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Introduction

I Many reinforcement learning (RL) problems have huge
action-spaces.

Examples: Robotics, Protein Folding, and StarCra�.1
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Introduction (Cont.)

I Observations 6= States, i.e. most problems are non-Markovian.
I Need to keep (parts of) the history to define the “state”.

Examples: Self-driving Cars, Montezuma’s Revenge, and Minecra�.2

2Image credit: Yahoo Finance, Medium, Minecra� Wiki 2 / 14



Research�estion

Is it possible, in theory, to reduce any (history-based) problem with a
huge action-space to a reasonably sized state-action space MDP

model?

This work: Yes!
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History-based RL with Abstraction

I At time t, the agent takes an
action at ∈ A .

I The environment dispatches
an observation-reward pair
ot+1rt+1 ∈ O ×R.

I The updated history is
ht ··= ht−1at−1otrt ∈H .

I The abstraction ψ : H → S
provides a (su�icient)
statistics of the history.

I The agent selects actions
through a policy
Π : S →4(A ).
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The agent-environment interaction.
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Action-value Uniform Abstractions

Definition (ε-Q-uniform abstraction)

An abstraction function ψ : H → S is an ε-Q-uniform abstraction
if for any h, ḣ ∈H and all a ∈ A we have(

ψ(h) = ψ(ḣ)
)

=⇒
∣∣∣Q∗(h, a)− Q∗(ḣ, a)

∣∣∣ ≤ ε
where S is the set of states of the abstraction.

I Q∗ is the optimal action-value function.
I An approximation of Q∗ can be used in the above definition

with an extra error term.
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Extreme State Aggregation (ESA)

Theorem (ESA3)

For every environment P there exists an abstraction and a
surrogate-MDP whose optimal policy is an ε-optimal policy for the
environment. The size of the surrogate-MDP is bounded (uniformly for
any P) by

|S | ≤
(

2
ε(1− γ)3

)|A |
where γ is the discount-factor.

I The size of the abstraction scales exponentially in |A |.
I Not very useful even for medium-sized action-space problems.

3Marcus Hu�er. “Extreme state aggregation beyond Markov decision processes”. In: Theoretical Computer Science (2016),
pp. 73–91, Theorem 11. 6 / 14



Action Sequentialization in Markovian Environments

I Let A = {a00, a01, a10, a11}.
I s′(sa) denotes the next state

s′ reached from state s when
the agent takes action a.

I The filled circles denote the
states of the original MDP.

I The squares denote the
added states.
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A simple sequentialization example
in an MDP.
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Sequentialized Environment

I Biject each a ∈ A to a
unique B-ary vector
x1, x2, . . . , xd = x = Code(a)
of length d.

I The agent takes a B-ary
decision xt ∈ B.

I The sequentialized
environment (B-ary mock)
provides a bu�ered
observation ot+1 and reward
rt+1.

I Once x ∈ Bd decisions are
taken, B-ary mock acts on
the true environment with
a = Code−1(x) ∈ A .
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The agent-environment interaction
through the sequentialization

scheme.
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Action Sequentialization in History-based Environments

I Let τ be a “sequentialized”
history, and B = {0, 1}.

I For brevity, the intermediate
bu�ered observation-reward
pairs are omi�ed.

I If P is an MDP then o is a
su�icient statistics of τ .
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A simple
sequentialization/binarization
example in a deterministic
history-based process.
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Sequentialization is Useful

Theorem (Sequentialization preserves Markov property)

If P is an MDP over O , and the observations from the B-ary mock are
Õ ··= O × ∪d−1i=0 Bi, then sequentialized P̆ is also an MDP over Õ .

I This construction reduces the action-space at the expense of
the state-space from |O| to ≈ 2|A |·|O|.

I Algorithms which bootstrap can benefit from such
sequentialization, e.g. Q-learning.

I Since P̆ is also an MDP, the convergence and optimality
guarantees in MDPs are carried over to the sequentialized
process.
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Sequentialization is Useful (Cont.)

Theorem (Sequentialization preserves ε-optimality)

Any γε-optimal policy of the sequentialized environment is ε-optimal
in the original environment.

I It means that we can upli� a near-optimal policy from P̆ to P .
I The upli�ed policy is guaranteed to be near-optimal.
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Binarized ESA

Theorem (Binary ESA)

For every environment there exists an abstraction and a corresponding
surrogate-MDP for its binarized version (B = {0, 1}) whose optimal
policy is ε-optimal for the true environment. The size of the
surrogate-MDP is uniformly bounded for every environment as

|S | . 4dlog2|A |e6

ε2(1− γ)6
(when γ → 1)

I The size of the abstraction scales only logarithmically in |A |.
I The huge action-space problems can be reduced to a binary

action-space problem with a significantly improved state-space
size.
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Key Takeaway

For every RL problem there exists an ε-optimal MDP model with a
binary action-space, and the number of states are

|S | . 4dlog2|A |e6

ε2(1− γ)6
(when γ → 1)
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Further �estions

Thanks for your a�ention!
Reach out to sultan.majeed@anu.edu.au for further questions.
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