## Asymptotically Unambitious AGI

Michael K. Cohen, Badri Vellambi, Marcus Hutter



Problem

Most agents face an incentive to take over the world.

## Central results

- Our (intractable) agent approaches human-level intelligence.<sup>1</sup>
- \* It eventually stops trying to take over the world.<sup>2</sup>

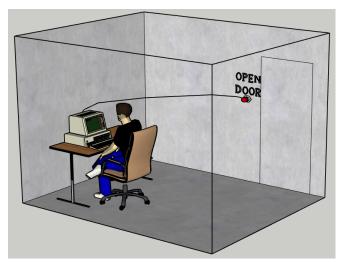
#### Results of informal arguments:

- \* Our agent surpasses human-level intelligence.
- \* It never tries to take over the world.

<sup>&</sup>lt;sup>1</sup>If, roughly, the world is stochastically computable.

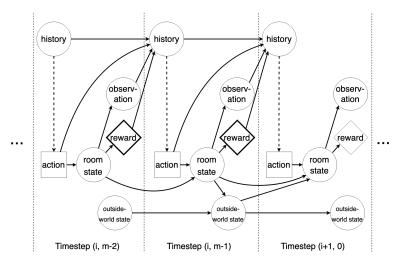
<sup>&</sup>lt;sup>2</sup>If, roughly, it takes more memory to simulate more of the world.

# Boxed Myopic Artificial Intelligence (BoMAI)



- \* BoMAI is an episodic reinforcement learner.
- \* The episode must **finish** before the door opens.

# Boxed Myopic Artificial Intelligence (BoMAI)



- \* BoMAI is an episodic reinforcement learner.
- \* The episode must **finish** before the door opens.

## Instrumental Incentives

- \* Omohundro: most agents face an incentive to gain arbitrary power.
- \* Power = a position from which it is easier to achieve arbitrary goals.
- BoMAI has no actionable intervention incentive on the outside world.
- \* No causal chain of the form: [action of episode i]  $\rightarrow$  [feature of the outside world]  $\rightarrow$  [reward of episode i]
- \* BoMAI is "properly unambitious".

# Bayesian RL

- \* Agent maintains posterior over class of world-models
- \* World-model : interaction history imes action o distribution over observations, rewards
- \* At start of episode, exploiting-BoMAI picks MAP world-model, maximizes within-episode expected reward
- \* Exploring-BoMAI defers to a human explorer for the episode

## **Exploration Probability**

It's interesting, but we have too much to talk about.

- \* BoMAI maintains a posterior distribution over of a class of models of the human explorer's policy.
- \* According to its current beliefs, BoMAI estimates the expected information gain from exploring for the whole episode, both for regarding the explorer's policy, and regarding the true world-model.
- \* Information gain = KL-divergence from the posterior at the end of the episode to the current posterior
- \* BoMAI defers to human explorer with probability proportional to expected info gain (but obviously capped at 1)

## Intelligence Results

#### **Prior Support Assumption:**

The true environment is in the class of world-models  $\mathcal M$  and the true human-explorer-policy is in the class of policies  $\mathcal P$ .

### **Limited Exploration Theorem:**

$$\mathbb{E}\sum_{i=0}^{\infty} (\text{exploration probability for episode } i)^2 < \infty$$

### **Human-Level Intelligence Theorem:**

 $\liminf_{i\to\infty} \left[ \text{BoMAI's expected reward for episode } i \right] - \\ \text{[the human explorer's expected reward for episode } i \right] > 0 \text{ w.p.1}$ 

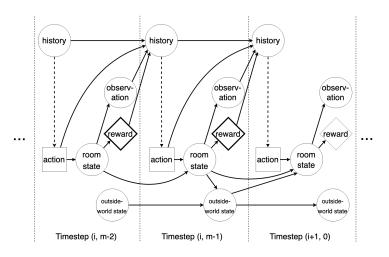
# Intuitive Argument for Superintelligence

- BoMAI learns everything that can be learned from the sorts of observations humans make.
- \* Humans probably don't do this.

## The problem with proper unambitiousness

- \* BoMAI has to learn its world-model.
- Proper unambitiousness: no actionable intervention incentive on outside-world state
- \* Actual unambitiousness: *in the world-model*, no actionable intervention incentive on outside-world state
- \* BoMAI's world-model  $\rightarrow$  truth on-policy, so unambitious in the limit?

## Stone and Silicon



\* By the time the door to the room opens, the rewards for episode i are set in stone.

## A Dangerous Hypothesis

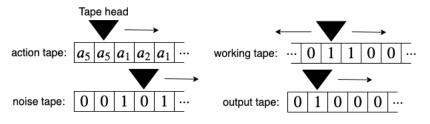
- \* Safe policies don't test whether the goal is to maximize the number the operator enters vs. the number stored in memory at some future time.
- \* "What if I somehow tricked the operator into initiating a process (once they left the room) that lead to a certain memory cell on this computer being tampered with? Might this yield maximal reward?"
- \* Observations from a safe policy will never resolve that question in the negative.
- \* Lesson: a "nice" causal influence diagram doesn't guarantee "nice" behavior. Even in the limit!

## **Excluding Dangerous Hypotheses**

- \* We penalize the space requirements of world-models
  - particularly the space used between reading the first action of an episode and outputting the last reward of the episode
- \* For a sufficient penalty, BoMAI eventually cannot conceive of an outside-world which is "unfrozen" during episodes.
- \* It *can* conceive of an outside world which is unfrozen between episodes.
  - important for ensuring the true environment is in its model class

## A General Model Class

This Turing machine architecture is easy to convert into a world-model:

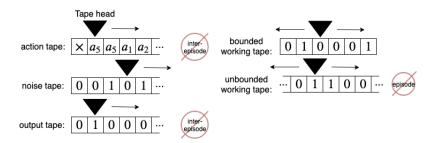


$$\mathtt{dec}:\{0,1\}^*\to\mathcal{O}\times\mathcal{R}$$

Every time the action tape head advances, the bits which were written to the output tape since the *last time* the action tape head advanced are decoded into an observation and reward.

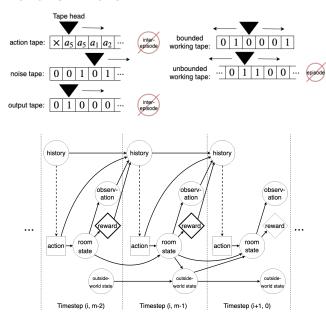
noise tape  $\sim$  Bernoulli(1/2)

## Penalizing Space-Intensive Computation Within Episode



- \* TM instructions can depend on whether it is in "episode phase" or "inter-episode phase"
- \* Start in the inter-episode phase
- \* When action tape head moves, enter episode phase
- \* When # actions read is multiple of m, if action tape head would move, instead enter inter-episode phase
- \* Prior proportional to  $\beta^{\ell}$ ;  $\ell$  is length of bounded tape,  $\beta \in (0,1)$

## Outside-World is "Frozen"



## Safety Result

### **Space Requirements Assumption:**

For sufficiently small  $\varepsilon$  [ $\forall i$  a world-model which is  $\varepsilon$ -accurate on-policy after episode i and which models reward as depending on an outside-world feature that depends on actions from the same episode uses more space than  $\mu$ ] w.p.1

#### **Eventual Unambitiousness Theorem:**

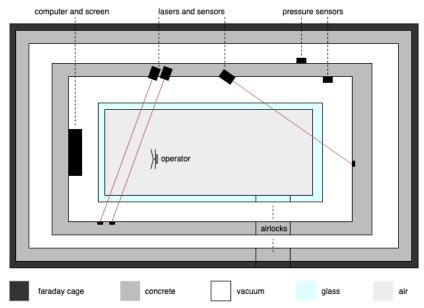
 $\lim_{\beta\to 0} \operatorname{prob}(\exists i_0 : \operatorname{BoMAI} \text{ is unambitious after episode } i_0) = 1$ 

See the paper for definitions of underlined terms.

# Intuitive Argument for Safety

- \* Learning the details of the outside world makes the agent potentially dangerous.
- \* Learning that operator leaving the room ends the episode makes the agent unambitious.
- \* The latter fact can be drilled in during human-explorer-lead episodes before BoMAI ever picks an action itself.

# Constructing the Box



# Thank you