An Improved Bayesian Method for DNA Copy Number Estimation

Paola M.V. Rancoita^{1,2} Marcus Hutter^{3,4} Francesco Bertoni² IDSIA Ivo Kwee^{1,2}

Summary

• Copy number data can be represented as a piecewise constant function

• We derive an improved version of Bayesian Piecewise Constant Regression (mBPCR) • mBPCR is the best performing method for DNA copy number estimation

¹IDSIA, Manno, Switzerland,

²IOSI, Bellinzona, Switzerland,

³ANU, Canberra, Australia, ⁴NICTA, Canberra, Australia

NICTA

Copy number estimation

- Tumors are due to chromosomal aberrations affecting the DNA copy number in one or more regions of the genome.
- The Copy Number of a genomic region is the number of the copies of

Results on dataset sampled from our prior distributions:

 $\sigma^2 = 0.1 \ \sigma^2 = 0.3 \ \sigma^2 = 0.5 \ \sigma^2 = 0.5 \ \sigma^2 = 0.5 \ \sigma^2 = 0.5 \ \sigma^2 = 0.7 \ \sigma^2 = 1 \ \sigma^2 = 1.2$ $|\rho^2 = 0.5|\rho^2 = 0.05|\rho^2 = 0.02|\rho^2 = 0.05|\rho^2 = 0.1|\rho^2 = 0.5|\rho^2 = 0.05|\rho^2 = 0.5|\rho^2 = 0.5$ $|MSE_{\hat{
ho}_1^2}|$ 0.068 0.0009 0.0008 0.0014 0.0047 0.0593 0.0024 0.0623

			SSQ	MAD	accuracy
		\widehat{T}_{01}	14.23	0.00877	0.889
	$\hat{ ho}^2$	$\widehat{\mathrm{T}}_{joint}$	2.22	0.00840	0.904
\widehat{K}_2		$\widehat{\mathrm{T}}_{BinErrAk}$	1.70	0.00733	0.936
		\widehat{T}_{01}	9.74	0.00952	0.881

- DNA in that region (in a healthy cell, the copy number is 2).
- Given a genomic region, we can divide it into subregions, where the CN (or better its log₂ratio with respect to a normal reference sample) is constant.
- \Rightarrow We can consider the log₂ratio of the copy number as a piecewise constant function.
- \Rightarrow We estimate the log₂ratio copy number profile with a Bayesian piecewise constant regression (BPCR).
- The copy number is measured by microarray technology (such as a CGH array or SNP array), and the data can be very noisy due to both technical and biological reasons.

Hypotheses of BPCR model

that Y represents a noisy observation of a suppose piecewise constant function with k_0 segments and boundaries $0 = t_0^0 < t_1^0 \cdots < t_{k_0-1}^0 < t_{k_0}^0 = n$ and that $|Y_i|_{\mu_p, \sigma^2} \sim \mathcal{N}(\mu_p, \sigma^2)$ $i = 1, \dots, n$ if Y_i belongs to the p^{th} segment, for $p = 1, \ldots, k_0$.

New k estimators & comparison

$$\widehat{K} = \underset{k'}{\operatorname{arg\,min\,}} \mathbb{E}[\operatorname{error}(k_0, k') | \underline{Y}]$$

$$0\text{-1 error} = 1 - \delta_{k_0 - k'} \implies \widehat{K}_{01}$$

$$absolute \ error = \left| k_0 - k' \right| \implies \widehat{K}_1$$

$$square \ error = \left(k_0 - k' \right)^2 \implies \widehat{K}_2$$

Error confidence intervals on dataset with $\sigma^2 = 0.1$ and $\rho^2 = 0.5$:

Error confidence intervals on dataset with $\sigma^2 = 0.3$ and $\rho^2 = 0.05$:

$\Rightarrow \widehat{K}_2$ always has small(est) error

$\Rightarrow \widehat{T}_{BinErrAk}$ performs best

Comparisons with existing methods

Results on dataset Simulated Chromosomes:

	SSQ	MAD	accuracy
mBPCR $\hat{ ho}^2$	1.70	0.00733	0.936
mBPCR $\hat{ ho}_1^2$	1.85	0.00781	0.929
CBS	1.56	0.00705	0.953
CGHseg	5.42	0.00795	0.925
HMM	4.47	0.00350	0.993
GLAD	4.15	0.00846	0.939

Results on real data: gene regions

Example of estimated profile:

mBPCR³ mBPCR.

3 00F+00

CBS

JEKO-1 - 10K

HMM

GLAD

6 00E+007

Chromosome 11

9 00E+007

JEk

Prior definition:

$$P(K = k) = \frac{1}{k_{\max}} \qquad k \in \{1, \dots, k_{\max}\} = I\!\!K$$

$$P(\underline{T} = \underline{t} \mid K = k) = \frac{1}{\binom{n-1}{k-1}} \qquad \text{for each } \underline{t} \in T\!T_{k,n}$$

$$\underline{\mu}|_{\nu, \ \rho^2, \ K = k} \sim \mathcal{N}(\nu \underline{1}, \ \rho^2 I\!I)$$

Estimators of the original BPCR

Number of segment estimator:

 $\widehat{K}_{01} = \operatorname*{arg\,max}_{k \in I\!\!K} p(k \mid \underline{Y})$

Boundary estimator:

$$\widehat{T}_{01,p} = \underset{h \in \{p, \dots, n-(\widehat{k}-p)\}}{\arg \max} \mathbb{P}(T_p = h \mid \underline{Y}, \widehat{k}) \qquad p = 1, \dots, \widehat{k} - 1$$

Segment level estimators:

 $\widehat{\mu}_m = \mathrm{E}[\mu \mid \underline{Y}, \widehat{\underline{t}}, \hat{k}] \qquad m = 1, \ldots, \hat{k}$

Hyperparameter estimators:

$$\widehat{\nu} = \frac{1}{n} \sum_{i=1}^{n} Y_i = \overline{Y}, \ \widehat{\sigma}^2 = \frac{1}{2(n-1)} \sum_{i=1}^{n-1} (Y_{i+1} - Y_i)^2, \ \widehat{\rho}^2 = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \overline{Y})^2.$$

Practical and theoretical problems

New <u>t</u> estimators & comparison
$\widehat{T}_{01,p} = \operatorname{argmax}_{t'_{p}} \mathbb{P}(t'_{p} \underline{Y}, \hat{k})$
$\approx \arg \min_{t'_p} E[1 - \delta_{t^0_p - t'_p} \underline{Y}, k_0]$ (0-1 error per component

$$\Rightarrow \underline{\widehat{T}}_{joint} = \arg \max_{\underline{t}'} P(\underline{t}' | \underline{Y}, \hat{k}) \approx \arg \min_{\underline{t}'} E[1 - \delta_{\underline{t}^0 - \underline{t}'} | \underline{Y}, k_0]$$
 (total 0-1 error)

The latter takes into account the dependency among the breakpoints, but the total 0-1 error cannot be defined for $k \neq k_0$.

 \Rightarrow Definition of another error: the **binary error**

The boundary vectors are mapped into vectors with the same length on which we define a suitable error:

1. Definition of the binary transformation for the boundary vectors

 $\underline{t} \mapsto \underline{\tau}$ such that $\tau_i = \begin{cases} 1 & \text{if } \exists p \text{ such that } t_p = i \\ 0 & \text{otherwise} \end{cases}$

2. Definition of the binary error on the transformed vectors

binary error
$$= k_0 - 1 - \langle \underline{\tau}^0, \underline{\tau} \rangle = k_0 - 1 - \sum_{i=1}^{n-1} \tau_i^0 \tau_i$$

3. Then, $\widehat{\underline{T}}_{\operatorname{BinErrAk}}$ is the inverse image of

			Estima	ated	copy n	umbers
	gene	FISH	mBPCR			
END-I IUN	region	CN	$\hat{ ho}^2$	$\hat{ ho}_1^2$	CBS	CGHseg
	BCL6	3/2	2.97	2.99	2.97	2.90
	C-MYC	ampl	12.11	9.35	10.27	10.27
	CCND1	2	4.08	3.77	4.08	4.08
	BIRC3	4/5	4.08	4.29	4.08	4.08
	ATM	4	4.08	4.29	4.08	4.08
	D13S319	4	3.72	3.59	3.57	3.72
	LAMP1	4	3.41	3.82	3.41	3.41
= cn wrongly	TP53	2/3	2.81	3.00	2.83	2.50
identified	BCL2	4	3.63	3.62	3.48	3.64

MALT1

On the 10K data, mBPCR $\hat{
ho}_1^2$ is the only method which identifies the amplification after position 105Mb.

• On simulated data with medium/high noise, BPCR did not perform best in comparison with the other existing methods. • Since \widehat{T}_{01} estimates each breakpoint separately, some breakpoints can be estimated with the same location loosing segments.

 \Rightarrow Definition of other estimators

• Change error that the Bayesian estimators minimizes $\left(\widehat{\Theta}_{Bayesian} = \arg\min_{\theta'} \mathbb{E}[\operatorname{error}(\theta, \, \theta') \,|\, \underline{Y}]\right)$

• Change estimator of the variance of the segment levels ($\hat{\rho}^2$), which is very biased

New ρ^2 estimator & comparison

If Y_i and Y_j belong to the same segment,

$$\begin{aligned} \operatorname{Cov}(Y_i, \, Y_j | \nu, \, \rho^2, \, \sigma^2) &= \rho^2 \qquad i \neq j \\ \Rightarrow \, \widehat{\rho_1^2} &:= \frac{1}{n} \left| \sum_{i=1}^n (Y_i - \overline{Y})(Y_{i+1} - \overline{Y}) \right| \end{aligned}$$

Results on dataset *Simulated Chromosomes* (i.e. simulated chromosomic profiles used in Willenbrock and Fridlyand (2005), *Bioinformatics*, **21** 4084-4091):

(if w=i, we look if $\hat{t}_p\in [t_q^0-i,\,t_q^0+i]$, for all $p=1,\,\ldots,\,\hat{k}$ and $q=1,\,\ldots,\,k_0$)

Conclusions

• mBPCR is the best method in detecting the true position of the breakpoints also on very noisy data

• On real data, mBPCR performed best (the second best method is CBS).

Remarks:

• mBPCR has a high FDR in the detection of the breakpoints, but this usually does not affect the estimation

 \Rightarrow we obtained a reduction of the FDR using prior of K proportional to $1/k^2$ and its MAP estimator

• If the real data contains only few aberrations the variance of the level ρ^2 cannot be well estimated

 \Rightarrow we can use ρ^2 estimated with $\hat{\rho}_1^2$ on one or more cell line genomes which contains several aberrations

• The computational complexity is $O(k_{max}n^2)$, but the computation can be parallelized by chromosome.