the error
and variance, decreasing exponentially in the uniform model, but only as a power law in
the Zipf model.

General θ Case. One can show that the signal-to-noise ratio for the time-averaged
error improves with N in general for any choice of θ. First note that the argument of∑

i 6=j[...] in (7) is non-negative, hence the variance is upper-bounded by the first
∑

i.

Using 1− (1− θi)N ≤ θiN , we get V[EN ] ≤ 1
N
EEN , so the

signal-to-noise ratio is
σ[EN ]

E[EN ]
≤
√

1
N
EEN

E[EN ]
=

√
NEEN∑N−1
n=0 EEn

→ 0 for N →∞
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To prove the limit→ 0 we have to distinguish two cases: First note that EEn is monotone
decreasing (EEn↘). (i) For bounded total error

∑∞
n=0 EEn ≤ c (e.g. exponential error

decay in finite models), EEn↘ implies EEN = o(1/N), which implies that the numerator
tends to 0; the denominator is lower-bound by EE0 = 1. (ii) For unbounded total error∑N−1

n=0 EEn → ∞ (most infinite models, e.g. Zipf and even exponential θi), we factor
the denominator as

∑N−1
n=0 EEn ≡

√
ΣN−1
n=0 EEn ·

√
ΣN−1
n=0 EEn and lower-bound one term by∑N−1

n=0 EEn ≥ NEEN , which is true since EEn↘.

6 Experiments
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Figure 1: (Learning Curves) (left) for uniform data distribution P[in = i] = θi = 1
m

for i ≤ m = 10 averaged over k = 100 runs. (right) for Zipf-distributed data P[in = i] =
θi ∝ i−(α+1) for α = 1 averaged over k = 10 runs. See Figures 4 and 5 for more plots for
k = 1, 10, 100, 1000.
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Figure 2: (Power Law fit to Zipf-Distributed Data) for Zipf-distributed data P[in =
i] = θi ∝ i−(α+1) for α = 1 (left) and α = 0.1 (right); averaged over infinitely many runs
(dots), for fitted β̂ (solid) and theoretical β = α

1+α
(dash), and empirical error for a single

run (k = 1, dashdot).

We performed some control experiments to verify the correctness of the theory and
claims, and the accuracy of the theoretical expressions.

Uniform and Zipf-distributed data. Figures 1 and4 plot learning curves for uniformly
distributed data P[in = i] = θi = 1

m
for i ≤ m = 10 averaged over k = 1, 10, 100, 1000
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Figure 3: (Word-Frequency in Text File, Learning Curve, Power Law) (left)
Log-linear plot of the relative (left scale) and absolute (right scale) frequency of words in
the first 20469 words in file ‘book1’ of the Calgary Corpus, and fitted Zipf law. (right)
Power law fit to learning curve for this data set for a word classification task.

runs. Figure 1 and 5 plot learning curves for Zipf-distributed data P[in = i] = θi ∝ i−(α+1)

for α = 1, also averaged over k = 1, 10, 100, 1000 runs. In both cases, 1000 synthetic data
sets D50 have been generated, and the average is taken over k of them. Various errors are
plotted as functions of the sample index/size n. The crosses are the instantaneous errors
En averaged over k runs. The black curves are the exact expected instantaneous error
EEn. The shaded regions are 1 standard deviation σn/

√
k from the theory (not empirical).

Similarly the blue dots, lines, and shadings are the time-averaged errors EN , their exact
expectation E[EN ] and theoretical standard error

√
V[EN ]/k. The red triangles, lines, and

shadings are the empirical cumulative errors
∑N

n=0 E[n] ≡ NEN , their exact expectation∑N
n=0 EE[n] ≡ NE[EN ], and theoretical standard error. The dashed lines connecting the

empirical errors are for better visibility (only).

Fitting power laws to learning curves. We now fit power laws to the learning
curves of (exactly) Zipf distributed data. Figure 2 shows fits for synthetic data with
Zipf-exponents α = 1 and α = 0.1. The fit is “perfect” except for very small values of
n. This is consistent with our approximation, which is good for nθ1 � 1. Theoretically
we expect and empirically we found the approximation (4) to be good for nθ1 & 2. For
α = 1 we have θ1 = 0.5, hence the approximation should be good for n & 4, while for
α = 0.1 we have θ1 =̇ 0.067, hence the approximation should be good for n & 30; both
are consistent with the plots. To avoid clutter we only present expected curves. They
perfectly match the averaged curves over infinitely many runs anyway (see Figures 1&5).
The fitted power law exponents β̂ are also close to the theoretical predictions β = α

1+α

(1
2

= 0.5 for α = 1 and 1
11

=̇ 0.091 for α = 0.1).

Text data. It is well-known that the frequency of a word in typical texts is about
inversely proportional to its rank in the frequency table: The most frequent word (‘the’)
occurs about twice as often as the second most frequent word (‘a’), about three times as
often as the third most frequent word, and so on. That is, word frequency follows a Zipf
distribution with α ≈ 0. Figures 3&6 (left) show the frequency distributions of the first
20469 words in file ‘book1’ of the Calgary Corpus. Apart from the steps, caused by word
frequencies being integers, the distribution is very close to Zipf. Note that more than half
of the words only appear once. Figures 3 (right) shows the learning curves for any word
classification task. The power-law fit is reasonably good, but not perfect. The reason is
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the step structure of especially rare words. Indeed, many θs are equal, and only finitely
many are non-zero, so the learning curve is a finite superposition of exponentials as in
(3). For moderate n this mixture amalgamates to an approximately power law. For large
n, the error decays exponentially as exp(−θminn). Indeed, for larger n, Figures 6 shows
that the power fit becomes worse, and the true error decays faster than the fit power law.
Note that for α ≤ 0, i−(α+1) is not summable, hence any such distribution must break
down after some i, our approximation becomes invalid, and β ≤ 0 makes no sense in any
case.

7 Extensions

In the following we discuss some potential extensions of the toy model. Some look feasible,
others are hard or wishful thinking. We discuss the more realistic case of noisy labels,
other loss functions, continuous features, and more realistic models that generalize, e.g.
deep learning algorithms.

Noisy labels. In most machine learning applications, labels (or more general targets)
are themselves noisy, not just the feature vector x ∈ X , e.g. y = h(x)+Noise. The major
implications are as follows:

(a) The learning algorithms need to be a bit smarter than just memorization,
e.g. predicting the average or by majority.

(b) Due to the label noise, the error cannot converge to 0 anymore but to the intrinsic
“entropy”, which should be subtracted before studying scaling.

(c) For absolute (locally quadratic) loss there will be an extra n−1/2 (n−1) additive error
term due to parameter estimation error, hence

(d) the instantaneous loss will not decay exponentially anymore even if the model is
finite.

(e) Otherwise the scaling laws for Zipf data are unchanged.

In summary, the error/loss should be a sum of 3 terms, at least conceptually:

(1) The parameter learning rate n−1/2 for absolute loss, squared, i.e. n−1 for (locally)
quadratic loss,

(2) the same power law n−β as in the deterministic case,
(3) the inherent entropy in the data.

In Appendix E we verify claims (b,c,d,e) for our toy model extended to noisy binary
classification for square and absolute loss. What is remarkable is that the instantaneous
square loss Lossn(A) for noisy labels turns out to include a term proportional to the time-
averaged (0-1) error E[En] =(6) in the deterministic case. But this “magically” ensures
(c,d,e), since E[En]

×
≈max{EEn, 1

n
}, at least for the choices of θ discussed in Section 4. For

instance, for a finite model, Lossn(A)
×
≈E[En]

×
≈ 1
n
.

Other loss functions. For our deterministic toy model, the loss function has little to
no influence on the results as discussed in Appendix A. For noisy labels, this also seems
to be the case, except that n−β0 is now the fastest possible decay, with β0 depending on
the loss-function: β0 = 1

2
for absolute loss and β0 = 1 for locally quadratic loss such as

KL and square. Loss functions with any (other) value of β0 > 0 are possible but rare.
This is another potential universality of scaling laws, their independence from the loss
function for large models.
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Continuous features. Countable feature spaces have some applications, e.g. in NLP,
words can be identified with integer features i ∈ N. In most applications, feature spaces
are (effectively) continuous, often vector spaces Rd, and no feature ever repeats exactly
(xn 6= xm for n 6= m). A simple model with a continuous domain is the Dirichlet Pro-
cess, or the essentially equivalent Chinese Restaurant Process (CRP) and Stick-Breaking
process. In the CRP, the continuous domain is essentially reduced to an exponentially
distributed countable number of sticks=features, leading to power law learning curves
n−β, but the exponent is restricted to β = 1, which is too limiting. But even the CRP
is not exactly a special case of our toy model and much harder to analyse. In some form
of “mean-field” approximation it reduces to a special case of our model. The generalized
2-parameter Poison Dirichlet Process [BH10] also only leads to β = 1. Finding analyt-
ically tractable models with continuous features that exhibit interesting learning curves
remains an open problem.

Generalizing algorithms. Proper models/algorithms for continuous features need to
generalize from observed inputs to similar future not-yet-observed inputs, which is at
the heart of virtually all interesting machine learning model/algorithms. Such models
are much more varied and harder to analyze. If the domain could be partitioned into
countably many cells, each cell containing only sufficiently similar features, and this can
be done a-priori and is fixed independent of the actually realized data Dn and most
importantly independent of the data size n, we arrive back at our countable toy model
(usually with noisy labels) and our analysis (nearly) applies. But it is more plausible
that a suitable partitioning, e.g. clustering of data, is in itself data (size) dependent, and
hence will affect the scaling. The ‘perfect prediction for exact repetition’ in our toy
model can be viewed as an abstraction of ‘classify features in the same cell alike’ which
itself is a toy model for ‘classify similar observations alike or similarly’, so maybe some
of our findings or analysis tools approximately transfer.

Deep learning. (Deep) neural networks are a particularly powerful class of mod-
els/algorithms that can generalize, but are also notoriously difficult to theoretically anal-
yse. It may be a long way from our toy model to a similar analysis of NNs. Furthermore
we have not at all considered the equally interesting questions of scaling with model size
and compute.

8 Discussion

Summary. We introduced a very simple model that can exhibit power laws (decrease
of error with data size) consistent with recent findings in deep learning. The model is
plausibly the simplest such model, and that choice was deliberate to not get bogged
down with intractable math or forced into crude approximations or bounds at this early
stage of investigation. Many but not all data distributions lead to power laws. We do
not know whether the discovered specific relation between the Zipf exponent α and the
power law exponent β = α/(1 + α) is an artifact of the model, or has wider validity
beyond this model. The signal-to-noise ratio for the time-averaged error tend to zero,
which implies that a single experimental run suffices for stable results. Together with
arguments laid out by [Hut06] for log-loss, this suggests that model selection should be
based on cumulative (AUC) error, rather than final test error.

Limitations. The toy model studied in this work is admittedly totally unrealistic as
a Deep Learning model, but we believe it captures the (or at least a) true reason for
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the observed scaling laws w.r.t. data. Whether it has any predictive power, or can be
generalized to NNs and/or scaling laws for model size and/or compute, is beyond the scope
of this paper. We hope that this initial investigation spurs more advanced theoretical
investigations, and ultimately lead to predictive models. We have outlined some ideas in
Section 7, some (more) are hopefully feasible. In any case, finding the simplest model
which captures the essence is a necessary first step, and we believe our toy model fits this
bill.

Applications. Besides providing scientific insight, a good theoretical understanding
of scaling laws could ultimately help choosing network architecture (depth, with, and
beyond) and (network and optimization algorithm) hyper-parameters in a more principled
way [CJS+93] than expensive hyper-parameter sweeps. It might also help with many
other choices in fine-tuning, data augmentation, pre-training, etc. [HGLS20]. Being able
to extrapolate the consequences of such choices from cheap training on a small subset of
the data to the whole corpus by simply fitting power laws can save significant compute.
The cost of training recent models has reached millions of dollars and can exhaust and
exceed even FAANGs computational resources.

Acknowledgements. I thank David Budden and Jörg Bornschein for encouraging me
to look into the topic of scaling laws, and for interesting discussions.
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[Bub15] Sébastien Bubeck. Convex Optimization: Algorithms and Complexity. Foundations
and Trends® in Machine Learning, 8(3-4):231–357, 2015.

[Cha81] Anne Chao. On Estimating the Probability of Discovering a New Species. Annals
of Statistics, 9(6):1339–1342, November 1981.

[Cho20] Kyunghyun Cho. Scaling laws of recovering Bernoulli, November 2020. Blog Post
http://kyunghyuncho.me/scaling-law-of-estimating-bernoulli/.

[CJS+93] Corinna Cortes, LD Jackel, Sara A Solla, Vladimir Vapnik, and John S Denker.
Learning curves: Asymptotic values and rate of convergence. In Proceedings of
the 6th International Conference on Neural Information Processing Systems, pages
327–334, 1993.

[DHM89] Ronald A. DeVore, Ralph Howard, and Charles Micchelli. Optimal nonlinear ap-
proximation. manuscripta mathematica, 63(4):469–478, December 1989.

[GPS18] Andras Gyorgy, David Pal, and Csaba Szepesvari. Online Learning: Algorithms
for Big Data. 2018.

15



[Haz16] Elad Hazan. Introduction to Online Convex Optimization. 2016.

[HGLS20] Derek Hoiem, Tanmay Gupta, Zhizhong Li, and Michal M. Shlapentokh-Rothman.
Learning Curves for Analysis of Deep Networks. arXiv:2010.11029 [cs, stat], Oc-
tober 2020.

[HKHM21] Danny Hernandez, Jared Kaplan, Tom Henighan, and Sam McCandlish. Scaling
Laws for Transfer. arXiv:2102.01293 [cs], February 2021.

[HKK+20] Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob
Jackson, Heewoo Jun, Tom B. Brown, Prafulla Dhariwal, Scott Gray, Chris Hallacy,
Benjamin Mann, Alec Radford, Aditya Ramesh, Nick Ryder, Daniel M. Ziegler,
John Schulman, Dario Amodei, and Sam McCandlish. Scaling Laws for Autore-
gressive Generative Modeling. arXiv:2010.14701 [cs], November 2020.

[HNA+17] Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun,
Hassan Kianinejad, Md Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep
Learning Scaling is Predictable, Empirically. arXiv:1712.00409 [cs, stat], December
2017.

[Hut06] M. Hutter. Human knowledge compression prize. open ended,
http://prize.hutter1.net/, 2006.

[JN17] Mark Johnson and Dat Quoc Nguyen. How much data is enough?
Predicting how accuracy varies with training data size, September 2017.
http://web.science.mq.edu.au/˜mjohnson/papers/Johnson17Power-talk.pdf.

[KMH+20] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess,
Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling
Laws for Neural Language Models. arXiv:2001.08361 [cs, stat], January 2020.

[Mha96] H. N. Mhaskar. Neural Networks for Optimal Approximation of Smooth and Ana-
lytic Functions. Neural Computation, 8(1):164–177, January 1996.

[Pin99] Allan Pinkus. Approximation theory of the MLP model in neural networks. Acta
Numerica, 8:143–195, January 1999.

[RRBS19] Jonathan S. Rosenfeld, Amir Rosenfeld, Yonatan Belinkov, and Nir Shavit. A
Constructive Prediction of the Generalization Error Across Scales. In International
Conference on Learning Representations, September 2019.

[SB14] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From
Theory to Algorithms. Cambridge University Press, New York, NY, USA, 2014.

[SK20] Utkarsh Sharma and Jared Kaplan. A Neural Scaling Law from the Dimension of
the Data Manifold. arXiv:2004.10802 [cs, stat], April 2020.

16



A Other Loss Functions

We can (slightly) generalize the learning algorithm A to other loss functions and behaviors
on in+1 6∈ i1:n. We continue to assume that A′ suffers Lossn = 0 if i ∈ i1:n by using stored
Dn. Assume A′ suffers Lossn if in+1 6∈ i1:n, then

E[Lossn] = E[Lossn|in+1 6∈ i1:n] · P[in+1 6∈ i1:n] + 0 · P[i ∈ i1:n] = E[Lossn|in+1 6∈ i1:n] · EEn

The second factor EEn is our primary object of study. The first factor is often constant
or bounded by constants: For instance for A in (1), Lossn = 1 if in+1 6∈ i1:n, hence
E[Lossn] = EEn. Assume a classification problem with K labels Y = {0, ..., K − 1}, and
modify A to randomize its output (samples y ∈ Y uniformly) if in+1 6∈ i1:n, then there is a
1/K chance to accidentally predict the correct label, hence E[Lossn|in+1 6∈ i1:n] = 1−1/K,
where the expectation is now also w.r.t. the algorithm’s randomness. For continuous Y
and if A′ samples y from any (non-atomic) density over Y if in+1 6∈ i1:n, the probability of
accidentally correctly predicting yn+1 is 0, hence E[Lossn] = EEn. For binary classification
(K = 2) we could also let A′ predict y = 1

2
and use absolute loss Lossn = |y − yn+1|, in

which case E[Lossn|in+1 6∈ i1:n] = 1
2
. If A′ instead samples y uniformly from [0; 1], then

E[Lossn|in+1 6∈ i1:n] =
∫ 1

0
|y − yn+1|dy = 1

4
. If also Y = [0; 1], then E[Lossn|in+1 6∈ i1:n] =∫ 1

0
|y − yn+1|dy = 1

4
+ (1

2
− yn+1)2, hence 1

4
EEn ≤ E[Lossn] ≤ 1

2
EEn.

More generally, for any compact and uniformly rounded set Y ⊆ Rd, for any loss of
the form Lossn := `(||y−yn+1||), for any norm || · ||, for any continuous strictly increasing
` ≥ 0, and A′ sampling y from any density pA′(y) > 0 over Y if in+1 6∈ i1:n, we will show
that for some constants c1, c2 > 0,

c1EEn ≤ E[Lossn] ≤ c2EEn, or E[Lossn]
×
= EEn for short

and this fact holds even more generally. Since a multiplicative constant in the loss is
irrelevant from a scaling perspective, all scaling results for EEn also apply to this (slightly)
more general setting.

The proof of this is as follows: A uniformly rounded set by definition can be rep-
resented as a union of ε-balls Bε(ỹ) := {y : ||y − ỹ|| ≤ ε} for some fixed ε > 0, i.e.
Y =

⋃
ỹ∈Ỹ Bε(ỹ) for some Ỹ . Then

E[Lossn|in+1 6∈ i1:n] =

∫
Y
`(||y − yn+1||)pA′(y)dy (8)

(a)

≥ δ

∫
Bε(ỹ)

`(||y − yn+1||)dy

(b)

≥ δ

∫
Bε(yn+1)

`(||y − yn+1||)dy

(c)
= δ

∫
Bε(0)

`(||z||)dz =: c1

(d)
> 0

In (a), ỹ ∈ Ỹ is chosen such that yn+1 ∈ Bε(ỹ) ⊆ Y , and pA′ > δ > 0, since pA′ > 0
and Y is compact. In (b), Bε(yn+1) can be obtained from Bε(ỹ) by cutting out the moon
Bε(ỹ) \ Bε(yn+1), and point-mirroring the moon at 1

2
(ỹ + yn+1). The flip brings every

point closer to yn+1, hence decreases the integral since ` is monotone increasing. (c) just
recenters the integral, which now is obviously independent of yn+1. It is non-zero (d),
since ` is strictly increasing. Since ` is continuous and Y is compact, ` is upper bounded
by `max <∞. This immediately implies (8) is upper bounded by c2 := `max <∞.
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B Derivation and Approximation of Expectation

Expectation. 2012(2a-d) Recall the error of (the basic form of) Algorithm A is En =
[[in+1 6∈ i1:n]]. Hence the probability that Algorithm A makes an error under distribution
θ given data Dn is

E[En|Dn] = P[A(in+1,Dn) 6= yn+1|Dn] =
∑
i 6∈i1:n

P[in+1 = i] =
∑
i 6∈i1:n

θi (9)

The expectaion of this w.r.t. Dn is

EEn := E[En] = E[E[En|Dn]] =
∑
i1:n

P[A(in+1,Dn) 6= yn+1|Dn]P[Dn]

=
∑
i1:n

( ∑
i 6∈i1:n

θi

) n∏
t=1

θit =
∑
i1:n

( ∞∑
i=1

[[i 6= i1 ∧ ... ∧ i 6= in]]θi

) n∏
t=1

θit

=
∞∑
i=1

θi
∑
i1:n

n∏
t=1

[[i 6= it]]θit =
∞∑
i=1

θi

n∏
t=1

∑
it 6=i

θit =
∞∑
i=1

θi(1− θi)n

The result can actually more easily be derived as

EEn = P[in+1 6∈ i1:n] =
∞∑
i=1

P[in+1 = i ∧ i1 6= i ∧ ... ∧ in 6= i]

=
∞∑
i=1

P[in+1 = i]
n∏
t=1

P[it 6= i] =
∞∑
i=1

θi(1− θi)n (10)

but the former derivation is more suitable for generalization to other loss functions and
noisy labels.

Approximation. Let f : (0;∞)→ (0;∞) be a continuously differentiable and decreas-
ing extension of θ : N→ R, i.e. f(i) := θi and f ′(x) < 0. Let g(x) := f(x)e−nf(x). Since
u 7→ ue−nu is unimodal with maximum 1/en and at u = 1/n and f is monotone, g(x) is
unimodal with maximum gmax = 1/en at xmax = f−1( 1

n
). We hence can use (18) (any

a ∈ [0; 1]) to upper bound the sum in (10) by an integral as follows:

EEn
(10)
=

∞∑
i=1

θi(1− θi)n ≤
∞∑
i=1

θie
−nθi =

∞∑
i=1

f(i)e−nf(i)

(18)

≤ gmax +

∫ ∞
a

f(x)e−nf(x)dx =
1

en
+

∫ f(a)

0

ue−nudu

|f ′(f−1(u))|

where the last equality follows from a reparametrization u = f(x) and f(∞) = 0 and
dx = du/f ′(x) and f ′ < 0.

For a lower bound, we need a lower bound on (1− θi)n. For 0 ≤ x ≤ 2ε we have

e−x ≤ 1− x+ 1
2
x2 = 1− (1− 1

2
x)x ≤ 1− (1−ε)x

Inserting x = θi/(1− ε), we get

1− θi ≥ e−θi/(1−ε) for θi ≤ 2ε(1− ε)

18



Let i0 be an index such that θi0 ≤ 2ε(1− ε). We define ñ := n/(1− ε). That ñ is not an
integer is no problem, and could even be avoided by renormalizing θi instead. Similarly
as for the upper bound, we get a lower bound

EEn ≥
∞∑
i=i0

θi(1− θi)n ≥
∞∑
i=i0

θie
−ñθi = −

i0−1∑
i=1

θie
−ñθi +

∞∑
i=1

θie
−ñθi

≥ −
i0−1∑
i=1

θie
−ñθi0 − g̃max +

∫ ∞
a

f(x)e−ñf(x)dx

≥ − e−ñθi0 − 1

eñ
+

∫ f(a)

0

ue−ñudu

|f ′(f−1(u))|

For θi not decaying faster than exponential, i.e. if θi ≥ γθi−1 ∀i for some γ < 1, there
always exist i0 such that 2γε(1− ε) ≤ θi0/ ≤ 2ε(1− ε). This finally leads to

EEn ≥ − e−2γεn − 1

en
+

∫ f(a)

0

ue−ñudu

|f ′(f−1(u))|

Since we can choose ε arbitrarily small, combining both bounds, and choosing a→ 0 and
f such that f(x)→∞ for x→ 0, we have∣∣∣EEn − EE

∫
n

∣∣∣ ≤ 1

en
+ o(1/n) with EE

∫
n :=

∫ ∞
0

ue−nudu

|f ′(f−1(u))|
(11)

The integral is dominated by u . 1
n
, so for large n is determined by the asymptotics of

f ′(f−1(u)) for u→ 0. Assume

|f ′(f−1(u))| ≈ c′uδ for u→ 0 for some c′ and δ (12)

Substitution u = v/n leads to

EE
∫
n ≈

∫ ∞
0

ue−nu

c′uδ
du =

nδ−2

c′

∫ ∞
0

v1−δe−vdv = Γ(2−δ)
c′

nδ−2 (13)

where Γ is the Gamma function.

Zipf distribution. For Zipf-distributed θi = αi−(α+1), let u = f(x) = α · x−(α+1). This
implies

x = f−1(u) = (u/α)
− 1

1+α and f ′(x) = −α(α + 1)x−(α+2) = −α(α + 1)(u/α)
α+2
α+1

hence approximation (12) is actually exact with δ = α+2
α+1

and c′ = α(α + 1)/α(α+2)/(α+1)

leading to

EE
∫
n = cαn

−β with cα = Γ(2−δ)
c′

= α1/(1+α)

1+α
Γ( α

1+α
) and β = δ − 2 = α

1+α

Note that ñ−β = n−β + o( 1
n
) for e.g. ε = 2

n
lnn, and e−εn = 1/n2. Numerically one can

check that cα ≤ 1.214 for all α > 0 and cα ≥ 0.886 for (the interesting) α ≤ 1, that is, cα
is nearly independent of α. c1 = 1

2

√
π =̇ 0.886 and c0.1 = 1.177 are in excellent agreement

with the fit curves in Figure 2.
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C Time-Averaged Expectation and Variance

Time-averaged expectation. We now consider the time-averaged error

EN : =
1

N

N−1∑
n=0

En

We derive the expressions for its expectation E[EN ] and variance V[EN ] stated in Section 5.
The expectation is trivial:

E[EN ] =
1

N

N−1∑
n=0

E[En] =
1

N

∞∑
i=1

θi

N−1∑
n=0

(1− θi)n =
1

N

∞∑
i=1

[1− (1− θi)N ]

Time-averaged variance. For the variance, we first compute E
2

N , then E[E
2

N ], then

V[EN ] = E[E
2

N ]− E[EN ]2:

E
2

N =
1

N2

N−1∑
n=0

N−1∑
m=0

EnEm
(b)
=

2

N2

N−1∑
n=0

n−1∑
m=0

EnEm +
1

N2

N−1∑
n=0

E2
n

where (b) breaks up the double sum into lower=upper and diagonal terms. Since m < n
we have

En · Em = [[in+1 6∈ i1:n]] · [[im+1 6∈ i1:m]]

=
∞∑
i=1

[[in+1 = i ∧ in 6= i ∧ ... ∧ i1 6= i]] ·
∞∑
j=1

[[im+1 = j ∧ im 6= j ∧ ... ∧ i1 6= j]]

=
∑
i,j

[[in+1 = i ∧ in 6= i ∧ ... ∧ im+2 6= i ∧ im+1
= j

6= i
∧ im
6= j

6= i
∧ ... ∧ i1

6= j

6= i
]]

For i = j, im+1
=j
6=i (meaning im+1 = j ∧ im+1 6= i) is a contradiction, so we can limit

the sum to i 6= j. Taking the expectation and noting that En ∈ {0, 1} and all it are
independent and P[it = i] = θi we get

E[En · Em] =
∑
i 6=j

P[in+1 = i]P[in 6= i]...P[im+2 6= i]P[im+1
= j

6= i
]P[im

6= j

6= i
]...P[i1

6= j

6= i
]

=
∑
i 6=j

θi(1− θi)n−m−1θj(1− θi − θj)m, hence

E[
N−1∑
n=0

n−1∑
m=0

EnEm] =
∑
i 6=j

bijN = 1
2

∑
i 6=j

bijN + bjiN , where
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bijN :=
N−1∑
n=0

n−1∑
m=0

θi(1− θi)n−m−1θj(1− θi − θj)m

= θiθj

N−1∑
m=0

(1− θi − θj)m
N−1∑

n=m+1

(1− θi)n−m−1

= θiθj

N−1∑
m=0

(1− θi − θj)m
1

θi
[1− (1− θi)N−m−1]

= θj

N−1∑
m=0

(1− θi − θj)m − θj(1− θi)N−1

N−1∑
m=0

(1− θi − θj
1− θi

)m
= θj

1

θi + θj
[1− (1− θi − θj)N ] − θj(1− θi)N−1 1− θi

θj

[
1−

(1− θi − θj
1− θi

)N]
=

θj
θi + θj

[1− (1− θi − θj)N ] − (1− θi)N + (1− θi − θj)N , hence

bijN + bjiN = 1− (1− θi)N − (1− θj)N + (1− θi − θj)N

The diagonal term is easy:

1

N2

N−1∑
n=0

E[E2
n] =

1

N2

N−1∑
n=0

E[En] =
1

N

N−1∑
n=0

E[EN ] =
1

N2

∞∑
i=1

1− (1− θi)N

Putting everything together, non-diagonal i 6= j and diagonal i = j expressions we get
our final expression

E[E
2

N ] =
1

N2

∑
i 6=j

[1− (1− θi)N − (1− θj)N + (1− θi − θj)N ] +
1

N2

∞∑
i=1

[1− (1− θi)N ]

In order to get the variance of EN we have to subtract the squared expected error

E[EN ]2 =
( 1

N

∞∑
i=1

1− (1− θi)N
)2

=
1

N2

∑
i,j

[1− (1− θi)N ] · [1− (1− θj)N ]

=
1

N2

∑
i 6=j

[1− (1− θi)N − (1− θj)N + (1− θi)N(1− θj)N ]

+
1

N2

∞∑
i=1

[1− 2(1− θi)N + (1− θi)2N ]

where we expanded the product and separated the i 6= j from the i = j terms, which now
easily leads to

V[EN ] = E[E
2

N ]− E[EN ]2

=
1

N2

∑
i 6=j

[(1− θi − θj)N − (1− θi)N(1− θj)N ] +
1

N2

∞∑
i=1

[(1− θi)N − (1− θi)2N ]

Approximation. We can approximate the variance similarly to the expectation EEn. We
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only provide a heuristic derivation analogous to (4):

V[EN ]
(a)
≈ 1

N2

∑
i 6=j

[e−(θi−θj)N − e−θiNe−θjN ] +
1

N2

∞∑
i=1

[e−θiN − e−2θiN ]

(b)
≈ 0 +

1

N2

∫ ∞
1

e−f(x)N − e−2f(x)Ndx
(c)
=

1

N2

∫ θ1

0

e−uN − e−2uN

|f ′(f−1(u))|
du

(d)×
≈ 1

N2|f ′(f−1( ln 2
N

))|

∫ θ1

0

e−uN − e−2uNdu
(e)
≈ 1

2N3|f ′(f−1( ln 2
N

))|
×
≈ 1

2N
EEN

{ ×
≈ 1

N
E[EN ] if EEN

×
≈N−β

≤ 1
2N

E[EN ] always

(a) follows from 1−θi ≈ e−θi , (b) by setting f(i) := θi, and replacing the sums by integrals,
(c) follows from a reparametrization u = f(x) and f(1) = θ1 and f(∞) = 0 and dx =
du/f ′(x) and f ′ < 0. The numerator e−uN−e−2uN is maximal and (strongly) concentrated
around u = ln 2/n, hence u ≈ ln 2/n gives most of the integral’s contribution. Therefore
in (d) replacing u by ln 2/n in the denominator can be a reasonable approximation. (e)

follows from
∫ θ1

0
... ≈

∫∞
0
... = 1/2N for θ1N � 1. We could use this approximation

for various concrete f , but if we substitute u = 1/N instead of ln 2/N in (d) we only
make a multiplicative error (×), and the expression nicely reduces to the instantaneous
expected error EEN . For slowly decreasing error EEN

×
≈N−β, we have E[EN ]

×
≈E[EN ]. In

general E[EN ] ≤ E[EN ], since EEn is monotone decreasing.

D Upper Bound for SubExponential Distribution

Here we show that EE
∫
n

×
≤ 1
n

for θi
×
≤e−γi, hence also EEn

×
≤ 1
n

by (11). Interestingly, the
standard approximation technique of splitting integrals over f (naturally at u = f(x) =
1/n or otherwise) and bounding each, only leads to a cruder O( 1

n
lnn). To get 1

n
, we

will maximizing EE
∫
n [f ] =

∫
f(x)e−nf(x)dx w.r.t. f under constraints

∫
f(x) = 1 and

f(x) ≤ f(x) := be−γx. This can be done by Lagrange multipliers, or more formally using
the Karush–Kuhn–Tucker saddle-point theorem: A necessary condition is that variational
derivative of

Ln[f ] :=

∫ ∞
0

f(x)e−nf(x)dx+ λn

[ ∫ ∞
0

f(x)dx− 1

]
−
∫ ∞

0

µn(x) max{0, f(x)−f(x)}dx

w.r.t. f is 0 for some µn(x).

δLn[f ]

δf(x)
= [1− nf(x)]e−nf(x) + λn − µn(x)[[f(x) ≥ f(x)]]

!
= 0

For all x for which f(x) < f(x), this implies that f must be the same, i.e. f(x) = c. For
all x for which f(x) ≥ f(x), the constraints imply f(x) = f(x). Jointly this implies that
f(x) = min{c, f(x)} =: f ∗(x), and that this is an extremal point of EE

∫
n [f ]. Since ue−nu

has a unique extremal point, and this is a maximum, this implies that f ∗ maximizes
EE

∫
n [f ]. Let xc := 1

γ
ln b

c
be the transition point where c = f(xc) = be−γxc . Now we can

split the integral for f ∗ get the desired result. The reason this now works is because the
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splitting point xc is independent of n, while for f it had to depend on n:

EE
∫
n [f ] ≤ EE

∫
n [f ∗] =

∫ xc

0

ce−ncdx+

∫ ∞
xc

f(x)e−nf(x)dx

≤ xcce
−nc +

∫ ∞
0

f(x)e−nf(x)dx

(a)
= xcce

−nc +
1

γn

(b)

≤ xc
n

+
1

γn

(c)
=

1

γn
[1 + ln b

c
] = O( 1

n
)

(a) follows from change of variables x ; u := f(x) and computing the integral as done
before in the exponential case. (b) follows from ce−nc ≤ 1

n
∀c. (c) follows from inserting

xc.
The constant c is actually determined by∫ ∞

0

f(x)dx =

∫ xc

0

cdx+

∫ ∞
xc

be−γxdx = xcc+
b

γ
e−γxc =

c

γ
ln
b

c
+
c

γ
!

= 1

One can show that this requires c ≈ γ/ ln b for large b. For a (cruder) bound: The integral
increases with c for the relevant range c < b, and inserting c = γ/b reveals that

∫
< 1 for

b > [1 − ln γ]−1 and γ < e, hence solution c∗ ≥ γ/b, leading to EE
∫
n [f ] ≤ 1

γn
[1 + ln(b2/γ)]

with a rather mild dependence on b.

E Noisy Labels

Here we generalize our model to noisy labels. We first derive generic expression expres-
sions for (somewhat) general algorithm and loss. We then instantiate them for frequency
estimation and square loss. Finally we outline how to derive similar expressions for the
absolute loss.

General loss. Consider a binary classification problem where labels yt ∈ {0, 1} are
noisy. Let γi := P[yt = 1|it = i] be the probability that feature i ∈ N is labelled as 1. The
probability of observing feature i itself remains θi := P[it = i] as in the deterministic case.
Algorithm Ai := A(i,Dn) ∈ [0; 1] now aims to predict γi. The square loss if predicting
Ai while the true label is y, and its expectation w.r.t. γi, are

Lossn(A|Dn, in+1 = i, yn+1 = y) = (y − Ai)2

Lossn(A|Dn, in+1 = i) = γi(1− Ai)2 + (1− γi)(0− Ai)2 = (γi − Ai)2 + γi(1− γi)

The most naive learning algorithm would predict γi from observed frequencies: Ai = ki/ni
if feature i occurred ni := #{t ≤ n : it = i} times and has label 1 for ki := #{t ≤ n : it =
i, yt = 1} times. Obviously ki/ni → γi provided ni → ∞, hence Lossn(A|Dn, in+1 = i)
converges to the intrinsic label “entropy” γi(1 − γi), rather than to 0, which has to be
subtracted for a power law analysis to make sense. Similarly the expectation of log-loss
−y lnAi− (1− y) ln(1−Ai) w.r.t. γi leads to Kullback-Leibler loss KL(γi||Ai) + Entropy
H(γi). More generally let us assume A(i,Dn) depends (somehow) only on ki and ni (e.g.
Laplace rule), and hence

Lossn(A|Dn, in+1 = i) = `(γi, Ai) = `(γi, ki, ni) = Lossn(A|ki, ni, in+1 = i)
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for some function `. We now take the expectation over Dn:

Li := Lossn(A|in+1 = i)

=
∑
Dn

Lossn(A|Dn, in+1 = i)P[Dn]

=
n∑

ni=0

ni∑
ki=0

(∑
Dn:ki,ni

P[Dn]

)
`(γi, ki, ni)

where
∑
Dn:ki,ni

means that the sum is restricted to Dn for which i ((i, 1)) appears ni (ki)
times. The probability of each of this happening is binomial:

∑
Dn:ki,ni

P[Dn] =
∑
i1:n:ni

P[i1:n]
∑
y1:n:ki

P[y1:n|i1:n] =
(
n
ni

)
θnii (1− θi)n−ni

(
ni
ki

)
γkii (1− γi)ni−ki

This is obvious or follows by explicit calculation of the sums and some algebra. Putting
everything together and finally taking the expectation over i we get

Lossn(A|ni, in+1 = i) =

ni∑
ki=0

(
ni
ki

)
γkii (1− γi)ni−ki`(γi, ki, ni) (14)

Li ≡ Lossn(A|in+1 = i) =
n∑

ni=0

(
n
ni

)
θnii (1− θi)n−ni Lossn(A|ni, in+1 = i) (15)

Lossn(A) =
∞∑
i=1

θiLi (16)

In the deterministic case γi ∈ {0, 1} and our memorizing algorithm (1) with 0-1 loss,
`(γi, ki, ni) = [[ni = 0]] is independent ki, so the ki sums the binomial to 1, and the ni-sum
collapses to ni = 0, leading back to Lossn(A) =

∑∞
i=1 θi(1− θi)n = EEn =(10).

Square loss. For noisy labels, γi ∈ [0; 1], frequency estimator Ai = ki/ni, square loss
`(γi, ki, ni) = (γi − ki/ni)2 for ni > 0 (with “Entropy” γi(1 − γi) removed), and keeping
`(γi, ki, 0) = 1, we proceed as follows: The ki-sum in (14) becomes the variance of ki/ni,
hence Lossn(A|ni, in+1 = i) = γi(1 − γi)/ni. Unfortunately plugging this into the next
ni-sum in (15) leads to a hypergeometric function. We tried various approximations, all
leading essentially to the same end result. The simplest approximation is to approximate
γi(1 − γi)/ni by γi(1 − γi)/(ni + 1), which is asymptotically correct and within a factor
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of 2 also valid for 1 ≤ ni <∞, and avoids hypergeometric functions altogether:

Li =
n∑

ni=0

(
n
ni

)
θnii (1− θi)n−ni Lossn(A|ni, in+1 = i)

= (1− θi)n +
n∑

ni=1

(
n
ni

)
θnii (1− θi)n−ni

γi(1− γi)
ni

≈ (1− θi)n +
n∑

ni=1

(
n
ni

)
θnii (1− θi)n−ni

γi(1− γi)
ni + 1

= (1− θi)n − (1− θi)nγi(1− γi) +
n∑

ni=0

(
n
ni

)
θnii (1− θi)n−ni

γi(1− γi)
ni + 1

(a)
= [1− γi(1− γi)](1− θi)n +

γi(1− γi)
(n+ 1)θi

n+1∑
k=1

(
n+ 1
k

)
θki (1− θi)n+1−k

(b)
= [1− γi(1− γi)](1− θi)n +

γi(1− γi)
(n+ 1)θi

[1− (1− θi)n+1]

where (a) follows from substituting ni = k−1 and rearranging terms, and (b) from adding
and subtracting the missing k = 0 contribution, and the fact that a complete binomial
sums to 1. If we assume that the noise level is the same for all features, i.e. γi = γ or
γi = 1− γ, then

Lossn(A) ≡
∞∑
i=1

θiLi ≈ [1− γ(1− γ)]
∞∑
i=1

θi(1− θi)n +
γ(1− γ)

n+ 1

∞∑
i=1

[1− (1− θi)n+1]

= [1− γ(1− γ)]EEn + γ(1− γ)E[En+1]

Again, in the deterministic case γ ∈ {0, 1}, we get back Lossn(A) = EEn.

Upper and lower bounds for general γi. Let us introduce the shortcuts

En
i := (1− θi)n ≤ 1− (1− θi)n+1

(n+ 1)θi
=: E

n+1

i

The inequality is reminiscent of EEn ≡ E[En] ≤ E[En+1], which followed from EEn being
monotone deceasing, or can directly be proven as

1

θi
[1− (1− θi)N+1] =

N∑
n=0

(1− θi)n ≥
N∑
n=0

(1− θi)N = (N + 1)(1− θi)N

For a lower bound on Li, with ci := γi(1− γi) and c := infi{ci}, we get

Li ≥ (1− ci)En
i + ciE

n+1

i

= (1− ci)En
i + (ci − c)E

n+1

i + cE
n+1

i

≥ (1− ci)En
i + (ci − c)En

i + cE
n+1

i

≥ (1− c)En
i + cE

n+1

i

Taking the θ-expectation we get

Lossn(A) ≡
∞∑
i=1

θiLi ≥ (1− c)EEn + cE[En+1]
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Note that if γi includes deterministic labels γi ∈ {0, 1} (or arbitrarily close to determin-
istic), then c = 0, and the best we can conclude is Lossn(A) ≥ EEn, which holds for trivial
reasons: A new feature causes one unit of error in the deterministic as well as the noisy
label case, but there can be further errors for noisy labels.

Similarly for an upper bound with c := supi{ci}, we get

Li ≤ (1− ci)En
i + 2ciE

n+1

i

= (1− c)En
i + (c− ci)En

i + 2ciE
n+1

i

≤ (1− c)En
i + 2(c− ci)E

n+1

i + 2ciE
n+1

i

= (1− c)En
i + 2cE

n+1

i

Taking the θ-expectation we get

Lossn(A) ≤ (1− c)EEn + 2cE[En+1] ≤ 3
4
EEn + 1

2
E[En+1]

where the last inequality holds for any γi ∈ [0; 1] (c = 1
4
). In the deterministic case, c = 0,

and Lossn(A) ≤ EEn as it should be.

Noise bounded away from 0/1. If we assume that γi are bounded away from 0 and
1 (c > 0), the above bounds imply that within a multiplicative constant

Lossn(A)
×
= EEn + E[En]

This is quite remarkable, that the instantaneous square loss for noisy labels includes
a term proportional to the time-averaged (0-1) error in the deterministic case. As we
have seen in the main paper, roughly, as long as EEn goes to 0 slower than 1/n, EEn and
E[En] have the same asymptotics, which in turn implies that the results for deterministic
classification transfer to noisy labels, in particular α-Zipf-distributed data lead to β-power
law learning curves with β = α

1+α
. While EE can decay faster than 1/n, e.g. exponentially

for finite models, E[En] and hence Lossn(A) can never decay faster than 1/n. As discussed
in the introduction, the reason is that the accuracy to which parameters (here γi) can

be estimated from ni i.i.d. data is
×
=n
−1/2
i

×
≥n−1/2, which squares to Lossn(A)

×
≥n−1 for

(locally) quadratic loss.

Absolute loss. For absolute loss ` = |γi−ki/ni| there is no closed-form solution for (14).
For large ni, the binomial is approximately Gaussian (in ki/ni) with mean γi and variance
γi(1 − γi)/ni, and (14) can be evaluated to

√
γi(1− γi)/ni. Plugging this into (15) we

can approximate the ni-sum for nθi � 1 and for nθi � 1. Plugging each into (16), and
approximating the i-sum for α-Zipf-distributed θi one can show that each, again, scales
as n−β with β = α

1+α
, but the latter has an additional n−1/2 term. For α < 1 this is

swamped by n−β, but for α > 1 it dominates the learning curve. The intuition for this
happening is explained in the main text.

F Approximating Sums by Integrals

Sums
∑∞

i=1 g(i) can be approximated by integrals
∫∞

1
g(x)dx. To upper bound the ap-

proximation error classically requires computing a cumbersome integral (Euler-Maclaurin
remainder) or only works for finite sums (Trapezoid rule). In the following we derive an
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upper bound on the approximation accuracy, suitable for our purpose. First, note that
for a monotone increasing function∫ m

n−1

g(x)dx ≤
m∑
i=n

g(i) ≤
∫ m+1

n

g(x)dx (17)

with inequalities reversed for monotone decreasing functions. Consider now any mea-
surable function g : [0;∞) → [0;∞) increasing up to gmax = g(xmax) and thereafter
decreasing (In our application g(x) = f(x)e−nf(x)). Let im−1 ≤ xmax ≤ im. We split the
integral into the increasing and decreasing part and use (17) to lower-bound the error:

∞∑
i=1

g(i) =

im−1∑
i=1

g(i) +
∞∑
i=im

g(i) ≥
∫ im−1

0

g(x)dx+

∫ ∞
im

g(x)dx

=

∫ ∞
0

g(x)dx−
∫ im−1

im

g(x)dx ≥
∫ ∞

0

g(x)dx− gmax

To obtain an upper bound we have to exclude im−1 and im from the sums:

∞∑
i=1

g(i) =

im−2∑
i=1

g(i) +
∞∑

i=im+1

g(i) + [g(im−1) + g(im)]

≤
∫ im−1

1

g(x)dx+

∫ ∞
im

g(x)dx+ min{g(im−1), g(im)}+ max{g(im−1), g(im)}

≤
∫ im−1

1

g(x)dx+

∫ ∞
im

g(x)dx+

∫ im

im−1

g(x)dx+ gmax =

∫ ∞
1

g(x)dx+ gmax

Together this leads to the following bound on the approximation error:∣∣∣∣ ∞∑
i=1

g(i)−
∫ ∞
a

g(x)dx)

∣∣∣∣ ≤ gmax (18)

for any=every choice of a ∈ [0; 1]. Without further assumptions on g, this bound is tight.
For the lower bound consider g(x) = gmax for im−1 < x < im and 0 otherwise. For the
upper bound consider g(im) = gmax and 0 otherwise.
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G List of Notation

Symbol Explanation

a/b · c = (a/b) · c but a/bc = a/(bc)

[[Bool]] 1 if Bool=True, 0 if Bool=False

#S Number of elements in set S
P,E,V Probability, Expectation, Variance

i ∈ i1:n is short for i ∈ {i1, ..., in}
:= defined as

≡ equal by (earlier) definition

≈ Asymptotically or approximately equal (depending on context)
×
= Equal within a multiplicative constant
×
≈ Asymptotically or approximately proportional (depending on context)

=̇ Equal within the stated number of numerical digits

i, j ∈ N natural number “feature”

t, n,m ∈ N time/sample index

N ∈ N sample size

θi probability of feature i

A tabular learning algorithm

h : N→ Y classifier, e.g. binary Y = {0, 1}
f : R→ R Theoretical data distribution/scaling f(i) = θi

Dn Data consisting of n (feature,label) pairs

En Instantaneous Error of A on in+1 predicting yn+1 from Dn
EEn Expectation of Instantaneous Error En w.r.t. Dn
EN Time-Averaged Error from n = 1, ..., N

α Exponent of Zipf distributed data frequency

β Exponent of power law for error as a function of data size

γ Decay rate for exponential data distribution
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Figure 4: (Learning Curves) for uniform data distribution P[in = i] = θi = 1
m

for
i ≤ m = 10 averaged over k = 1, 10, 100, 1000 runs.
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Figure 5: (Learning Curves) for Zipf-distributed data P[in = i] = θi ∝ i−(α+1) for
α = 1 averaged over k = 1, 10, 100, 1000 runs.
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Figure 6: (Word-Frequency in Text File, Learning Curve, Power Law) (left)
Relative (left scale) and absolute (right scale) of frequency of words in the first 20469
words in file ‘book1’ of the Calgary Corpus, and fitted Zipf law, which is a straight line
in the Log-log plot. (right) Power law fit to learning curve for this data set for a word
classification task. For large n, low frequency words break the Zipf law and hence the
power law. The solid line is the same as in Figure 3 (right) fit to the reliable region
n ≤ 1000 and then extrapolated. The dashed line is fit over the whole range of n.
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